I hereby claim:
- I am miquelbeltran on github.
- I am miquelbeltran (https://keybase.io/miquelbeltran) on keybase.
- I have a public key whose fingerprint is 7C4D CCED CCDE B8FA F4C0 09D2 AE9F C767 BF4D 65AC
To claim this, I am signing this object:
| // Pass the input data, as an array, that contains a single float array, with a single value | |
| // So in all [0][0] = 21, a 1x1 matrix in the form a Array of FloatArray | |
| val inp = arrayOf(floatArrayOf(21f)) | |
| val inputs = FirebaseModelInputs.Builder().add(inp).build() | |
| // Run the model | |
| interpreter.run(inputs, dataOptions) | |
| .continueWith { task -> | |
| try { | |
| // The output is also a Array of FloatArray |
| // Input is a 1x1 Tensor | |
| val inputDims = intArrayOf(1, 1) | |
| // Output is a 1x1 Tensor | |
| val outputDims = intArrayOf(1, 1) | |
| // Define the Input and Output dimensions and types | |
| val dataOptions = FirebaseModelInputOutputOptions.Builder() | |
| .setInputFormat(0, FirebaseModelDataType.FLOAT32, inputDims) | |
| .setOutputFormat(0, FirebaseModelDataType.FLOAT32, outputDims) | |
| .build() |
| # Original: https://stackoverflow.com/a/45466355/673294 user: jdehesa | |
| def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True): | |
| """ | |
| Freezes the state of a session into a pruned computation graph. | |
| Creates a new computation graph where variable nodes are replaced by | |
| constants taking their current value in the session. The new graph will be | |
| pruned so subgraphs that are not necessary to compute the requested | |
| outputs are removed. |
| import tensorflow as tf | |
| inp = tf.placeholder(name="inp", dtype=tf.float32, shape=(1, 1)) | |
| w = tf.Variable(tf.zeros([1, 1], tf.float32), dtype=tf.float32, name="w") | |
| y = tf.matmul(w, inp) | |
| out = tf.identity(y, name="out") | |
| init_op = tf.global_variables_initializer() |
| import tensorflow as tf | |
| inp = tf.placeholder(name="inp", dtype=tf.float32, shape=(1, 1)) | |
| w = tf.Variable(tf.zeros([1, 1], tf.float32), dtype=tf.float32, name="w") | |
| y = tf.matmul(w, inp) | |
| out = tf.identity(y, name="out") | |
| init_op = tf.global_variables_initializer() |
| import tensorflow as tf | |
| img = tf.placeholder(name="img", dtype=tf.float32, shape=(1)) | |
| val = img + tf.constant([1.]) | |
| out = tf.identity(val, name="out") | |
| with tf.Session() as sess: | |
| output = sess.run(out, feed_dict={img: [1]}) | |
| print(output) | |
| fun <T> Single<T>.toV1(): rx.Single<T> = RxJavaInterop.toV1Single(this) | |
| fun <T> Single<T>.toV1Observable(): rx.Observable<T> = RxJavaInterop.toV1Single(this).toObservable() | |
| fun <T> Observable<T>.toV1(): rx.Observable<T> = RxJavaInterop.toV1Observable(this, BackpressureStrategy.BUFFER) | |
| fun Completable.toV1(): rx.Completable = RxJavaInterop.toV1Completable(this) | |
| fun <T> rx.Observable<T>.toV2(): io.reactivex.Observable<T> = RxJavaInterop.toV2Observable(this) |
I hereby claim:
To claim this, I am signing this object:
| // Sample from http://www.pacoworks.com/2018/02/25/simple-dependency-injection-in-kotlin-part-1/ | |
| interface DaoDatabase { | |
| fun query(s: String): Any | |
| } | |
| class User(val id: Int) | |
| interface DaoOperationsSyntax { | |
| val dao: DaoDatabase |
| @Test | |
| fun navigate_to_create_post_mitteilung_frage() { | |
| ContentCreatorRobot.run { | |
| given { | |
| category("Mitteilung") | |
| subCategory("Frage") | |
| } | |
| then { | |
| title("Mitteilung - Frage") | |
| subjectHintIs("Betreff") |