As configured in my dotfiles.
start new:
tmux
start new with session name:
#!/bin/bash | |
# | |
# Download the Large-scale CelebFaces Attributes (CelebA) Dataset | |
# from their Google Drive link. | |
# | |
# CelebA: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html | |
# | |
# Google Drive: https://drive.google.com/drive/folders/0B7EVK8r0v71pWEZsZE9oNnFzTm8 | |
python3 get_drive_file.py 0B7EVK8r0v71pZjFTYXZWM3FlRnM celebA.zip |
As configured in my dotfiles.
start new:
tmux
start new with session name:
""" | |
author: Timothy C. Arlen | |
date: 28 Feb 2018 | |
Calculate Mean Average Precision (mAP) for a set of bounding boxes corresponding to specific | |
image Ids. Usage: | |
> python calculate_mean_ap.py | |
Will display a plot of precision vs recall curves at 10 distinct IoU thresholds as well as output |
import cv2 | |
import time | |
person_cascade = cv2.CascadeClassifier( | |
os.path.join('/path/to/haarcascade_fullbody.xml')) | |
cap = cv2.VideoCapture("/path/to/test/video") | |
while True: | |
r, frame = cap.read() | |
if r: | |
start_time = time.time() |
# if input image is in range 0..1, please first multiply img by 255 | |
# assume image is ndarray of shape [height, width, channels] where channels can be 1, 3 or 4 | |
def imshow(img): | |
import cv2 | |
import IPython | |
_,ret = cv2.imencode('.jpg', img) | |
i = IPython.display.Image(data=ret) | |
IPython.display.display(i) |
import os | |
import torch | |
import argparse | |
from maskrcnn_benchmark.config import cfg | |
from maskrcnn_benchmark.utils.c2_model_loading import load_c2_format | |
def removekey(d, listofkeys): | |
r = dict(d) | |
for key in listofkeys: |
import torch | |
import torchvision | |
class VGGPerceptualLoss(torch.nn.Module): | |
def __init__(self, resize=True): | |
super(VGGPerceptualLoss, self).__init__() | |
blocks = [] | |
blocks.append(torchvision.models.vgg16(pretrained=True).features[:4].eval()) | |
blocks.append(torchvision.models.vgg16(pretrained=True).features[4:9].eval()) | |
blocks.append(torchvision.models.vgg16(pretrained=True).features[9:16].eval()) |