Skip to content

Instantly share code, notes, and snippets.

View morenoh149's full-sized avatar
💭
Working from 🛰

Harry Moreno morenoh149

💭
Working from 🛰
View GitHub Profile
@morenoh149
morenoh149 / solidity-workshop.md
Last active October 26, 2019 01:12
Solidity workshop

Soldity Workshop

Prerequisites

Attendees should do the following before the event to get the most out of it. There will be a 20 minute lecture-overview at the beginning. You can do the prerequisites during the overview if you have not done so by then.

  1. install node.js (lts version is recommended)
  2. install git (use brew if on osx)
  3. install a code editor (vscode or atom.io)
@morenoh149
morenoh149 / sol.py
Created December 5, 2018 20:51
Advent of Code 2018 Day 4 solution
import re
import pprint
pp = pprint.PrettyPrinter(indent=2)
def Input():
filename = './input.txt'
return open(filename)
lines = Input().read().split('\n')
@morenoh149
morenoh149 / postgis-geojson-liaison.js
Created November 9, 2018 02:34 — forked from DesignByOnyx/postgis-geojson-liaison.js
Helpful utility for converting postgis data into GeoJSON as it comes out of the db, and vice versa.
var wkx = require('wkx')
var pg = require('pg')
var pgUtil = require('pg/lib/utils')
const geoParser = {
init(knex){
// 1. Convert postgis data coming out of the db into geoJSON
// Every postgres installation will have different oids for postgis geo types.
knex
.raw('SELECT oid, typname AS name FROM pg_type WHERE typname IN (\'geography\', \'geometry\');')
const getInvite = fetch(
`${apiHost}/invite/?event=${event_id}&user=${userId}`
);
const getHost = fetch(`${apiHost}/user/${event.fields.host}/`);
Promise.all([getInvite, getHost, delayPromise(1000)()])
.then(values => {
values.pop(); // drop delayPromise's return value (undefined)
return values.map(v => v.json());
})
import tensorflow as tf
from keras import backend as K
from tensorflow.python.saved_model import builder as saved_model_builder
from tensorflow.python.saved_model import tag_constants, signature_constants
from tensorflow.python.saved_model.signature_def_utils_impl import predict_signature_def
builder = saved_model_builder.SavedModelBuilder('vgg16_no_augmentation_export')
signature = predict_signature_def(inputs={'input': parallel_model.inputs[0]},
outputs={'income': parallel_model.outputs[0]})
---------------------------------------------------------------------------
MemoryError Traceback (most recent call last)
<ipython-input-22-567222df1eb0> in <module>()
----> 1 x_train = vectorize_sequences(train_data)
2 x_test = vectorize_sequences(test_data)
<ipython-input-21-5d7c33381575> in vectorize_sequences(sequences, dimension)
2 # are a 1 in the tensor, 0 otherwise
3 def vectorize_sequences(sequences, dimension=10000):
----> 4 results = np.zeros((len(sequences), dimension))
@morenoh149
morenoh149 / migrate_error.sh
Last active August 12, 2020 10:39
django postgis install
/Users/harrymoreno/.local/share/virtualenvs/litt-api-HgI9cQzm/lib/python3.6/site-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>.
""")
Traceback (most recent call last):
File "/Users/harrymoreno/.local/share/virtualenvs/litt-api-HgI9cQzm/lib/python3.6/site-packages/django/db/backends/utils.py", line 83, in _execute
return self.cursor.execute(sql)
psycopg2.ProgrammingError: permission denied to create extension "postgis"
HINT: Must be superuser to create this extension.
The above exception was the direct cause of the following exception:
@morenoh149
morenoh149 / Nbutton.js
Last active July 14, 2018 20:50
React Native Platform specific button
import React from "react";
import { Platform, TouchableNativeFeedback, TouchableOpacity, View } from "react-native";
const Colors = {
androidRippleDark: "#ccc"
};
const styles = {
style: {}
};
@morenoh149
morenoh149 / min-char-rnn.py
Created July 7, 2018 22:29 — forked from karpathy/min-char-rnn.py
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
$ docker build -t gcr.io/foo/polls .
Sending build context to Docker daemon 1.12MB
Step 1/7 : FROM gcr.io/google_appengine/python
latest: Pulling from google_appengine/python
1d47b358304c: Pull complete
c6cf9be4ad08: Pull complete
3c2cba919283: Pull complete
b5267a7c948d: Pull complete
327bc3d676fa: Pull complete
7084178c9da9: Pull complete