I hereby claim:
- I am miquelbeltran on github.
- I am miquelbeltran (https://keybase.io/miquelbeltran) on keybase.
- I have a public key whose fingerprint is 7C4D CCED CCDE B8FA F4C0 09D2 AE9F C767 BF4D 65AC
To claim this, I am signing this object:
// Pass the input data, as an array, that contains a single float array, with a single value | |
// So in all [0][0] = 21, a 1x1 matrix in the form a Array of FloatArray | |
val inp = arrayOf(floatArrayOf(21f)) | |
val inputs = FirebaseModelInputs.Builder().add(inp).build() | |
// Run the model | |
interpreter.run(inputs, dataOptions) | |
.continueWith { task -> | |
try { | |
// The output is also a Array of FloatArray |
// Input is a 1x1 Tensor | |
val inputDims = intArrayOf(1, 1) | |
// Output is a 1x1 Tensor | |
val outputDims = intArrayOf(1, 1) | |
// Define the Input and Output dimensions and types | |
val dataOptions = FirebaseModelInputOutputOptions.Builder() | |
.setInputFormat(0, FirebaseModelDataType.FLOAT32, inputDims) | |
.setOutputFormat(0, FirebaseModelDataType.FLOAT32, outputDims) | |
.build() |
# Original: https://stackoverflow.com/a/45466355/673294 user: jdehesa | |
def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True): | |
""" | |
Freezes the state of a session into a pruned computation graph. | |
Creates a new computation graph where variable nodes are replaced by | |
constants taking their current value in the session. The new graph will be | |
pruned so subgraphs that are not necessary to compute the requested | |
outputs are removed. |
import tensorflow as tf | |
inp = tf.placeholder(name="inp", dtype=tf.float32, shape=(1, 1)) | |
w = tf.Variable(tf.zeros([1, 1], tf.float32), dtype=tf.float32, name="w") | |
y = tf.matmul(w, inp) | |
out = tf.identity(y, name="out") | |
init_op = tf.global_variables_initializer() |
import tensorflow as tf | |
inp = tf.placeholder(name="inp", dtype=tf.float32, shape=(1, 1)) | |
w = tf.Variable(tf.zeros([1, 1], tf.float32), dtype=tf.float32, name="w") | |
y = tf.matmul(w, inp) | |
out = tf.identity(y, name="out") | |
init_op = tf.global_variables_initializer() |
import tensorflow as tf | |
img = tf.placeholder(name="img", dtype=tf.float32, shape=(1)) | |
val = img + tf.constant([1.]) | |
out = tf.identity(val, name="out") | |
with tf.Session() as sess: | |
output = sess.run(out, feed_dict={img: [1]}) | |
print(output) | |
fun <T> Single<T>.toV1(): rx.Single<T> = RxJavaInterop.toV1Single(this) | |
fun <T> Single<T>.toV1Observable(): rx.Observable<T> = RxJavaInterop.toV1Single(this).toObservable() | |
fun <T> Observable<T>.toV1(): rx.Observable<T> = RxJavaInterop.toV1Observable(this, BackpressureStrategy.BUFFER) | |
fun Completable.toV1(): rx.Completable = RxJavaInterop.toV1Completable(this) | |
fun <T> rx.Observable<T>.toV2(): io.reactivex.Observable<T> = RxJavaInterop.toV2Observable(this) |
I hereby claim:
To claim this, I am signing this object:
// Sample from http://www.pacoworks.com/2018/02/25/simple-dependency-injection-in-kotlin-part-1/ | |
interface DaoDatabase { | |
fun query(s: String): Any | |
} | |
class User(val id: Int) | |
interface DaoOperationsSyntax { | |
val dao: DaoDatabase |
@Test | |
fun navigate_to_create_post_mitteilung_frage() { | |
ContentCreatorRobot.run { | |
given { | |
category("Mitteilung") | |
subCategory("Frage") | |
} | |
then { | |
title("Mitteilung - Frage") | |
subjectHintIs("Betreff") |