documentclass: book bibliography: ./path/to/bibfile.bib csl: .csl fontsize: 12pt classoption: oneside link-citations: true color-links: true
urlcolor: "blue"
| # Creates ".bashtrash" directory if it doesn't exist; then it moves things to it | |
| function trash { | |
| if [ ! -d "$HOME/.bashtrash" ] | |
| then | |
| mkdir "$HOME/.bashtrash" | |
| fi | |
| mv "$@" "$HOME/.bashtrash" | |
| } |
| ## Python Commander | |
| class simple_shell(): | |
| def __init__(self): | |
| while True: | |
| self.listener() | |
| ## Listener Function (required) | |
| def listener(self): | |
| self.user_input = input('---\nuser: ').split(' ') | |
| try: |
| ## std lib | |
| import sys, os | |
| ## ext req | |
| import autograd.numpy as np | |
| from autograd import grad | |
| import autograd.scipy.signal as signal | |
| ## _ _ _ Get Model Output _ _ _ |
| ## ext requirements | |
| import numpy as np | |
| # - - - - - - - - - - - - - - - - - - | |
| # -- Model -- | |
| # - - - - - - - - - - - - - - - - - - | |
| ## produces model outputs |
| ## ext requirements | |
| import autograd.numpy as anp | |
| from autograd import grad | |
| # - - - - - - - - - - - - - - - - - - | |
| # -- Model -- | |
| # - - - - - - - - - - - - - - - - - - |
| ''' | |
| Implementation of LDA with Numpy (using covariance & scatter matrix), based on this tutorial by Sebastian Raschka: https://sebastianraschka.com/Articles/2014_python_lda.html | |
| ''' | |
| import numpy as np | |
| def get_components(data: np.ndarray, labels: np.ndarray) -> np.ndarray: # <-- using covariance method | |
| label_set = np.unique(labels) | |
| class_means = np.array([ | |
| data[labels == label,:].mean(axis = 0, keepdims = True) | |
| for label in label_set |
| ''' | |
| Implementation of PCA with Numpy (using covariance), based on this tutorial by Sebastian Raschka: https://sebastianraschka.com/Articles/2014_pca_step_by_step.html | |
| ''' | |
| import numpy as np | |
| def get_components(data: np.ndarray) -> np.ndarray: | |
| cov_mat = np.cov(data.T) # <-- get the covariance matrix | |
| ## calculate eigenvalues of the covariance matrix | |
| eig_val, eig_vec = np.linalg.eig(cov_mat) |