Created
August 29, 2015 17:43
-
-
Save mickeypash/c92489d04772f7bc3b0f to your computer and use it in GitHub Desktop.
Trying to create some of the suggested graphs.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 107, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline\n", | |
"from pandas import read_csv\n", | |
"df = read_csv('new_exp.csv', usecols=[1, 3, 4, 5, 6, 7, 15, 16, 19, 22, 33, 35])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Importing the output file." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 108, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>user</th>\n", | |
" <th>order</th>\n", | |
" <th>topic</th>\n", | |
" <th>event</th>\n", | |
" <th>pages</th>\n", | |
" <th>doc_count</th>\n", | |
" <th>query_session</th>\n", | |
" <th>doc_time</th>\n", | |
" <th>total_query_delay</th>\n", | |
" <th>Pat1</th>\n", | |
" <th>Pat50</th>\n", | |
" <th>total_rels</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>test2</td>\n", | |
" <td>3</td>\n", | |
" <td>354</td>\n", | |
" <td>740</td>\n", | |
" <td>1</td>\n", | |
" <td>1.1</td>\n", | |
" <td>27.25</td>\n", | |
" <td>18.39</td>\n", | |
" <td>0.0.1</td>\n", | |
" <td>0.0.4</td>\n", | |
" <td>0.0.15</td>\n", | |
" <td>376</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>test2</td>\n", | |
" <td>3</td>\n", | |
" <td>354</td>\n", | |
" <td>740</td>\n", | |
" <td>4</td>\n", | |
" <td>6.0</td>\n", | |
" <td>116.67</td>\n", | |
" <td>27.45</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0.56</td>\n", | |
" <td>376</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>test2</td>\n", | |
" <td>3</td>\n", | |
" <td>354</td>\n", | |
" <td>740</td>\n", | |
" <td>2</td>\n", | |
" <td>8.0</td>\n", | |
" <td>224.15</td>\n", | |
" <td>14.32</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.26</td>\n", | |
" <td>376</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>test2</td>\n", | |
" <td>3</td>\n", | |
" <td>354</td>\n", | |
" <td>740</td>\n", | |
" <td>2</td>\n", | |
" <td>5.0</td>\n", | |
" <td>0.00</td>\n", | |
" <td>31.20</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0.62</td>\n", | |
" <td>376</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>test1</td>\n", | |
" <td>1</td>\n", | |
" <td>347</td>\n", | |
" <td>1472</td>\n", | |
" <td>1</td>\n", | |
" <td>2.0</td>\n", | |
" <td>85.74</td>\n", | |
" <td>71.95</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0.5</td>\n", | |
" <td>165</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" user order topic event pages doc_count query_session doc_time \\\n", | |
"0 test2 3 354 740 1 1.1 27.25 18.39 \n", | |
"1 test2 3 354 740 4 6.0 116.67 27.45 \n", | |
"2 test2 3 354 740 2 8.0 224.15 14.32 \n", | |
"3 test2 3 354 740 2 5.0 0.00 31.20 \n", | |
"4 test1 1 347 1472 1 2.0 85.74 71.95 \n", | |
"\n", | |
" total_query_delay Pat1 Pat50 total_rels \n", | |
"0 0.0.1 0.0.4 0.0.15 376 \n", | |
"1 0 1 0.56 376 \n", | |
"2 0 0 0.26 376 \n", | |
"3 0 1 0.62 376 \n", | |
"4 0 1 0.5 165 " | |
] | |
}, | |
"execution_count": 108, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 109, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>user</th>\n", | |
" <th>order</th>\n", | |
" <th>topic</th>\n", | |
" <th>event</th>\n", | |
" <th>pages</th>\n", | |
" <th>doc_count</th>\n", | |
" <th>query_session</th>\n", | |
" <th>doc_time</th>\n", | |
" <th>total_query_delay</th>\n", | |
" <th>Pat1</th>\n", | |
" <th>Pat50</th>\n", | |
" <th>total_rels</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>test2</td>\n", | |
" <td>entity</td>\n", | |
" <td>354</td>\n", | |
" <td>740</td>\n", | |
" <td>1</td>\n", | |
" <td>1.1</td>\n", | |
" <td>27.25</td>\n", | |
" <td>18.39</td>\n", | |
" <td>0.0.1</td>\n", | |
" <td>0.0.4</td>\n", | |
" <td>0.0.15</td>\n", | |
" <td>376</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>test2</td>\n", | |
" <td>entity</td>\n", | |
" <td>354</td>\n", | |
" <td>740</td>\n", | |
" <td>4</td>\n", | |
" <td>6.0</td>\n", | |
" <td>116.67</td>\n", | |
" <td>27.45</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0.56</td>\n", | |
" <td>376</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>test2</td>\n", | |
" <td>entity</td>\n", | |
" <td>354</td>\n", | |
" <td>740</td>\n", | |
" <td>2</td>\n", | |
" <td>8.0</td>\n", | |
" <td>224.15</td>\n", | |
" <td>14.32</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.26</td>\n", | |
" <td>376</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>test2</td>\n", | |
" <td>entity</td>\n", | |
" <td>354</td>\n", | |
" <td>740</td>\n", | |
" <td>2</td>\n", | |
" <td>5.0</td>\n", | |
" <td>0.00</td>\n", | |
" <td>31.20</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0.62</td>\n", | |
" <td>376</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>test1</td>\n", | |
" <td>normal</td>\n", | |
" <td>347</td>\n", | |
" <td>1472</td>\n", | |
" <td>1</td>\n", | |
" <td>2.0</td>\n", | |
" <td>85.74</td>\n", | |
" <td>71.95</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0.5</td>\n", | |
" <td>165</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" user order topic event pages doc_count query_session doc_time \\\n", | |
"0 test2 entity 354 740 1 1.1 27.25 18.39 \n", | |
"1 test2 entity 354 740 4 6.0 116.67 27.45 \n", | |
"2 test2 entity 354 740 2 8.0 224.15 14.32 \n", | |
"3 test2 entity 354 740 2 5.0 0.00 31.20 \n", | |
"4 test1 normal 347 1472 1 2.0 85.74 71.95 \n", | |
"\n", | |
" total_query_delay Pat1 Pat50 total_rels \n", | |
"0 0.0.1 0.0.4 0.0.15 376 \n", | |
"1 0 1 0.56 376 \n", | |
"2 0 0 0.26 376 \n", | |
"3 0 1 0.62 376 \n", | |
"4 0 1 0.5 165 " | |
] | |
}, | |
"execution_count": 109, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Replacing order numbers with lables for readability\n", | |
"df.order = df['order'].replace([0,1,2,3], ['practice', 'normal', 'reduced','entity'])\n", | |
"df.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 110, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>topic</th>\n", | |
" <th>event</th>\n", | |
" <th>pages</th>\n", | |
" <th>doc_count</th>\n", | |
" <th>query_session</th>\n", | |
" <th>doc_time</th>\n", | |
" <th>total_rels</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>order</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>entity</th>\n", | |
" <td>354</td>\n", | |
" <td>1849.909091</td>\n", | |
" <td>2.606061</td>\n", | |
" <td>6.609091</td>\n", | |
" <td>97.476364</td>\n", | |
" <td>29.620000</td>\n", | |
" <td>376</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>normal</th>\n", | |
" <td>347</td>\n", | |
" <td>964.974359</td>\n", | |
" <td>1.871795</td>\n", | |
" <td>5.333333</td>\n", | |
" <td>116.389231</td>\n", | |
" <td>43.708462</td>\n", | |
" <td>165</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>practice</th>\n", | |
" <td>341</td>\n", | |
" <td>220.043478</td>\n", | |
" <td>1.260870</td>\n", | |
" <td>0.695652</td>\n", | |
" <td>57.756087</td>\n", | |
" <td>6.939130</td>\n", | |
" <td>37</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>reduced</th>\n", | |
" <td>367</td>\n", | |
" <td>1816.551724</td>\n", | |
" <td>2.517241</td>\n", | |
" <td>5.793103</td>\n", | |
" <td>147.408621</td>\n", | |
" <td>27.830345</td>\n", | |
" <td>95</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" topic event pages doc_count query_session doc_time \\\n", | |
"order \n", | |
"entity 354 1849.909091 2.606061 6.609091 97.476364 29.620000 \n", | |
"normal 347 964.974359 1.871795 5.333333 116.389231 43.708462 \n", | |
"practice 341 220.043478 1.260870 0.695652 57.756087 6.939130 \n", | |
"reduced 367 1816.551724 2.517241 5.793103 147.408621 27.830345 \n", | |
"\n", | |
" total_rels \n", | |
"order \n", | |
"entity 376 \n", | |
"normal 165 \n", | |
"practice 37 \n", | |
"reduced 95 " | |
] | |
}, | |
"execution_count": 110, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"mean_order = df.groupby(['order']).mean()\n", | |
"\n", | |
"mean_order.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 112, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x110a4b390>" | |
] | |
}, | |
"execution_count": 112, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWYAAAE2CAYAAABSqDjhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG39JREFUeJzt3Xm4ZFV97vHv23Qj2IwySDBAMyjQDtAoIBFiaYxBRTEK\nIagQQAElUR4DCRg1nGhEvdfZRFBABBQkIOSiGYALFoMgBmhkalBmUEBlHmXoX/5Yq7qLos6pOudU\nnb12nffzPPX0nmrXr/epemvV2pMiAjMzK8ecqgswM7PncjCbmRXGwWxmVhgHs5lZYRzMZmaFcTCb\nmRXGwWxFkvReSWdX+PoLJC2VVMlnRNIjkhbM4OttLukqSQ9L+puZel3rTj6OeXgk3QasCzwDPAtc\nD5wIfCtGZMNLGgM2jYi9qq5lkHIo3gLMjYil1VYzMUlLgc0i4pZprOM44MGIOGRwldlUucU8XAHs\nEhGrARsCnwMOA46rtCorhqS5g1rVNF9/I1LDwUoQEX4M6QHcCryxY9q2pNbzy/P46qRW9G+A24CP\nk3/J5Pn7kz4wDwPXAVvn6UuBTdqW+w7w6TzcAO4C/i6v99fAO4G3Ar8A7gMOb3uugMOBm4DfAacC\na+Z5C/Jr7Q3cDvwW+Ic8b2fg98BTwCPA4jx9H+DmXPMtwHu6bJv1gcdbr5OnLcrrXyGv46K2eVsA\n5+babwB2z9M3Bh5oW+4Y4N628ZOAg9u29XF5e9wFfBqYk+fNAb6QX/9m4K/z/3vOOH/b2/I2uw64\nH/g28IK2+bsAVwEPAD8BXtnx3L8Hrgae6PYa7X/f/Lf9V+BHeZv+tG3ehXnZR/PfYPdJvP7PgSeB\n80i/6p7I638p8DZgMfAQcAdwREd9OwKX5PXfAfxVnv6CvB1vB+4BjgJWqvqzWLdH5QWM8oMuwZyn\n3w4cmIdPBM4E5pNaLTcC++V5u+cAeXUe3xTYMA93BvPxwKfycAN4GvgEKeQ+QArc7+XXWUgKxY3y\n8gfnD9n6wDzgaODkPG9Bfq1v5g/dq/KHefM8/wjgxLY65ucP80vz+IuBheNsn/OAD7SN/1/gG3l4\nH3Iw53XeCfwVKUC3JgXoFm3bc1EevpH0BdM+b6s8fGYOipWBdYDLgAPyvA8CS4CXAGsCPyZ9gU4U\nzFe3LX8xy78YFwH3kr6ERfpSuxWY1/bcK/NzXzDO+juD+XfAa/Lf87vAKd2Wnerr5//vfm3reD3L\nGw+vJIXsrnl8I1KA75HreVHbNv4y8O/AGsAqwFnAkVV/Fuv2qLyAUX4wfjBfCnwsv6l/3wqRPO8A\n4Md5+Gzgw+Osu1swt7eYH2f5PoRV8/Lbti1/OfCOPLykvU7gD0it4DksD+b12+ZfBvxFHh4DTmqb\nN5/UinoXsHKP7fN+4Lw8LFLLa8c8vg/Lg3kP4MKO534T+Mc8fCLwUWA9Umv6c8CBtLWmSV8QT9LW\negP2BM7Pw+eTQzqP/ykTt5hv7Vj+LcBNefgo8pdk2/wbgJ3anrtPj23THszHk/ZLtL/WkgneC5N+\nfVIwv3+Cer4CfCkPfwz4QZdlRGq5t9eyA3BL1Z/Fuj0G1b9lk/OHpJ+/a5NaqLe3zbuD1JJpLXfz\nFF/jvsifDNJPVEitKNqmrZKHNwLOzDuRWp4hhVnLPW3Dj7c99zki4jFJewCHAsdJ+glwSETc2GXx\nM4CvS1oP2BxYGhEXd1luI2B7SQ+0TZtLCmSAC4B3kH5dXJjH9yIF8YVt65gH3C0t646dQ9rekL6M\n7mxb/x301rn8+m2vtbekD7fNn9c2v/O5/Rjvb9fNVF+/9X5B0vakL7iXAyuSfi39W569AamLqtM6\nwAuBK9q2sfC+rElzMM8wSduSPiAXk36ePk1qlS7Ji2xIChhIH57NxlnV46QPQUtnsEzGHcC+EXFp\nl3oX9HhuPG9CxDnAOZJeAHyG1O/7x12We0DSOaQW8ULglAnquyAi3jzO/AtI3SB3AU3Stj2aFMwX\n5GXuJP06WSu6H2VxN2nbt2zYZZlOncv/qq3ez0TEkRM893nbbYAG8fonA18D/iwinpL0ZWCttvVv\n1+U5vyN9aSyMiLsnWbO18TfZ8AlA0mqSdiGFz0kRcV1EPEtqhXxG0iqSNiL9JP9ufu6xwKGStlGy\nmaRWGFwFvFfSCpJ2pkvwTcLRwJGtdUtaR9I7+nzuPcAC5SaSpHUl7SppPulL5zFSX+14Tib1Hb87\nD3fzH8DLJL1P0rz82FbSFgARcRMphN9HCvBHSDs9300O5hwU5wBfkrSqpDmSNpXU2m7/BnxE0ksk\nrUnasTcRAQfl5V9E2ml7ap53DPBBSdvlv9t8SW+TNFErt9drTeRe0v6Hlqm+fvvrrELqBnpK0nbA\ne9rmnQy8SdLukuZKWkvSVvkL7xjgK5LWAcjbZ7wvVBuHg3n4fijpYVIr42PAF4F92+Z/mBRetwAX\nkXbQHQ8QEaeTWpwnk3a2nEHa0QRph93bSf257yHt2GrX2SKaqIX0VdJOmnNyrZfy3BbRRM89Lf97\nn6TLSe+pj5Jaj/cBOwEfmuD5Z5F+FdwdEdd0vGYA5KB9M/CXeb13A58l/cRuaQK/i4hftY1D2snV\nsnd+zvWkrqTTSP3SkALlbNKRCpcDP+jx/w7S3+UcUnfTL4F/zvVeQTqa5l/y6/wyv/ZkWsnRMTzR\n33MMOEHSA5J2m8brt88/CPhUfj98kuVfOkTEHaQjfA4h/Y0Xk3YKQzoc9Cbgp5IeIh1J87Ier2sd\nep5gImlz4PttkzYBPhkRXxtmYWYlk3QraWfZ+VXXYqOnZx9z3mmzCCCfnvornt86MzOzAZlsV8ab\ngJsjYqo7mczMrIfJHpXxl4y/g8Zs1oiIjauuwUZX3xcxkrQiqRtjYUT8dqhVmZnNYpNpMb8FuKIz\nlCUN83hMM7ORFRFdD4WcTB/znoxzAkDVpy/28zjiiCMqr2GUHt6e3p6lPuqyLSfSVzDnkwXeRDqO\n1szMhqivroyIeIx0XQczMxuyWXPmX6PRqLqEkeLtOVjenoMzCtty2reWkhTTXYeZ2WwjiRjAzj8z\nM5sBDmYzs8I4mM3MCuNgNjMrjIPZzKwwDmYzs8IUec+/ths5Fs+HCprZoBUZzEkdAq8+XyBmVh/u\nyjAzK4yD2cysMA5mM7PCOJjNzArjYDYzK4yD2cysMA5mM7PCOJjNzArjYDYzK4yD2cysMA5mM7PC\nOJjNzArjYDYzK0zPYJa0hqTTJS2RdL2k185EYWZms1U/l/38KvCfEbGbpLnA/CHXZGY2q2miC71L\nWh1YHBGbTLBMDPpi8elC+fW4HrMvlG9mUyGJiOh6UfdeXRkbA7+VdLykKyUdI+mFgy/RzMxaegXz\nXGAb4BsRsQ3wGHD40KsyM5vFevUx3wXcFRH/k8dPp0swj42NLRtuNBo0Go0BlWdmNhqazSbNZrOv\nZSfsYwaQdCHwgYj4haQxYOWIOKxtvvuYzcwmaaI+5n6CeSvgWGBF4GZg34h4qG2+g9nMbJKmFcx9\nrNzBbGY2SdM5KsPMzGaYg9nMrDD9nPlnZjY0qeuyfDPZbelgNrMClL6vZma/PNyVYWZWGAezmVlh\nHMxmZoVxMJuZFcbBbGZWGAezmVlhHMxmZoVxMJuZFcbBbGZWGAezmVlhHMxmZoVxMJuZFcbBbGZW\nGF9dbhaoy2UVYWYvrWhWKgfzrFGHwKvPF4jZMLkrw8ysMA5mM7PCOJjNzArjYDYzK0xfO/8k3QY8\nDDwLPB0R2w2zKDOz2azfozICaETE/cMsxszMJteV4WOZzMxmQL/BHMD/l3S5pP2HWZCZ2WzXb1fG\n6yLibknrAOdKuiEiLmrNHBsbW7Zgo9Gg0WgMtEgzs7prNps0m82+ltVkT4GVdATwaER8MY/HoE+j\nTacQ1+NMtTqcQuztaSWrx/tz8O9NSURE1y7inl0Zkl4oadU8PB94M3DNQCs0M7Nl+unKeDFwZr4Q\nzlzgexFxzlCrMjObxSbdlfG8Fbgro+oievL2tJLV4/1ZWFeGmZnNLAezmVlhHMxmZoVxMJuZFcbB\nbGZWGAezmVlhHMxmZoVxMJuZFcbBbGZWGAezmVlhHMxmZoVxMJuZFcbBbGZWGAezmVlhHMxmZoVx\nMJuZFcbBbGZWGAezmVlhHMxmZoVxMJuZFcbBbGZWGAezmVlhHMxmZoXpK5glrSBpsaQfDrsgM7PZ\nrt8W88HA9UAMsRYzM6OPYJb0h8BbgWMBDb0iM7NZrp8W85eBvwOWDrkWMzMD5k40U9IuwG8iYrGk\nxnjLjY2NLRtuNBo0GuMuamY2KzWbTZrNZl/LKmL8bmNJRwJ7Ac8AKwGrAT+IiL3blomJ1jEVkqhH\nd7YY9P99GLw9rWT1eH8O/r0piYjo2j08YTB3rOT1wKER8faO6Q7mwnl7Wsnq8f6c2WCe7HHMpW89\nM7Pa67vFPO4K3GKuuoievD2tZPV4f5bdYjYzsyFzMJuZFcbBbGZWGAezmVlhHMxmZoVxMJuZFcbB\nbGZWGAezmVlhHMxmZoVxMJuZFcbBbGZWGAezmVlhHMxmZoVxMJuZFcbBbGZWGAezmVlhHMxmZoVx\nMJuZFcbBbGZWGAezmVlhHMxmZoVxMJuZFcbBbGZWmJ7BLGklSZdJukrS9ZI+OxOFmZnNVnN7LRAR\nT0p6Q0Q8LmkucLGkHSPi4hmoz8xs1umrKyMiHs+DKwIrAPcPrSIzs1mur2CWNEfSVcC9wI8j4vrh\nlmVmNnv17MoAiIilwNaSVgfOltSIiGZr/tjY2LJlG40GjUZjsFWamdVcs9mk2Wz2tawiYlIrl/RJ\n4ImI+EIej8muo4/XAAa7zuEQg/6/D4O3p5WsHu/Pwb83JRER6javn6My1pa0Rh5eGfhTYPFAKzQz\ns2X66cr4A+AESXNIQX5SRJw33LLMzGavSXdlPG8F7sqouoievD2tZPV4fxbWlWFmZjPLwWxmVhgH\ns5lZYRzMZmaFcTCbmRXGwWxmVhgHs5lZYRzMZmaFcTCbmRXGwWxmVhgHs5lZYRzMZmaFcTCbmRXG\nwWxmVhgHs5lZYRzMZmaFcTCbmRXGwWxmVhgHs5lZYRzMZmaFcTCbmRXGwWxmVhgHs5lZYXoGs6QN\nJP1Y0nWSrpX0kZkozMxstlJETLyAtB6wXkRcJWkV4ArgnRGxJM+PXuuYdFESMNh1DocY9P99GLw9\nrWT1eH8O/r0piYhQt3k9W8wRcU9EXJWHHwWWAOsPtEIzM1tmUn3MkhYAi4DLhlGMmZnB3H4XzN0Y\npwMH55bzMmNjY8uGG40GjUZjQOWZmY2GZrNJs9nsa9mefcwAkuYBPwL+KyK+0jHPfcyF8/a0ktXj\n/VlYH7PSVjsOuL4zlM3MbPD66WN+HfA+4A2SFufHzkOuy8xs1uqrK2PCFbgro+oievL2tJLV4/1Z\nWFeGmZnNLAezmVlhHMxmZoVxMJuZFcbBbGZWGAezmVlhHMxmZoVxMJuZFcbBbGZWGAezmVlhHMxm\nZoVxMJuZFcbBbGZWGAezmVlhHMxmZoVxMJuZFcbBbGZWGAezmVlhHMxmZoVxMJuZFcbBbGZWGAez\nmVlhHMxmZoXpGcySvi3pXknXzERBZmazXT8t5uOBnYddiJmZJT2DOSIuAh6YgVrMzAz3MZuZFWfu\nIFYyNja2bLjRaNBoNAaxWjOzkdFsNmk2m30tq4jovZC0APhhRLyyy7zoZx2TIQkY7DqHQwz6/z4M\n3p5Wsnq8Pwf/3pRERKjbPHdlmJkVpp/D5U4BLgFeJulOSfsOvywzs9mrr66MCVfgroyqi+jJ29NK\nVo/3p7syzMxmNQezmVlhHMxmZoVxMJuZFcbBbGZWmIGc+Wc2m6SjCOrBR7nUk4PZbErqEHj1+QKx\n53JXhplZYRzMZmaFcTCbmRXGwWxmVhgHs5lZYRzMZmaFcTCbmRXGwWxmVhgHs5lZYRzMZmaFcTCb\nmRXGwWxmVhgHs5lZYRzMZmaFcTCbmRWmZzBL2lnSDZJ+KemwmSjKzGw2mzCYJa0A/AuwM7AQ2FPS\nljNR2OA1qy5gxDSrLmDENKsuYIQ0qy5g2nq1mLcDboqI2yLiaeD7wK7DL2sYmlUXMGKaVRcwYppV\nFzBCmlUXMG29gvklwJ1t43flaWZmNiS9grkONzYzMxspmuguupJeC4xFxM55/GPA0oj4fNsyDm8z\nsymIiK53zO0VzHOBG4E/AX4N/AzYMyKWDKNIMzODuRPNjIhnJP0NcDawAnCcQ9nMbLgmbDGbmdnM\n85l/ZmaFmbArw0zSiyaaHxH3z1Qto0TSesBngJdExM6SFgI7RMRxFZdWG5KumWB2RMSrZqyYARvZ\nrgxJXyL1iV9XdS11Juk2JjhsMiI2nrlqRoek/waOBz4eEa+SNA9YHBGvqLi02pC0IA8elP89CRDw\nXoCIqO0lJEY5mPcH9gHmAd8GTomIhyotyiyTdHlEvEbS4ohYlKddFRFbV11b3XTbbu3btY5Gto85\nIo6JiNcBewMLgGsknSzpDdVWVl+S1pS0naQ/bj2qrqnGHpW0VmsknzPghsPUSNKObSOvI7Wca2uk\n+5jzRZi2ALYEfgv8HPhbSR+MiD0qLa5m8i+QjwAbAIuB1wKXAm+ssq4aOwT4IbCJpEuAdYDdqi2p\ntvYDjpe0eh5/ENi3wnqmbZS7Mr4MvB04Hzg2In7WNu/GiNi8suJqSNK1wLbApRGxtaQtgM9GxJ9X\nXFpt5X7lzUmtuxvyhcJsinIwKyIerLqW6RrZrgzgamCriDigPZSz7asoqOaejIgnACStFBE3kELF\npiCfuLVKRFwbEdcAq0g6qNfz7PkkrSfpOODUiHhQ0kJJ76+6rukY5WDeKyIea58g6TyAUfhGrcCd\nktYE/h04V9JZwG3VllRr+0fEA62RPHxAhfXU2XeAc4D18/gvgY9WVs0AjFwfs6SVgRcCa3ccg7sa\nvmTplLV1WYxJapK2539XV1HtzZE0JyKWwrL9IfMqrqmu1o6IUyUdDhART0t6puqipmPkghk4EDiY\n9O15Rdv0R0h3Y7Epyi3mDYCHSdvzFcCVlRZVX2cD35f0TVIf84H4i26qRu4Il1He+ffhiPh61XWM\nCkmfJh0XfguwtDU9Inz44RTkFvIBpCs3ApxL2kn9bHVV1ZOkVwNfB14OXEc+wiUifl5pYdMwcsEs\n6Y0Rcb6kd9PljLWIOKOCsmpP0i+AV0TEU1XXYtZp1I5wGcWujNeTDpF7O91PJXYwT811wJrAvVUX\nUmeSTouI3fPhh53vz1pf36Eq+QiX70XEtXl8TUl7RsQ3Ki5tykauxdwiaZOIuKXXNOuPpG2B/wdc\nC/w+T46IeEd1VdWPpPUj4teSNuL5Z6dFRNxeRV11JunnEbFVx7Ran94+ii3mltOBbTqmnQa8uoJa\nRsGJwOdIwdzqYx7Nb/Uhiohf58GDOi+yI+nzQG0vvFOhkTvCZeSCWdKWwEJgDUnvIrVKgnR410pV\n1lZzj0bE16ouYoS8meeH8Fu7TLPeRu4Il5ELZuBlpP7l1fO/LY8A+1dS0Wi4SNJngbNY3pVBRPhw\nuUmQ9CHSZSo37bie8KrAT6qpqvYOIx3h8qE8fi5wbHXlTN8o9zH/UURcUnUdoyKfVNLtKBcfLjcJ\n+XoOa5K6hQ5jeT/zIxFxX2WFWVFGOZjXJbWQF7D8l0FExH6VFVVTuc/u4Ij4UtW1jApJOwDXRcTD\neXw1YMuIuKzayupH0q1dJkdEbDLjxQzIKAfzpcCFpLP/lu2siogfVFdVfUn6n4jYtuo6RoWkq4Bt\nOnZYXV7ni7tXRdLabaMrkS6fulZEfLKikqZtlIO51ofLlCZfRnUecCrwGHmnqvuYp2acu25c7eOY\nB0PSlRHReVRWbYzizr+WH0l6W0T8R9WFjIhFpD7mT3VMdx/z1Nwq6SPAUaQvuQ+RTne3ScqnZLda\nmHOA1wArVFfR9I1yi/lR0lXmngJap2dGRKxWXVVmiaQXA19j+RfbeaR+/N9UV1U9deyYfoZ0Odov\nRMSNVdU0XaMczCuQ7pa7cUT8Uz7Taj3vXJkaSWsARwCt+/w1gU/5BrdmgzfKwXw08CzwxojYMl+b\n+WzvwJoaSWcA1wAnkH567wW8KiLeVWlhNZWvG/5+0slQy0588lFD/ZN0SB7sGmJ1PopolPuYt4+I\nRZIWA0TE/ZJWrLqoGtu0I4THJNX2sooFOAlYAuwM/BPwvjxu/VuVFMqbk+5HeRap0bAL0Hk7uVoZ\n5WB+KndnACBpHdquI2yT9oSknSLiIoB8u/jHK66pzjaLiN0k7RoRJ0g6Gbi46qLqJCLGACRdRDr0\n8JE8fgTwnxWWNm2jHMxfB84E1pV0JOnYxk9UW1KtfRA4Ifc1A9xPunC+TU3rutYPSXolcA/pAu82\neeuyfAc/eXjdimoZiJEN5oj4rqQrWH6HiF0jwj8Vp+4G4P8AmwJrkG7dsyvg7oyp+Vbe7/EJ0k/w\nVYDanhBRsROBn+X9IALeSdoXUlsju/PPBkvS2cCDpDMpl93+KCK+WFlRNSVpDrB7RJxadS2jIh/L\nvGMevTAiFldZz3Q5mK0vkq6NiFdUXceokHRFRPja4AMiaSfgpRHx7bw/aZWI6HYNjVqYU3UBVhuX\nSPLpwoNzrqRDJW0g6UWtR9VF1ZGkMeDvgcPzpBWB71ZW0AC4xWx9kbQE2Ay4lefeWsphPQWSbqP7\nZVQ3nvlq6i0ftrkIuKJ1Eai6X3dkZHf+2cC9peoCRsyWwF+T+kWXkg6VO6rSiurr9xGxVEqXtpY0\nv+J6ps3BbH2JiNuqrmHEnAg8DHyVdCTBe/K03assqm6U0vhH+bZSa0g6ANgP38HEzCZL0vURsbDX\nNJtYDuZrgI8Cf5Ynnx0R51ZX1fS5xWxWjSsl7RARlwJIei3pUESbhIiIfL7CQxFxaNX1DIpbzGYV\nkHQD6cbBd5J2Am4I3Ei6bKV3qk6CpBtJO6ZvJ93EAWq+DR3MZhWQtGCi+e7T799427LO29DBbGZW\nGJ9gYmZWGAezmVlhHMxmZoVxMNtIkzTWdgsis1pwMNvIUNYxeVJ7t9vvemNWFQez1Yqkv5V0TX4c\nLGkjSTdKOoF0BtgGkj6ep11Euh9c67mbSvovSZdLulDS5nn6dyQdLemnwOer+Z+ZLecz/6w28sXQ\n9wG2IzUqLgMuIJ1csFdE/CwvswewFTAPuBK4PK/iW8CBEXGTpO2Bb7D8DjfrAzuEjx+1AjiYrU52\nBM6IiCcA8q2EdgJuj4jWXZF3yss8CTwp6ay87Hzgj4DT2no7WndND+A0h7KVwsFsdRKkK7F1emyC\nZVrDc4AHWtfr7cJ3/LZiuI/Z6uQi4J2SVs4t4D/P09pdmJdZSdKqwC4A+db2t0raDZbtKKzttRRs\ntLnFbLUREYslfQdodVscAzxA25EXeZlTSXfv/k3bsgDvBY6S9AlS//MpwNWtpw63erP++VoZZmaF\ncVeGmVlhHMxmZoVxMJuZFcbBbGZWGAezmVlhHMxmZoVxMJuZFcbBbGZWmP8F/OQvOVzYbnYAAAAA\nSUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x110fd4890>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"\n", | |
"# TODO Increase y axis\n", | |
"# turn lables\n", | |
"# reorder lables\n", | |
"# change color\n", | |
"# Histogram of the documents viewed per interface\n", | |
"mean_order['doc_count'].plot(kind='bar', \n", | |
" title='Documents viewed per interface')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## working out the serp viewing time for each interface" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 114, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x110e17250>" | |
] | |
}, | |
"execution_count": 114, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEsCAYAAADeoDiOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGEZJREFUeJzt3XuUZWV95vHvw2282yDaCGIaUIT2Fm+ICcYjiYbJGCAZ\nFR1D8DJqJImOMYlNdEIlWeMlMzEXZ2nGC9iakYgJw0DGKB30jMxIQAURaJrLxHbouGidCIpGI6R/\n88fZ1V0W1VXdp071rrfq+1mrVu/97r3P+dXus57z1rtvqSokSe3ar+8CJEmLY5BLUuMMcklqnEEu\nSY0zyCWpcQa5JDVu3iBPcl6S7Umun9X+q0luSnJDknfOaD8nya1JtiR5/lIVLUna5YAFlp8PvBv4\n8HRDkucCpwJPqqp7kjy8a18PnAGsB44A/ibJsVW1Y0kqlyQBC/TIq+oK4M5Zza8D3l5V93TrfKNr\nPw24oKruqaqtwG3ACZMtV5I02zhj5I8FfiLJ3yYZJnl61344sG3GetsY9cwlSUtooaGV3W1zcFWd\nmOQZwIXA0btZ1+v/JWmJjRPk24CLAKrq80l2JDkU+HvgyBnrPapr+yFJDHdJGkNVZa72cYZWLgZO\nBkhyLHBQVf0/4BLgJUkOSnIUoyGYq3dTzLL/Offcc3uvYSX9uD/dn8v1p5V9OZ95e+RJLgCeAzws\nye3AbwPnAed1pyT+APjFLpw3J7kQ2AzcC5xdC727JGnR5g3yqnrpbhaduZv13wa8bbFFSZL2nFd2\n7sZgMOi7hBXF/TlZ7s/JWQn7Mvt69COJIy6StJeSUBM82ClJWkYMcklqnEEuSY0zyCWpcQa5JDXO\nIJekxhnkktQ4g1ySGmeQS1LjDHJJapxBLkmNG+fBEpLUi2TOW40sS/vynlIGuaTGtHDTvX37hePQ\niiQ1ziCXpMYZ5JLUOINckho3b5AnOS/J9u5By7OXvSnJjiSHzGg7J8mtSbYkef5SFCxJ+mEL9cjP\nB06Z3ZjkSOB5wFdntK0HzgDWd9u8J4k9fklaYvMGbVVdAdw5x6J3Ab85q+004IKquqeqtgK3ASdM\nokhJ0u7tdY85yWnAtqr68qxFhwPbZsxvA45YRG2SpD2wVxcEJXkA8FuMhlV2Ns+zSQtn7ktS0/b2\nys5jgHXAdd2lso8CvpjkmcDfA0fOWPdRXdt9TE1N7ZweDAYMBoO9LEOSVrbhcMhwONyjdbPQ/QCS\nrAMuraonzrHsK8DTquqb3cHOjzIaFz8C+BvgMTXrDZLMbpKkPTLqQLaQH5n4vVaSUFVzjoAsdPrh\nBcDngGOT3J7kFbNW2VlpVW0GLgQ2A38NnG1iS9LSW7BHPvE3tEcuaUz2yMfokUuSlj+DXJIaZ5BL\nUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxhnkktQ4g1ySGmeQS1LjDHJJapxBLkmNM8glqXEGuSQ1\nziCXpMYZ5JLUOINckhpnkEtS4xZ6+PJ5SbYnuX5G239MclOS65JclOShM5adk+TWJFuSPH8pC5ck\njSzUIz8fOGVW22XA46vqycAtwDkASdYDZwDru23ek8QevyQtsXmDtqquAO6c1bapqnZ0s1cBj+qm\nTwMuqKp7qmorcBtwwmTLlSTNttge8yuBT3TThwPbZizbBhyxyNeXJC3ggHE3TPIW4AdV9dF5Vqu5\nGqempnZODwYDBoPBuGVI0oo0HA4ZDod7tG6q5szaXSsk64BLq+qJM9peDrwa+Mmq+n7XtgGgqt7R\nzX8SOLeqrpr1erXQe0rSXJKwm/7hMhMmnXNJqKrMtWyvh1aSnAL8BnDadIh3LgFekuSgJEcBjwWu\nHqdgSdKem3doJckFwHOAQ5PcDpzL6CyVg4BNo29Hrqyqs6tqc5ILgc3AvcDZdr0laektOLQy8Td0\naEXSmBxamXtoZeyDnVq5ur+0mmCnQDLItVstBGQ7XzjSUvLKS0lqnEEuSY0zyCWpcQa5JDXOIJek\nxhnkktQ4g1ySGmeQS1LjDHJJapxBLkmNM8glqXEGuSQ1ziCXpMYZ5JLUOINckhpnkEtS4wxySWrc\nvEGe5Lwk25NcP6PtkCSbktyS5LIka2YsOyfJrUm2JHn+UhYuSRpZqEd+PnDKrLYNwKaqOha4vJsn\nyXrgDGB9t817ktjjl6QlNm/QVtUVwJ2zmk8FNnbTG4HTu+nTgAuq6p6q2grcBpwwuVIlSXMZp8e8\ntqq2d9PbgbXd9OHAthnrbQOOWERtkqQ9cMBiNq6qSjLf49bnXDY1NbVzejAYMBgMFlOGJK04w+GQ\n4XC4R+umar4chiTrgEur6ond/BZgUFV3JHkk8JmqOi7JBoCqeke33ieBc6vqqlmvVwu9p/qVhN18\nBy8zwc/S6rKaP5tJqKrMtWycoZVLgLO66bOAi2e0vyTJQUmOAh4LXD3G60uS9sK8QytJLgCeAxya\n5Hbgt4F3ABcmeRWwFXgxQFVtTnIhsBm4FzjbrrckLb0Fh1Ym/oZLMLQy+nOrDS18t63mP1+1vK3m\nz+Z8QyuLOti5vLTxnytJk+YFO5LUOINckhpnkEtS4wxySWqcQS5JjTPIJalxBrkkNc4gl6TGGeSS\n1DiDXJIaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxhnkktQ4g1ySGjd2kCc5J8mNSa5P8tEk\n/yLJIUk2JbklyWVJ1kyyWEnSfY0V5EnWAa8GnlpVTwT2B14CbAA2VdWxwOXdvCRpCY3bI/82cA/w\ngCQHAA8AvgacCmzs1tkInL7oCiVJ8xoryKvqm8AfAP+XUYDfVVWbgLVVtb1bbTuwdiJVSpJ264Bx\nNkpyDPDvgHXAt4CPJ/mFmetUVSWpubafmpraOT0YDBgMBuOUIUkr1nA4ZDgc7tG6qZoza+ffKDkD\neF5V/dtu/kzgROBk4LlVdUeSRwKfqarjZm1b47znAvUAk33NpREm/bsvBfenlqvV/NlMQlVlrmXj\njpFvAU5Mcv+M9uxPAZuBS4GzunXOAi4e8/UlSXtorKGVqrouyYeBLwA7gGuA9wEPBi5M8ipgK/Di\nCdUpSdqNsYZWFvWGDq30XcSC3J9arlbzZ3MphlYkScuEQS5JjTPIJalxBrkkNc4gl6TGGeSS1DiD\nXJIaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxhnkktQ4g1ySGmeQS1LjDHJJapxBLkmNM8gl\nqXFjB3mSNUn+IslNSTYneWaSQ5JsSnJLksuSrJlksZKk+1pMj/yPgU9U1fHAk4AtwAZgU1UdC1ze\nzUuSllDGedJzkocC11bV0bPatwDPqartSQ4DhlV13Kx1aimeLr1an6y9FNyfWq5W82czCVWVuZaN\n2yM/CvhGkvOTXJPk/UkeCKytqu3dOtuBtWO+viRpDx2wiO2eCvxKVX0+yR8xaxilqirJnF9JU1NT\nO6cHgwGDwWDMMiRpZRoOhwyHwz1ad9yhlcOAK6vqqG7+JOAc4GjguVV1R5JHAp9xaGWmNoYC3J9a\nrlbzZ3PiQytVdQdwe5Jju6afAm4ELgXO6trOAi4e5/UlSXturB45QJInAx8ADgL+D/AKYH/gQuDR\nwFbgxVV116zt7JEvc+7PyRrtzzYs9/25mj+b8/XIxw7yRRRjkC9z7s/Jcn9Ozmrel0tx1ookaZkw\nyCWpcQa5JDXOIJekxhnkktQ4g1ySGmeQS1LjDHJJapxBLkmNM8glqXEGuSQ1ziCXpMYZ5JLUOINc\nkhpnkEtS4wxySWqcQS5JjTPIJalxBrkkNW5RQZ5k/yTXJrm0mz8kyaYktyS5LMmayZQpSdqdxfbI\n3wBsZtfTUDcAm6rqWODybl6StITGDvIkjwJ+BvgAMP1k51OBjd30RuD0RVUnSVrQYnrkfwj8BrBj\nRtvaqtreTW8H1i7i9SVJe+CAcTZK8gLg61V1bZLBXOtUVSWpuZZNTU3tnB4MBgwGc76EJK1aw+GQ\n4XC4R+umas6snX+j5G3AmcC9wP2AhwAXAc8ABlV1R5JHAp+pquNmbVvjvOcC9bBrmH45C5P+3ZeC\n+3Oy3J+Ts5r3ZRKqKnMtG2topap+q6qOrKqjgJcAn66qM4FLgLO61c4CLh7n9SVJe25S55FPf/W8\nA3hekluAk7t5SdISGmtoZVFv6NBK30UsyP05We7PyVnN+3LiQyuSpOXDIJekxhnkktQ4g1ySGmeQ\nS1LjDHJJapxBLkmNM8glqXEGuSQ1ziCXpMYZ5JLUOINckhpnkEtS4wxySWqcQS5JjTPIJalxBrkk\nNc4gl6TGjRXkSY5M8pkkNya5Icnru/ZDkmxKckuSy5KsmWy5kqTZxu2R3wO8saoeD5wI/HKS44EN\nwKaqOha4vJuXJC2hsYK8qu6oqi91098BbgKOAE4FNnarbQROn0SRkqTdW/QYeZJ1wFOAq4C1VbW9\nW7QdWLvY15ckzW9RQZ7kQcBfAm+oqrtnLquqAmoxry9JWtgB426Y5EBGIf6Rqrq4a96e5LCquiPJ\nI4Gvz7Xt1NTUzunBYMBgMBi3DElakYbDIcPhcI/WzajjvHeShNEY+D9U1RtntP9+1/bOJBuANVW1\nYda2Nc57LlAPbXT+w6R/96Xg/pws9+fkrOZ9mYSqypzLxgzyk4DPAl9m1149B7gauBB4NLAVeHFV\n3TVrW4N8mXN/Tpb7c3JW876ceJAvshiDfJlzf06W+3NyVvO+nC/IvbJTkhpnkEtS4wxySWqcQS5J\njTPIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxhnkktQ4\ng1ySGmeQS1LjDHJJatzEgzzJKUm2JLk1yZsn/fqSpB820SBPsj/wn4FTgPXAS5McP8n32HeGfRew\nwgz7LmCFGfZdwAoy7LuARZt0j/wE4Laq2lpV9wB/Dpw24ffYR4Z9F7DCDPsuYIUZ9l3ACjLsu4BF\nm3SQHwHcPmN+W9cmSVoikw7ymvDrSZIWkKrJZW+SE4Gpqjqlmz8H2FFV75yxjmEvSWOoqszVPukg\nPwC4GfhJ4GvA1cBLq+qmib2JJOmHHDDJF6uqe5P8CvApYH/gg4a4JC2tifbIJUn7nld2SlLjJjq0\nIiU5ZL7lVfXNfVXLSpLkMOA/AEdU1SlJ1gPPqqoP9lxaM5JcP8/iqqon7bNiJsyhlU6SdzEa07+x\n71palmQr85yGWlVH7btqVo4knwTOB95SVU9KciBwbVU9oefSmpFkXTd5dvfvR4AALwOoqmZvKWKQ\nd5K8Gng5cCBwHnBBVX2r16KkTpIvVNXTk1xbVU/p2r5UVT/ad22tmWu/zdyvLXKMvFNV76+qHwd+\nEVgHXJ/ko0me229l7UpycJITkvzE9E/fNTXsO0keNj3TXbNhR2M8SXLSjJkfZ9Qzb5Zj5DN0N/06\nDjge+AZwHfBrSX6pqs7otbjGdH/hvB44ErgWOBG4Eji5z7oa9ibgUuDoJJ8DHg68sN+SmvVK4Pwk\nD+3m7wJe0WM9i+bQSifJHwI/C3wa+EBVXT1j2c1V9bjeimtQkhuAZwBXVtWPJjkOeHtV/VzPpTWr\nGxd/HKPe45buxnQaUxfkqaq7+q5lsRxa2eXLwJOr6jUzQ7zzzD4Katz3q+p7AEnuV1VbGIWQxtBd\naPegqrqhqq4HHpTk7IW2030lOSzJB4GPVdVdSdYneVXfdS2GQb7LmVX13ZkNSS4HWAnf2D24PcnB\nwMXApiSXAFv7Lalpr66qO6dnuunX9FhPyz4EXAYc3s3fCryxt2omYNWPkSe5P/AA4NBZ50A/BG/B\nO7YZQyhTSYaM9ucn+6uoefsl2a+qdsDO4zkH9lxTqw6tqo8l2QBQVfckubfvohZj1Qc58FrgDYy+\nnb84o/1uRk870pi6HvmRwLcZ7c8nANf0WlS7PgX8eZL/wmiM/LX4xTiuFXcGkAc7O0l+tare3Xcd\nK0WS32N0Xv7fATum26vK0znH0PXAX8PozqIAmxgdlP/n/qpqU5KnAe8GHg/cSHcGUFVd12thi7Dq\ngzzJyVX16ST/mjmuSKyqi3ooq3lJbgGeUFU/6LsWabaVdgaQQyvwHEanHP4sc19abpCP50bgYGB7\n34W0LMnHq+pF3emcsz+fTd8fpC/dGUD/tapu6OYPTvLSqnpPz6WNbdX3yKclObqq/m6hNu2ZJM8A\n/jtwA/BPXXNV1an9VdWeJIdX1deS/Aj3vfqwquqrfdTVsiTXVdWTZ7U1fbsDe+S7/AXw1FltHwee\n1kMtK8GHgXcwCvLpMXJ7DXupqr7WTZ49+6ZOSd4JNHujpx6tuDOAVn2QJzkeWA+sSfLzjHo9xeh0\nufv1WVvjvlNVf9J3ESvI87lvaP/MHG1a2Io7A2jVBzlwLKPx8Yd2/067G3h1LxWtDFckeTtwCbuG\nVqgqTz/cC0lex+i2q8fMup/2g4H/3U9VzXszozOAXtfNbwI+0F85i+cYeSfJj1XV5/quY6XoLgKa\n6ywgTz/cC939QA5mNEz1ZnaNk99dVf/QW2FaVgzyTpJHMOqBr2PXXypVVa/srahGdWOOb6iqd/Vd\ny0qR5FnAjVX17W7+IcDxVXVVv5W1J8lX5miuqjp6nxczIQZ5J8mVwGcZXd258+BcVf1lf1W1K8nn\nq+oZfdexUiT5EvDUWQfovtDywxD6kuTQGbP3Y3Q74IdV1b/vqaRFM8g7rZ9+tNx0twU+EPgY8F26\ng8iOkY9nN0+1+bLnkU9GkmuqavZZa83wYOcuf5XkX1XV/+i7kBXiKYzGyH93Vrtj5OP5SpLXA+9l\n9KX4Oka3P9Be6i7Rn+7B7gc8Hdi/v4oWzx55J8l3GN0F8QfA9OW6VVUP6a8qaSTJWuBP2PVFeDmj\n4xBf76+qNs06EH8vo9sr/6equrmvmhbLIO90Y44vA46qqt/prqQ7zINJ40myBjgXmH5O5xD4XR9o\nLU2eQd5J8qfAPwMnV9Xx3b3JP+UBu/EkuQi4HtjIaCjgTOBJVfXzvRbWqO6++a9idPHazgvVPKtq\nzyV5Uzc5Z+i1fJaVY+S7PLOqnpLkWoCq+maSg/ouqmHHzArtqSTN3iZ0GfgIcBNwCvA7wC9089pz\nD2YU4o9j9DzZSxh1Ml4AzH68Y1MM8l1+0A2vAJDk4cy4j7b22veSPLuqrgBIchLwjz3X1LLHVNUL\nk5xWVRuTfBT4X30X1ZKqmgJIcgWjUznv7ubPBT7RY2mLZpDv8m7gvwGPSPI2RueWvrXfkpr2S8DG\nbqwc4JuMHjSh8Uzf1/1bSZ4I3MHogQjae49g1wkNdNOP6KmWiTDIO1X1Z0m+yK4nsJxWVf7pOr4t\nwO8DxwBrGD1K6zTA4ZXxvK87bvNWRkMCDwKavYClZx8Gru6O4wQ4ndGxnGZ5sFNLIsmngLsYXSm7\n83FkVfUHvRXVqCT7AS+qqo/1XctK0Z1LflI3+9mqurbPehbLINeSSHJDVT2h7zpWiiRfrCrvjT8h\nSZ4NPLaqzuuOhz2oqua6B0sT9uu7AK1Yn0vi5eOTsynJryc5Mskh0z99F9WiJFPAbwIbuqaDgD/r\nraAJsEeuJZHkJuAxwFf44Ue9Ge5jSLKVuW8LfNS+r6Zt3WmwTwG+OH3TsdbvW+PBTi2Vf9l3ASvM\n8cAvMxrX3cHo1MP39lpRu/6pqnYko1u7J3lgz/UsmkGuJVFVW/uuYYX5MPBt4I8ZnWnxb7q2F/VZ\nVGsySu+/6h7ztibJa4BX4hOCJC21JJurav1CbZpfF+TXA28Efrpr/lRVbeqvqsWzRy614Zokz6qq\nKwGSnMjo1E7thaqq7nqRb1XVr/ddz6TYI5cakGQLoweF387ooOejgZsZ3YbVg8h7IcnNjA7Ef5XR\nQ0+g8X1okEsNSLJuvuUek9hzu9uXLe9Dg1ySGucFQZLUOINckhpnkEtS4wxyaYYkUzMeCSY1wSDX\nqpXOrOa9Ovo/86lSUl8Mcq1oSX4tyfXdzxuS/EiSm5NsZHSF35FJ3tK1XcHoeY7T2x6T5K+TfCHJ\nZ5M8rmv/UJI/TfK3wDv7+c2kXbyyUytW9/CAlwMnMOq0XAX8T0YXg5xZVVd365wBPBk4ELgG+EL3\nEu8DXltVtyV5JvAedj1B6nDgWeX5u1oGDHKtZCcBF1XV9wC6R3s9G/hqVU0/Nf3Z3TrfB76f5JJu\n3QcCPwZ8fMboy0HdvwV83BDXcmGQayUrRncKnO2786wzPb0fcOf0/arn8I+LL0+aDMfItZJdAZye\n5P5dD/vnuraZPtutc78kDwZeAFBVdwNfSfJC2HlgtNl7cWhls0euFauqrk3yIWB6GOX9wJ3MODOl\nW+djwHXA12esC/Ay4L1J3spo/PwC4MvTmy5t9dKe814rktQ4h1YkqXEGuSQ1ziCXpMYZ5JLUOINc\nkhpnkEtS4wxySWqcQS5Jjfv/QBS3AVikgOMAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11096ee50>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"mean_order['query_session'].plot(kind='bar')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"df2 = read_csv('experiment.log', sep=r'\\s+')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.10" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment