| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---|---|---|---|---|
| mlabonne/OmniTruthyBeagle-7B-v0 📄 | 57.8 | 45.72 | 77.49 | 76.16 | 50.18 |
| mlabonne/NeuralOmniBeagle-7B-v2 📄 | 57.75 | 45.86 | 77.31 | 75.34 | 50.09 |
| mlabonne/OmniBeagle-7B 📄 | 57.72 | 45.64 | 77.48 | 75.03 | 50.03 |
| mlabonne/NeuralOmniBeagle-7B 📄 | 57.71 | 45.85 | 77.26 | 76.06 | 50.03 |
| mlabonne/NeuralOmni-7B [📄](https://gist.github.com/mlabonne/4b5ecee86d0fd3714ba0cbd |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Based on younesbelkada/finetune_llama_v2.py | |
| # Install the following libraries: | |
| # pip install accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7 scipy | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| import torch | |
| from datasets import load_dataset | |
| from transformers import ( |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Example usage: | |
| # python merge_peft.py --base_model=meta-llama/Llama-2-7b-hf --peft_model=./qlora-out --hub_id=alpaca-qlora | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from peft import PeftModel | |
| import torch | |
| import argparse | |
| def get_args(): |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| base_model: codellama/CodeLlama-7b-hf | |
| base_model_config: codellama/CodeLlama-7b-hf | |
| model_type: LlamaForCausalLM | |
| tokenizer_type: LlamaTokenizer | |
| is_llama_derived_model: true | |
| hub_model_id: EvolCodeLlama-7b | |
| load_in_8bit: false | |
| load_in_4bit: true | |
| strict: false |
| Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
|---|---|---|---|---|---|
| zephyr-7b-alpha | 38 | 72.24 | 56.06 | 40.57 | 51.72 |
| Task | Version | Metric | Value | Stderr | |
|---|---|---|---|---|---|
| agieval_aqua_rat | 0 | acc | 20.47 | ± | 2.54 |
| acc_norm | 19.69 | ± | 2.50 | ||
| agieval_logiqa_en | 0 | acc | 31.49 | ± | 1.82 |
| Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
|---|---|---|---|---|---|
| dolphin-2.2.1-mistral-7b | 38.64 | 72.24 | 54.09 | 39.22 | 51.05 |
| Task | Version | Metric | Value | Stderr | |
|---|---|---|---|---|---|
| agieval_aqua_rat | 0 | acc | 23.23 | ± | 2.65 |
| acc_norm | 21.26 | ± | 2.57 | ||
| agieval_logiqa_en | 0 | acc | 35.48 | ± | 1.88 |
| Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
|---|---|---|---|---|---|
| Mistral-7B-Instruct-v0.2 | 38.5 | 71.64 | 66.82 | 42.29 | 54.81 |
| Task | Version | Metric | Value | Stderr | |
|---|---|---|---|---|---|
| agieval_aqua_rat | 0 | acc | 23.62 | ± | 2.67 |
| acc_norm | 22.05 | ± | 2.61 | ||
| agieval_logiqa_en | 0 | acc | 36.10 | ± | 1.88 |
| Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
|---|---|---|---|---|---|
| MistralTrix-v1 | 44.98 | 76.62 | 71.44 | 47.17 | 60.05 |
| Task | Version | Metric | Value | Stderr | |
|---|---|---|---|---|---|
| agieval_aqua_rat | 0 | acc | 25.59 | ± | 2.74 |
| acc_norm | 24.80 | ± | 2.72 | ||
| agieval_logiqa_en | 0 | acc | 37.48 | ± | 1.90 |
| Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
|---|---|---|---|---|---|
| zephyr-7b-beta | 37.33 | 71.83 | 55.1 | 39.7 | 50.99 |
| Task | Version | Metric | Value | Stderr | |
|---|---|---|---|---|---|
| agieval_aqua_rat | 0 | acc | 21.26 | ± | 2.57 |
| acc_norm | 20.47 | ± | 2.54 | ||
| agieval_logiqa_en | 0 | acc | 33.33 | ± | 1.85 |
| Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
|---|---|---|---|---|---|
| openchat_3.5 | 42.67 | 72.92 | 47.27 | 42.51 | 51.34 |
| Task | Version | Metric | Value | Stderr | |
|---|---|---|---|---|---|
| agieval_aqua_rat | 0 | acc | 24.02 | ± | 2.69 |
| acc_norm | 24.80 | ± | 2.72 | ||
| agieval_logiqa_en | 0 | acc | 38.86 | ± | 1.91 |