Last active
July 6, 2022 14:45
-
-
Save mihaidusmanu/6fe23145484395eeecd97eb7927c469c to your computer and use it in GitHub Desktop.
LightGBM with Stratified K-Fold CV
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "lightgbm_kfold.ipynb", | |
"version": "0.3.2", | |
"provenance": [], | |
"collapsed_sections": [], | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/mihaidusmanu/6fe23145484395eeecd97eb7927c469c/lightgbm_kfold.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "EEUIx_f2mjMo", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"import lightgbm as lgb\n", | |
"\n", | |
"import numpy as np\n", | |
"\n", | |
"from sklearn.model_selection import StratifiedKFold" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"id": "agqFR_2DmjM1", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"# General parameters\n", | |
"n_folds = 5" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"id": "mBXxgKx3mjNF", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"# Training data\n", | |
"print(\"Loading training data... \")\n", | |
"\n", | |
"# TODO: read training data" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"id": "YCDavEDOmjNP", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"# LightGBM parameters\n", | |
"params = {\n", | |
" 'task':'train',\n", | |
" 'boosting_type': 'gbdt',\n", | |
" 'objective': 'binary',\n", | |
" 'metric': {'binary_logloss', 'auc'},\n", | |
" 'num_leaves': 31,\n", | |
" 'learning_rate': 0.05,\n", | |
" 'feature_fraction': 0.9,\n", | |
" 'bagging_fraction': 0.8,\n", | |
" 'bagging_freq': 5,\n", | |
" 'verbose': 1\n", | |
"}" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"id": "Sts7yHp9mjNV", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"skfold = StratifiedKFold(n_splits=n_folds, random_state=42)\n", | |
"\n", | |
"val_scores = []\n", | |
"for fold_id, (train_ids, valid_ids) in enumerate(skfold.split(train_data, train_ann)):\n", | |
" print(\"Fold %d / %d\" % (fold_id + 1, n_folds))\n", | |
"\n", | |
" lgb_train = lgb.Dataset(train_data[train_ids, :], train_ann[train_ids])\n", | |
" lgb_valid = lgb.Dataset(train_data[valid_ids, :], train_ann[valid_ids])\n", | |
" \n", | |
" res = {}\n", | |
" \n", | |
" gbm = lgb.train(params, lgb_train, num_boost_round=2500, \n", | |
" valid_sets=[lgb_valid], valid_names=['valid'],\n", | |
" evals_result=res, verbose_eval=100)\n", | |
" \n", | |
" gbm.save_model('lightgbm_model_%d.txt' % fold_id)\n", | |
" \n", | |
" val_scores.append(res['valid']['auc'][-1])\n", | |
"print(\"avg_val_score: %4f\" % (np.mean(val_scores)))\n" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"id": "v-Z14BhMmjNs", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"# Testing\n", | |
"print(\"Loading test data... \")\n", | |
"\n", | |
"# TODO: read test data" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"id": "Ec4WUV7CmjN-", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"pred = np.zeros((test_data.shape[0],))\n", | |
"for fold_id in range(n_folds):\n", | |
" gbm = lgb.Booster(model_file='lightgbm_model_%d.txt' % fold_id)\n", | |
" current_pred = gbm.predict(test_data)\n", | |
" pred += current_pred\n", | |
"pred /= n_folds" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"id": "OyDHoXG5mjOK", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"out = open('answers.csv', 'w')\n", | |
"out.write(\"Id;TARGET\\n\")\n", | |
"\n", | |
"for row_id in range(pred.shape[0]):\n", | |
" out.write(\"ID\" + str(row_id) + \";\" + str(pred[row_id]) + \"\\n\")\n", | |
"\n", | |
"out.close()" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"id": "AKyjVyd4mjOQ", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment