Last active
October 30, 2019 11:19
-
-
Save micaleel/702136b5ba2079c5d88bc85ec69e3805 to your computer and use it in GitHub Desktop.
Using custom cross-fold splits with SurpriseLib
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import os\n", | |
"from attr import dataclass\n", | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"from collections import namedtuple\n", | |
"from typing import List, Optional\n", | |
"from surprise import Dataset as SurpriseDataset, Reader, SVD\n", | |
"from surprise import accuracy\n", | |
"\n", | |
"from sklearn.metrics import mean_squared_error" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Fold 0 RMSE: 0.9495\n", | |
"Fold 1 RMSE: 0.9401\n", | |
"Fold 2 RMSE: 0.9364\n", | |
"Fold 3 RMSE: 0.9294\n", | |
"Fold 4 RMSE: 0.9342\n" | |
] | |
} | |
], | |
"source": [ | |
"DATA_DIR = \"/Users/khalil/projects/pyrec/pyrec/federated/data/\"\n", | |
"Fold = namedtuple(\"Fold\", [\"train\", \"test\"])\n", | |
"\n", | |
"\n", | |
"@dataclass\n", | |
"class Dataset:\n", | |
" interactions: pd.DataFrame = None\n", | |
" folds: List[Fold] = None\n", | |
"\n", | |
" @staticmethod\n", | |
" def from_csv(num_folds: Optional[int] = None):\n", | |
" interactions = pd.read_csv(os.path.join(DATA_DIR, \"movielens-100k.csv\"))\n", | |
" interactions[\"user_id\"] = interactions[\"user_id\"].astype(str)\n", | |
" interactions[\"item_id\"] = interactions[\"item_id\"].astype(str)\n", | |
" if num_folds:\n", | |
" folds = Dataset.split_crossfold(interactions, num_folds)\n", | |
" else:\n", | |
" folds = None\n", | |
" return Dataset(interactions=interactions, folds=folds)\n", | |
"\n", | |
" @staticmethod\n", | |
" def split_crossfold(interactions: pd.DataFrame, num_folds: int = 3):\n", | |
" splits = np.array_split(interactions.index, num_folds)\n", | |
" folds = []\n", | |
" for idx, split in enumerate(splits):\n", | |
" test = interactions.loc[split]\n", | |
" train_folds_idxs = [splits[x] for x in range(len(splits)) if x != idx]\n", | |
" train_folds_idxs = np.concatenate(train_folds_idxs)\n", | |
" train = interactions.loc[train_folds_idxs]\n", | |
" assert len(test) + len(train) == len(\n", | |
" interactions\n", | |
" ), f\"{len(test)} + {len(train)} =={len(interactions)}\"\n", | |
" folds.append(Fold(train=train, test=test))\n", | |
" return folds\n", | |
"\n", | |
"\n", | |
"NUM_FOLDS = 5\n", | |
"dataset = Dataset.from_csv(num_folds=NUM_FOLDS)\n", | |
"assert len(dataset.folds) == NUM_FOLDS\n", | |
"\n", | |
"for fold_idx, fold in enumerate(dataset.folds):\n", | |
" train = SurpriseDataset.load_from_df(fold.train, reader=Reader())\n", | |
" test = train.construct_testset(\n", | |
" [(x.user_id, x.item_id, x.rating, 0) for x in fold.test.itertuples()]\n", | |
" )\n", | |
" train.build_full_trainset()\n", | |
" algo = SVD()\n", | |
" algo.fit(train.build_full_trainset())\n", | |
" predictions = algo.test(test)\n", | |
" predictions_df = pd.DataFrame(predictions)\n", | |
" rmse = np.sqrt(mean_squared_error(predictions_df[\"r_ui\"], predictions_df[\"est\"]))\n", | |
" print('Fold {} RMSE: {:.4f}'.format(fold_idx, rmse))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.4" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment