Skip to content

Instantly share code, notes, and snippets.

View mvandermeulen's full-sized avatar

Mark mvandermeulen

  • Fivenynes
  • Sydney, Australia
  • 13:46 (UTC +10:00)
View GitHub Profile
@leifermendez
leifermendez / prompt-ai-learning.txt
Created December 2, 2024 20:17
prompt ai-learning
Crear una landing page diseño "pixel perfect" con muy buena UX/UI con transiciones modernas, inspirate los detalles de la captura de la landing que adjunte quiero que sea igual o casi igual, video en el centro que tiene un efecto hover, usa una imagen de upsplash que sirva como cover de un video. standard 16:9 aspect ratio.standard 16:9 aspect ratio.
Key Design Elements:
Clean, minimal design with lots of whitespace
Soft, mint/sage green background (#F7F9F8)
Modern typography with a bold headline and subtle descriptive text
Centered video player with hover effects and rounded corners
Small "Updated" badge with subtle styling
Professional navigation bar with clear hierarchy
@rohitgarud
rohitgarud / order_model.py
Last active January 12, 2025 13:58
Transform JSON schema from Pydantic model_json_schema() into something simpler for LLM to understand
from enum import Enum
from typing import List, Optional
from datetime import datetime
from pydantic import (
BaseModel,
EmailStr,
Field,
HttpUrl
)
@disler
disler / README.md
Last active May 3, 2025 23:05
Prompt Chaining with QwQ, Qwen, o1-mini, Ollama, and LLM

Prompt Chaining with QwQ, Qwen, o1-mini, Ollama, and LLM

Here we explore prompt chaining with local reasoning models in combination with base models. With shockingly powerful local models like QwQ and Qwen, we can build some powerful prompt chains that let us tap into their capabilities in a immediately useful, local, private, AND free way.

Explore the idea of building prompt chains where the first is a powerful reasoning model that generates a response, and then use a base model to extract the response.

Play with the prompts and models to see what works best for your use cases. Use the o1 series to see how qwq compares.

Setup

  • Bun (to run bun run chain.ts ...)
@cookienommienom
cookienommienom / bot.py
Created November 30, 2024 08:26
Impressive ChatGPT o1 output related to subscription management with Discord.py and FastAPI
import discord
from discord.ext import commands
from sqlalchemy import create_engine, Column, Integer, String, Boolean
from sqlalchemy.orm import sessionmaker, declarative_base
import stripe
from fastapi import FastAPI, Request, HTTPException
import uvicorn
import asyncio
# Set up the database
@RibomBalt
RibomBalt / app.py
Last active January 21, 2025 15:32
Note (or wield behavior) on lifespan of `asynccontextmanager` in background tasks
from fastapi import FastAPI, Depends, BackgroundTasks, Request
from typing import Annotated, AsyncIterator
from pydantic import BaseModel, Field
from uuid import uuid4
from contextlib import asynccontextmanager
import random
import asyncio
app = FastAPI()
@Karan071
Karan071 / Api.py
Last active January 21, 2025 15:34
Face Recognition
from fastapi import FastAPI, HTTPException, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
from prisma import Prisma
from deepface import DeepFace
import numpy as np
from io import BytesIO
from PIL import Image, UnidentifiedImageError
import json
import os
import base64
@supersational
supersational / claude-autoclicker.sh
Last active February 2, 2025 02:07
Claude Autoclick "Allow Tool"
while true; do
osascript -e '
tell application "System Events"
if exists process "Claude" then
tell process "Claude"
if exists button "Allow for This Chat" of group 2 of group 1 of group 2 of group 1 of UI element "Claude" of group 1 of group 1 of group 1 of group 1 of window "Claude" then
click button "Allow for This Chat" of group 2 of group 1 of group 2 of group 1 of UI element "Claude" of group 1 of group 1 of group 1 of group 1 of window "Claude"
log "clicked allow button"
end if
end tell
@disler
disler / README.md
Last active July 9, 2025 21:38
Four Level Framework for Prompt Engineering

🚀 GitHub Copilot Tips for Healthcare Teams

A curated collection of best practices, tips, and resources to help healthcare professionals and development teams unlock the full potential of GitHub Copilot. Designed for sensitive environments, this guide highlights actionable advice, insightful articles, and compliance-minded practices. 🌟

📋 Table of Contents

  1. 💡 Why GitHub Copilot for Healthcare?
  2. 🔧 Quick Setup and Best Practices
  3. 🧑‍⚕️ Healthcare-Specific Use Cases
  4. ⚖️ Compliance and Security Best Practices
  5. 🤝 Connect with Me