Created
July 7, 2024 11:45
-
-
Save mhoangvslev/ac9b487849f6549926ceedbcf5cf02cb to your computer and use it in GitHub Desktop.
DataScienceEcosystem.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"private_outputs": true, | |
"provenance": [], | |
"authorship_tag": "ABX9TyNaOiPXVzqgKCHVLLVeplzc", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/mhoangvslev/ac9b487849f6549926ceedbcf5cf02cb/datascienceecosystem.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"# Data Science Tools and Ecosystem" | |
], | |
"metadata": { | |
"id": "NhLiYn0P7uUP" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"In this notebook, Data Science Tools and Ecosystem are summarized." | |
], | |
"metadata": { | |
"id": "cfYUtuvu8jxX" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"**Objectives:**\n", | |
"\n", | |
"- List popular languages for Data Science\n", | |
"- List common data visualization tools\n", | |
"- Introduce basic statistical concepts for data analysis" | |
], | |
"metadata": { | |
"id": "x0qAaryd_p9Z" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Some of the popular languages that Data Scientists use are:\n", | |
"1. Python\n", | |
"2. R\n", | |
"3. Java\n", | |
"\n" | |
], | |
"metadata": { | |
"id": "v1PGUCOd8w1-" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Some of the commonly used libraries used by Data Scientists include:\n", | |
"1. Numpy\n", | |
"2. Pandas\n", | |
"3. Seaborn\n", | |
"\n" | |
], | |
"metadata": { | |
"id": "a_WgUu5C9jm2" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"| Data Science Tools |\n", | |
"|------------------------|\n", | |
"| Jupyter Notebook |\n", | |
"| RStudio |\n", | |
"| Apache Zeppelin |\n" | |
], | |
"metadata": { | |
"id": "G3aMVLbn-C6I" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"### Below are a few examples of evaluating arithmetic expressions in Python" | |
], | |
"metadata": { | |
"id": "cfg23pzl-mFC" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"# This a simple arithmetic expression to mutiply then add integers\n", | |
"(3*4)+5" | |
], | |
"metadata": { | |
"id": "yQE_u0xo-v4e" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"# This will convert 200 minutes to hours by dividing by 60.\n", | |
"hours = 200 / 60\n", | |
"hours" | |
], | |
"metadata": { | |
"id": "LAwBVs05_EyS" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"## Author\n", | |
"Minh-Hoang DANG" | |
], | |
"metadata": { | |
"id": "cgO2SV3W_99V" | |
} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment