Created
November 6, 2015 08:07
-
-
Save mgedmin/5f0de37400b5bec04bc5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:24ccf58ae384731efabfd508ac9921f8a9dd04221a6c9dc4b329328f636825aa" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import pandas as pd" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%pylab inline" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"Populating the interactive namespace from numpy and matplotlib\n" | |
] | |
} | |
], | |
"prompt_number": 10 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"data = {100: 1.5, 200: 3.368, 400: 8.992, 800: 31, 1000: 49.102, 1600: 2*60+10.720}" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"d = pd.Series(data)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 12 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"f = pd.DataFrame(d, columns=['time'])" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 22 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"f.index.name = 'host count'" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 17 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"f" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>time (seconds)</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>host count</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>100 </th>\n", | |
" <td> 1.500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>200 </th>\n", | |
" <td> 3.368</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>400 </th>\n", | |
" <td> 8.992</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>800 </th>\n", | |
" <td> 31.000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1000</th>\n", | |
" <td> 49.102</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1600</th>\n", | |
" <td> 130.720</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 18, | |
"text": [ | |
" time (seconds)\n", | |
"host count \n", | |
"100 1.500\n", | |
"200 3.368\n", | |
"400 8.992\n", | |
"800 31.000\n", | |
"1000 49.102\n", | |
"1600 130.720" | |
] | |
} | |
], | |
"prompt_number": 18 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"f.plot(style='o-', legend=False).set_ylabel('seconds')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 23, | |
"text": [ | |
"<matplotlib.text.Text at 0x7f73146910f0>" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecFeXZ//HPFUSw5HH10WCBCBJ7I/bEKCtdUVATDSb6\nY23piCkqtoCJGqKxJ+aJqIBGjZ2IKE1ZMLFFZbFiQYmiASuiUfr1++OehcO6wNnlnJm5z37fr9e+\nODOnzJdZ2GvnvmbuMXdHRESkGF/KOoCIiMRDRUNERIqmoiEiIkVT0RARkaKpaIiISNFUNEREpGhl\nKxpmdqOZzTOz5xp57pdmttzMNitYd7aZvWpmM82sV7lyiYhI85XzSGMk0KfhSjPrAPQE/l2wbhfg\nu8AuyXuuNTMdBYmI5EzZfjC7+yPAR408dTlwZoN1/YHb3H2Ju88GXgP2K1c2ERFpnlR/mzez/sAc\nd3+2wVNbA3MKlucA26QWTEREirJeWhsysw2BcwhDUytWr+Etmt9ERCRnUisaQGegIzDDzADaA0+b\n2f7A20CHgte2T9atwsxUSEREmsHd1/RLetFSG55y9+fcvZ27d3L3ToQhqL3cfR5wHzDAzNY3s07A\n9sCTq/mcsnwNHTq0bJ+tvMqsvMqc5VcplfOU29uAR4EdzOwtMzuxwUtW/E3c/UXgDuBF4EHgJ17q\nv+lazJ49O83NrbPY8oIypyG2vKDMsSnb8JS7H7eW57drsHwxcHG58oiIyLrTtRCJmpqarCM0SWx5\nQZnTEFteUObYWMqjQOvEzNIetRIRiZ6Z4bE1wvOutrY26whNElteUOY0xJYXlDk2KhoiIlI0DU+J\niFQ4DU+JiEgmVDQSsY1RxpYXlDkNseUFZY6NioaISIUaN24avXufV9LPVE9DRKQCjRs3jcGDJzBr\n1kWAehoiIrIGV189MSkYpaWikYhtjDK2vKDMaYgtLyhzuSxaVJ5ZolQ0REQqUJs2S8vyueppiIhU\nmGXLoFevaTz66AQWLlRPQ0REVmPJEjj+eDA7mJtv7k3v3ueX9PNVNBIxjFEWii0vKHMaYssLylxK\nixfDgAHw8ccwdix85zsHM378b0u6DRUNEZEKsHAhfPvbYWjq3nthgw3Ksx31NEREIvf553DkkbDJ\nJnDLLdC69arPa+4pEREB4L//hb59YYst4NZbv1gwSk1FI5HXMcrViS0vKHMaYssLyrwuFiyAPn2g\nY0cYPRrWK9sNvFdS0RARidD8+dCrF+y2G1x/PbRqlc521dMQEYnMBx+EgnHQQXDFFWBr6VaopyEi\n0kK9+y506wY9ehRXMEpNRSORlzHKYsWWF5Q5DbHlBWVuiv/8B6qroX9/GD48/YIBZSwaZnajmc0z\ns+cK1l1qZi+Z2Qwzu8fMNil47mwze9XMZppZr3LlEhGJ0Zw50LUrfP/78JvfZFMwoIw9DTM7CPgU\nuMndd0/W9QQecvflZjYcwN2HmNkuwK3AvsA2wGRgB3df3uAz1dMQkRZn9mzo3h1+/GP41a+a/v4o\nehru/gjwUYN1kwoKwRNA++Rxf+A2d1/i7rOB14D9ypVNRCQWr70WhqROP715BaPUsuxpnAQ8kDze\nGphT8NwcwhFHamIbV40tLyhzGmLLC8q8JjNnwiGHwDnnwKBBqWxyrVK4FOSLzOxcYLG737qGlzU6\nDlVTU0PHjh0BqKqqokuXLlRXVwMrv5FazudyXV1drvIUs1xXV5erPJWWt1Be8uRleeTIWn71K7js\nsmpqapr2/traWkaNGgWw4udlqZT1Og0z6wiMre9pJOtqgFOB7u6+MFk3BMDdhyfL44Gh7v5Eg89T\nT0NEKl5dHRx6KFx2GXzve+v+eVH0NBpjZn2AM4D+9QUjcR8wwMzWN7NOwPbAk2lmExHJg6eegt69\n4ZprSlMwSq2cp9zeBjwK7Ghmb5nZScA1wMbAJDObbmbXArj7i8AdwIvAg8BP0j6kaHionHex5QVl\nTkNseUGZCz32GBx2GIwYAd/5Tlk2sc7K1tNw9+MaWX3jGl5/MXBxufKIiOTZtGnhfhg33xwmIcwr\nzT0lIpKxyZPhuOPgb38L12OUWrQ9DRERWdWDD4bexd13l6dglJqKRiK2cdXY8oIypyG2vNCyM//9\n7zBwYPjz4INL8pFlp6IhIpKBO++EH/wAHngAvvGNrNMUTz0NEZGU3XJLmBJk/HjYc8/yb089DRGR\nSI0cCWeeGZrfaRSMUlPRSMQ2rhpbXlDmNMSWF1pW5r/8BX79a3j4Ydh119JmSksmc0+JiLQ0V18N\nl18OtbXQuXPWaZpPPQ0RkTK79FL4v/8LRxjbbpv+9kvZ09CRhohIGf32t/DXv8LUqdC+/dpfn3fq\naSRiG1eNLS8ocxpiywuVm9kdzjsvXOVdKQUDdKQhIlJy7uEMqUmTQg9jiy2yTlQ66mmIiJSQOwwe\nDI8+ChMnwmabZZ1IPQ0RkVxavhx+/GN49tlwHUZVVdaJSk89jURs46qx5QVlTkNseaFyMi9bBief\nDC+9FI4wKrFggI40RETW2dKlYeLBuXPDrLUbbZR1ovJRT0NEZB0sWRKmNv/0U7jnHthgg6wTfZF6\nGiIiObBoERx7bGh+jxkDbdpknaj81NNIxDauGlteUOY0xJYX4s38+edw5JHQujXcdVfLKBigoiEi\n0mSffw5HHAGbbhou3lt//awTpUc9DRGRJvjkE+jbN0w6eP310KpV1onWTvfTEBHJwPz50KsX7Lwz\n3HBDHAWj1FQ0ErGNq8aWF5Q5DbHlhXgyf/gh9OgB++4LAwbU8qUW+tOzbH9tM7vRzOaZ2XMF6zYz\ns0lm9oqZTTSzqoLnzjazV81sppn1KlcuEZGmeu896NYNDjkErroKrCQDPXEqW0/DzA4CPgVucvfd\nk3WXAO+7+yVmdhawqbsPMbNdgFuBfYFtgMnADu6+vMFnqqchIqmaOxe6d4ejjgrTnMdYMKLoabj7\nI8BHDVb3A0Ynj0cDRyaP+wO3ufsSd58NvAbsV65sIiLFePtt6NoVBgyACy+Ms2CUWtqjcu3cfV7y\neB7QLnm8NTCn4HVzCEccqYllXLVebHlBmdMQW17Ib+Z//zsUjJNPhvPPX/W5vGZOQ2ZXhLu7m9ma\nxpoafa6mpoaOHTsCUFVVRZcuXaiurgZWfiO1nM/lurq6XOUpZrmuri5XeSotb6G85KmurmbWLDjw\nwFq+8x0488zs8zR1uba2llGjRgGs+HlZKmW9TsPMOgJjC3oaM4Fqd59rZlsBU9x9JzMbAuDuw5PX\njQeGuvsTDT5PPQ0RKauXXw5nSZ17LvzoR1mnKY0oehqrcR8wMHk8EBhTsH6Ama1vZp2A7YEnU84m\nIi3cCy+Es6R+85vKKRilVs5Tbm8DHgV2NLO3zOxEYDjQ08xeAboly7j7i8AdwIvAg8BP0j6kaHio\nnHex5QVlTkNseSE/mWfMCEcYl1wCJ5645tfmJXMWytbTcPfjVvNUj9W8/mLg4nLlERFZnaeeClOD\n/PGPcMwxWafJN809JSIt2uOPQ79+MGIE9O+fdZry0P00RERK4JFH4NvfhtGj4dBDs04ThxY6e8oX\nxTZGGVteUOY0xJYXssv88MNw9NFw661NLxgx7udSUdEQkRZnwoRwlfddd4XmtxRPPQ0RaVHGjg1X\neY8ZA9/8ZtZp0hHzdRoiIpm5+2445RQYN67lFIxSU9FIxDZGGVteUOY0xJYX0st8223ws5+Foal9\n9123z4pxP5eKioaIVLzRo+GXv4RJk6BLl6zTxE09DRGpaNddF+6DMWkS7LRT1mmyoes0RESK8Mc/\nwqWXwpQp8LWvZZ2mMmh4KhHbGGVseUGZ0xBbXihf5ssug8svh6lTS18wYtzPpaIjDRGpOBddFPoY\nU6dChw5Zp6ks6mmISMVwh6FDw0V7Dz0EW22VdaJ8UE9DRKQBdxgyBB58EGpr4StfyTpRZVJPIxHb\nGGVseUGZ0xBbXihNZnf4+c9h8uTQ9C53wYhxP5eKjjREJGrLl8NPfwrTp4chqaqqrBNVNvU0RCRa\ny5bBD34Ar7wSpgb5n//JOlE+qachIi3e0qVQUwPvvBP6GBtvnHWilkE9jURsY5Sx5QVlTkNseaF5\nmZcsge99D957D+6/P/2CEeN+LhUdaYhIVBYtgu9+Nxxp/P3v0LZt1olaFvU0RCQaCxeG27O2aQN/\n+xusv37WieKg+2mISIvz2WdwxBGh2X377SoYWVHRSMQ2RhlbXlDmNMSWF4rL/OmncNhhsPXW8Ne/\nQuvW5c+1JjHu51LJpGiY2dlm9oKZPWdmt5pZGzPbzMwmmdkrZjbRzHS2tYjw8cfQuzdsvz2MHAmt\nWmWdqGVLvadhZh2Bh4Gd3X2Rmd0OPADsCrzv7peY2VnApu4+pMF71dMQaUE++igUjP32g6uvhi9p\nbKRZUu1pmNnGZtYqebyjmfUzs3U5OFwALAE2NLP1gA2Bd4B+wOjkNaOBI9dhGyISufffh27d4KCD\n4JprVDDyophvwzSgjZltA0wATgBGNXeD7v4hcBnwJqFYzHf3SUA7d5+XvGwe0K6522iO2MYoY8sL\nypyG2PJC45nnzYPqajj0UPjDH8BK8jty6cS4n0ulmOs0zN0/M7OTgWuT4aMZzd2gmXUGTgc6Ah8D\nd5rZ8YWvcXc3s0bHoWpqaujYsSMAVVVVdOnSherqamDlN1LL+Vyuq6vLVZ5iluvq6nKVp9LyFqpf\n3n77arp3h298o5aePcEsX3ljWK6trWXUqFEAK35elspaexpmNh34CXAFcLK7v2Bmz7n77s3aoNl3\ngZ7ufkqyfAJwANANOMTd55rZVsAUd9+pwXvV0xCpYG++GYakTjklTHMupZH2dRqnA2cD9yYFozMw\nZR22ORM4wMw2MDMDegAvAmOBgclrBgJj1mEbIhKZN96Arl3DjLUqGPm11qLh7lPdvZ+7/z5ZnuXu\npzV3g+4+A7gJeAp4Nll9HTAc6GlmrxCOOoY3dxvN0fBQOe9iywvKnIbY8kLI/OqroWCccUa4L0be\nxbifS2W1PQ0zG1uw6EDhoY27e7/mbtTdLwEuabD6Q8JRh4i0ILNnw/HHwwUXwMknZ51G1ma1PQ2r\n7z7BUcCWwF8JheM4YJ67n55GwAaZ1NMQqSDPPgt9+sDvfw8nnJB1mspVyp5GMY3wp91977WtS4OK\nhkjleOaZMDXIVVeFWWulfNJuhG+YNL/rN74d4YK8ihLbGGVseUGZ0xBL3ieeCNdg/PnP0K5dbdZx\nmiyW/VwOxVyn8XNgipm9kSx3BH5QtkQiUtH+8Q84+ugwj1TfvtCCf/5Gqai5p8ysLbAToSE+090X\nlTvYanJoeEokYlOmwLHHwi23QK9eWadpOVLtaSQb/CbQiXBk4gDuflMpAjSFioZIvCZMCGdJ3Xln\nmCJE0pP2hIV/Bf4AHAjsA+ybfFWU2MYoY8sLypyGvOa9//5wdtSYMV8sGHnNvCYxZi6VYnoaewO7\n6Fd8EWmOe++FH/0oFI799ss6jayrYk65vRMY7O7vpBNpjVlUu0QicvvtMHgwPPAA7LVX1mlarlIO\nTxVzpLEF8KKZPQnUN8DX6YpwEal8N90U5pCaNAl2b9b0ppJHxVynMYxwQ6SLCL2Ny5KvihLbGGVs\neUGZ05CXvNdfD+ecAw89tPaCkZfMTRFj5lJZ65GGu9ea2ZaE5rcDT7r7u2VPJiJR+tOf4JJLwum1\n22+fdRoptWJ6GscClwJTk1UHA2e4+51lztZYFvU0RHLsiivCrVkfegg6dco6jdRLe+6pZ4Ee9UcX\nZrYF8JC771GKAE2hoiGSX7/7Hdx4YygYX/1q1mmkUNpzTxnwXsHyB6w6TXpFiG2MMra8oMxpyCKv\nOwwbFhrfU6c2vWDEto8hzsylUszZU+OBCWZ2K6FYfBd4sKypRCQK7qHhff/9YQ6pdu2yTiTlVuw0\nIt8mXBEO8Ii731vWVKvPoeEpkZxwh1/+MjS8J02CzTfPOpGsTto9jU7AXHf/PFneAGjn7rNLEaAp\nVDRE8mH5chg0CP71rzCn1KabZp1I1iTtnsZdwLKC5eXJuooS2xhlbHlBmdOQRt5ly+CHP4S6Opg8\ned0LRmz7GOLMXCrF9DRaufvi+gV3X2RmrcuYSURyaulSOOkkeOutcISx8cZZJ5K0FTM8NRm4xt3/\nniz3B05z9+4p5GuYRcNTIhlZsiTMVPvhh2G22g0r7v6dlSvtnsbXgFuArZNVc4AT3P21UgRoChUN\nkWwsXgwDBsCiRXD33dC2bdaJpClS7Wm4+2vuvj+wM2GK9G9kUTDKLbYxytjygjKnoRx5Fy4Mt2d1\nD9Ocl7pgxLaPIc7MpVLMTZi2NLMbgLvc/RMz28XMTl6XjZpZlZndZWYvmdmLZra/mW1mZpPM7BUz\nm2hmVeuyDRFZd599Bv36wUYbwR13wPrrZ51IslbM8NR4YCRwrrvvkTTBp7v7bs3eqNloYKq732hm\n6wEbAecC77v7JWZ2FrCpuw9p8D4NT4mk5NNP4YgjoEOHMD3IesWcNiO5lPYpt5u7++0kp926+xJg\naXM3aGabAAe5+43J5y1194+BfsDo5GWjCdOxi0gGFiyAPn1gu+1g5EgVDFmpmKLxqZn9b/2CmR0A\nfLwO2+wEvGdmI83sGTMbYWYbES4YnJe8Zh6Q6oQEsY1RxpYXlDkNpcj70UfQsyfssQeMGAGtWq17\nrjWJbR9DnJlLpZjfH34J3AdsZ2aPApsDx6zjNvcCfubu/zKzK4FVhqHc3c2s0XGompoaOnbsCEBV\nVRVdunShOrlTff03Usv5XK6rq8tVnmKW6+rqcpWn3Hk//hguuKCarl2hX79apk0rf/56edh/lbJc\nW1vLqFGjAFb8vCyVYu+nMR74KvBtYD/gfHd/plkbDDd0eszdOyXL3wLOBrYDDnH3uWa2FTDF3Xdq\n8F71NETK5N13oUcPOOywMM25Vdxc1i1X2j2N8919AVAFHAL8OflqFnefC7xlZjskq3oALwBjgYHJ\nuoHAmOZuQ0Sa5p13oGvXcGqtCoasSTFFo37eqcOBEe5+P7CuJ94NAm4xsxnAHoT7jw8HeprZK0C3\nZDk1DQ+V8y62vKDMaWhO3rfeCgXjhBPCfTHSLhix7WOIM3OpFNPTeNvMrgN6AsPNrC3FFZvVcvcZ\nhHuON9RjXT5XRJrmjTege3f42c/gF7/IOo3EoJiexkZAH+BZd3816Tfs7u4T0wjYIIt6GiIl8tpr\noWCceSb89KdZp5FySnXuqTxR0RApjZkzQ9N76FA49dSs00i5pd0IbxFiG6OMLS8ocxqKyfv889Ct\nG1x0UT4KRmz7GOLMXCq6zlOkBZk+HQ49FK68MsxaK9JUGp4SaSGefDLMJfXnP4dTa6XlKOXwlI40\nRFqAf/4TjjoqTDx4+OFZp5GYqaeRiG2MMra8oMxpaCxvbS0ceSTcfHM+C0Zs+xjizFwqKhoiFWzS\nJDjmGLj9dujdO+s0UgnU0xCpUA88ADU1cM898K1vZZ1GsqRTbkVkjcaMgRNPhLFjVTCktFQ0ErGN\nUcaWF5S5nMaNm0bv3ufRpUsNe+55HjU103jgAdh//6yTrV0s+7hQjJlLRWdPiURu3LhpDB48gVmz\nLgJqgWratz+XuXMBDs40m1Qe9TREIte793lMnHhhI+vPZ/z432aQSPJGPQ0RWWHu3MYHDBYuLPN9\nWqVFUtFIxDZGGVteUOZSmz8/zB318stLC9bWrnjUtu2yL7wnj/K8j1cnxsyloqIhEqExY2DXXaF1\na7jppl507nzuKs937nwOgwb1zCidVDL1NEQiMncuDBoEM2bA9dfDwUmfe9y4aVxzzSQWLmxF27bL\nGDSoJ337qgkuge6nIdLCuMPo0eGGSSefDL/+NWywQdapJBZqhJdBbGOUseUFZW6u2bPDFCBXXw0T\nJsDvfrf6gpGHvE2lzHFR0RDJqWXL4KqrYJ99wm1Zn3gCvv71rFNJS6fhKZEceuGFMAzVpg2MGAE7\n7JB1IomZhqdEKtTixXDBBVBdHSYbnDJFBUPyRUUjEdsYZWx5QZnX5oknYO+94amnwm1Zf/Qj+FIT\n/4dqH6cjxsylklnRMLNWZjbdzMYmy5uZ2SQze8XMJppZVVbZRNL03//CL34B/fvDuefCffdB+/ZZ\npxJpXGY9DTP7BbA38GV372dmlwDvu/slZnYWsKm7D2nwHvU0pKJMngw/+AEceCBccQVsvnnWiaQS\nRd/TMLP2wGHA9UD9X6QfMDp5PBo4MoNoIqn46CM46aTQ7P7Tn8KtWFUwJAZZDU9dAZwBLC9Y187d\n5yWP5wHt0gwU2xhlbHlBmevdfTfsthtsuCE8/zwcemjpPlv7OB0xZi6V1O+nYWaHA++6+3Qzq27s\nNe7uZtboOFRNTQ0dO3YEoKqqii5dulBdHT6m/hup5Xwu19XV5SpPMct1dXUl+7y7767lqqvg3Xer\nuf12WLq0lqefzm/etJbr5SVPJSzX1tYyatQogBU/L0sl9Z6GmV0MnAAsBdoC/wPcA+wLVLv7XDPb\nCpji7js1eK96GhIddxg5EoYMCf2L886Dtm2zTiUtScXMPWVmXYFfufsRSSP8A3f/vZkNAarUCJfY\nvf56KBTz58MNN8Cee2adSFqi6BvhDdRXgeFATzN7BeiWLKem4aFy3sWWF1pW5mXL4PLLYb/9wrxR\njz+eTsFoSfs4SzFmLpVM7xHu7lOBqcnjD4EeWeYRKYXnnoNTTgmN7scfh699LetEIqWjuadESmTR\nIrj4Yrj22vDnySc3/YpukXIo5fBUpkcaIpXiscdCkdh+e6irg222yTqRSHno96BEbGOUseWFysz8\n6adw+ulw9NEwbFi4DWuWBaMS93EexZi5VFQ0RJpp4kTYffdwdffzz8Oxx4KVZABAJL/U0xBpog8/\nDBMM1tbCX/4Szo4SybNKO+VWJArucOedYQqQTTYJRxcqGNLSqGgkYhujjC0vxJV53Lhp9O59Hl26\n1NC793ncdNM0jj4ahg4Nc0dddRVsvHHWKb8opn1cT5njorOnRBoYN24agwdPYNasi4BaoJrJk8/l\nmGNg+vSDadMm44AiGVJPQ6SB3r3PY+LECxtZfz7jx/82g0Qi60Y9DZEyWboU3n678QPwhQtbpZxG\nJH9UNBKxjVHGlhfynfn118OtVrfdFubMWVrwTO2KR23bLks9V1PleR+vjjLHRUVDWqxFi+D226Fn\nT9h/f/jsM5gwAW65pRedO5+7yms7dz6HQYN6ZpRUJD/U05AW56WX4Prrwy1Wd989TC541FGr3uNi\n3LhpXHPNJBYubEXbtssYNKgnffsenF1okXVQMffTaCoVDWmuzz6DO+4IxWLWLDjxxHCPbs1AKy2B\nGuFlENsYZWx5IZvMzzwDP/kJtG8Pd90Fv/oVvPlmmIW2mIIR236OLS8oc2x0nYZUnI8/httugxEj\n4IMPwuyzM2ZAhw5ZJxOJn4anpCK4w6OPhuGne+8Nze1TToEePaCVzpSVFk49DZHE+++Hhvb114dr\nLE45BQYOhK98JetkIvmhnkYZxDZGGVteKF3m5cth8mQYMCD0JaZPhz//GWbOhDPOKG3BiG0/x5YX\nlDk26mlINN55B0aNghtuCJMFnnpqKBabbpp1MpGWQ8NTkmtLl8KDD4bhp0cegWOOCUNQ++yjGx6J\nFEv3CJeK98YbcOONMHJkOOvplFPgllvyOR25SEuinkYitjHK2PLC2jMvXhxuctSrF+y7LyxYEI4y\nHnssnDabRcGIbT/HlheUOTapH2mYWQfgJuArgAPXufvVZrYZcDuwLTAbONbd56edT9I3c+bKaT12\n3TUcVdx336rTeohIPqTe0zCzLYEt3b3OzDYGngaOBE4E3nf3S8zsLGBTdx/S4L3qaVSIzz4LV2iP\nGAGvvgo1NeFoYvvts04mUnkq6joNMxsD/DH56uru85LCUuvuOzV4rYpG5OrqQqH429/ggAPCUcXh\nh0Pr1lknE6lcFXOdhpl1BL4OPAG0c/d5yVPzgHZpZoltjDKmvAsWwF/+AjvuWEv//tCuXSge48aF\n2WXzXDBi2s8QX15Q5thkdvZUMjR1NzDY3T+xgvMn3d3NrNFDipqaGjp27AhAVVUVXbp0obq6Glj5\njdRy9svucO21tdx/Pzz+eDXdu0N1dR3HHgvdu2efr9jlurq6XOWptLyF8pKnEpZra2sZNWoUwIqf\nl6WSyfCUmbUG7gcedPcrk3UzgWp3n2tmWwFTNDwVnw8+WDmtx+LFK6f1aJfqcaOIFIp6eMrCIcUN\nwIv1BSNxHzAweTwQGJN2Nmme5cvh4YfhuOOgc2d4+mn405/g5ZfhzDNVMEQqSRY9jQOB44FDzGx6\n8tUHGA70NLNXgG7JcmoaHirnXR7y/uc/8LvfwQ47wOmnwze/GS7Ku/lm6Nr1i1ds5yFzU8WWOba8\noMyxSb2n4e7/YPXFqkeaWaTpli2D8ePDGVBTp4ZpPW69NVyMp2k9RCpf5qfcNoV6GtmZPXvltB7b\nbBN6Fd/9Lnz5y1knE5G10dxTkorFi8OV2SNGhD7F978fTpPdY4+sk4lIVjT3VCK2Mcpy5n355XBf\nig4dQkP7//0/eOstuOqqdSsYse1jiC9zbHlBmWOjIw0B4PPPV07r8corYVqPf/xD03qIyKrU02jh\nZswIheK222D//UOv4ogj8n2Vtog0jXoask4WLAhzP40YAfPmwUknhVumfvWrWScTkbxTTyMR2xhl\nU/O6w+OPh5lkt90WJkyA3/wmXFcxbFg6BSO2fQzxZY4tLyhzbHSkUeE+/HDltB4LF4bhp5degi23\nzDqZiMRIPY0KtHx5uPBuxAh44IEw9fgppzR+lbaIVL6Kup9GU6howLhx07j66oksWrQebdos5bTT\netG378EAzJ0Lo0aFo4oNNoBTT4Xjj4fNNss2s4hkK+oJC/MqhjHKceOmMXjwBCZOvJCpU6uZOPFC\nBg+ewLBh0zjqKNh5Z5g1C265BZ59Fk47LV8FI4Z93FBsmWPLC8ocGxWNiFx99URmzbpolXWzZl3E\nlVdO4rDl620jAAAKTUlEQVTD4M03w5DU/vtrGEpEykPDUxH46CN45hk49dRhvPHGsC8837XrMGpr\nv7heRAR0nUZFmz8/FIinn4anngp/vvsudOkCy5YtbfQ9bdsuSzmliLRUGp5KZDFG+fHHMGUK/OEP\nMGBAmLKjQwcYOhTefjtcmT12bDjSmDYNrr22F507n1ufGIDOnc9h0KCeqWdvjhjHgWPLHFteUObY\n6EgjJQsWfPEI4p13whHE3ntD377w61/DjjtCq1aNf0b9WVLXXHM+c+e+xZZbPsSgQX1WrBcRKTf1\nNMpgwYIwLUdhgXj7bdhzz1Ag9tkn/LnTTqsvECIipaLrNHLkk0++WCDmzIHdd19ZHPbZJxSI9XRc\nJyIZ0HUaJTRu3DR69z6PLl1q6N37PMaNm7ba1376KTzyCFx5Zbhobuedw3QcZ54Zro/o0QPuvDM0\nsx97DK65JkwxvttupS8YMY6pKnP5xZYXlDk2Lfp33/qL5cK1D7VANbNmhUZzdfXBXziC+Pe/QwHY\nZx/o1i3cqGiXXTSNuIi0HC16eKp37/OYOPHCL6zfaKPzWb78t+y226o9iF13VYEQkfi06Os0evc+\nb5X5loqxfDn85z/w+uvha9as8OdjjzX+199xx1Y89hisv36pUouIVIZc9TTMrI+ZzTSzV83srMZe\nUz/fUsPew3//C88/D/fdF3oOp50WTmPdeWfYaKNwtDBkCEyeHKbY6NkTdtqp8GK52hWPtthiWe4L\nRoxjqspcfrHlBWWOTW6Khpm1Av4I9AF2AY4zs50be+2sWRcxePAkTjgBDjwwNKM33xyOPRauuy4c\nRWy3Hfzwh6Ex/f774Ujjn/8M95a44AIYOBCGDi28WK4OiOdiubq6uqwjNJkyl19seUGZY5On4an9\ngNfcfTaAmf0N6A+81NiLlyxpRY8eoTh07hwKx5eaWAILL5abOfMRdtrpg2gulps/f37WEZpMmcsv\ntrygzLHJU9HYBnirYHkOsP/qXrzzzssYOHDdN9q378H07Xsww4YNY9iwYev+gSIiFSw3w1NA0adF\nlWMIafbs2SX9vHKLLS8ocxpiywvKHJvcnHJrZgcAw9y9T7J8NrDc3X9f8Jp8hBURiUzFTSNiZusB\nLwPdgXeAJ4Hj3L3RnoaIiKQvNz0Nd19qZj8DJgCtgBtUMERE8iU3RxoiIpJ/eWqEl42ZdTCzKWb2\ngpk9b2anJes3M7NJZvaKmU00s6qC95ydXGQ408x6ZZS7lZlNN7OxkeStMrO7zOwlM3vRzPaPIPPZ\nyb+L58zsVjNrk7fMZnajmc0zs+cK1jU5o5ntnfw9XzWzq1LOe2ny72KGmd1jZpvkJe/qMhc890sz\nW25mm+Ul8+rymtmgZD8/b2aF/eDS5XX3iv8CtgS6JI83JvROdgYuAc5M1p8FDE8e70K42q810BF4\nDfhSBrl/AdwC3Jcs5z3vaOCk5PF6wCZ5zpxs93WgTbJ8OzAwb5mBg4CvA88VrGtKxvoRhSeB/ZLH\nDwB9Uszbs35fAcPzlHd1mZP1HYDxwBvAZnnJvJp9fAgwCWidLG9Rjrwt4kjD3ee6e13y+FPCBYPb\nAP0IP+hI/jwyedwfuM3dl3i42PA1wsWHqTGz9sBhwPVA/VkPec67CXCQu98IoUfl7h/nOTOwAFgC\nbJiciLEh4SSMXGV290eAjxqsbkrG/c1sK+DL7v5k8rqbCt5T9rzuPsndlyeLTwDt85J3dZkTlwNn\nNliXeebV5P0x8Dt3X5K85r1y5G0RRaOQmXUkVOgngHbuPi95ah7QLnm8NeHiwnpzCEUmTVcAZwDL\nC9blOW8n4D0zG2lmz5jZCDPbiBxndvcPgcuANwnFYr67TyLHmQs0NWPD9W+TXfaTCL/VQo7zmll/\nYI67P9vgqbxm3h442MweN7NaM9snWV/SvC2qaJjZxsDdwGB3/6TwOQ/HZ2s6KyC1MwbM7HDgXXef\nzsqjjFXD5ChvYj1gL+Bad98L+C8wZJVAOctsZp2B0wmH7FsDG5vZ8asEylnmRgOsPWNumNm5wGJ3\nvzXrLGtiZhsC5wBDC1dnFKdY6wGbuvsBhF847yjHRlpM0TCz1oSCcbO7j0lWzzOzLZPntwLeTda/\nTRjLrNc+WZeWbwL9zOwN4Dagm5ndnOO8EH5jmePu/0qW7yIUkbk5zrwP8Ki7f+DuS4F7gG+Q78z1\nmvJvYU6yvn2D9almN7MawpDr9wtW5zVvZ8IvEzOS/4ftgafNrB35zTyH8G+Y5P/hcjPbnBLnbRFF\nw8wMuAF40d2vLHjqPkLjk+TPMQXrB5jZ+mbWiXDY9yQpcfdz3L2Du3cCBgAPu/sJec2bZJ4LvGVm\nOySregAvAGPJaWZgJnCAmW2Q/BvpAbyY88z1mvRvIfn+LLBwRpsBJxS8p+zMrA/ht9/+7r6w4Klc\n5nX359y9nbt3Sv4fzgH2SoYEc5k52VY3gOT/4fru/n7J85ajs5+3L+BbhN5AHTA9+eoDbAZMBl4B\nJgJVBe85h9Awmgn0zjB7V1aePZXrvMCewL+AGYTfeDaJIPOZhOL2HKGh3DpvmQlHm+8AiwmTep7Y\nnIzA3snf8zXg6hTzngS8Cvy74P/ftXnJ2yDzovp93OD510nOnspD5sbyJv92b062/zRQXY68urhP\nRESK1iKGp0REpDRUNEREpGgqGiIiUjQVDRERKZqKhoiIFE1FQ0REiqaiIRXPzDo2NuV1Mz6nq5l9\noxSZmrHtbc3suCy2LVJIRUOkeIcQpnjJQifgexltW2QFFQ1pKVqZ2XXJzWkmmFlbADPrkswKWn9z\noKpk/WkWbs40w8LNmbYFfgj83MKNsb5V+OFmtnEyw++zyXuOStYfl6x7zsyGF7z+04LH3zGzkcnj\nUWZ2lZn908xmmdm3k5cNBw5Ktj24nDtKZE1UNKSl2B74o7vvBswH6n8Y3wSc4e57EqZTqJ/V9CzC\njbv2BH7k7v8G/g+43N2/7u7/aPD55wMfufseyXummNnWhB/2hwBdgH2T6bZh1VlpG07LsKW7Hwgc\nnry/Ps8jybbLehc7kTVR0ZCW4g1feV+Ep4GOZvY/wCYebmgDYe6pg5PHzwK3mtn3gWUFn7O66bG7\nA3+qX3D3+cC+wBQPs+guI9yF8eDVvH/FW0kmjXP3l1h5n4y8T8stLYSKhrQUiwoeLwNaNfKawh/M\nfQlFYC/gX2bW2OvX9H4IBcAaPO8Fz9XboMH7Fq/hM0UypaIhLZW5+wLgo4L+xAlAbTJN9FfdvZZw\nI6lNCPeW/wT48mo+bxLw0xUfHnojTwJdzex/k6IzAJiavGSeme1kZl8CjmLtN1Fa07ZFUqOiIS1F\nwx/K9csDgUvNbAawB/Abwh3QbjazZ4FngKs83O98LHBU0ow+sMHnXQhsmjS86wjTUs8lFJ0phGn5\nn3L3scnrhwD3A/8kTHG9uqz1j2cAy8ysTo1wyZKmRhcRkaLpSENERIqmoiEiIkVT0RARkaKpaIiI\nSNFUNEREpGgqGiIiUjQVDRERKZqKhoiIFO3/AymDY6Zz1f4jAAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7f7314625828>" | |
] | |
} | |
], | |
"prompt_number": 23 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 15 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment