-
-
Save mingderwang/258d0c185250ad2bcd147f69a9c27a25 to your computer and use it in GitHub Desktop.
max_info
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:a2136a9b764b8cc306e3505c177878f34420d0caedfc615b7f914e5627ef7425" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df = pd.DataFrame(np.random.randn(10, 3))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>0</th>\n", | |
" <th>1</th>\n", | |
" <th>2</th>\n", | |
" <th>3</th>\n", | |
" <th>4</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>-0.461551</td>\n", | |
" <td> 0.337281</td>\n", | |
" <td> 2.386641</td>\n", | |
" <td>-0.063649</td>\n", | |
" <td>-1.120149</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>-1.251335</td>\n", | |
" <td> 1.578450</td>\n", | |
" <td>-0.342258</td>\n", | |
" <td> 0.098727</td>\n", | |
" <td> 0.096191</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>-1.732438</td>\n", | |
" <td>-1.697958</td>\n", | |
" <td>-0.159549</td>\n", | |
" <td>-0.038545</td>\n", | |
" <td> 0.165542</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td> 1.499082</td>\n", | |
" <td> 0.939494</td>\n", | |
" <td>-0.089698</td>\n", | |
" <td> 0.711280</td>\n", | |
" <td>-0.747168</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>-0.257008</td>\n", | |
" <td> 0.849296</td>\n", | |
" <td>-0.922523</td>\n", | |
" <td>-0.420108</td>\n", | |
" <td>-0.522947</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td> 1.133592</td>\n", | |
" <td> 0.989736</td>\n", | |
" <td> 0.389640</td>\n", | |
" <td> 1.245466</td>\n", | |
" <td>-0.369549</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>-0.481618</td>\n", | |
" <td> 1.209619</td>\n", | |
" <td>-0.797668</td>\n", | |
" <td>-1.085983</td>\n", | |
" <td>-0.924849</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td> 0.029566</td>\n", | |
" <td> 1.440946</td>\n", | |
" <td>-0.273174</td>\n", | |
" <td>-0.676727</td>\n", | |
" <td> 0.689995</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td> 0.712432</td>\n", | |
" <td> 1.021626</td>\n", | |
" <td> 0.212807</td>\n", | |
" <td>-0.719138</td>\n", | |
" <td> 0.548671</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>-0.958496</td>\n", | |
" <td>-1.494948</td>\n", | |
" <td> 0.401581</td>\n", | |
" <td> 0.252721</td>\n", | |
" <td>-1.507747</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>10 rows \u00d7 5 columns</p>\n", | |
"</div>" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 2, | |
"text": [ | |
" 0 1 2 3 4\n", | |
"0 -0.461551 0.337281 2.386641 -0.063649 -1.120149\n", | |
"1 -1.251335 1.578450 -0.342258 0.098727 0.096191\n", | |
"2 -1.732438 -1.697958 -0.159549 -0.038545 0.165542\n", | |
"3 1.499082 0.939494 -0.089698 0.711280 -0.747168\n", | |
"4 -0.257008 0.849296 -0.922523 -0.420108 -0.522947\n", | |
"5 1.133592 0.989736 0.389640 1.245466 -0.369549\n", | |
"6 -0.481618 1.209619 -0.797668 -1.085983 -0.924849\n", | |
"7 0.029566 1.440946 -0.273174 -0.676727 0.689995\n", | |
"8 0.712432 1.021626 0.212807 -0.719138 0.548671\n", | |
"9 -0.958496 -1.494948 0.401581 0.252721 -1.507747\n", | |
"\n", | |
"[10 rows x 5 columns]" | |
] | |
} | |
], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"pd.set_option('display.large_repr', 'info',\n", | |
" 'display.max_info_columns', 4,\n", | |
" 'display.max_columns', 2)\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 3, | |
"metadata": {}, | |
"source": [ | |
"`max_info_columns` exceeded => Truncate unless `verbose=True`" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<pre><class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 10 entries, 0 to 9\n", | |
"Columns: 5 entries, 0 to 4\n", | |
"dtypes: float64(5)</pre>" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 4, | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 10 entries, 0 to 9\n", | |
"Columns: 5 entries, 0 to 4\n", | |
"dtypes: float64(5)" | |
] | |
} | |
], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df.info()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 10 entries, 0 to 9\n", | |
"Columns: 5 entries, 0 to 4\n", | |
"dtypes: float64(5)" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df.info(verbose=True)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 10 entries, 0 to 9\n", | |
"Data columns (total 5 columns):\n", | |
"0 10 non-null float64\n", | |
"1 10 non-null float64\n", | |
"2 10 non-null float64\n", | |
"3 10 non-null float64\n", | |
"4 10 non-null float64\n", | |
"dtypes: float64(5)" | |
] | |
} | |
], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df.info(verbose=False)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 10 entries, 0 to 9\n", | |
"Columns: 5 entries, 0 to 4\n", | |
"dtypes: float64(5)" | |
] | |
} | |
], | |
"prompt_number": 7 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"pd.set_option('display.max_info_columns', 5)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 8 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 3, | |
"metadata": {}, | |
"source": [ | |
"`max_info_columns` not exceeded => don't Truncate unless `verbose=True`" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<pre><class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 10 entries, 0 to 9\n", | |
"Data columns (total 5 columns):\n", | |
"0 10 non-null float64\n", | |
"1 10 non-null float64\n", | |
"2 10 non-null float64\n", | |
"3 10 non-null float64\n", | |
"4 10 non-null float64\n", | |
"dtypes: float64(5)</pre>" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 9, | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 10 entries, 0 to 9\n", | |
"Data columns (total 5 columns):\n", | |
"0 10 non-null float64\n", | |
"1 10 non-null float64\n", | |
"2 10 non-null float64\n", | |
"3 10 non-null float64\n", | |
"4 10 non-null float64\n", | |
"dtypes: float64(5)" | |
] | |
} | |
], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df.info()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 10 entries, 0 to 9\n", | |
"Data columns (total 5 columns):\n", | |
"0 10 non-null float64\n", | |
"1 10 non-null float64\n", | |
"2 10 non-null float64\n", | |
"3 10 non-null float64\n", | |
"4 10 non-null float64\n", | |
"dtypes: float64(5)" | |
] | |
} | |
], | |
"prompt_number": 10 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df.info(verbose=True)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 10 entries, 0 to 9\n", | |
"Data columns (total 5 columns):\n", | |
"0 10 non-null float64\n", | |
"1 10 non-null float64\n", | |
"2 10 non-null float64\n", | |
"3 10 non-null float64\n", | |
"4 10 non-null float64\n", | |
"dtypes: float64(5)" | |
] | |
} | |
], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df.info(verbose=False)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 10 entries, 0 to 9\n", | |
"Columns: 5 entries, 0 to 4\n", | |
"dtypes: float64(5)" | |
] | |
} | |
], | |
"prompt_number": 12 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df.__repr__?" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment