Skip to content

Instantly share code, notes, and snippets.

View mustafa-qamaruddin's full-sized avatar

Mustafa Mahrous mustafa-qamaruddin

View GitHub Profile
model = build_model(_alpha=1.0, _l1_ratio=0.3)
kfcv = KFold(n_splits=5)
scores = cross_val_score(model, X_train, y_train, cv=kfcv, scoring=r2)
print("Loss: {0:.3f} (+/- {1:.3f})".format(scores.mean(), scores.std()))
Loss: -103.076 (+/- 205.979)
model = build_model(_alpha=1.0, _l1_ratio=0.3)
tscv = TimeSeriesSplit(n_splits=5)
scores = cross_val_score(model, X_train, y_train, cv=tscv, scoring=r2)
print("Loss: {0:.3f} (+/- {1:.3f})".format(scores.mean(), scores.std()))
Loss: -9.799 (+/- 19.292)
class BlockingTimeSeriesSplit():
def __init__(self, n_splits):
self.n_splits = n_splits
def get_n_splits(self, X, y, groups):
return self.n_splits
def split(self, X, y=None, groups=None):
n_samples = len(X)
k_fold_size = n_samples // self.n_splits
model = build_model(_alpha=1.0, _l1_ratio=0.3)
btscv = BlockingTimeSeriesSplit(n_splits=5)
scores = cross_val_score(model, X_train, y_train, cv=btscv, scoring=r2)
print("Loss: {0:.3f} (+/- {1:.3f})".format(scores.mean(), scores.std()))
Loss: -15.527 (+/- 27.488)
params = {
'estimator__alpha':(0.1, 0.3, 0.5, 0.7, 0.9),
'estimator__l1_ratio':(0.1, 0.3, 0.5, 0.7, 0.9)
}
for i in range(100):
model = build_model(_alpha=1.0, _l1_ratio=0.3)
finder = GridSearchCV(
estimator=model,
# optimal model
model = build_model(_alpha=0.1, _l1_ratio=0.1)
# train model
model.fit(X_train, y_train)
# test score
y_predicted = model.predict(X_test)
score = r2_score(y_test, y_predicted, multioutput='uniform_average')
print("Test Loss: {0:.3f}".format(score))
Test Loss: 0.925