Created
April 16, 2020 14:23
-
-
Save n-taku/bfe31282bf385c913f599b2ab03adb0a to your computer and use it in GitHub Desktop.
DropoutModelのSample
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "DropoutModelSample.ipynb", | |
"provenance": [], | |
"collapsed_sections": [] | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "VPcDpmvhWWQp", | |
"colab_type": "code", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 425 | |
}, | |
"outputId": "5c0df660-64ae-42b8-a418-f3d6f2332510" | |
}, | |
"source": [ | |
"import torch\n", | |
"import torch.nn as nn\n", | |
"from torchsummary import summary\n", | |
"import torch.nn.functional as F\n", | |
"\n", | |
"class Net(nn.Module):\n", | |
" def __init__(self):\n", | |
" super(Net, self).__init__()\n", | |
" self.pool = nn.MaxPool2d(2, 2)\n", | |
" self.conv1 = nn.Conv2d(3, 16, 5)\n", | |
" self.conv2 = nn.Conv2d(16, 32, 5)\n", | |
" self.conv3 = nn.Conv2d(32, 32, 5)\n", | |
" self.fc1 = nn.Linear(32 * 6 * 6, 256)\n", | |
" self.fc2 = nn.Linear(256, 10)\n", | |
" self.dropout1 = torch.nn.Dropout2d(p=0.2)\n", | |
" self.dropout2 = torch.nn.Dropout2d(p=0.3)\n", | |
" self.dropout3 = torch.nn.Dropout(p=0.3)\n", | |
" def forward(self, x):\n", | |
" x = self.dropout1(x)\n", | |
" x = self.pool(F.relu(self.conv1(x)))\n", | |
" x = self.dropout2(x)\n", | |
" x = F.relu(self.conv2(x))\n", | |
" x = self.dropout2(x)\n", | |
" x = F.relu(self.conv3(x))\n", | |
" x = self.dropout2(x)\n", | |
" x = torch.flatten(x, 1)\n", | |
" x = F.relu(self.fc1(x))\n", | |
" x = self.dropout3(x)\n", | |
" x = self.fc2(x)\n", | |
" return x\n", | |
"\n", | |
"summary(Net(), (3, 32, 32))" | |
], | |
"execution_count": 2, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"----------------------------------------------------------------\n", | |
" Layer (type) Output Shape Param #\n", | |
"================================================================\n", | |
" Dropout2d-1 [-1, 3, 32, 32] 0\n", | |
" Conv2d-2 [-1, 16, 28, 28] 1,216\n", | |
" MaxPool2d-3 [-1, 16, 14, 14] 0\n", | |
" Dropout2d-4 [-1, 16, 14, 14] 0\n", | |
" Conv2d-5 [-1, 32, 10, 10] 12,832\n", | |
" Dropout2d-6 [-1, 32, 10, 10] 0\n", | |
" Conv2d-7 [-1, 32, 6, 6] 25,632\n", | |
" Dropout2d-8 [-1, 32, 6, 6] 0\n", | |
" Linear-9 [-1, 256] 295,168\n", | |
" Dropout-10 [-1, 256] 0\n", | |
" Linear-11 [-1, 10] 2,570\n", | |
"================================================================\n", | |
"Total params: 337,418\n", | |
"Trainable params: 337,418\n", | |
"Non-trainable params: 0\n", | |
"----------------------------------------------------------------\n", | |
"Input size (MB): 0.01\n", | |
"Forward/backward pass size (MB): 0.24\n", | |
"Params size (MB): 1.29\n", | |
"Estimated Total Size (MB): 1.54\n", | |
"----------------------------------------------------------------\n" | |
], | |
"name": "stdout" | |
} | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment