Skip to content

Instantly share code, notes, and snippets.

import numpy as np
import scipy as sp
import xgboost as xgb
from hyperopt import hp, fmin, tpe
from sklearn import datasets
from sklearn import cross_validation
from sklearn.metrics import confusion_matrix
np.random.seed(71)
iris = datasets.load_iris()
require 'nn'
torch.setdefaulttensortype("torch.FloatTensor")
upconv = nn.SpatialFullConvolution(1, 1, 2, 2, 2, 2, 0, 0)
input = torch.Tensor({{1, 10},{100, 1000}}):reshape(1, 1, 2, 2) -- (batch_size, input_dim, height, width)
weight = torch.Tensor({{1, 2}, {3, 4}}) -- 1x1x2x2 filter
bias = torch.Tensor({0.5})
upconv.weight:copy(weight)
upconv.bias:copy(bias)
name: "srcnn"
layer {
name: "input"
type: "Input"
top: "input"
input_param { shape: { dim: 1 dim: 3 dim: 32 dim: 32 } }
}
layer {
name: "conv1_layer"
type: "Convolution"
// __attribute__((aligned(16))) float input[n], weight[n];
float dot_sse(float *input, float *weight, int n)
{
__attribute__((aligned(16))) float mm[4] = {0};
__m128 x, u;
int pk_lp = (n & 0xfffffffc);
int i;
float sum = 0;
u = _mm_setzero_ps();
for (i = 0; i < pk_lp; i += 4) {
require 'cutorch'
require 'cunn'
require 'cudnn'
require 'sys'
-- WINOGRAD benchmark
-- required: cuDNN v5, cudnn.torch R5 branch
function create_model(ch) -- simple 3x3 conv model
local model = nn.Sequential()
require 'cutorch'
require 'cunn'
require 'cudnn'
require 'sys'
-- WINOGRAD benchmark
-- required: cuDNN v5, cudnn.torch R5 branch
function create_model(ch)
local model = nn.Sequential()
require 'nn'
local N = 1000
local FEAT = 64
local S = 2
function nn.SpatialConvolution:reset()
self.weight:uniform(0, 1)
self.bias:zero()
end
/*
* L4D2特殊感染者BOTのプレイスタイルをカスタマイズする実験的なプラグイン
*
* 出現する特殊感染者BOTの2/3のだけ改変します
*
* キー入力をシミュレートすることでBOTを操作するため
* システムはデフォルトのまま!!
*
* addons/sourcemod/scripting
* において
# pip3 install tornado pubnub python-dateutil
# python3 -u sfd.py | tee sfd.log
from multiprocessing import Process, Value, Lock, Event
from datetime import datetime
import dateutil.parser
from pubnub.callbacks import SubscribeCallback
from pubnub.enums import PNStatusCategory
from pubnub.pnconfiguration import PNConfiguration
from pubnub.pubnub_tornado import PubNubTornado
from pubnub.pnconfiguration import PNReconnectionPolicy
import websocket
import json
from pprint import pprint
def on_message(ws, message):
message = json.loads(message)
pprint(message)
def on_error(ws, error):
print(error)