Skip to content

Instantly share code, notes, and snippets.

@mythmon
Created April 21, 2014 23:16
Show Gist options
  • Save mythmon/11159778 to your computer and use it in GitHub Desktop.
Save mythmon/11159778 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"worksheets": [
{
"cells": [
{
"metadata": {},
"cell_type": "code",
"input": "from collections import Counter\nfrom random import gauss\n\nc = Counter()\niterations = 1000000\n\nfor _ in range(iterations):\n c[int(abs(gauss(0, 100)))] += 1",
"prompt_number": 1,
"outputs": [],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "%pylab inline\npylab.plot(list(c.keys()), list(c.values()))",
"prompt_number": 2,
"outputs": [
{
"output_type": "stream",
"text": "Populating the interactive namespace from numpy and matplotlib\n",
"stream": "stdout"
},
{
"text": "[<matplotlib.lines.Line2D at 0x7f3bb4c12f28>]",
"output_type": "pyout",
"metadata": {},
"prompt_number": 2
},
{
"png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEACAYAAAC+gnFaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8VPWd//HXYGIrCmgpmdEZNJpMiAMRghC67WqjccJF\nSVFp1tgHCaJtF7YW+9ifxdrdLfhYyWgvFlvT3dXoZmkrUHeXRCvZSDEVb0EDVCUqIwTNJJOpEqIR\nooHk+/vjwEAESSCXk5m8n49HHnNy5pwzny+X85nzvTqMMQYRERm2RtgdgIiI2EuJQERkmFMiEBEZ\n5pQIRESGOSUCEZFhTolARGSY6zERrFq1ioyMDCZNmsSqVasAaGlpwe/3k5aWRm5uLq2trdHji4uL\n8Xq9pKenU1VVFd1fW1tLRkYGXq+XpUuXDkBRRETkdJw0Ebzxxhs88sgjvPLKK/zlL3/hqaeeYteu\nXQQCAfx+Pzt37iQnJ4dAIABAXV0da9eupa6ujsrKSpYsWcKRYQqLFy+mtLSUYDBIMBiksrJy4Esn\nIiI9OmkieOutt5gxYwZf/OIXOeOMM/j617/Of//3f1NRUUFRUREARUVFrF+/HoDy8nIKCgpITEwk\nOTmZ1NRUampqCIfDtLW1kZWVBUBhYWH0HBERsddJE8GkSZPYvHkzLS0tHDhwgKeffppQKEQkEsHp\ndALgdDqJRCIANDU14fF4oud7PB4aGxuP2+92u2lsbByI8oiIyClKONmb6enpLFu2jNzcXM4++2ym\nTJnCGWec0e0Yh8OBw+EY0CBFRGTgnDQRACxatIhFixYB8OMf/xiPx4PT6aS5uRmXy0U4HCYpKQmw\nvuk3NDREzw2FQng8HtxuN6FQqNt+t9t9ws9LTU1l165dfSqUiMhwkpKSwjvvvHP6FzA9iEQixhhj\n3n33XZOenm5aW1vNnXfeaQKBgDHGmOLiYrNs2TJjjDE7duwwkydPNp9++qnZvXu3ueSSS0xXV5cx\nxpisrCzz8ssvm66uLjN79myzYcOGE35eL0KKWT/5yU/sDmFAqXyxTeWLXX29b/b4RDB//nz27t1L\nYmIiJSUljBkzhrvuuov8/HxKS0tJTk5m3bp1APh8PvLz8/H5fCQkJFBSUhKtNiopKWHhwoW0t7cz\nZ84cZs2adfrZS0RE+k2PieC55547bt+XvvQlNm7ceMLj7777bu6+++7j9l9++eW8/vrrpxGiiIgM\nJI0sHkTZ2dl2hzCgVL7YpvINX47D9UtDhsPhYIiFJCIypPX1vqknAhGRYU6JQERkmFMiEBEZ5pQI\nRESGOSUCEZFhTolARGSYUyIQERnmlAhERIY5JQIRkWFOiUBEZJhTIhARGeaUCEREhjklAhGRYU6J\nQERkmOsxERQXFzNx4kQyMjK4+eab+fTTT2lpacHv95OWlkZubi6tra3djvd6vaSnp1NVVRXdX1tb\nS0ZGBl6vl6VLlw5MaURE5JSdNBHs2bOHhx9+mK1bt/L666/T2dnJmjVrCAQC+P1+du7cSU5ODoFA\nAIC6ujrWrl1LXV0dlZWVLFmyJDpH9uLFiyktLSUYDBIMBqmsrBz40omISI9OmghGjx5NYmIiBw4c\n4NChQxw4cIALLriAiooKioqKACgqKmL9+vUAlJeXU1BQQGJiIsnJyaSmplJTU0M4HKatrY2srCwA\nCgsLo+f0pLwcVq7sSxFFRORkTpoIvvSlL/GP//iPXHjhhVxwwQWce+65+P1+IpEITqcTAKfTSSQS\nAaCpqQmPxxM93+Px0NjYeNx+t9tNY2Pj535uKAQtLfDP/wzz5sFPfwrbtvWpnCIi8jlOunj9rl27\n+OUvf8mePXsYM2YM3/zmN/ntb3/b7RiHw4HD4ejXoP7mb5bz0Ufw5S/D3/99Nmlp2axcCX/4Q79+\njIhITKqurqa6urrfrnfSRPDqq6/y1a9+lbFjxwJwww038NJLL+FyuWhubsblchEOh0lKSgKsb/oN\nDQ3R80OhEB6PB7fbTSgU6rbf7XZ/7ueGQssB+OgjuOsuKyEUF8N118G118LixadbXBGR2JednU12\ndnb09xUrVvTpeietGkpPT+fll1+mvb0dYwwbN27E5/Mxd+5cysrKACgrK2PevHkA5OXlsWbNGjo6\nOqivrycYDJKVlYXL5WL06NHU1NRgjGH16tXRc07knnvg7rut7QsvhLPPhquugj/+EQIBaGuDs86C\n+vo+lV1EROjhiWDy5MkUFhYybdo0RowYwdSpU/nOd75DW1sb+fn5lJaWkpyczLp16wDw+Xzk5+fj\n8/lISEigpKQkWm1UUlLCwoULaW9vZ86cOcyaNetzP/ef/9l6veceOFLrdNFF1qvDAXPmwCefwPbt\ncPHFffwTEBEZ5hzmSP/OIcLhcHCikB56CL73PXjkEbjtNnA6YeFCq8ros00U9fVwzjkwbtzgxCwi\nYqfPu2/2VsyMLL7oIjjvPMjPt34vKoL77oPf//7oMZs2waefwiWXwPz59sQpIhJrYiYRZGTA1VfD\nqFHw8cdWIgBoaICmJuvnu9+FV16x9nd02BeriEgsiZlEcNFF8MQT1vbZZ4PPB//xH/D88/C3f2s1\nLjc1wfvvW8eMHm1frCIisSRmEsGJpKVZPYm+8hWorIQDB+Dw2DYlAhGRXorpRDB9OpSUwG9/C52d\n1r4f/tB67ecxbiIicSumE8HIkdbgshEj4MorrX1tbd1fRUTk5GI6ERzrqquObm/aZI1KFhGRnsVN\nIvjOd+Df/93aHjtWiUBEpLdiZkBZbxhjjTiORODrX4d33+3n4EREhqBhM6CsNxwOaw6i0aOhuRly\ncqzprEVE5PPFVSI4YvRoa0DZpk3wf/9ndzQiIkNbXCaChATo6oLf/AZ+9StrcjoRETmxuGoj+Kz2\ndmt20pYWa7DZGWdofIGIxB+1EZzEWWfBrl1WArj5ZkhNtRqURUTkqLh+IjjC7YZw2EoC27fD5Mn9\nenkREVvpiaAXurqsJPDd78KUKVb30q4uu6MSERkaekwEb7/9NpmZmdGfMWPG8OCDD9LS0oLf7yct\nLY3c3FxaW1uj5xQXF+P1eklPT6eqqiq6v7a2loyMDLxeL0uXLh2YEp3AmjXw5pvwT/9kLVZz111W\ndZGIiADmFHR2dhqXy2Xee+89c+edd5r77rvPGGNMIBAwy5YtM8YYs2PHDjN58mTT0dFh6uvrTUpK\niunq6jLGGDN9+nRTU1NjjDFm9uzZZsOGDcd9ximGdMqKi42xng8G9GNERAZNX++bp1Q1tHHjRlJT\nUxk/fjwVFRUUHV4dpqioiPXr1wNQXl5OQUEBiYmJJCcnk5qaSk1NDeFwmLa2NrKysgAoLCyMnjOY\ncnOPbi9bBv/1X4MegojIkHJKiWDNmjUUFBQAEIlEcDqdADidTiKHFwJoamrC4/FEz/F4PDQ2Nh63\n3+1209jY2OcCnKqpU49u338/rFs36CGIiAwpCb09sKOjgyeffJL77rvvuPccDgeOfuygv3z58uh2\ndnY22dnZ/XZtsCqGjoSrRmMRiTXV1dVUV1f32/V6nQg2bNjA5Zdfzrhx4wDrKaC5uRmXy0U4HCYp\nKQmwvuk3NDREzwuFQng8HtxuN6FQqNt+t9t9ws86NhEMpIQE2L3b2j42OYiIDGWf/YK8YsWKPl2v\n11VDjz/+eLRaCCAvL4+ysjIAysrKmDdvXnT/mjVr6OjooL6+nmAwSFZWFi6Xi9GjR1NTU4MxhtWr\nV0fPscPPfgYVFbBnD9xyS/cqIxGR4aRXA8r279/PRRddRH19PaNGjQKgpaWF/Px83nvvPZKTk1m3\nbh3nnnsuACtXruTRRx8lISGBVatWMXPmTMDqPrpw4ULa29uZM2cODz744PEBDcCAspN54AHYssXq\nYhqJwOEHGxGRmNHX++awGFncG3PnWk8GN9ww6B8tItInGlncTy69FG68Ec47D26/3e5oREQGjxLB\nYRMmWK+trfDHP9obi4jIYFIiOOyYIQ4kJ9sWhojIoFMiOCw315qy+l//FfbvtzsaEZHBo0RwmMMB\nl1wCCxZAUxP87d9CXZ3dUYmIDDz1GvqMjg445xw4eND6/Q9/gPnzbQtHRKRH6jXUz848E84+++jv\najgWkXinRHACI0dar7t2wdNPaz4iEYlvSgQncNZZ1usll8CXvwyvvGJvPCIiA0mJ4ASOJAIAvx/+\n/Gf7YhERGWi9nn10OPm7v7NGGIO10P2mTfbGIyIykNRrqAevvgoLF8KVV1oT1H3hC3ZHJCLSnSad\nG2Dt7Ucbj9966+hUFCIiQ4W6jw6ws86Cv/4VfD5roJmISLxRIuiFceOstgIbllgWERlwSgS95HZb\nieD996Gz0+5oRET6T68SQWtrK/Pnz+fSSy/F5/NRU1NDS0sLfr+ftLQ0cnNzaW1tjR5fXFyM1+sl\nPT2dqqqq6P7a2loyMjLwer0sXbq0/0szgC64wGojyMyEJ5+0OxoRkf7Tq0SwdOlS5syZw5tvvslr\nr71Geno6gUAAv9/Pzp07ycnJIRAIAFBXV8fatWupq6ujsrKSJUuWRBsxFi9eTGlpKcFgkGAwSGVl\n5cCVrJ9dcQWUlUE4bP2IiMSLHhPBhx9+yObNm1m0aBEACQkJjBkzhoqKCoqKigAoKipi/fr1AJSX\nl1NQUEBiYiLJycmkpqZSU1NDOBymra2NrKwsAAoLC6PnxIJp0+Cxx+Db37aqh0RE4kWPiaC+vp5x\n48Zxyy23MHXqVL797W+zf/9+IpEITqcTAKfTSSQSAaCpqQnPMau8eDweGhsbj9vvdrtpjLHW16Ii\na0lLJQIRiSc9jiw+dOgQW7du5de//jXTp0/njjvuiFYDHeFwOHA4HP0W1PLly6Pb2dnZZGdn99u1\n+2rcOHjpJTh0CIyBxES7IxKR4aa6uprq6up+u16PicDj8eDxeJg+fToA8+fPp7i4GJfLRXNzMy6X\ni3A4TFJSEmB9029oaIieHwqF8Hg8uN1uQqFQt/1ut/uEn3lsIhhqxo2DjRvhzjutMQYrV9odkYgM\nN5/9grxixYo+Xa/HqiGXy8X48ePZuXMnABs3bmTixInMnTuXsrIyAMrKypg3bx4AeXl5rFmzho6O\nDurr6wkGg2RlZeFyuRg9ejQ1NTUYY1i9enX0nFjy5S/D3r3wy1/C22/bHY2ISN/1atK5X/3qV3zr\nW9+io6ODlJQUHnvsMTo7O8nPz6e0tJTk5GTWrVsHgM/nIz8/H5/PR0JCAiUlJdFqo5KSEhYuXEh7\neztz5sxh1qxZA1eyATJxorW+cVUVvPuu3dGIiPSd5ho6DS++CF/7Gowda007ceaZdkckIsOZ5hqy\nQVqatdj93r1Wt1IRkVimRHAajqxaVlwMn3xiLWX54ot2RyUicnpUNdQHbW3gdFpJIDMTPv1U1UQi\nMvhUNWSjUaNgzBj4y1+s37dutTceEZHToUTQRxkZ8NRT1vbvf29vLCIip0OJoI9ycuCJJ6zpJ/7z\nP+GYSVhFRGKCEkEfzZljvfp8VjvBK6/YG4+IyKlSIuijjAzrdcQImDEDamrsjUdE5FQpEfSDcBhu\nv91KBFu2wK5d1qR0IiKxQImgH7hc8IUvQFaW9USQmqqGYxGJHUoE/cjjgQ8/tLY/+sjeWEREekuJ\noB85HHDHHdb27t32xiIi0ltKBP0sEIA//MFqJxARiQVKBANg6lSrraCz0+5IRER6pkQwAC65xGov\n+POf7Y5ERKRnvUoEycnJXHbZZWRmZpKVlQVAS0sLfr+ftLQ0cnNzaT1mSG1xcTFer5f09HSqqqqi\n+2tra8nIyMDr9bJ06dJ+LsrQ8rWvwbZtdkchItKzXiUCh8NBdXU127ZtY8uWLQAEAgH8fj87d+4k\nJycnuqB9XV0da9eupa6ujsrKSpYsWRKdFW/x4sWUlpYSDAYJBoNUVlYOULHsl5qqdgIRiQ29rhr6\n7BSnFRUVFBUVAVBUVMT69esBKC8vp6CggMTERJKTk0lNTaWmpoZwOExbW1v0iaKwsDB6TjxKSYHf\n/AbiONeJSJzo9RPBNddcw7Rp03j44YcBiEQiOJ1OAJxOJ5FIBICmpiY8Hk/0XI/HQ2Nj43H73W43\njY2N/VaQocbrtV5nz4Z9++yNRUTkZHq1eP0LL7zA+eefz/vvv4/f7yc9Pb3b+w6HI7pAvVi8Xtix\nA5Yuhc2bIS/P7ohERE6sV4ng/PPPB2DcuHFcf/31bNmyBafTSXNzMy6Xi3A4TFJSEmB9029oaIie\nGwqF8Hg8uN1uQqFQt/1ut/uEn7d8+fLodnZ2NtnZ2adariHB54PsbCgvP7rYvYhIX1VXV1NdXd1v\n1+txqcoDBw7Q2dnJqFGj2L9/P7m5ufzkJz9h48aNjB07lmXLlhEIBGhtbSUQCFBXV8fNN9/Mli1b\naGxs5JprruGdd97B4XAwY8YMHnzwQbKysrj22mv5/ve/z6xZs7oHFENLVfZGJGLNRZSSAu+8Y3c0\nIhKP+nrf7PGJIBKJcP311wNw6NAhvvWtb5Gbm8u0adPIz8+ntLSU5ORk1q1bB4DP5yM/Px+fz0dC\nQgIlJSXRaqOSkhIWLlxIe3s7c+bMOS4JxCOnE95+25qZ1BhrGgoRkaFEi9cPkgsugPnz4bvfhYkT\n7Y5GROKJFq+PEf/wD9ZI4//7P7sjERHprleNxdJ3P/6xtWbBMe3oIiJDgp4IBtH48UoEIjL0KBEM\novHjYc8ezUoqIkOLEsEguugiqK2F/Hy7IxEROUqJYBC53dY6BdXVcMzYOhERWykRDLKsLGtMwSuv\n2B2JiIhFicAG06fDn/5kdSeNwyETIhJjNKDMBlu3wuWXw9lnW5PR/f73dkckIrGsr/dNJQKbPPAA\nzJtnLWsJejIQkdOnRBDjjsw99Mkn1oAzEZFTpSkm4sQHH9gdgYgMV0oENnvlFTj3XCUCEbGPEoHN\npk2DqVOt8QWbNtkdjYgMR5p0bgj48pfh17+2FrC5+mq7oxGR4UZPBEPAuHHw+uvwxht2RyIiw1Gv\nEkFnZyeZmZnMnTsXgJaWFvx+P2lpaeTm5tLa2ho9tri4GK/XS3p6OlVVVdH9tbW1ZGRk4PV6Wbp0\naT8XI7YdWbo5HIa9e+2NRUSGn14lglWrVuHz+aJLTgYCAfx+Pzt37iQnJ4dAIABAXV0da9eupa6u\njsrKSpYsWRLt0rR48WJKS0sJBoMEg0EqKysHqEix53vfg5tvhowM2LnT7mhEZLjpMRGEQiGefvpp\nbrvttuhNvaKigqKiIgCKiopYv349AOXl5RQUFJCYmEhycjKpqanU1NQQDodpa2sjKysLgMLCwug5\nAqNGwe9+B2lpWq9ARAZfj4ngBz/4AT/96U8ZMeLooZFIBKfTCYDT6SQSiQDQ1NSEx+OJHufxeGhs\nbDxuv9vtprGxsd8KES8uvBDWr4ePPrI7EhEZTk6aCJ566imSkpLIzMz83FFrDocjWmUkfXPhhfD4\n4/CLX9gdiYgMJyftPvriiy9SUVHB008/zSeffMJHH33EggULcDqdNDc343K5CIfDJCUlAdY3/YZj\n6jZCoRAejwe3203omAn4Q6EQ7iMtpCewfPny6HZ2djbZ2dmnWbzYknD4b+N//geefBJeffXoFBQi\nIkdUV1dTXV3dfxc0vVRdXW2uu+46Y4wxd955pwkEAsYYY4qLi82yZcuMMcbs2LHDTJ482Xz66adm\n9+7d5pJLLjFdXV3GGGOysrLMyy+/bLq6uszs2bPNhg0bTvg5pxBS3GlpMWbxYmOsKeiM2bvX7ohE\nJBb09b55SuMIjlQB3XXXXTzzzDOkpaWxadMm7rrrLgB8Ph/5+fn4fD5mz55NSUlJ9JySkhJuu+02\nvF4vqampzJo1q/+yWZw47zy4805re+JEWLECDh60NyYRiX+afXSIuuIKeP55+Mtf4LLL7I5GRIYy\nzT4apw53xFJ3UhEZcEoEQ9T06dZrfb29cYhI/NOkc0PUb38LF18Mt98OV16p6iERGTh6IhiiHA64\n4QZr+7XX7I1FROKbEsEQNnUq/Mu/wCOPqK1ARAaOEsEQN348/PnP8NWv2h2JiMQrJYIhLicHbr0V\nWlth3z67oxGReKREMMRdfLFVNZSRAc88Y3c0IhKPlAhixDXXwN/9nWYmFZH+p0QQI+65x2onePVV\nuyMRkXijRBBDvvIV+OMfNf+QiPQvzTUUQ3bvhtxcmDIFnnjC7mhEZKjo631TiSDGtLZas5QWFcF/\n/qfd0YjIUKBJ54aZc8+Fb3wDysogP9/uaEQkHuiJIAZ1dcEZZxzd1ipmIsObngiGoRHH/K21tNgX\nh4jEh5Mmgk8++YQZM2YwZcoUfD4fP/rRjwBoaWnB7/eTlpZGbm4ura2t0XOKi4vxer2kp6dTVVUV\n3V9bW0tGRgZer5elS5cOUHGGn3DY7ghEJNadNBF88Ytf5Nlnn2X79u289tprPPvsszz//PMEAgH8\nfj87d+4kJyeHQCAAQF1dHWvXrqWuro7KykqWLFkSfVxZvHgxpaWlBINBgsEglZWVA1+6OLZnj9Wd\ntKnJ7khEJNb1WDU0cuRIADo6Oujs7OS8886joqKCoqIiAIqKili/fj0A5eXlFBQUkJiYSHJyMqmp\nqdTU1BAOh2lrayMrKwuAwsLC6Dlyei66CMaOhZtvhs5Ou6MRkVjWYyLo6upiypQpOJ1OrrrqKiZO\nnEgkEsHpdALgdDqJHF5XsampCY/HEz3X4/HQ2Nh43H63201jY2N/l2XYueIK2LsXliyBDz+0OxoR\niVU9rlA2YsQItm/fzocffsjMmTN59tlnu73vcDhw9HO3leXLl0e3s7Ozyc7O7tfrx4tly+DJJ+E/\n/gP+5m9g4UK7IxKRwVBdXU11dXW/Xa/XS1WOGTOGa6+9ltraWpxOJ83NzbhcLsLhMElJSYD1Tb/h\nmBVUQqEQHo8Ht9tNKBTqtt/tdn/uZx2bCOTkzjrLeq2oUCIQGS4++wV5xYoVfbreSauGPvjgg2iP\noPb2dp555hkyMzPJy8ujrKwMgLKyMubNmwdAXl4ea9asoaOjg/r6eoLBIFlZWbhcLkaPHk1NTQ3G\nGFavXh09R/rmd7+DykrYutXuSEQkVp30iSAcDlNUVERXVxddXV0sWLCAnJwcMjMzyc/Pp7S0lOTk\nZNatWweAz+cjPz8fn89HQkICJSUl0WqjkpISFi5cSHt7O3PmzGHWrFkDX7phICkJ/H6rraC11Rp5\nLCJyKjSyOE5kZcGYMVq8RmQ40qRzAkBbGzid1iL3Y8faHY2IDCZNMSEAjBoFV10FmzbZHYmIxBol\ngjji90N5OfziF1q8RkR6T1VDcaSuDiZOPPr7U09ZC9kkJtoXk4gMPFUNSZTPBzt3wte/bv1+3XXW\nYDMRkZNRIogzXi+sXn00GbS12RuPiAx9SgRxaPx4uPdea3vPHltDEZEYoEQQp772NWvE8Tvv2B2J\niAx1SgRxLDMTtm+H3bvtjkREhjIlgjiWlAQFBfCb38AHH9gdjYgMVUoEcW76dPjZz6yEICJyIkoE\ncW7KFOv19dc16lhETkwDyuLcoUPw0EPWFBT33Wd1K9XYApH4oknnpFfef9+alG7ECAiHYdw4uyMS\nkf6ikcXSK+PGwe23w7Rp1pTVTzxhd0QiMlQoEQwjq1bBzTdbg8wee8zuaERkqOgxETQ0NHDVVVcx\nceJEJk2axIMPPghAS0sLfr+ftLQ0cnNzo0taAhQXF+P1eklPT6eqqiq6v7a2loyMDLxeL0uXLh2A\n4khPrr7aeh092t44RGTo6DERJCYm8sADD7Bjxw5efvllHnroId58800CgQB+v5+dO3eSk5NDIBAA\noK6ujrVr11JXV0dlZSVLliyJ1l0tXryY0tJSgsEgwWCQysrKgS2dHGfSJKv3kKaeEJEjekwELpeL\nKYf7IJ5zzjlceumlNDY2UlFRQVFREQBFRUWsX78egPLycgoKCkhMTCQ5OZnU1FRqamoIh8O0tbWR\nlZUFQGFhYfQcGVyXXgovv2w1HL/7rt3RiIjdTqmNYM+ePWzbto0ZM2YQiURwOp0AOJ1OIpEIAE1N\nTXg8nug5Ho+HxsbG4/a73W4aGxv7owxyipxOKC2Fr3xFbQUiAgm9PfDjjz/mxhtvZNWqVYwaNarb\new6HA4fD0W9BLV++PLqdnZ1NdnZ2v11bwOGARYsgORn+5V/gmD9uEYkB1dXVVFdX99v1epUIDh48\nyI033siCBQuYN28eYD0FNDc343K5CIfDJCUlAdY3/YaGhui5oVAIj8eD2+0mFAp12+92u0/4ect1\nZxoU06bBCy/At74Fv/ud3dGISG999gvyihUr+nS9HquGjDHceuut+Hw+7rjjjuj+vLw8ysrKACgr\nK4smiLy8PNasWUNHRwf19fUEg0GysrJwuVyMHj2ampoajDGsXr06eo7Y40jPod//Hrq67I1FROzT\n48ji559/niuvvJLLLrssWv1TXFxMVlYW+fn5vPfeeyQnJ7Nu3TrOPfdcAFauXMmjjz5KQkICq1at\nYubMmYDVfXThwoW0t7czZ86caFfUbgFpZPGg6uyEhARrWcvycqsBWURii6aYkD77yU/gnnvgkUfg\n1lvtjkZETpUSgfSLbdtg1iyor4eRI+2ORkROheYakn6RmQmXX261F4jI8KInAomqqYFrr7V6Ek2Y\nYHc0ItJbqhqSfvXjH8PHH8MPfgAXXABnnml3RCLSEyUC6Vc7dljzESUmwsGDVq8i9SQSGdrURiD9\nyueD8eMhPd36/c037Y1HRAaengjkOKGQVS10yy3Wgjbf/S54vXZHJSKfR1VDMmBqa61pKEaOhOpq\nMAYuvBBcLrsjE5FjqWpIBszll8NHH8Hdd1vzEc2YAf/0T3ZHJSL9TYlATmrUKCsRHFmATr2IROJP\nr6ehluHL4YDNm+Hf/g3eesvuaESkv6mNQHrt7bet3kQ+nzX47Jxz7I5IREBtBDKI0tJgwwarwfib\n34S77rI7IhHpD3oikFO2cSOsXQtPPAHvv29NYy0i9lH3UbHNlClw//2Qm2t3JCLDm6qGxDbLl8PM\nmXB4oTqefnkNAAAMC0lEQVQRiVE9JoJFixbhdDrJyMiI7mtpacHv95OWlkZubi6tR/oWYq1e5vV6\nSU9Pp6qqKrq/traWjIwMvF4vS5cu7ediiB3mzbOSwP/8j92RiEhf9JgIbrnlFiorK7vtCwQC+P1+\ndu7cSU5ODoFAAIC6ujrWrl1LXV0dlZWVLFmyJPq4snjxYkpLSwkGgwSDweOuKbHp2mvhxRfh4Yet\n9gIRiT09JoIrrriC8847r9u+iooKioqKACgqKmL9+vUAlJeXU1BQQGJiIsnJyaSmplJTU0M4HKat\nrY2srCwACgsLo+dIbBs7Fv70J3joIWskclub3RGJyKk6rTaCSCSC0+kEwOl0EolEAGhqasLj8USP\n83g8NDY2Hrff7XbT2NjYl7hlCLnsMti+HTIy4PHHremrRSR29Lnjn8PhwOFw9EcsUcuXL49uZ2dn\nk52d3a/Xl4Exd641U+m998Jjj8HVV9sdkUh8qq6uprq6ut+ud1qJwOl00tzcjMvlIhwOk5SUBFjf\n9BsaGqLHhUIhPB4PbrebUCjUbb/b7f7c6x+bCCR23HILfO1r0NQE8+fDwoVWUjjrLLsjE4kvn/2C\nvGLFij5d77SqhvLy8ig73GewrKyMefPmRfevWbOGjo4O6uvrCQaDZGVl4XK5GD16NDU1NRhjWL16\ndfQciR9f+IJVPTRzJmRnwwMPwLp11nsaGiIyhJke3HTTTeb88883iYmJxuPxmEcffdTs3bvX5OTk\nGK/Xa/x+v9m3b1/0+HvvvdekpKSYCRMmmMrKyuj+V1991UyaNMmkpKSY22+//XM/rxchSQw4dMiY\nqipjzj3XmJUrjQFjurrsjkokPvX1vqmRxTKgfv5z+H//z9reuBFycuyNRyQeaWSxDGn/8A+wZQt8\n5ztwzTXw8stwww3wzjt2RyYiR+iJQAbNddfBH/9obU+ZAk89BSfpMyAivaRJ5yRm7N5tLX1pDEyd\nCldeCXl58L3vWQ3NInJ6lAgkJh06BIWFVlXRV74Cd9wBhweei8gpUiKQmPbXv8LhQeqsWgXf/769\n8YjEIiUCiXnvvw+HxyTy2mvWWAQR6b2+3je1tpTYbtw4eOUV6ycnB2bPtiazu/9+rX4mMhj0RCBD\nysiR8MknVrvB5Zdbjcg/+5ndUYkMbaoakrjy1lvWzf/99+Eb34DmZvjqV611D+6+Gz79FM48E/p5\nnkORmKZEIHFtwwaYMwfOPdcaiFZZaXU5LSlRMhA5QiOLJa7Nng1dXVBTY3U53bvXWvtgzhxrQrtn\nn7WqkkTk9OmJQGLKwYNw4AD84hfWWslvvGFNY7FsmdXzSAPTZDhS1ZAMWx0d1mjlH/4QNm+2Rix3\ndlptCT/8IZxxht0RigwOJQKRw5qarORw8cVWm8Lll1vdUadNsya8a2uD0aPtjlKk/ykRiHzG3r3W\nk8Lzz0NdHTzyCJx3HuzbBx9+aI1NOHRISUHiR8wlgsrKSu644w46Ozu57bbbWLZsWfeAlAikn/3v\n/8ILL8C//Rvs32+NVRgxAkaNgpQUa3nNKVOs5TVHjLB+RGJJTCWCzs5OJkyYwMaNG3G73UyfPp3H\nH3+cSy+99GhAcZwIqquru60zGm+GevkOHLBu8gcPWk8E778PW7dacxzV1lpPDYmJ4PFAcrLVxrBo\nEVx9tdVVdaiXr69UvtgVU1NMbNmyhdTUVJKTkwG46aabKC8v75YI4lk8/0OEoV++kSOt1y9+0Xo9\n7zxIS7PGJ+zbBw0NVjtCRweEQtbgtaVL4d134ZxzwJhq5s3LZvt2a+RzTo71ns9nTYlxySXWU8ae\nPXDRRbE3zmGo//31VbyXry8GNRE0NjYyfvz46O8ej4eamprBDEHkOGeeac2AemQW1GMtXgwtLVai\nuPtuSE2FWbPgpZfgnnusCfKWL7eSzN691s3/0CGrymnSJAiH4b33rARxxRXWe6NGWU8cF19sPaGc\nc45VZTV2rPWZXV1WLH/9q3Vca6t1/TPPtI450huqpcW61plnDtIflMStQU0Ejlj7iiTDnsNh3XzH\njrW++R9Zf3nevKPHdHVZN/T2dqv6aeRIaxbVXbvA5bJu5vv2QXW1Nc6hpQW2bbNGTR8ZFzFypDWd\nhjHWvpYW69x33rGSwqefWklk3z7rxt/ZaT3ZdHRYjd4ff2zF+IUvWIln7FhrXMXIkUfPPXTIirOt\nzUo+R/47HnmNRKz2lGPLfuxrT/v6+v5An1Nfb3UgONH7gYC1WNKw1YeF70/ZSy+9ZGbOnBn9feXK\nlSYQCHQ7JiUlxQD60Y9+9KOfXv6kpKT06d48qI3Fhw4dYsKECfzpT3/iggsuICsr67jGYhERGVyD\nWjWUkJDAr3/9a2bOnElnZye33nqrkoCIiM2G3IAyEREZXENm6ExlZSXp6el4vV7uu+8+u8M5LYsW\nLcLpdJJxzFqLLS0t+P1+0tLSyM3NpbW1NfpecXExXq+X9PR0qqqq7Ai51xoaGrjqqquYOHEikyZN\n4sEHHwTip3yffPIJM2bMYMqUKfh8Pn70ox8B8VO+Izo7O8nMzGTu3LlAfJUvOTmZyy67jMzMTLKy\nsoD4Kl9rayvz58/n0ksvxefzUVNT03/l61MLQz85dOiQSUlJMfX19aajo8NMnjzZ1NXV2R3WKXvu\nuefM1q1bzaRJk6L77rzzTnPfffcZY4wJBAJm2bJlxhhjduzYYSZPnmw6OjpMfX29SUlJMZ2dnbbE\n3RvhcNhs27bNGGNMW1ubSUtLM3V1dXFTPmOM2b9/vzHGmIMHD5oZM2aYzZs3x1X5jDHm5z//ubn5\n5pvN3LlzjTHx8+/TGGOSk5PN3r17u+2Lp/IVFhaa0tJSY4z1b7S1tbXfyjckEsGLL77YrTdRcXGx\nKS4utjGi01dfX98tEUyYMME0NzcbY6yb6YQJE4wxx/eYmjlzpnnppZcGN9g++MY3vmGeeeaZuCzf\n/v37zbRp08wbb7wRV+VraGgwOTk5ZtOmTea6664zxsTXv8/k5GTzwQcfdNsXL+VrbW01F1988XH7\n+6t8Q6Jq6EQDzRobG22MqP9EIhGch0cqOZ1OIpEIAE1NTXg8nuhxsVTmPXv2sG3bNmbMmBFX5evq\n6mLKlCk4nc5oNVg8le8HP/gBP/3pTxlxzGRK8VQ+h8PBNddcw7Rp03j44YeB+ClffX0948aN45Zb\nbmHq1Kl8+9vfZv/+/f1WviGRCIbLQDOHw3HSssbCn8PHH3/MjTfeyKpVqxg1alS392K9fCNGjGD7\n9u2EQiGee+45nn322W7vx3L5nnrqKZKSksjMzPzcOWliuXwAL7zwAtu2bWPDhg089NBDbN68udv7\nsVy+Q4cOsXXrVpYsWcLWrVs5++yzCQQC3Y7pS/mGRCJwu900NDREf29oaOiWzWKZ0+mkubkZgHA4\nTFJSEnB8mUOhEG6325YYe+vgwYPceOONLFiwgHmHh9bGU/mOGDNmDNdeey21tbVxU74XX3yRiooK\nLr74YgoKCti0aRMLFiyIm/IBnH/++QCMGzeO66+/ni1btsRN+TweDx6Ph+nTpwMwf/58tm7disvl\n6pfyDYlEMG3aNILBIHv27KGjo4O1a9eSl5dnd1j9Ii8vj7KyMgDKysqiN9C8vDzWrFlDR0cH9fX1\nBIPBaE+HocgYw6233orP5+OOO+6I7o+X8n3wwQfRHhft7e0888wzZGZmxk35Vq5cSUNDA/X19axZ\ns4arr76a1atXx035Dhw4QFtbGwD79++nqqqKjIyMuCmfy+Vi/Pjx7Ny5E4CNGzcyceJE5s6d2z/l\n69cWjT54+umnTVpamklJSTErV660O5zTctNNN5nzzz/fJCYmGo/HYx599FGzd+9ek5OTY7xer/H7\n/Wbfvn3R4++9916TkpJiJkyYYCorK22MvGebN282DofDTJ482UyZMsVMmTLFbNiwIW7K99prr5nM\nzEwzefJkk5GRYe6//35jjImb8h2ruro62msoXsq3e/duM3nyZDN58mQzceLE6D0kXspnjDHbt283\n06ZNM5dddpm5/vrrTWtra7+VTwPKRESGuSFRNSQiIvZRIhARGeaUCEREhjklAhGRYU6JQERkmFMi\nEBEZ5pQIRESGOSUCEZFh7v8Dl9R93Kjy2QkAAAAASUVORK5CYII=\n",
"text": "<matplotlib.figure.Figure at 0x7f3bd033c8d0>",
"output_type": "display_data",
"metadata": {}
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "",
"outputs": [],
"language": "python",
"trusted": true,
"collapsed": false
}
],
"metadata": {}
}
],
"metadata": {
"gist_id": "11159778",
"signature": "sha256:7aacc83ddc4f6614d82d16ffc2c5be200694a6a17def6eb2131913ae9e9ea3d1",
"name": ""
},
"nbformat": 3
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment