Last active
June 24, 2020 23:54
-
-
Save mogwai/97fb9310409f9a602475598354fb5479 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from fastai.vision import *" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"p = untar_data(URLs.MNIST)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"class MemoryImageList(ImageList):\n", | |
" _map = {}\n", | |
" def open(self, i):\n", | |
" item = self._map.get(str(i))\n", | |
" if isinstance(item, Image):\n", | |
" return item\n", | |
" item = super().open(i)\n", | |
" self._map[str(i)] = item\n", | |
" return item" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: left;\">\n", | |
" <th>epoch</th>\n", | |
" <th>train_loss</th>\n", | |
" <th>valid_loss</th>\n", | |
" <th>accuracy</th>\n", | |
" <th>time</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>0</td>\n", | |
" <td>0.644401</td>\n", | |
" <td>0.465631</td>\n", | |
" <td>0.849500</td>\n", | |
" <td>00:11</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>1</td>\n", | |
" <td>0.323800</td>\n", | |
" <td>0.243660</td>\n", | |
" <td>0.922250</td>\n", | |
" <td>00:11</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>2</td>\n", | |
" <td>0.261255</td>\n", | |
" <td>0.216338</td>\n", | |
" <td>0.930250</td>\n", | |
" <td>00:16</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"data = MemoryImageList.from_folder(p/'training').split_by_rand_pct(.2, seed=1).label_from_folder().databunch(bs=128).normalize(imagenet_stats)\n", | |
"learn = cnn_learner(data, models.resnet18, metrics=accuracy)\n", | |
"learn.fit_one_cycle(3)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: left;\">\n", | |
" <th>epoch</th>\n", | |
" <th>train_loss</th>\n", | |
" <th>valid_loss</th>\n", | |
" <th>accuracy</th>\n", | |
" <th>time</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>0</td>\n", | |
" <td>0.660670</td>\n", | |
" <td>0.458675</td>\n", | |
" <td>0.852833</td>\n", | |
" <td>00:15</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>1</td>\n", | |
" <td>0.318554</td>\n", | |
" <td>0.245979</td>\n", | |
" <td>0.921667</td>\n", | |
" <td>00:15</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>2</td>\n", | |
" <td>0.260065</td>\n", | |
" <td>0.218972</td>\n", | |
" <td>0.929917</td>\n", | |
" <td>00:16</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"data = ImageList.from_folder(p/'training').split_by_rand_pct(.2, seed=1).label_from_folder().databunch(bs=128).normalize(imagenet_stats)\n", | |
"learn = cnn_learner(data, models.resnet18, metrics=accuracy)\n", | |
"learn.fit_one_cycle(3)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.8" | |
}, | |
"varInspector": { | |
"cols": { | |
"lenName": 16, | |
"lenType": 16, | |
"lenVar": 40 | |
}, | |
"kernels_config": { | |
"python": { | |
"delete_cmd_postfix": "", | |
"delete_cmd_prefix": "del ", | |
"library": "var_list.py", | |
"varRefreshCmd": "print(var_dic_list())" | |
}, | |
"r": { | |
"delete_cmd_postfix": ") ", | |
"delete_cmd_prefix": "rm(", | |
"library": "var_list.r", | |
"varRefreshCmd": "cat(var_dic_list()) " | |
} | |
}, | |
"types_to_exclude": [ | |
"module", | |
"function", | |
"builtin_function_or_method", | |
"instance", | |
"_Feature" | |
], | |
"window_display": false | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment