Last active
May 12, 2022 08:21
-
-
Save mertbozkir/a708ca5a307c2cd6114097b31e7daed0 to your computer and use it in GitHub Desktop.
Simple Linear Regression with Gradient Descent from Scratch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "fa3a47c2", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def cost_function(Y, b, w, X):\n", | |
" m = len(Y)\n", | |
" sse = 0\n", | |
" for i in range(0, m):\n", | |
" y_hat = b + w * X[i]\n", | |
" y = Y[i]\n", | |
" sse += (y_hat - y) ** 2\n", | |
" \n", | |
" mse = sse / m\n", | |
" return mse" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"id": "1a64d483", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def update_weights(Y, b, w, X, learning_rate):\n", | |
" m = len(Y)\n", | |
" \n", | |
" b_deriv_sum = 0\n", | |
" w_deriv_sum = 0\n", | |
" \n", | |
" for i in range(0, m):\n", | |
" y_hat = b + w * X[i] \n", | |
" y = Y[i]\n", | |
" b_deriv_sum = (y_hat - y)\n", | |
" w_deriv_sum = (y_hat - y) * X[i]\n", | |
" \n", | |
" new_b = b - (learning_rate * 1 / m * b_deriv_sum)\n", | |
" new_w = w - (learning_rate * 1 / m * w_deriv_sum)\n", | |
" return new_b, new_w" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"id": "0e830209", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def train(Y, initial_b, initial_w, X, learning_rate, num_iters):\n", | |
" print(\"Starting gradient descent at b = {0}, w = {1}, mse = {2}\".format(Y, initial_b, initial_w, X))\n", | |
" \n", | |
" \n", | |
" b = initial_b\n", | |
" w = initial_w\n", | |
" cost_history = []\n", | |
" for i in range(num_iters):\n", | |
" b, w = update_weights(Y, b, w, X, learning_rate)\n", | |
" mse = cost_function(Y, b, w, X)\n", | |
" cost_history.append(mse)\n", | |
" \n", | |
" if i%100 ==0:\n", | |
" print(\"iter={:d} b={:.2f} w={:.4f} \".format(i, b, w, mse))\n", | |
" \n", | |
" print(\"after {0} iterations b = {1}, w = {2}, mse = {3}\".format(num_iters, b, w, cost_function(Y, b, w, X)))\n", | |
" return cost_history, b, w" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.9.7" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment