Skip to content

Instantly share code, notes, and snippets.

@naripok
Created March 25, 2018 15:08
Show Gist options
  • Save naripok/5a7b0cbb0d8c70567a3b6ca918cdbb10 to your computer and use it in GitHub Desktop.
Save naripok/5a7b0cbb0d8c70567a3b6ca918cdbb10 to your computer and use it in GitHub Desktop.
binance cmi20 execution analysis
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<script src=\"https://cdn.rawgit.com/parente/4c3e6936d0d7a46fd071/raw/65b816fb9bdd3c28b4ddf3af602bfd6015486383/code_toggle.js\"></script>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%html\n",
"<script src=\"https://cdn.rawgit.com/parente/4c3e6936d0d7a46fd071/raw/65b816fb9bdd3c28b4ddf3af602bfd6015486383/code_toggle.js\"></script>"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"\n",
"(function(root) {\n",
" function now() {\n",
" return new Date();\n",
" }\n",
"\n",
" var force = true;\n",
"\n",
" if (typeof (root._bokeh_onload_callbacks) === \"undefined\" || force === true) {\n",
" root._bokeh_onload_callbacks = [];\n",
" root._bokeh_is_loading = undefined;\n",
" }\n",
"\n",
" var JS_MIME_TYPE = 'application/javascript';\n",
" var HTML_MIME_TYPE = 'text/html';\n",
" var EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n",
" var CLASS_NAME = 'output_bokeh rendered_html';\n",
"\n",
" /**\n",
" * Render data to the DOM node\n",
" */\n",
" function render(props, node) {\n",
" var script = document.createElement(\"script\");\n",
" node.appendChild(script);\n",
" }\n",
"\n",
" /**\n",
" * Handle when an output is cleared or removed\n",
" */\n",
" function handleClearOutput(event, handle) {\n",
" var cell = handle.cell;\n",
"\n",
" var id = cell.output_area._bokeh_element_id;\n",
" var server_id = cell.output_area._bokeh_server_id;\n",
" // Clean up Bokeh references\n",
" if (id !== undefined) {\n",
" Bokeh.index[id].model.document.clear();\n",
" delete Bokeh.index[id];\n",
" }\n",
"\n",
" if (server_id !== undefined) {\n",
" // Clean up Bokeh references\n",
" var cmd = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n",
" cell.notebook.kernel.execute(cmd, {\n",
" iopub: {\n",
" output: function(msg) {\n",
" var element_id = msg.content.text.trim();\n",
" Bokeh.index[element_id].model.document.clear();\n",
" delete Bokeh.index[element_id];\n",
" }\n",
" }\n",
" });\n",
" // Destroy server and session\n",
" var cmd = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n",
" cell.notebook.kernel.execute(cmd);\n",
" }\n",
" }\n",
"\n",
" /**\n",
" * Handle when a new output is added\n",
" */\n",
" function handleAddOutput(event, handle) {\n",
" var output_area = handle.output_area;\n",
" var output = handle.output;\n",
"\n",
" // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n",
" if ((output.output_type != \"display_data\") || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n",
" return\n",
" }\n",
"\n",
" var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n",
"\n",
" if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n",
" toinsert[0].firstChild.textContent = output.data[JS_MIME_TYPE];\n",
" // store reference to embed id on output_area\n",
" output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n",
" }\n",
" if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n",
" var bk_div = document.createElement(\"div\");\n",
" bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n",
" var script_attrs = bk_div.children[0].attributes;\n",
" for (var i = 0; i < script_attrs.length; i++) {\n",
" toinsert[0].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n",
" }\n",
" // store reference to server id on output_area\n",
" output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n",
" }\n",
" }\n",
"\n",
" function register_renderer(events, OutputArea) {\n",
"\n",
" function append_mime(data, metadata, element) {\n",
" // create a DOM node to render to\n",
" var toinsert = this.create_output_subarea(\n",
" metadata,\n",
" CLASS_NAME,\n",
" EXEC_MIME_TYPE\n",
" );\n",
" this.keyboard_manager.register_events(toinsert);\n",
" // Render to node\n",
" var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n",
" render(props, toinsert[0]);\n",
" element.append(toinsert);\n",
" return toinsert\n",
" }\n",
"\n",
" /* Handle when an output is cleared or removed */\n",
" events.on('clear_output.CodeCell', handleClearOutput);\n",
" events.on('delete.Cell', handleClearOutput);\n",
"\n",
" /* Handle when a new output is added */\n",
" events.on('output_added.OutputArea', handleAddOutput);\n",
"\n",
" /**\n",
" * Register the mime type and append_mime function with output_area\n",
" */\n",
" OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n",
" /* Is output safe? */\n",
" safe: true,\n",
" /* Index of renderer in `output_area.display_order` */\n",
" index: 0\n",
" });\n",
" }\n",
"\n",
" // register the mime type if in Jupyter Notebook environment and previously unregistered\n",
" if (root.Jupyter !== undefined) {\n",
" var events = require('base/js/events');\n",
" var OutputArea = require('notebook/js/outputarea').OutputArea;\n",
"\n",
" if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n",
" register_renderer(events, OutputArea);\n",
" }\n",
" }\n",
"\n",
" \n",
" if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n",
" root._bokeh_timeout = Date.now() + 5000;\n",
" root._bokeh_failed_load = false;\n",
" }\n",
"\n",
" var NB_LOAD_WARNING = {'data': {'text/html':\n",
" \"<div style='background-color: #fdd'>\\n\"+\n",
" \"<p>\\n\"+\n",
" \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n",
" \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n",
" \"</p>\\n\"+\n",
" \"<ul>\\n\"+\n",
" \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n",
" \"<li>use INLINE resources instead, as so:</li>\\n\"+\n",
" \"</ul>\\n\"+\n",
" \"<code>\\n\"+\n",
" \"from bokeh.resources import INLINE\\n\"+\n",
" \"output_notebook(resources=INLINE)\\n\"+\n",
" \"</code>\\n\"+\n",
" \"</div>\"}};\n",
"\n",
" function display_loaded() {\n",
" var el = document.getElementById(null);\n",
" if (el != null) {\n",
" el.textContent = \"BokehJS is loading...\";\n",
" }\n",
" if (root.Bokeh !== undefined) {\n",
" if (el != null) {\n",
" el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n",
" }\n",
" } else if (Date.now() < root._bokeh_timeout) {\n",
" setTimeout(display_loaded, 100)\n",
" }\n",
" }\n",
"\n",
"\n",
" function run_callbacks() {\n",
" try {\n",
" root._bokeh_onload_callbacks.forEach(function(callback) { callback() });\n",
" }\n",
" finally {\n",
" delete root._bokeh_onload_callbacks\n",
" }\n",
" console.info(\"Bokeh: all callbacks have finished\");\n",
" }\n",
"\n",
" function load_libs(js_urls, callback) {\n",
" root._bokeh_onload_callbacks.push(callback);\n",
" if (root._bokeh_is_loading > 0) {\n",
" console.log(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n",
" return null;\n",
" }\n",
" if (js_urls == null || js_urls.length === 0) {\n",
" run_callbacks();\n",
" return null;\n",
" }\n",
" console.log(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n",
" root._bokeh_is_loading = js_urls.length;\n",
" for (var i = 0; i < js_urls.length; i++) {\n",
" var url = js_urls[i];\n",
" var s = document.createElement('script');\n",
" s.src = url;\n",
" s.async = false;\n",
" s.onreadystatechange = s.onload = function() {\n",
" root._bokeh_is_loading--;\n",
" if (root._bokeh_is_loading === 0) {\n",
" console.log(\"Bokeh: all BokehJS libraries loaded\");\n",
" run_callbacks()\n",
" }\n",
" };\n",
" s.onerror = function() {\n",
" console.warn(\"failed to load library \" + url);\n",
" };\n",
" console.log(\"Bokeh: injecting script tag for BokehJS library: \", url);\n",
" document.getElementsByTagName(\"head\")[0].appendChild(s);\n",
" }\n",
" };\n",
"\n",
" var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.14.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.14.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.14.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-gl-0.12.14.min.js\"];\n",
"\n",
" var inline_js = [\n",
" function(Bokeh) {\n",
" Bokeh.set_log_level(\"info\");\n",
" },\n",
" \n",
" function(Bokeh) {\n",
" \n",
" },\n",
" function(Bokeh) {\n",
" console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-0.12.14.min.css\");\n",
" Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.14.min.css\");\n",
" console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.14.min.css\");\n",
" Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.14.min.css\");\n",
" console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.14.min.css\");\n",
" Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.14.min.css\");\n",
" }\n",
" ];\n",
"\n",
" function run_inline_js() {\n",
" \n",
" if ((root.Bokeh !== undefined) || (force === true)) {\n",
" for (var i = 0; i < inline_js.length; i++) {\n",
" inline_js[i].call(root, root.Bokeh);\n",
" }} else if (Date.now() < root._bokeh_timeout) {\n",
" setTimeout(run_inline_js, 100);\n",
" } else if (!root._bokeh_failed_load) {\n",
" console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n",
" root._bokeh_failed_load = true;\n",
" } else if (force !== true) {\n",
" var cell = $(document.getElementById(null)).parents('.cell').data().cell;\n",
" cell.output_area.append_execute_result(NB_LOAD_WARNING)\n",
" }\n",
"\n",
" }\n",
"\n",
" if (root._bokeh_is_loading === 0) {\n",
" console.log(\"Bokeh: BokehJS loaded, going straight to plotting\");\n",
" run_inline_js();\n",
" } else {\n",
" load_libs(js_urls, function() {\n",
" console.log(\"Bokeh: BokehJS plotting callback run at\", now());\n",
" run_inline_js();\n",
" });\n",
" }\n",
"}(window));"
],
"application/vnd.bokehjs_load.v0+json": "\n(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n\n if (typeof (root._bokeh_onload_callbacks) === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n \n\n \n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n var NB_LOAD_WARNING = {'data': {'text/html':\n \"<div style='background-color: #fdd'>\\n\"+\n \"<p>\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"</p>\\n\"+\n \"<ul>\\n\"+\n \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n \"<li>use INLINE resources instead, as so:</li>\\n\"+\n \"</ul>\\n\"+\n \"<code>\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"</code>\\n\"+\n \"</div>\"}};\n\n function display_loaded() {\n var el = document.getElementById(null);\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) { callback() });\n }\n finally {\n delete root._bokeh_onload_callbacks\n }\n console.info(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(js_urls, callback) {\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.log(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.log(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = js_urls.length;\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n var s = document.createElement('script');\n s.src = url;\n s.async = false;\n s.onreadystatechange = s.onload = function() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.log(\"Bokeh: all BokehJS libraries loaded\");\n run_callbacks()\n }\n };\n s.onerror = function() {\n console.warn(\"failed to load library \" + url);\n };\n console.log(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.getElementsByTagName(\"head\")[0].appendChild(s);\n }\n };\n\n var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.14.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.14.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.14.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-gl-0.12.14.min.js\"];\n\n var inline_js = [\n function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\n \n function(Bokeh) {\n \n },\n function(Bokeh) {\n console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-0.12.14.min.css\");\n Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.14.min.css\");\n console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.14.min.css\");\n Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.14.min.css\");\n console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.14.min.css\");\n Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.14.min.css\");\n }\n ];\n\n function run_inline_js() {\n \n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n var cell = $(document.getElementById(null)).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n\n }\n\n if (root._bokeh_is_loading === 0) {\n console.log(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(js_urls, function() {\n console.log(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import sys\n",
"sys.path.append('../')\n",
"from exchange_api.binance.client import Client\n",
"from execution.marketcap_index import *\n",
"from utils.datetime import dt_to_millis\n",
"from utils.plotting import *\n",
"from utils.misc import Logger\n",
"\n",
"import logging\n",
"logging.basicConfig(level=logging.ERROR)\n",
"\n",
"from bokeh.io import output_notebook\n",
"output_notebook(hide_banner=True)\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# CMI20\n",
"\n",
"Olá investidores,\n",
"\n",
"Neste artigo faremos uma análise de desempenho comparativa entre o índice [CMI20](https://www.kaggle.com/fernandocanteruccio/cmi20-index) executado nas exchanges [Poloniex](https://poloniex.com) e [Binance](https://www.binance.com). Mostraremos também para comparação a performance da Bitcoin, bem como a de outras grandes empresas no setor de tecnologia e a do ouro. Utilizaremos nesta análise a média da distribuição de retornos como indicativo de desempenho, assim como o [VaR](https://www.kaggle.com/fernandocanteruccio/risk-evaluation) e o [CVaR](https://www.kaggle.com/fernandocanteruccio/risk-evaluation-2) das distribuições como indicadores de risco da alocação. Será introduzida nesta análise também o *Conditional Sharpe Ratio*, como indicador de performance regularizada. \n",
"\n",
"Inicialmente, calcularemos a sequência de retornos no último ano para a execução do índice em cada uma das duas exchanges, assim como a da Bitcoin para comparação."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 1583/1583 [04:58<00:00, 5.31it/s]\n",
"100%|██████████| 1581/1581 [01:02<00:00, 25.23it/s]\n"
]
}
],
"source": [
"# Pull exchange data\n",
"start = dt_to_millis(datetime.utcnow() - timedelta(days=365))\n",
"millis = dt_to_millis(datetime.utcnow())\n",
"\n",
"# Scrap marketcap data\n",
"assetsDf = scrap_coins(start=start, end=millis, n_largest=0)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"365it [00:05, 66.49it/s]\n",
"365it [00:01, 194.93it/s]\n"
]
}
],
"source": [
"\"\"\"Binance execution\"\"\"\n",
"perfDf = pd.DataFrame(index=assetsDf.index)\n",
"\n",
"# Process data\n",
"binanceDf = filter_assets(adjust_symbols(assetsDf))\n",
"\n",
"# Calculate index\n",
"perfDf['binance'], weightsB, lossB = cmi(binanceDf)\n",
"\n",
"\"\"\"Poloniex execution\"\"\"\n",
"# Process data\n",
"poloniexDf = filter_assets(adjust_symbols(assetsDf, exchange='poloniex'), exchange='poloniex')\n",
"\n",
"# Calculate index\n",
"perfDf['poloniex'], weightsP, lossP = cmi(poloniexDf)\n",
"\n",
"# BTC for comparison\n",
"perfDf['bitcoin'] = assetsDf.BTC.Close.astype('f') / assetsDf.BTC.Close.astype('f').iloc[0]"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzgAAAIMCAYAAAA5EAmNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlcXPW9//HXmWFnhj1AAiRAQhYggZAxhIQsWmPVarUaa1O7aNXb/Xr7a631Xmtba+/VXmtv79XeLlqj17rVfTdGJZEESQgJCZCEJJCwhX2bYRlg5vz+ODDZSNhmMnDyeT4efSAzZ858h3dmyofv9/s5iqqqCCGEEEIIIYQeGLw9ACGEEEIIIYRwFylwhBBCCCGEELohBY4QQgghhBBCN6TAEUIIIYQQQuiGFDhCCCGEEEII3ZACRwghhBBCCKEbUuAIIYQQQgghdEMKHCGEEEIIIYRuSIEjhBBCCCGE0A0pcIQQQgghhBC64ePtAQBERUWpiYmJ3h7GpPT39+Pn5+ftYQgPkGz1S7LVL8lWvyRb/ZOM9cPdWe7evbtFVdUZox03JQqcxMREioqKvD2MSSkoKCAnJ8fbwxAeINnql2SrX5Ktfkm2+icZ64e7s1QU5fiYjlNV1W1POlEWi0Wd7gWOEEIIIYQQwnMURdmtqqpltONkD46bSIGmX5Ktfkm2+iXZ6pdkq3+SsX54K0spcNzEZrN5ewjCQyRb/ZJs9Uuy1S/JVv8kY/3wVpZTYg+OEEIIIYQQejQwMEBtbS19fX3eHsoFFxoayoEDB8b9uICAAOLj4/H19Z3Q88oeHDfp7e0lMDDQ28MQHiDZ6pdkq1+SrX5Jtvqnt4yrqqowm81ERkaiKIq3h3NBOZ1ODIbxLRhTVZXW1lasVitJSUmn3Sd7cC6w2tpabw9BeIhkq1+SrX5Jtvol2eqf3jLu6+u7KIsb0NpEj5eiKERGRk5qxksKHDepq6vz9hCEh0i2+iXZ6pdkq1+Srf7pMeOLsbgBbXneREz25yUFjhBCCCGEEDpmNBrJzMwkIyODrKwsduzYAUB9fT0bNmzw8ujcT5oMuMmCBQu8PQThIZKtfkm2+iXZ6pdkq3+SsfsFBgayd+9eAD744APuvfdetm7dyqxZs3j55Zc99rz+/v4eO/f5yAyOmxiNRm8PQXiIZKtfkq1+Sbb6Jdnqn2TsWV1dXYSHhwNw7Ngx0tPTAdi0aRM33HADV155JSkpKfz0pz91Pea73/0uFouFtLQ0fvGLX7huT0xM5Be/+AVZWVksXryYgwcPAlp76Ntuu42srCyWLFnCK6+8AsDmzZvJyckhKyuLm266yWNtpGUGx03Ky8uJjo729jCEB0i2+iXZ6pdkq1+Srf7pOeNfvVVGeX2XW8+ZOiuEX1ybdt5jent7yczMpK+vjxMnTvDxxx+PeNzevXvZs2cP/v7+LFiwgB/+8IckJCTwm9/8hoiICBwOB5/73OfYt28fS5YsASAqKori4mL++Mc/8sgjj/DEE0/w61//mtDQUAoKCjCbzbS3t9PS0sKDDz7Ili1bCA4O5uGHH+bRRx/l/vvvd+vPA6TAEUIIIYQQQtdOXaJWUFDAN77xDUpLS8867nOf+xyhoaEApKamcvz4cRISEnjppZf4y1/+wuDgICdOnKC8vNxV4Nxwww0ALFu2jFdffRWALVu28MILL7jOGx4ezttvv015eTmrVq0CtA5rOTk5Hnm9UuC4SWxsrLeHIDxEstUvyVa/JFv9kmz1T88ZjzbTciHk5OTQ0tJCc3PzWfedumfGaDQyODhIVVUVjzzyCLt27SI8PJxbb731tBbOw48ZPv5UPj4nSw1VVVm/fj3PP/+8u1/SWWQPjpuceSEioR+SrX5Jtvol2eqXZKt/krFnHTx4EIfDQWRk5JiO7+rqIjg4mNDQUBobG3nvvfdGfcz69et5/PHHXcVPe3s7K1asYPv27Rw5cgSA7u5uKioqJv5CzkMKHDcpKCjw9hCEh0i2+iXZ6pdkq1+Srf5Jxu43vAcnMzOTm2++maeffnrMzRwyMjJYunQpCxcu5Ktf/apridn53HfffbS3t5Oenk5GRgaffPIJM2bMYNOmTWzcuJElS5aQk5PjakrgbrJETQghhBBCCB1zOBwj3p6YmOjai3Prrbdy6623uu57++23Xf+9adOmER9/7Ngx139bLBby8vIAMJlMPP3001itVsxms+uYyy67jF27dk3sRYyDRwocRVGuB74AhABPqqq62RPPM5UEBgZ6ewjCQyRb/ZJs9Uuy1S/JVv8kY/1QFMU7z6uq6tgOVJS/AdcATaqqpp9y+5XAHwAj8ISqqg+dcl848Iiqqref79wWi0UtKiqawPCFEEIIIYSYug4cOMCiRYu8PYxpZ6Sfm6Iou1VVtYz22PHswdkEXHnGkxiBx4GrgFRgo6Ioqaccct/Q/bpXWFjo7SEID5Fs9Uuy1S/JVr8kW/2TjPXDUxfyHM2YCxxVVbcBbWfcvBw4oqpqpaqq/cALwHWK5mHgPVVVi9033Kmrt7fX20MQHiLZ6pdkq1+SrX5Jtue242gLlz2SR5O1b/SDpzDJWD/GulLM3Sa7BycOqDnl+1ogG/ghcDkQqijKPFVV/3TmAxVF+SfgnwBmzZrl2pSUnJyM2WympKQEgMjISNLS0ti2bZs2YB8fcnNzKS4upqtLuxKsxWKhsbGRmhptKCkpKfj7+7s2TUVHRzN//nzy8/MBrV93Tk4ORUVFrsoyOzub2tpa6urqAFiwYAFGo5Hy8nJA68melJTk6uwRGBhIdnY2hYWF9Pb2YrPZsNvtVFVV0dDQAGgXSHI4HBw6dEj7YcXFER8f7/rLhMlkwmKxUFBQgN1uByA3N5eKigqampoASE9Px263c/jwYQASEhKIiYlheElfSEgIWVlZ5Ofnu3qPr1mzhrKyMlpbWwGt+4XVaqWyshLQNpRFRERQXKzVnuHh4WRkZLB161ZUVUVRFNauXUtJSQnt7e0AZGVl0dbW5tpMNl1zAq3/+3hy6unpAZCcpnhOE3k/2e12bDab5DTFc5rI+2lwcJDq6mrJaYrnNJH3EyA5jZBTR3cf9+X30tqn8ub2/cwL6PZqTpN5P9lsNvLz83WTU1hYGKDNZgz/wm8ymejr63P9zAMCAlBV1fV+8/X1xdfX1/U7iMFgIDg4GKvVyjCTyURvb6+rgUBgYCAOh4P+/n4A/Pz88PHxcZ3DaDQSFBR02jnMZjM9PT2ucwQFBTE4OHjaOYxGo+u1G41GAgMDT5uZMZvNdHd343Q6XecYGBhgYGDANR5FUVzXzvHx8SEgIMB1DkVRMJlMp50jODiYgYEBV30wnNNYjXkPztAAEoG3h/fgKIqyAbhSVdU7hr7/OpCtquoPxnxS9LEHx263n3ZxJKEfkq1+Sbb6Jdnql2Q7sn97bT/P7axGVeGnVy7ge+vmeXtIE6a3jC/mPThOpxODYWJXpblQe3BGUgcknPJ9/NBtF52qqipvD0F4iGSrX5Ktfkm2+iXZnq20rpO/F1Zz+6okYkL8OdrU7e0hTYpk7H5Go5HMzEzS09O56aabXLM652IymSb8XHfccYdrRmx4RupCm2yBswtIURQlSVEUP+ArwJuTH9b0MzxNKfRHstUvyVa/JFv9kmzP9s7+E/gYFH54WQpzZ5g40uydjd3uIhm7X2BgIHv37qW0tBQ/Pz/+9Kezdo+4zRNPPEFqqtZzbHgJ3oU25gJHUZTngQJggaIotYqi3K6q6iDwA+AD4ADwkqqqZZ4ZqhBCCCGEONOW8kaWJ0UQGuTLvGgTlU02r23uFlPf6tWrOXLkCACPPvoo6enppKen81//9V9nHauqKnfffTfp6eksXryYF198EYC8vDzWrVvHhg0bWLhwIbfccovr39y6detce7w++ugjcnJyyMrK4qabbsJms9HZ2cmCBQtce5Y2btzIX//6V7e+xjE3GVBVdeM5bn8XeNdtI5qmhitVoT+SrX5Jtvol2eqXZHu6Yy3dHG6ysXH5bADmzjBhtQ/SbLUTHRLg5dFNjK4zfu9n0LDfveeMXQxXPTT6cWgzKu+99x5XXnklu3fv5qmnnqKwsBBVVcnOzmbt2rUsXbrUdfyrr77K3r17KSkpoaWlhUsuuYQ1a9YAsGfPHsrKypg1axarVq1i+/bt5Obmuh7b0tLC7373O7Zs2UJwcDAPP/wwjz76KPfffz+PPfYYt956K3fddRft7e3ceeedbv2RTHaJmhgy3H1C6I9kq1+SrX5Jtvol2Z5uy4FGAC5fFANoBQ4wrZepScbu19vbS2ZmJhaLhdmzZ3P77beTn5/Pl770JYKDgzGZTNxwww18+umnpz0uPz+fjRs3YjQaiYmJYe3atezatQuA5cuXEx8fj8FgIDMz09Uhb9hnn33GgQMHWLVqFZmZmTz99NMcP34cgPXr17N48WK+//3v88QTT7j99U62TbQYcujQIWbOnOntYQgPkGz1S7LVL8lWvyTb02050MiCGDOzI4MAmBetFThHm2ysnBvlzaFNmK4zHuNMi7sN78Fxp1M73RmNxrP226iqyrp163j55ZfPeqzT6eTAgQMEBQXR3t5OfHy8W8cmMzhCCCGEENNMW3c/r++pY9exdi5PjXbdHhPij8nfh6PNo3dSO9Rg5cPyRk8OU0xhq1ev5vXXX6enp4fu7m5ee+01Vq9efdYxL774Ig6Hg+bmZrZt28by5cvHdP4VK1ZQWFjo2u/T3d1NRUUFAL///e9ZtGgRzz33HLfddhsDAwNufW0yg+MmcXFx3h6C8BDJVr8kW/2SbPVLsoW9NR185S8F9A04iTb7s2HZySt2KIrC3BnBHB1liZrTqXLXC3s42myj8F8vJyLYz9PDHjPJ+MLIysri1ltvdRUsd9xxx2n7bwC+9KUvUVBQQEZGBoqi8Nvf/pbY2FgOHjw46vlnzJjBX//6VzZu3OhqF/3ggw+iqipPPPEEO3fuxGw2s2bNGh588EF+9atfue21jetCn+6mKMq1wLVz5sy5c9OmTcD0vQKxqqqsXLlSN1eKlit6n8xp+ByS09TOaSLvp9jYWOLj4yWnKZ7TRN5PCxcupL+/X3Ka4jlN5P20fPlyKioqLtqcomJmctUfttHvgLtXhvPly1ews/Cz03L6p79tZ299N4+uCzpnTv/79mc8vld7zC+uTSVFrZsyn3uqquLr6zutczr1/RQWFkZmZiY228nudiaTib6+PtfPPCAgAFVVXTn6+vri6+vrul6NwWAgODgYq9XKMJPJRG9vr2vPUmBgIA6Hg/7+fgD8/Pzw8fFxncNoNBIUFHTaOcxmMz09Pa5zBAUFMTg4eNo5jEaj67UbjUYCAwNdP8/hc3R3d+N0Ol3nGBgYYGBgAFVVCQgIQFEU+vr6AO09GBAQ4DqHoiiYTKbTzhEcHExpaSltbW2n5RQTEzOmC316tcAZZrFY1OEPxOlquF2e0B/JVr8kW/2SbPXrYs/2gbfK+dv2Kp69PZvclJH32Dz+yRH+84NDFNx7GTNDA6lstnGstZvLFmqNCJxOlav/+1P6HU6C/IwMOlTeu2s1iqJcyJdyTnrL+MCBAyxatMjbw/AKq9WK2Wye0GNH+rkpijKmAkf24AghhBBCTAMnOnt5akcVX1sx+5zFDcCalBn4GQ1c8ftt/OC5Ytb/fhvf2lREY5f2F/TN5Q0cbLDyz5elcLMlgYMNVsrquy7UyxDC46TAcROTyeTtIQgPkWz1S7LVL8lWvy7mbEtqOlFVuDHr/B2nFseH8v6/rGZJfCjvlTaweqgYKq3rBODd/Q1Em/25NmMWX8yIw8/HwD+Kajw+/rG6mDPWG4PBO6WGFDhuYrGMOlsmpinJVr8kW/2SbPXrYs62vL4TgwILY0NGPTZ5holnb8/m0K+v5PGvZqEosH+owNlT044lMRyjQSE0yJer0mN5tbgOa597O1lN1MWcsd4EBwd75XmlwHGT4c1oQn8kW/2SbPVLstWviznb0vou5kWbCPQzjul4RVHwMRoI9vchOSqY0rouWmx2atp6yUwIcx13R24yVvsgzxVWe2ro43IxZ6w3pzYjuJCkwHGT4a4XQn8kW/2SbPVLstWviznbsvpO0meFTuixi+NCKa3rZG91BwCZCeEn74sPZdW8SP62vQr7oMMtY52MizljvfFWMzMpcIQQQgghprhmq53GLjtpcRMrcNLjQmno6mPLgUaMBoXFZ5zn22vm0thl54299e4YrphijEYjmZmZZGRkkJWVxY4dOwCor69nw4YNAOzdu5d33313ws9x9dVX09HR4ZbxTpYUOG6Sm5vr7SEID5Fs9Uuy1S/JVr8u1mzL6rX9M2mzRt9/M5L0oYLmjb31LIw1n7XMbXVKFAtjzby0y/vNBi7WjD0pMDCQvXv3UlJSwn/8x39w7733AjBr1ixefvllYPIFzrvvvktYWNhpt3mrYYQUOG5SUVHh7SEID5Fs9Uuy1S/JVr8u1myH2zinTrDAGX5c74CDpbPDzrpfURQWzQyhYaiVtDddrBlfKF1dXYSHa0sUjx07Rnp6Ov39/dx///28+OKLZGZm8uKLL2Kz2bjttttYvHgxS5Ys4ZVXXgHg+eefZ/HixaSnp3PPPfe4zpuYmEhLSwvHjh1j0aJF3HnnnaSlpXHFFVe4LhR6ofhc0GfTsaamJlJTU709DOEBkq1+Sbb6Jdnq18WabWldJ4mRQYQE+E7o8SEBviRFBVPV0n3a/ptThQf50dHj/U5qes744Z0Pc7DtoFvPuTBiIfcsv+e8x/T29pKZmUlfXx8nTpzg448/Pu1+Pz8/HnjgAYqKinjssccAuOeeewgNDWX//v0AtLe3U19fzz333MPu3bsJDw/niiuu4PXXX+f6668/7XyHDx/m+eef59FHH+X222/nlVde4Wtf+5obX/X5ebXAURTlWuDaOXPmkJeXB0BycjJms5mSkhIAIiMjSUtLY9u2bQD4+PiQm5tLcXExXV3aXzMsFguNjY3U1GjTqikpKfj7+1NaWgpAdHQ08+fPJz8/HwB/f39ycnIoKipydXfIzs6mtraWuro6ABYsWIDRaKS8vByA2NhYkpKSXJ09AgMDyc7OprCwkN7eXmw2G3a7naqqKhoaGgBITU3F4XBw6NAhAOLi4oiPj6ewsBDQpu0sFgsFBQWuDXW5ublUVFTQ1NQEQHp6Ona7ncOHDwOQkJBATEwMRUVFAISEhJCVlUV+fj6Dg4MArFmzhrKyMlpbWwHIyMjAarVSWVkJaBV2REQExcXFAISHh5ORkcHWrVtRVRVFUVi7di0lJSW0t7cDkJWVRVtbG8eOHZvWOQHk5OSMK6eenh4AyWmK5zSR95Pdbsdms0lOUzynibyfBgcHqa6ulpymeE4TeT8BF2VORUd7WBQbTG9v74RzivbpowpYEOXn+r3r1Jw6mnqw2Qfp6x/k8KEDXvvcs9ls5OfnT8uc4Oz30/CyLZvNRn9/Pw6HA6PRiNPpdG3CH75ejNPpBLQZNUVRXN+Dto/G4XCc9r3T6aS/vx+r1UpgYCAOh4P+/n5AK1p8fHzo6ekhMDCQHTt2EBQUxJYtW/ja177mGp/T6cRqtdLX14eqqtjtdvr7+9m8eTPPPvssg4OD9Pb24uPjQ35+PuvWrSMgIIDe3l5uvPFGtm3bxvr161FVFZvNhsPhIDExkblz5+JwOMjMzOTo0aNYrVZAew8GBAS4MlEUBZPJRHd3t+v1BgcHMzAw4Pp3OpzTWCne6m5wKovFog5/IE5XLS0tREWd+6rCYvqSbPVLstUvyVa/LsZsO3sGyHhgMz+9cgHfWzdvwud5v7SB53ZWs+nWSzAYlLPu/7/PjvPz10vZ+a+fIzokYDJDnhS9ZXzgwAEWLVrk1TGYTKbTWjbHxMSwf/9+enp6uOaaaygtLWXTpk2nzeAsW7aMF154gZSUFNfj3njjDV555RWeeeYZAJ588knKysp49NFHSUxMdBWTw+ccGBjgD3/4AzabjV/+8pfjGvNIPzdFUXarqjrqhZJkD46bSEtD/ZJs9Uuy1S/JVr8uxmz31GizIKdeu2YirkyP5ZlvLR+xuAGICPIDoN3Ly9QuxowvpIMHD+JwOIiMjDztdrPZ7JplAVi/fj2PP/646/v29naWL1/O1q1baWlpweFw8Pzzz7N27dpzPpe0iZ7mhqfohf5Itvol2eqXZKtfF2O2xdUdGBTIiJ9cgTOa8CBtf09bd/95j7v31f18WN7osXFcjBl72vAenMzMTG6++Waefvrps5Z8XXrppZSXl7uaDNx33320t7eTnp5ORkYGn3zyCTNnzuShhx7i0ksvJSMjg2XLlnHddded83m9VaxKkwEhhBBCiClsT3U7C2JDCPb37K9tYUMzOB095y5w2rv7eX5nNda+Adanxnh0PMJ9Tt27c6rExETXHqaIiAh27dp12v1PP/30WY/ZuHEjGzduPOv24f1VUVFRrnMC/OQnP5nosCdMZnDcJCEhwdtDEB4i2eqXZKtfkq1+XWzZOp0qe6s7yBqhtbO7RQSPvkSt/IS24f9Ik+2cx0zWxZaxnvn6Tqzr32RJgeMmMTHyVwy9kmz1S7LVL8lWvy62bA832bDaB8maPXJrZ3cKG1qi1n6eGZzyoevxVLV043B6Zn/FxZaxnkmBM81N9y5w4twkW/2SbPVLstWviy3b4uqhNstzPF/gBPgaCfQ10n6ePThl9Z0A2Aed1LV75uKNF1vGejZ8qY0LTQocIYQQQogpqvh4OxHBfiRGBl2Q54sI9ht1idrwUrajzZ5bpqY3U+GyLNPJZH9eUuC4SUhIiLeHIDxEstUvyVa/JFv9utiy3VPTwdKEMNdFTj0tLMj3nEvU+gYcHG3u5urFsYDn9uHoLeOAgABaW1svyiJn+AKm46GqKq2trQQETPxaTNJFzU2ysrK8PQThIZKtfkm2+iXZ6tfFlO3msgaONNn4siX+gj1neJDfOQucQw1WHE6V3HlRvLe/YUIzOMdbu3lkcwUPXp9OaODI+zP0lnF8fDy1tbU0Nzd7eyjTRkBAAPHxE/93LwWOm+Tn55Obm+vtYQgPkGz1S7LVL8lWv6Zitp09A7y6p5aOngH+5fIUt8y2VLV08+OXSlgSH8o3chInP8gxCg/2o65j5L01wx3UUmeGMneGaUIzOM/trOatknrmzTBx1+UpIx4zFTOeDF9fX5KSkrw9DK/wVpayRM1NBgcHvT0E4SGSrX5Jtvol2erXVMv208PNLP/3LfzqrXL+8NFhOnvPvX9lrFRV5QfPFWM0KvzxliwCfI2jP8hNwoN8z3mhz7L6Tsz+PsSHBzI32jShGZzhC4Q+taOKbvvIWU61jMXEeStLr87gKIpyLXDtnDlzyMvLAyA5ORmz2UxJSQkAkZGRpKWlsW3bNgB8fHzIzc2luLiYri7tLwkWi4XGxkZqamoASElJwd/f33WRoejoaObPn09+fj4A/v7+5OTkUFRUhM2mvTmzs7Opra2lrq4OgAULFmA0GikvLwcgNjaWpKQkCgoKAAgMDCQ7O5vCwkJ6e3ux2WzY7XaqqqpoaGgAIDU1FYfDwaFDhwCIi4sjPj6ewsJCAEwmExaLhYKCAteVXnNzc6moqKCpqQmA9PR07Ha766q+CQkJxMTEuDqMhISEkJWVRX5+vusf0Zo1aygrK6O1tRWAjIwMrFYrlZWVgHZRp4iICIqLiwEIDw8nIyODrVu3oqoqiqKwdu1aSkpKaG8f6t6SlUVbW5vrIk7TNSeAnJycceU03AFEcpraOU3k/WS327HZbJLTFM9pIu+nwcFBqqurJacpntNE3k/AlMrpgS3NhPiqfHlVIo9vPcZbH+WTYDaMO6eqTgdrVyyjv72BfZX1lNX38pNLZ2Ps6yQvb+cFy6mzqZ+uvgH2luyjo73NldOh2lbySmuYFaRQXX2c+BAf2nsGeHPzJ8yJiRjT+2lv5Qkqm7vJmWWkoH6AJz45SEZAy1k52Ww211/+5f00vf//yWazUVdX57acxkqZChueLBaLOt1bAjqdzgltpBJTn2SrX5Ktfkm2+jWVsi2t6+Sa/8nn59ekkhEfyoY/FbDptktYtyB6XOdRVZVLfrOF9LhQNt22nJeKavjpy/v48EdrSIkxj/1E3S1Q+GdY8xPw8R/nq9Fs2l7FL98qp/jn613d0n704l5e26P9onn35xfw/UvnkXeoiVuf2sVL385heVLEmM79p61Heei9g2z/2WX89OUSKhpt5N9zKf4+p//iOpUyFpPj7iwVRdmtqqpltOPkX4+blJWVeXsIwkMkW/2SbPVLstWvqZTtMwXHCPQ1smFZPDEhWsenpi77uM9T295Li62fHUdb6ekfZGdVGxHBfsyLNo3vRJ/8O2z7LRzfPu4xDAsfKmqGl6lVt/bw2p46NiyLZ+vd6/j+pfMAXGMbzz6cD8sbSZsVQlxYIF+5ZDbNVvuIj59KGYvJ8VaWUuC4yfD0oNAfyVa/JFv9kmz1a6pk297dzxt76/lSVhyhgb5Eh2gzJg1dfeM+V0ltBwD9g052HGllZ1UblySGj69ZQUcNFD+j/Xdj+bjHMCwsSCtwOoY6qb2+V5u5+dH6+cyJDHYdNys0kPAgX7YfbRnTeZutdoqr21mfGgNASoxWIFU2d5917FTJWEyet7KUAkcIIYQQYpxe21OHfdDJN3LmAODvYyQ8yJfGCRQ4+2o78TMaCPYz8tzOaqrbelieFDm+k3z6O+2rfyg0Tvyv5hFDBU57zwCqqvL63jqWJ0UQFxZ42nEGg8J1mXF8WNboKoYABh1Onvi0kjf21nGiU9uzoqoqv3yrDAW4evFMABKHiqWqlrMLHCEmS9pEu0lGRoa3hyA8RLLVL8lWvyRb/Zoq2b6z/wQLY80sjD15UcqYkIBRC5yGzj4qm23MCgskISIIo0GhpKaDRbNCmBkSwPtl2sb17DHuawGgsw72PAtZ34D2KmiaeIETFqRdm6a9u5/Sui4qm7u5Izd5xGNvssSzaccx3iypd7Wyfr+sgQffOeA65guLZ5IQEcQ7+05wz5ULmT+0pyjA10hcWCCVI3RimyoZi8nzVpaUAOTMAAAgAElEQVQyg+MmVqvV20MQHiLZ6pdkq1+SrX5NhWxPdPay+3g7XxiajRgWGxpw3iVqDqfK158s5KtPFLLukTy+//diHE6V0rpOMuNDuWyh1pzA5O/Dopkh5zzPWY5+BM4BWP5PEJ0KTQfBMbH2vMN7cNp7+nl9bx1+RsNZr3NY2qxQUmeG8FJRjeu2v+VXMScyiLd+kMsPLp3Hxweb+NPWo1y9OJbvrD29UEqeETziDM5UyFi4h7eylALHTYZb8gn9kWz1S7LVL8lWv6ZCtu/t12ZZrl5y+i/+MeYAGs/TZOCtknoON9n46ZULuCV7Nu+XNfDanjq6+x0siQ9j3cIZACybE47RMI79N7VFEBAGUfMhJh0cdmib2M8p2M+In9HAwQYrL+6q4fLUaEKHZnVGcpMlntK6LkrrOtlb00FxdQe3rUxkcXwoP/n8ArbevY5fX5fGf27IOGtPUVJUMJUt3ZzZ0XcqZCzcw1tZyhI1IYQQQohxeHdoedrcGad3OYsJDaDFZmfA4aShs49jrd2sTtGKlkGHkz98dJiFsWa+s2YuPQMO3t53gl+9qS0ny0gIJdocwN2fX8DShLDxDahuN8QtA4MBYlK12xpLYcb8cb82RVEIC/LltT11+PsYuOfKhec9/vrMOH63uYKvP1nI7MhgzP4+bLAkuO6PDgng60PL186UFBWMtW+QFls/M8wTa2stxEhkBsdNEhMTvT0E4SGSrX5Jtvol2eqXt7Nt6OyjaITlaQCxIQGoqtYx7JHNh/jWpl109gwAWlOCqpZufrR+PgaDgsnfh1tXJmK1D2Ly9yE5SiuWvn/pPFbOixr7gOw2aCqH+KFLg0QtAMU4qUYD4UONBu66POW0zmkjHhvsx2vfW0lCRBAlNR3cZEnA5D+2v58nDxWIZy5T83bGwn28laUUOG4SETGOzYBiWpFs9Uuy1S/JVr+8ne2nh5sBuCIt9qz7YoZaRTd29VF0rJ0Bh8oH5Q2oqspfP60kdWYIVwy1SQa4dWUiQX5G0uNCMIxnSdqp6veA6oT4S7TvfQMgKkUreiZodmQQqTNDuHP1yM0FzpQSY+bV767kf2/J4sdXjH3WKDlquJPa6Y0GvJ2xcB9vZSkFjpsUFxd7ewjCQyRb/ZJs9Uuy1S9vZ1vRaMXPxzDiRTiHL/ZZUtNBXYfWIvmdfSfYdaydikYbt65MPG0fSniwH09808L916RNfEC1u7SvcctO3hadqi1RG03JC/D2/zvr5v/ZuJRXvrsSX+PYf030MRq4avFMgsc4ewMwKywQPx8Dlc3dbNpexWWP5OFwql7PWLiPt7KUPThCCCGEEGN0sMFKSrRpxCYAsaFagfPuUBOClXMj2X5EuxCmOcCHazLOXta2cu44lqONpG43RCRD0Cl/KY9Jg7JXoaft9NtP5XTAR7+GrlpY8T2Imue6K8DXOLkxjZHRoJAYGcRnVW0cbrTS0++Y0IVShTiTzOC4SXh4uLeHIDxEstUvyVa/JFv98na2FY1WFsSaR7wvIsgPX6PCruNtBPgauPvzCxh0qmytaObGrHiC/Nz8d2VV1WZwhpenDUtZDwYfeOV2cAyM/NgjW7TiBmD/P9w7rnFIigqmpKaDnn4HANWtPV7LuMVm55EPDtE34PDK8+uRt7KUAsdN5KJU+iXZ6pdkq1+SrX55M9uOnn4au+wsiBm5wDEYFKLNWqOBjPgwMhPCSIwMAuCW7NnuH1D7MbA1Qpzl9NtnZsA1/wVHP4bXvwulr2h7dU61exMEz4DZK2H/S1qx5AXDjQauy5wFQE17j9cy/sOWwzz2yRHyDjV75fn1yFtZenWJmqIo1wLXzpkzh7y8PACSk5Mxm82UlJQAEBkZSVpaGtu2bQPAx8eH3NxciouL6erqAsBisdDY2EhNjXahqZSUFPz9/Skt1dafRkdHM3/+fPLz8wHw9/cnJyeHoqIibDZtY1t2dja1tbXU1dUBsGDBAoxGI+Xl2ia92NhYkpKSKCgoACAwMJDs7GwKCwvp7e3FZrOxfv16qqqqaGjQpqZTU1NxOBwcOnQIgLi4OOLj4yksLATAZDJhsVgoKCjAbtf65ufm5lJRUUFTUxMA6enp2O12Dh8+DEBCQgIxMTEUFRUBEBISQlZWFvn5+QwOahf1WrNmDWVlZbS2tgLaPy6r1erqRZ6YmEhERIRrXWR4eDgZGRls3boVVVVRFIW1a9dSUlJCe3s7AFlZWbS1tXHs2LFpnRNATk7OuHLq6enh6quvlpymeE4TeT/19/ezcuVKyWmK5zSR95PD4SAlJUVymuI5TeT9BBAWFuaVnF58/1MAnO21wNwRcwpE+3ktjPKlubmZK+IcHDf74Givwx42+ZwSQhQKy46jKgYyDj1CuNGfYlsUXUO/R7ly6kogcc6XSdz/Euz/ByoGtq96hpnJqcQGOQk69D7Vs78E4UnMqX6Eve8+RUdwsttyGuv7KaqvDkuMkY0pBt4qgfw9BwhqKCEsLOyCvp92FJfy/E4th08ONhDQcnBSOU2X95OnP/dsNhtLly51W05jpZx5cSVvsFgs6nCA01VeXh7r1q3z9jCEB0i2+iXZ6pdkq1/ezPb/Co7x8zfKKLj3MmaGBo54zHef3c17pQ387VYLly2MGfGYCeuohv/O0hoKpF4HH9wLl/8Kcv/l3I+xNpycyfnGG5C8DrY9Ah//Gv55LwSGwyMpYLkdrnrIveMdp1UPfcwlieFcH9t5wTP+zTvlPJlfRdqsUNq6+8m/51Iau+y8X3qCb57RHEKMnbvfr4qi7FZV1TLacbJEzU3kH75+Sbb6Jdnql2SrX97M9lCjFXOAD7FD3dJGMtxoIGu2B/YeHMsH54C23OyDe7VCJ+cH53+MORbmX6n99wntr/BUbYPYxRCRBIFh2v37X4IB727wT4gIpKa994JnXN/Ry98Lq/lixixuviSBuo5eKlu6efCdcn75Vjk7q9ou6Hj0xFvvVylw3GTt2rXeHoLwEMlWvyRb/ZJs9cub2VY02FgQYz7vL23fzEnkv27OJGzoYpludXwHBITBd/Ih8xb40l/AOIbdBkEREDob6veCY1DrvJaw4uT9y++EnlatyPGi2RFB1LT1XNCMP6ts5YuPaUulfnBZCmvnzwDgiU+reGf/CQBeLa67YOPRG2+9X6XAcZPhtYlCfyRb/ZJs9Uuy1S9vZauqKgcbus7ZQW1YYlQw1y+N88wgqj+D2Stgxny4/o+ntXYe1cwl2gxOUzn02yAh++R9iashZjEU/NFrzQYAEsKDaLLa2bl77wV5vuLqdm55opCQAF/e+P4q5kWbSIgIIjkqmOd3VhPka+TyRdG8u/+EdFabIG+9X6XAcZPhzVlCfyRb/ZJs9Uuy1S9vZdvYZaerb3DUAsdjbM3Qehhm50zs8bMyoe0oHPlQ+z5h+cn7FAVWfBeaD0DlJ5Mf6wQlRGgd546c8PySMKdT5VdvlhEZ7Mdr319Fyimd8dYMzeJ8Y2Ui31qVhNU+yIfljR4fkx556/0qBY4QQgghxCj213UCnLNFtMfVfKZ9nWiBMzNT+1r0FJhiIeyMttWLN0BwNOz868THOEkJEVrjhuZep8ef67U9dZTUdvKzqxYSGuh72n0blsWzIjmCO1cnsyI5klmhAbxaXOvxMQn3kQLHTbKysrw9BOEhkq1+Sbb6Jdnql7ey/aCsAXOAD0s90TxgLI4XgE+ANhMzETOHrkfSWQOzs7VZm1P5+EPiKmipmNw4J2F4BicwMt6jz9Pb7+Dh9w+SkRDG9ZlnLydMjwvlhX/KISLYD4NB4bqlcWw73EJjl3ebMExH3nq/SoHjJm1t0mFDryRb/ZJs9Uuy1S9vZNs/6GRzWQPrU2Pw8/HSr07VBVrXNB//iT3eFA3mmdp/n7r/5lSB4dDrveWdM0z+BPgaONLQ4dHn2X28nSarnbs+Nw+DYfQuX1+2JOBwqry8W2Zxxstbn8VS4LjJ8AWRhP5Itvol2eqXZKtf3sh2x9EWuvoG+cLimRf8uQGw27QGARNdnjZseJnaOQucCK3AcXp+idhIFEUhPjyIo42eLXDK6rXlhksTxjYblxQVTE5yJC/sqsbp9P71I6cTb30WS4EjhBBCCHEe7+4/gdnfh9yUKO8MoK4IVAfMmWSBk7QGgmdA7JKR7w8MB9UJ9q7JPc8kzI4IornHs0VEWX0Xs0IDCA8eeyvvjdmzqWnrZfvRFg+OTLiLFDhukpyc7O0hCA+RbPVLstUvyVa/LnS2Aw4nm8sbuTw1Bn8f4wV9bpfjBaAYIH756MeeT/Z34K594HOOX+yDIrSvvd5b4pkQHkhLHx6dKSmr7yR1Vui4HvP5tBjCg3x5fme1h0alT976LJYCx03MZi91VREeJ9nql2SrX5Ktfl3obHdVtdHRM8CV6bEX9HlPU10AMekQEDK58xgM4Bd07vsDhwsc7+3DyZwdRs+Ak7J6bRbp9x9WcMfTu9x2/p7+QSpbukmPG9/P0t/HyI1Z8XxY3khX3wAA+2o7eGPvyBcB3X28nTueLuLPW49OeszTmbc+i6XAcRO5qJx+Sbb6Jdnql2SrXxc6222HW/A1KuTO89LyNMcA1O6a/P6bsQgc2pPS470CZ9XQz/nTI804nSrP7axma0Uzgw737As6cMKKqkLaOGdwAK5aHMuAQ2XroWYAHnirnB+9uJfq1p7Tjrv/jVJu/N8dbDnQyP98fIRu+yAAf9p6lPdLT5x13opGq24vJCoX+hRCCCGEmGI+PdzMsjnhBPv7eGcADftgoGfy+2/GIsj7MzjR5gASzAY+rWhhT00HzVY7Aw6V2vbeMT1+a0UzJTVnNyk40dmL06m6GgykzRr/bFhmQjiRwX5sOdBIfUcvRcfbcarwl09PztLsPt7GMwXH2bh8Ns98azk2+yDv7DtB0bE2HnrvIN95tpj/++y46/gnPq3kit9v45YnCunsGRj3mMTIvPRu1Z/IyEhvD0F4iGSrX5Ktfkm2+nUhs22x2Smr7+Luzy+4YM95luMF2tcLOYPjxT04AJb4YN6paD9t+Vdli43EqODzPs4+6ODOZ4oYcDj5yiWz+derF2IO8KXFZmftb/P4avZsevsdhAf5MjM0YNzjMhoULl0YzeayBhbGagVS7rwoXiqq5a7PzScy2I8H3j5ATIg/P79mEYG+RuZFm3h+VzUBPkaiTP4siQ/l56+XsrmsgdBAX97ed4LlSRHsre7g5r8U8NydK4gYR/ODqc5bn8Uyg+MmaWlp3h6C8BDJVr8kW/2SbPXrQma7/YjWMWtNyowL9pxnqS6A8CQwX4A9QAFh2tfRZnD2vwzNnrsg6PUrFtLvcPJcYTVL4rWlZJXN3aM+7sAJK/2DTlYkRfLirmr+sOUwADur2uh3ONm04xjvlZ4gbVYoypkXOh2jyxfF0NU3yB/zjrA4LpRfX5/OoMPJL94s5TfvHqCkpoO7P7+QID8fFEXhK5cksKe6g4LKVr63bi5//voyvr02mRZbP5vLG/lq9myev3MFT95qoaLRylPbqyY0rqnKW5/FUuC4ybZt27w9BOEhkq1+Sbb6Jdnq14XMdltFC+FBvhNazuQWjgGtwLkQszcARh/wD4We88zg9HXCq3fCjv/22DDstWX4+RgYdKrcfEkCYUG+VLaMXuDsqdYKs0dvziA3ZQafHGoCoLCylUBfI6kzQ+jqG5xUnqtTovAzGrD2DXJtxkySooK5LjOOd/c38GR+FdlJEdywNM51/A1Z8fgZDcSGBPDV7Nn4Gg3ce9Ui3rtrNYd+fSX//qXFGA0Kq1NmkDM3krf3nUBV9XOtHW99Fnt1iZqiKNcC186ZM4e8vDxAaydnNptdm5IiIyNJS0tz/YB8fHzIzc2luLiYri6tw4bFYqGxsZGamhoAUlJS8Pf3p7S0FIDo6Gjmz59Pfn4+AP7+/uTk5FBUVITNZgMgOzub2tpa6uq06dAFCxZgNBopLy8HIDY2lqSkJAoKtKniwMBAsrOzKSwspLe3F5vNht1up6qqioaGBgBSU1NxOBwcOnQIgLi4OOLj4yksLATAZDJhsVgoKCjAbrcDkJubS0VFBU1N2psyPT0du93O4cPaXyESEhKIiYmhqKgIgJCQELKyssjPz2dwUNvEtmbNGsrKymhtbQUgIyMDq9VKZWUlAImJiURERFBcXAxAeHg4GRkZbN26FVVVURSFtWvXUlJSQnu79mGRlZVFW1ub64JN0zUngJycnHHl1NOjbR6UnKZ2ThN5P9ntdmw2m+Q0xXOayPtpcHCQ6upqyWmK5zSR9xPg8Zz6zbPw8fXlo7I6FoQbOHjwwOg5LU2n+UA+lX1hE8opsKeezJy1VDVaXTlZ+j7F1NPKPudc2vLyLkhO2UogAT2tlO7fP2JOEa27WaI6GWw6SP7Q727ufj/193YzP8yXslYnMYNNRPk5KD5ci82WdN7309ZDEBPiz6E9hcQZBtjW3E9dRy955XUkh6jcMneA/+nxZ25wv+v3zom8n1Ykh7PtcCuR3cfJy6vhnnWLuMMSwdGjRzH59nH06JHTcvrOMhMrM1PZU7TzvDnlJgTx8JFWnnnrY3LTEnXxe4TNZqOurs5tn3tjpUyFKtFisajDAU5X+fn55ObmensYwgMkW/2SbPVLstUvT2db3drDmv/8xPX9f25Ywk2WhNEf+MqdUPYa/Kz6/K2YR6Kq8Ps0baZmw5PabW2V8MccSFkPNz87vvNNxl8u1ZoNfO2Vke/f8ivIfxSCouCnnmmBnJ+fj++sReyr7eTONcn8+KUSPj3czM5/u/y8j1vz209InRnCn76+jIpGK1f8fhv3XrWQh94/yP+7fD4//FyKW8ZXUtPB3poOvrky0S3nG9be3c8lv9nCHauT+dlVC916bm9x9/tVUZTdqqpaRjtOlqi5ifwfqX5Jtvol2eqXZKtfns72aIv2F+T7vrCI/964lOsy40Z5BFC/B/a/BM4B6Br5uigu/T1gt51+W1ed9r+anSdve+cnYPSDq347zlcwSYHh51+iVj3U9KCnxWPd1nJzc8lOjuTONdpFIpNnBNNktWPtO3eXsVabneq2HjJnazNoKdEmYkMC+PO2SlQVlidFuG18GQlhbi9uAMKD/Vg1L4q399XrZpmatz6LpcBxk+HpP6E/kq1+Sbb6Jdnql6ezrWnTliV/MXMWX8yYhZ/PKL8qqSps/jkwtGm9s+bcxzqd8Mx18LuF8Ml/QJ+2pIe6odfUWQ22Jug6AUc/gpX/DCGzJveCxiso4tyFy0Af1O2GyHna9y1HPDKEMzOeO0PrnnaspWekwwEoqdVaQy9N0AocRVFYnRJFW3c/fj4GMoZun+quWTKT2vZeSmo7vT0Ut/DWZ7EUOG4yvO5Q6I9kq1+SrX5Jtvrl6WyrW3sI8DUww+Q/tgcc/QiOfQo539e+7zzPDE7J81C7E2bMh60PaZv1QSsahtXthqqhjdnzrxj/C5iswPBzt4muLwZHP2R9Q/u+9fDEnuPMGawznJlxUpQJ0FpFn8ue6g6MBoXF8Scv4Ll6vtb9LjMhjADfse/f8KbLF8UAJzv4TXfe+iyWAkcIIYQQYkh1Ww+zI4LG3kb44LvgZ4Z192rfn2uJWl8XbPklxF8Ct2+BVXfB4Q+15WD1xTBjISjGkwVOQBjELHbLaxqXwAitU5rTcfZ9x3doX5d8BQw+0DKBAufgu/DbJGg+NOaHzIkMQlHg6HlaRe+t6WB+jJkgv5P9s3LnReFrVFg1N2r84/SS8GA/5kWbKDrm3WsRTXdS4LiJxTLqficxTUm2+iXZ6pdkq1+ezna4wBmz4ztgdjb4m8AUc3KJWumr8Oq3tSVsAJ/+Drqb4KqHwWCARdeB6oBD70H9XpizCmJSobYIqrZC0mrtuAvNdbHPjrPvO74DZiwCcwyEJ05sBmfP/2mzQMXPnPOQMzMO8DUSHx5IZfPIMziqqrK/rpOMU2ZvACKC/XjvrtV8e23y+MfpRZY54RRXd+B0Tv99ON76LJYCx00aGxu9PQThIZKtfkm2+iXZ6pcns1VVleq2HhLGWuB0t0LzAZizUvs+JO7kErX9/4B9L8CBN7U9NYV/0mY+4pZp989aCuZZsON/wN4FcVnafce3a0VS0lr3v8CxCBrajH/qPpyeNq1L3NGPIGWok1lkyvj34PS2a7NWKLDvJe06PyMYKeOkKBPHWkeewWm22enoGWBBrPms++ZFm6fN8rRhWXPC6ewd4Og5CrrpxFufxVLguMlwT3ahP5Ktfkm2+iXZ6pcns23t7qen38GcsRY4wx3FZg8VOKFxJ5eoNR3Qvn7y77D1YXAOwrqfnXyswQALv6AVSKAVN3HLtNkN8F6B45rBGVoi5XTApi9A2avaMrzL7tduj5qntbIeaSnbuZS/qXWaW/MTbTbryJYRDxsp41mhATR02kc8vqJBKwTmx5xd4ExHljlaBruPe6ZL3YXkrc9iKXCEEEIIIdCWpwHMjhxHgWP012ZfAEITtBmc/h5oPwaxi6H5IOx+CrK+CRFJpz9+0TXaV99giJp/cnbHPBOi3HPNlnELPGMG58Cb0FQO1/9JK9B8/LTbI1PAYYeO6rGfu/RlCE+CtfdA8AzY+/cxPzTa7E9rt51Bh/Os+yoarYB+CpykqGAigv0o0kGB4y1S4LhJSoqXPoiEx0m2+iXZ6pdkq1+ezHa4RfSY9+Ac3w7xFvAZ6rgWEgcD3VqnNFRY/WOtUYBPAKy5++zHz1mlNROYlQkGo9ZowD8UktfBWJscuFvQ0AxOT5u2f+jTRyFiLqTfcPpxwwVY6xiXqVkboOpTWLwBjL6w5GY49P6Ie31GynhGSACqqs2ynelwk5XwIF+iTH5jG8sUpygKWbPDdTGD463PYilw3MTff4ztJMW0I9nql2SrX5Ktfnky2+pWrcCJDx9DgWO3womSk/tvAELjta+HP9S+RqfCzc/A11+HkJlnn8PoCzc9BZ//jfa9wQi3vQtXPDiJVzFJriVq7XD0Y2jYp3V8M5yxjyVy6BfXloqRz3NiH+Q9pF3XByDvP0AxaPuQAJLWaMvVRnj8SBlHm7XbmrrOXqZW0WgjJcY89s5304AlMZyqlm5abSMvy5suvPVZLAWOm5SWlnp7CMJDJFv9kmz1S7LVL09mW93WQ0yI/9g2pR/LB9U5coFz5CMw+kFEsva/OTnnPs/cy7SGA8Ni0yHYi22N/UO1QqSnVds7ZJ4JGV85+7jgKAibrRVBp+rvhqe/CH9erRU1z96oFXy7N8GK72p7d0CbFYIRZ4BGythV4Fj7APjxSyXc8/I+VFWlosHK/BjThF/yVDS8D+ezyundLtpbn8VS4AghhBBCMI4W0d2t8O7d2p6bhBUnbw+J0742H9BmOIy+nhmoJxkM2rK54megphAu/beTS/BOpSiQdgMc/UT7eQwrf0Nrc73uX2HDU9r+nb/fBCHxJ68VBBA+R7vuT+vRMQ0rOiQAgCarNqOx42gLrxTXUlbfhdU+qJv9N8OWzg4nyuTHu/tPeHso05IUOG4SHR3t7SEID5Fs9Uuy1S/JVr88mW3NWFpEOx3wyre0pVdffgb8TjneFAOGoaImeqHHxulxQRFal7OktbD0a+c+bvEG7Vo+B944edu+FyFsDqz9qbZv54uPgW8gXPOodq2gYUZfrchpO7vAGSnjGaaTS9Tsgw4auvoYdKo8/P5BAFKi9VXgGA0KV6XP5KODjfT0D454zHS4To63PoulwHGT+fPne3sIwkMkW/2SbPVLstUvT2Xb2+/gRFcfcyKCz3/gwXegMg+u/u3J7mnDDIaTe21mLPLIOC+IwAjwCYRr/3D+Zgcx6Vr3t9JXte+7TkDlVq2BwPDjMjfCz6ph/ufPfnzE3BGXqI2UsZ+PgfAgX5qsfdS196KqYFDg08Mt2mN0tkQN4AtLZtI34OSjA00MOJzsr+103fd+aQMZD2x2NcaYqrz1WSwFjpvk5+d7ewjCQyRb/ZJs9Uuy1S9PZfuHjw6jqrAiOeL8B9bvAYMPZGwc+f6QoX0403kG57L74CvPnt3W+kyKAuk3avuRuuq1NtCoWoFzqnMt1YucB62VWre2U5wr42hzAE1Wu6ud9/VLtSWBUSY/Ik36ayxySWIE0WZ/XttTx/f+Xsy1j+WTP1TQvVlSh7VvkP/dOrYlft7irc9iKXCEEEIIcVErrm7nL9uOsnF5AtnJkec/uLEUohaMvC8FTjYamM4zOMlrYd7lYzs2/UZAhWeuh8I/a9fyGW4kMJrIuVpbbWvDmA6PDvGnyWqnpr0XgO+tm0uAr0F3y9OGGQ0KVy+eyccHm/iwvBFfo8Lb++rpH3SyraIFX6PCP4pqqO/o9fZQpxwpcNxEWpLql2SrX5Ktfkm2+uXubJ1Olbv/UcLM0ED+9eoxFCWNZVqns3OJXgRBkaPPfuhFVArc+CT4m6GzBpZ+feyPjRzqpHbGPpxzZTzD7E9zVx81bT34+RhIjjLx6Jcz+X9X6HdJ6oZl8ZgDfHjw+nSuSp/JB2UNFFS2YrMP8q9XL0JV4fFPjtDTP4iqTr09Od76LPbxyrPqUE7OeVpAimlNstUvyVa/JFv9cne2jdY+jjZ386svpmEOGKXrWU8bdNVBTNp5BvgDyPrm2deN0bPFG7T/WRvBNI5N5a5W0UchMdd187kyjjYH0Gyzc7y1m/jwQAxDMxxu03wINt8HX/qz1mhhCkiPC6Xk/iswGBSiTP68WVLPw+8dxM/HwJctCRxqsPL3wmr+XljNnMggPv7xOoyGqXM9IG99FssMjpsUFRV5ewjCQyRb/ZJs9Uuy1S93Z1s7tNxpTuQY2kM3Dl3TI+Y8Mzg+fhA8yjI3vTLHnL8pwZlC48HorzUaqNkFm38OqnrOjKPN/gw4VPbXdo6tnfd4bfklHN4MB992/7knwTBUsKxbMINgPyPlJ7pYkRxJsNU1pbAAACAASURBVL8Pv7g2jYduWMz1mbM43tpDbfvUajrgrc9ir87gKIpyLXDtnDlzyMvLAyA5ORmz2UxJSQkAkZGRpKWlsW3bNgB8fHzIzc2luLiYrq4uACwWC42NjdTU1ACQkpKCv7+/6+JC0dHRzJ8/37XRyd/fn5ycHIqKirDZbABkZ2dTW1tLXV0dAAsWLMBoNFJeXg5AbGwsSUlJFBQUABAYGEh2djaFhYX09vZis9mw2+1UVVXR0KCtJU1NTcXhcHDo0CEA4uLiiI+Pp7CwEACTyYTFYqGgoAC7XevrnpubS0VFBU1N2pV/09PTsdvtHD58GICEhARiYmJc/2BCQkLIysoiPz+fwUGtjeCaNWsoKyujtVXrS5+RkYHVaqWyshKAxMREIiIiKC4uBiA8PJyMjAy2bt2KqqooisLatWspKSmhvb0dgKysLNra2jh27Ni0zgm0vyaMJ6eeHu3DQnKa2jlN5P1kt9ux2WyS0xTPaSLvp8HBQaqrqyWnKZ7TRN5Pqqq6Nacd9drYnNYW8vLKz5tT1fY3SAGKavuwzENycsP7yc8/GvuBbZj2/gO/nhNsZxnt/T7k5+ef9X4KCZoNQH1nH4tCB6mrq3Pb+6m68E0sh94FwHHgHT7t0p4r0N+P7JyVUyanxVEGPqt3MNvYidPp5MihcmJ7Wknzd/A6UFBWRZWzxe05TfRzz2azuTWnsVKmwno9i8WiTve/tuXl5bFu3TpvD0N4gGSrX5Ktfkm2+uXubB/7+DCPbK7gwANXEug3yi9Qr38fDn8Ad5/d2lhM0Au3nD5j8q0PyKvsGzHjnVVtfPnPWoH4b1cv4s41ye4bx3M3axc2Tfm8drHSe6pg30vakrUf7AJzrPueaxK2H2nhu8/u5v1/WcOssEDX7Z09A2Q8sJl7r1rIt9fO9eIIT+fu96uiKLtVVbWMdpwsUXOT7Oxsbw9BeIhkq1+SrX5Jtvrl7mzrOnqJDPYbvbgBaNx//uVpYvwihoqUpDXa19aj58w42nxyw/qoF2Qdj73PQ8X72v6pJTfBYC8ceg8+fhDsXVD8jPuea5JWzYti3y8/f1pxAxAa5EuUyZ8jTTYvjWxk3voslgLHTWpra709BOEhkq1+Sbb6Jdnql7uzrW3vJT48cPQDHYPQdPD8DQbE+KVcAXNWwY1/A8UIbUfPmXF0yKkFzhgyG43TCR/8G7z+HUhcDSu+q331M8HbP4LuJghPgt2btPynuHnRwRxpnloFjrc+i6XAcZPhNYJCfyRb/ZJs9Uuy1S93Z1vX3kvcWAqc1iPgsEPsYrc+/0UvaTXc9i6YZkD4HGg9es6Mg/x8MPlr28fdMoNT+L9Q8Bhccid8/TXwC9aubzT3MujrgPlXwhW/1jrnHf5g8s/nYfOiTRxtso2rXXRTVx8tNrvHxuStz2IpcIQQQghxUVJVlbqOXuLCxlDgHP1Y+xq3zLODuphFzIW2yvMeEm32JzzIl5DRWnqPpuUwfPQAzL8Krv5PMJ5yvvQbwegHl92n3W+eBbuenNzz/X/2zjs8jurqw++uVr13Wb1LtizLlmXLRbgAxhRTbHrvoYWQECDflwBfEggkQEgIJJDQIYbQjWkmgHuTLXdZtrpl9bLqXdqd74+xZMtW16xmd7jv8/gZ7ZR7z+qnO54z99xzJoFYfzeaO3upHaXD0tjezYV/28r8p3/gwQ/3c9xoXRnYJoJwcBQiISFBbRMEFkJoq12EttpFaKtdlNS2rrWbrl4zod4jzAZIEuxfDcGz5MKWAsvgKzs4CfFDF+4M8XYm2t9tYv2YTbDmXjA4wcV/PTO19bRL5UQSQclgZ4DUm6DwB2g8PrF+LUxsgDvAqNfhPPnVERrbu1k5K4R12VXc8tYuOntMitqk1r1YODgKMZbUdQLbQmirXYS22kVoq12U1LavZsiIMziVB+QaODOvV6xvwSD4xEB3K/bdDUOe8vSqZP5y1cyJ9VOxH8p2wbm/HTw7mk4HTp4nP6dcI28PfTyxfi1MTIArAIWjcHC25tfx8Z4y7loczTNXpPCvG9Moqm3jmXW5itqk1r1YODgK0ZfnXqA9hLbaRWirXYS22kVJbcsb5bomoSMtWN+/Wi5ImXyFYn0LBuFERrXS/RuHPCXU24Xw0RRlHY6+gq3RS0Z3vk8UhKXDoY8m1q+FCfJwws3RMKoZnD9/l0ukrwv3ny3PSGbE+XHT/Aje2FbMh7tL6e41K2KTWvdi4eAIBAKBQCD4UVLWIDs4w87g9HbJD7aJF4Gz9yRZ9iPFV3ZwnDsqLdtP9WGwdwWviNFfk3wl1ORAVbbl7JogOp2OGP+RM6l195o5XN7M8ulBONmfnGH5nwsSmTrFg0c+Ocj8p3/gzW3FmM3q18scD8LBUYigIOsoACVQHqGtdhHaahehrXZRUtvyhg48ne1xH27BeuF66GiAlGsV61cwBJ7hoDfgp2+2bD81ORAwFfRjeAxOWgV6Axz8wHJ2KUBMgBvZ5c3sLDIOmU0tv6aFbpOZ6cGeA/a7OBj48v4M3rxlDlOnePC7L3K4/rXM/lDO8aDWvVg4OAoRFRWltgkCCyG01S5CW+0itNUuSmo7qgxqeevkuijRixXrVzAEdgbwjsRbqrdcH5Ikz+AEThvbda6+EHsuZH8it2GlXDs3HHs7Pdf8aydXvLKD9Uerz3B0DpfLDuT0EM8zrrfT61iaGMC7t8/lj6uSOVjWyKd7x5/qWa17sXBwFGLHjh1qmyCwEEJb7SK01S5CW+2ipLZlDe3D18CRJMj7L8QsleujCCyPTwwdpRYMA2utho56CBhHwdZpl8o1caqtN0xtTqQPW3+1lCcuTaKqqZPb3sri3tV7B5xzqLwJd0cDEcPUEtLpdFwzN5xvf7GIe5bEjNsete7FwsERCAQCgUDwo0OSJLnI53AzOFWHoKVCroUimBx8Y3HuqABTr2Xarz4sb8c6gwMQvVTeFvwgb3u7odPC4XTjwMnejhvnR7Lx4SVclx7OusNVNLX39B/PrmhiWrAHer1umFZkQr1dsLezPXfB9iy2UpydR1EkTGCTCG21i9BWuwhttYtS2ta0dNHWbSLKz/XMg8czoasV8r4FdBC3TJE+BaMgbA525i6o3C9/LtoIe95Wrv2aE1m9xjOD4zFFvq6v6OsXD8DLC2RH53S62+HwZ6NLSmAsHLyNCWJvp+fSlGAkCTKLjQD0mswcqWweNDzNEqh1LxYOjkKkp6erbYLAQghttYvQVrsIbbWLUtr2pdKNDTitaKSxEN44D15fBtkfQ8hscAtQpE/BKIg8S94Wb5K33z0O/31s9OteCtfL/8ynFKw09cqFPUu2Q3UOuAXJa2rGQ8xSOL4D6vLh0IfQVAo5awaes/0leC4eProFPrn9pO3fPX6ms7b/fXhxNvx7FXS3jc+mYZgZ7oWjQc+OItnBKaxto7PHTPIkOThq3YuFg6MQmZmZapsgsBBCW+0itNUuQlvtopS2Qzo4tUflrbFA/jn+fEX6E4wSVz/a3aOgeDM0HpeLrHY1QVvtyNf2dsP718K7K+EvSXBsm7y/fI9cy+g/10HJ1vGFp/URczaYuk84LmbwCIWd/zjpxFTnwHePQWgazLtP/hsqy5L/bXsBvvgZbPsb9HTA3nfh83shMAlKtsG/r5BnDhXE0WBHWqQ3OwplBye7vAmA6SEeivYzFGrdi4WDoxAdHR1qmyCwEEJb7SK01S5CW+0yHm2zy5soMQ58O15Q04q7o4EA99OSBxgL5O3t38HsWyD1xnFaKhgv9R7T5TDB7E9P7qzLH/nC6mzo7YS5P5Gdj+1/k/cf2yJvJbPsNAVMwMGJWAAGJ9nxmnoJZPwcKvZB6S7Zyfn21+DoDle8AUv/V663s+8d2P4iOHrK13z3GDwVAmt/CuEL5L+1Va/C8e2w+7Xx2zYE86N9OVrVQkNbN4fKm3C2tyPKz23kCxVArXuxcHAEAoFAIBBomntX72XlP7ZTeEoBxIKaVmIC3NDpTltobSwAV38IngkXvwDuoqbSZNPgnQy9HbDtr+DiJ+80jsLBKd8jbxf8TM54VrQJejrh2FbZqbnyLbmWTdjc8Rtn7yw7OQDzfyrXR3LyhG8ehm9/A0UbYMn/gouP7OgkrYRDH8ORtZB2C1zxJpz9mOwYXb0abvgEHFwg+QqYkgJHvxq/bUMwL1oOx3tv13HWHqggJcwTu1EkGLBlhIOjEPPnz1fbBIGFENpqF6GtdhHaapexatvRbeJ4fTv1bd3c+FomFY3yG+WC2tYzw9NAXoPjG6uEqYJxEr/sVtDp5QKrabeCnePoZnDK94BrAHiGQtx5spNUtBFKM+W1PTFnwyPF8izKRFj4AJz1EITNAUc3WPYENFfCzr+DXwLMuePkuak3Qk+7/H3m3iXX+ln0EJzzOExdAfZOJ89NuAjKdkNrzcTsO40ZoV4429vx7Le56ICnViYr2v5wqHUvFg6OQhQXF6ttgsBCCG21i9BWuwhttctYtS2qk2dt7lsaQ3NnL3/4+ghN7T3UtnQRN5SD4zP+uh+CiVNcWQ9BM+QP0y4F35iToYPDUZYlr33R6SAyQw4l2/Qn2cGIzJDPcfKQj0+E6CVwzmMnP8++GR7Oh4fy4Y7vwc7+5LGwdAieBbNuBM+Q4dtNvBCQIPebidl3Gg4GPQtj/XB3MvDO7XOJ9p+c8DRQ714sHByFqKqqUtsEgYUQ2moXoa12Edpql7Fq25dM4JKUEC5PDeH7nGr2lzUCgyQY6GqB1ir5gVqgGlVVVXLoV+RZEDhdnlEbaQano0EOYwtJlT/bO0PUIqg4UeSyz8GxJG4BsgN1Kjod3LkBVvxl5OsDp4NnOOR+rbhpf74yhQ0PLSEpeHKyp/Wh1r1YODgCgUAgEAg0S2FtG3odRPi6cMnMYLp6zfx9gzwbMGiKaBAhatbAvLvhli9lB8EvDhqODV8rpmKfvA1JO7kv7jx5GzhdXhOjFjrd6GaNdDpIuEAOq1M4ZbSniz1+bo4jn6gRhIOjENOmTSAjh8CqEdpqF6GtdhHaapexaltY20qYjwtO9nakhnsT6u3MruJ6HAx6Qr1dBp7cFwYlZnBU5QyNfeNAMslOzlCUnUgwEDzr5L7Yc+XtZMzeKEXihXImuKKNaluiCGrdi4WDoxAmk2nkkwQ2idBWuwhttYvQVruMVdvCmlZiTqw50Ol0XJwSDEC0n+uZmaTqi+StT/SE7RSMnzM09ouTt8NlUivfA37x4Ox1cp9PFFz+Oiz8ufJGWorw+WDnIBcT1QBq3YuFg6MQubm5apsgsBBCW+0itNUuQlvtMhZtTWaJ4ro2Yvxd+/ddOlN2cAbPoFYAnmHy+g2BapyhcV/I4HDrcCr2QXDqmfuTrwCPKcoZZ2kMjvIs1HFtFCtW614sHByBQCAQCASapLyhg65e8wBnJjHIg1sWRHJ5auiZFxgLxOyNNeLsJdcmGmoGp6NRTg4RMHVy7bIUYXOhcr9cw0cwLoSDoxAhISOk/hPYLEJb7SK01S5CW+0ynLYNbd2U1rf3f+4r7BlzWlrc316SxNLEgIEXS5Ls4IgEA6ozqMa+cVA3RKroujx5659gOaMmk7B0MHVD5QG1LZkwat2LDar0egKdTncxcHFERAQbN24EIDo6Gnd3dw4ckEX19fUlKSmJzZs3A2AwGMjIyGDv3r00NzcDkJaWRnV1NaWlpQDExcXh6OhIdnY2AAEBAcTHx7N161YAHB0dmT9/PllZWbS2yje/9PR0ysrKKC8vByAhIQE7OztycnIACAoKIioqih075JhIZ2dn0tPTyczMpKOjA0mSCA8Pp7i4uD8l3rRp0zCZTP3TcyEhIYSGhpKZKU87urm5kZaWxo4dO+jq6gIgIyODvLw8amrkIk/Tp0+nq6uL/Hz5rUVYWBiBgYFkZWUB4OHhQWpqKlu3bqW3txeARYsWcfjwYYxGIwApKSm0tLRQVCTHFkdGRuLj48PevXLqRG9vb1JSUti0aROSJKHT6Vi8eDEHDhygoaEBgNTUVOrr6zl27JhN6wRy0amx6OTsLIcqCJ2sW6fxjKegoCBaW1uFTlau03jGU2JiIsePHxc6WblO4xlPc+fOHVSngqJifru9g7JWibRwDxb7d1HeKgEQ5efS/5wxqE6zZ9Ox+W/4dzaR36jHpbxc6KTifU+SJKqrqwfolNjlSEB7LsWFhWeMp7qta0kE8pvsiOrttXmd7LtNLAS6Cjazo6jDanWCke97kiTh4uKi2HgaLTpJkkZ9sqVIS0uT+gaarbJx40aWLFmithkCCyC01S5CW+0itNUuQ2n7l+/yeOGHfK5LD2dzXi1lDR0EezrR2Wtm72PLhm907c9g79sQfwFc/ppcnV6gGoNq/N3/wY6/w6M1oD8tAOnb38CuV+E3laAf/UOwVfPCTAhMgmtWq23JhFD6XqzT6fZIkpQ20nkiRE0gEAgEAoFNc7SqmX9sLOCymcE8tTKZ7x9czLVzw6ho6hyQYGBQ2upk52b2LXDNe8K5sVbcp4C5BzrqzzxWlydnWtOKcwNymFppphw6KRgzqoaoaQk3N3FD1CpCW+0itNUuQlvtMpi2z32bh5ujgccvTgLAyd6Op1fN4JzEQAI8Rihu2CSHOxG77MyZAYEqDDp+3YPkbUsluPoNPFZ7FELnWN6wySQ8HQ7+BxqKbTrxhVr3YjGSFSItbcTZMoGNIrTVLkJb7SK01S6na1vf1s3G3BquSgvDx9VhwLFzpwUyI9SLYWmSY/zxFIkprIVBx6/7iVTPLfK6F0q2y6mUu9uhsRT8NJJgoI/Is+Rtzlp17Zggat2LhYOjEH2L0QTaQ2irXYS22kVoq11O1/arQ5X0miUunTlOB6X5hIPjMUjaaIEqDDp+3QPlbUulvP3qIfjwJqjJASTtZFDrwy9OdnJ2/QtMPWce7+mEY9sm364xota9WDg4CtGXFUOgPYS22kVoq12EttrldG0/31dOfKAbU6e4j6/BpjKwczwz7EmgGoOOX7e+ELVqeV1KfZFc+2b9k/J+rTk4APN/KjvgOZ/Lf6fbX4LeE7+bXf+Ety60eidHrXuxWIMjEAgEAoHAJimtbyerpIGHlyeg0+nG10hzuRyeNt7rBZODvRM4e8szOC1V0CunT6ZoA+jswCdGXfssQdx5cl2mDU9BZyO0G8EtAGZcBUe/ls/Z8hxELlTXTitEzOAoREZGhtomCCyE0Fa7CG21i9BWu5yq7UdZcoKAS2cGj7/BpjLwEOtvrIkhx6/7FNm5aSiWP8+4Rt76RIPBYfBrbBm9HubdA/WF4Oovf/9DH8uZ/0oz5bDKwvVQvkdtS4dErXuxcHAUIi8vT20TBBZCaKtdhLbaRWirXfq03VPSwD82FnLB9CBCvV3G32BTOXiK9TfWxJDj1z1InsGplwtZctYvwTMcpqRMnnGTTeotcMWbcMcPkHwlFP4ABz8AJFj5Cjh5yTM8dQXQ2622tWeg1r1YODgK0VeJVqA9hLbaRWirXYS22qWmpoa61i7uW72XYC9n/nj5jPE3ZjbJD8xiBseqGHL8ugVBazXUF4PeIM/c3PkDrHh+cg2cTOwMMH2VXJ9p+uVg7pUdGvdgiMyABfdDwffw0mz420ww9apt8QDUuhcLB0cgEAgEAoFVYWzt4oXv8+k1mc84tqe6l4v+toWG9m5eviEVT2f78XfUUgWSSaSIthXcg2TNjAXgGSY//LsFgJOn2pZNDlNS5LVG3a0Qv1xeN3bWL+H272HuXfJ6ssYSta20CoSDoxDTp09X2wSBhRDaahehrXYR2to2n+0r5y/f53GovGnA/vcyj/Pivi58XB358K75JAVP8MG2L0W0Z9jE2hEoypDj132K7JCWZdl08ctxo9NB8hXyzwkXntwXNkcOXwOozVXHtiFQ614ssqgphEhJql2EttpFaKtdhLa2TU5lMwBFtW3MCvfu379mfznRvk6s/elC7O0UeEfbJCcpECFq1sWQ49f9RKro5jJIOH/yDLIm0u8Ge2eIOXvgfv94eVuXC1w46WYNhVr3YjGDoxD5+flqmyCwEEJb7SK01S5CW9smp0J2cAprW/v3NXX0sKekgWmeJmWcG5ATDIAIUbMyhhy/7lNO/uwdNTnGWBsuPpDxCzk871ScPOU1SrXWlWBFrXuxcHAEAoFAIBBYDZ09JgpqZMemqLatf//W/DpMZokZ/nbKddZcDg7uP541HLaOe+DJn3+MIWoj4R9/YgZHIBwchQgLE/G7WkVoq12EttpFaGu75Fe30muWcDDoKao7OYOzMbcGDycDS6ZHKNdZU5mYvbFChhy/bqc6OD/SGZzh8EuQZ3AkSW1L+lHrXiwcHIUIDAwc+SSBTSK01S5CW+0itLVdcirlxAJnJwRwrK4dk1nCbJbYmFfLonh/gqcEKddZU5mogWOFDDl+DY7g4iv/7B05afbYDP4J0N0ipz63EtS6FwsHRyGysrLUNkFgIYS22kVoq12EtrbL4Ypm3BwNLE30p9tkpqyhnZzKZmpbuliSEKCsts3lIsGAFTKsxu5T5Bow9s6TZ5Ct4Hci0cBYMqm110NXi2XsQb17sXBwBAKBQCAQWA05Fc1MneJObIAbICca+G9ONTodLI73V66j7jZoqwUvEc5oU4SmQeRCta2wTvwT5G3dKBMNdLfDPxfBX2fA3nfAfGbdKVtFODgK4eHhobYJAgshtNUuQlvtIrS1TcxmiSOVzSQFexLtd8LBqWnjs31lLIzxw9/dUTlt+x4C/RKUaU+gGMNqfPELcPlrk2eMLeEWCI6eo5/B2fGSnCrdMxTW3g9f3K+4SWrdi4WDoxCpqalqmyCwEEJb7SK01S5CW9ukpL6dtm4T06Z44O3qgI+rAx/tKaW0voNVqXIomWLa9j0E+gsHx9oQ43ec6HQnMqmNYganuRK2/gWmXgJ3bYYFP4N9/4ajXytqklpaCgdHIbZu3aq2CQILIbTVLkJb7SK0tU12F9cDkBwqp22O9nMlr7oVFwc7lifJyQUU07Y2F/QGkW7YChHjdwL4JcDxnfCPBfCf6+WfB2Pj02DuhWW/kx2jsx+DwGT44gForVXMHLW0FA6OQvT29qptgsBCCG21i9BWuwhtbZMvD1US7uNCYpA7ADH+cpjaBdOn4OooFzYcl7bf/Ao2PTNwX10e+MSAnf2EbBYojxi/E2DO7ZB0mZxG+/hOeGM5rP3ZwHNMPXD4M0i+6qSDb3CAlS9DRz38OR5eTIPdr0845bRaWhpGPkUgEAgEAoHAshhbu9hWUMddi6LR6XQAxAS4AnB56gQynUkS7Fstp8/1i5cf/kCewQlInKjZAoF1EZJ6co1Sd5s8I7N/NZz/NDjI44nSXdDVDPHLB14blAy3fQv530HRBvjqQfncFX8BB5fJ/R4TRMzgKMSiRYvUNkFgIYS22kVoq12EtrbHN9lVmMwSF6cE9++7PDWUP6yczrxo3/59Y9a2pUp2buwc4fOfQl0B9HZDfZFIMGCliPGrEA6uMONqORSt7JR0zQXfy+GZ0YvPvCY0DZb+L9y6Dpb8Gg5+AJv+NG4T1NJSODgKcfjwYbVNEFgIoa12EdpqF6Gt7fHlwQpi/F37w9MAfN0cuT49Ar1e179vzNoa8+XtiufBzgD/fRTqC0EyiQQDVooYvwoSOgfQDVyLU/A9hKWDk+fQ1+n1sORXcNPnsOihcXevlpbCwVEIo9GotgkCCyG01S5CW+0itLUtKps6yCyuZ8WM4P7wtKEYs7Z1JxycqMUw+1bI/xaKNsr7hINjlYjxqyDOXhA4HY5vlz+3VEPVQYg9Z3TXRy8GR/eRzxsCtbQUDo5AIBAIBAJVeerroxj0uv5U0IpiLACDM3iEQOqNIJlh87OADnzjlO9PILA2wudB6W4w9ULhenlf7Lnq2mRhhIOjECkpKWqbILAQQlvtIrTVLkJb2+G7nGq+OFDB/WfHEeHrOuL5Y9a2Lh/8YuWQG59oiFoE7UbwCrO5hdM/FsT4VZjwedDTJs/cHP4UXAPklNCTgFpaCgdHIVpaWtQ2QWAhhLbaRWirXYS2tkFLZw+PrjlEYpA79yyJGd01Y9XWmD9wpib1ZnkrEgxYLWL8Kkz4fHm79n7I/y/Mu1t2+CcBtbQUDo5CFBUVqW2CwEIIbbWL0Fa7CG1tg7e2HaO6uYs/Xj4De7vRPZKMSdueTmgoAb9THJypF4NHqLzIWmCViPGrMJ4h4BUO1dlyVrWMByeta7W0FHVwBAKBQCAQTDqtXb28vq2YcxIDmBnmZZlO6osAaeAMjsER7t8Ddg6W6VMgsEZSroXKA3DJizBCIg8tIBwchYiMjFTbBIGFENpqF6GtdhHaWj/v7iihsb2H+88Z20L/MWnblyLaL3bgfnunMfUpmFzE+LUAS3+tSrdqaSlC1BTCx8dHbRMEFkJoq12EttpFaGvdtHf38tqWIhbF+4959mZM2valiBbZ0mwKMX61g1paCgdHIfbu3au2CQILIbTVLkJb7SK0tW7eyzyOsa2bn50dO/LJpzGstrtelVNAS5L82VgA7sHg6DZOSwVqIMavdlBLSxGiJhAIBAKBYNLo7DHxr81FzI/2JS1Swbe7m56FDU/KP5t6IP58uWJ74HTl+hAIBDaBcHAUwtvbW20TBBZCaKtdhLbaRWhrvXyYVUpNSxd/vWbmuK4fVNtdr8rOzYxrQG+ATX+CLX8G9ylw3hMTtFgw2Yjxqx3U0lIn9U3jqkhaWpqUlZWlthkCgUAgEAgsiLG1i4tf3EqwlzMf3T0fnRLZnMwm+Mt08I2Bmz6Xw9M+vw+6W+Hiv4Gr74SaL20u5bb/3sY9KfewKm7VxO0VCATjRqfT7ZEkKW3E89R0cHQ63cXAxREREXe+9dZbAERHR+Pu7s6BAwcA8PX1JSkpic2bNwNgMBjIyMhg7969NDc3A5CWlkZ1gPa4EgAAIABJREFUdTWlpaUAxMXF4ejoSHZ2NgABAQHEx8ezdetWABwdHZk/fz5ZWVm0trYCkJ6eTllZGeXl5QAkJCRgZ2dHTk4OAEFBQURFRbFjxw4AnJ2dSU9PJzMzk46ODlpbW1m2bBnFxcVUVVUBMG3aNEwmE7m5uQCEhIQQGhpKZmYmAG5ubqSlpbFjxw66uroAyMjIIC8vj5qaGgCmT59OV1cX+fnyQsmwsDACAwPpcwg9PDxITU1l69at9Pb2ArBo0SIOHz6M0WgE5CqyLS0t/bnIIyMj8fHx6Y+L9Pb2JiUlhU2bNiFJEjqdjsWLF3PgwAEaGhoASE1Npb6+nmPHjtm0TgDz588fk07t7e1ceOGFQicr12k846m7u5sFCxYInaxcp/GMJ5PJRFxcnNDJinQqaTbxrxwdNc0dPDzHiXhvu3GNJwAvL69+neZ6N+Hy2U1kJ/2KOv8Fiuu0pWULH9Z/CMCFnheS4pJCgEsA52acq0mdQP37XmtrK15eXmI8WblOMPJ4am1tZdasWYrpFBgYaP0OTh9amMHZuHEjS5YsUdsMgQUQ2moXoa12EdpaFzUtnSx9diMezvb888bZzAgdf92bM7T98CY4thUePAoG5WvbPLr1UbaUb2F+8Hy+KvoKAIPOwNrL1hLmEaZ4fwIxfrWE0lqOdgZHZFFTCEWm2QVWidBWuwhttYvQVn32HW+gvq0bkGvetPeYePf29Ak5N3Catm11cPRree2NBZwbgOy6bJL9knkq4yneOv8tfr/g9/RKvWwq22SR/gRi/GoJtbQUDo5CLF68WG0TBBZCaKtdhLbaRWirLofKmrj85e3c9EYmTe09vLuzhHOnBhIbMPF0zQO03fcumHtg1g0Tbncw2nraKGoqIskvCb1Oz+zA2ayMW0mkRyTbKrZZpE+BGL9aQi0thYOjEH2xiQLtIbTVLkJb7SK0VQ+TWeLXnx3C1cFAdnkzq17eRmN7D3eeFa1I+/3aFm6A9U9C3HkQOE2Rtk8nx5iDhESyX/KA/QtDFpJVlUWXqcsi/f7YEeNXO6ilpXBwFKJvcZZAewhttYvQVrsIbSefo1XNrMuu5NlvczlU3sRTq5K5bWEUhbVtpIR5MSdyjOliewd3HhoaGqBiP3xwI/glwOWvKWD94ByqOwTAdN+BtXQWBi+k09TJnuo9Fuv7x4wYv9pBLS1FHRyBQCAQCAQToqm9hytf2UFLp5zdaUmCPytmTGF5UhBmSeLSmcFji8XPXQcf3QwPHAD3oAGHvBoOwFvPgpMnXP+RvLUQ2XXZhLmH4eU0cN1QWlAaDnoHtpVvY0HwAov1LxAIxodwcBQiNTVVbRMEFkJoq12EttpFaDu5vL61iJbOXl69KQ1fNweSQzzR6XQ4GHT89pKksTd48APo7YSqQwMdnML1pBz6PfjFw/Ufg2fIsM2sPrIaF4MLK+NWjt0G5BmcWf6zztjvbHAmNTCV7RXbx9WuYHjE+NUOamkpQtQUor6+Xm0TBBZCaKtdhLbaRWg7eTS0dfPGtmNcmBzEsmmBpIZ7Y283gceL3i7I/07+2Vgw8FjmPzE5+cJt60Z0bgD+c/Q//PPgP8dlRl1HHVVtVUz3mz7o8YyQDAoaC6hqqxpX+4KhEeNXO6ilpXBwFKKvIJJAewhttYvQVrsIbSePV7cU0dbdywPnxCvTYPFm6G6Rfz7Vwelug6KNVHnPGXVYmrHTSHlrOWUtZcOe197Tzul1AXdUyIUeZwfOHvSas0LPAmBTqbrpog8bD/Py/pd5aNNDNHRqY+2KGL/aQS0thYMjEAgEAoFgXLR39/LuzhIumB5EQpC7Mo0e/RIc3CAwGeryT+4vXA+9ndT5pY+qmW5TNy0nHKXMyswhzytsLGTph0t57+h7A/ZvLN2Iv7M/U32nDnpdlEcU4e7hbCzbOCp7LMER4xGu+fIaXj7wMt8e+5Yvi75UzRaBwJoQDo5CREcrk/5SYH0IbbWL0Fa7CG0nh7X7K2jp7OXWhVHKNGg2y4U7Y8+FwCQwFp48dvRrcPLEZ9ZFo2qqvvNkaMxQDk6XqYuHNz9Me287nxd83r+/29TNtoptLA5bjF43+KOSTqdjcdhiMiszae9pH5VNSpNtzAbg00s+JcE7ge9KvlPFDqUR41c7qKWlcHAUwt1doTdXAqtDaKtdfkzaSpLEuztLKG/sUNuUSeHHpK1aSJLEOztKSAh0Jy1ijCmgh6JsF7TVQOIK8I2F5jLobgdTL+Stg7jluHv6jKopY4cRAC9HLzKrMs8IQQP4c9afyW/IZ1HoIo7UH+F483EAsqqyaOtpY2nY0mH7WBK6hB5zT38422STW5+Lm70bMV4xnBtxLvtq9lHdVq2KLUoixq92UEtL4eAohChKpV2Ettrlx6TtprxaHluTzTs7jqltyqTwY9J2simqbWVrfh27iuvJqWzmhvkRY0sBPRx73pLD0+KXg2+MvK++EEozoaMeEi8ctbbGTtnBWR65nPrOevIb8wccb+lu4YPcD7gq/ioem/cYAOuOrQNgY9lGnOycmBs0d9g+ZgXOwt3BXbUwtbyGPOK949HpdJwXcR4APxz/QRVblESMX+0gCn0KBAKBwCJIksSL6+XF2gdLm1S2RmDLtHf3csNrmdzweiZX/2snrg52rJw1cjazUdFmhOxPYcbV4OQBfnHyfmMB5KwBO0c5dG2U9M3gXBB1AXBmmNqhukOYJTPnRJxDkGsQM/1nsu7YOsySmY2lG5kfPB8ng9Owfdjr7ckIyWBz2WZMZtMYvuzEkSSp38EBiPaKJsYzRjNhagLBRBAOjkL4+vqqbYLAQghttcuPRdsdhUb2lDTg6+pAdnkTZvOZoTpa48ei7WTz0voCKpo6eWzFNK6ZE8ajK6bh5qhQSb1974KpC+beKX/2ORG7X3MEsj+BxAvB0X3U2vbN4CT5JhHhEcGuyl0Djh+sPYgOHTP8ZgBwftT55Dfks+KzFVS2VbIsYtmo+jk3/FzqO+snvSZOeWs5bT1txPuczF63LHIZe6r3UNdRN6m2KI0Yv9pBLS2Fg6MQSUnjKGQmsAmEttrlx6Lt39bnE+DuyM+XxdPS1UuxsU1tkyzOj0XbyaSwtpVXtxSxKjWE2zOi+OPlM7h2brgyjZtNkPU6RGRAwImsZQ6u4BECe96GdiPMuAYYvbbGDiOu9q44GZyYFTCL/bX7B6zDOVB7gBivGNwc3AA4L+I8XAwuuBhc+NNZf2JF9IpR9bM0bCk+Tj58nPfxGL7wxMltyAUgwTuhf9/i0MVISOyu2j2ptiiNGL/aQS0thYOjEJs3b1bbBIGFENpqlx+DtocrmthZVM+dZ0UzJ1JeCH6wrFFlqyzPj0Hbyebpr4/iZLDjfy8YPG3yhNjyPDQePzl704dvLLRWgYsfxJ4DjF5bY4cRXyf57fGsgFk0djVS3FwMgFkyc7D2ICn+Kf3n+7v4s+GqDXx08UdcGH3hqNcV2dvZc2nspWwq20RNe82I5x+sPcjG0o2jans48hry0KEj1iu2f1+iTyKu9q7sqd4z4fbVRIxf7aCWlsLBEQgEAg2zOvM4jgY9V6aFEuvvhpO9ngNiHY5gjGSXN/H9kWp+sigaf3dHZRvf/RpseFJeezP1koHHfE88vE+/HOzsx9SssdOIr7Ps4MwMmAnA/pr9AJQ0l9Dc3TzAwQFwsXcZV8KEy+MuxySZWFOwZsRzn9n9DPevv58/7vojPeaeMffVR159HuEe4bjYu/TvM+gNzAyYSVZV1rjbFQi0gHBwFMJgUCgGWWB1CG21i9a1bensYc2+ci5OCcbLxQGDnZ7pwZ4cKte+g6N1bSebl9YX4O5k4OaFkco2XL4HvnoI4i+AS/8O+tMeS/wT5W3K1f27RqvtqTM4UR5ReDl6sa9mHyCHpwHM8J8xwS8gE+ERQXpQOp/kfTJoOupTKWkuwc/Zj9VHVvNU5lPj7jO3Ibc/wcCppAWmUdhUOKAOkK0hxq92UEtL4eAoREZGhtomCCyE0Fa7aF3bNfvKae82ccO8iP59M0K9OFzRRK/JrKJllkfr2k4muVUtrDtcxa0Lo/BwGtssyohseR6cPOHyVwefoZl5HdzwCYTM7t81Wm1PncHR6XTM9J/ZP4NzsPYg7vbuRHkqVKAUOCfiHCraKqhuH7oOTVNXE41djdySdAsXRV/EdyXfYZbGPhbbetoobSkdsP6mj7TANAD2Vu8dc7vWghi/2kEtLYWDoxB799rujUQwPEJb7aJlbZs7e3hz+zGSgj1ICfXs358S5klnj5m86tZhr5ckieNGdaqzK4GWtZ1s/vp9Hq4Odtym9OxNbS4c/RLm/gQchygG6Oh2Rmro0WjbY+6hsauxfwYH5DC1Y83HqOuoY2/1XpL9k9HrlHsM6nOWSppLhjyn71iERwQLghfQ1NVEfkP+kOcPxUv7XgJgduDsM44l+SbhZOdEVrXthqmJ8asd1NJSODgK0dzcrLYJAgshtNUuWtO2urmTwtpWyhraufZfOzlubOeh8xIGrClICfUC4NK/b+Xc5zdxtGrw38FHWWUsfm4DxXW2mXFNa9qqxZ6Ser7JruIni2LwcnFQtvFtfwODM6TfNabLRqNtQ2cDQP8MDsiJBgBu+/Y2CpsKR50GerREekQCcKzp2JDn9Dk44R7h/TMtY3VEvin+hn8f+Tc3TL2BtKC0M47b29mTEpBi04kGxPjVDmppKYIcBQKBwMbZXljH61uK2ZBbQ1+JGyd7Pa/dnMaShIAB50b6ufLitbPYX9rI61uL2VloJDHIY8A5kiTxxrZiJEnOuBbl5zpZX0VgJZjNEjod/OGrI/i7O3LnIuVCuQBoLIWDH0DabeDqp2zbnCzyeeoMTpJfEvZ6e441HeNXc37FFfFXKNpnoEsgzgZnjjUfG/KckuYS9Do9YW5h2NvZE+IWwu6q3Vw/9fpR9fFF4Rc8sfMJZgXM4sG0B4c8b3bgbF7e/zL1nfX4OPmM9asIBDaPcHAUIi3tzLcoAm0gtNUutq5tZVMHv1ubw7rDVfi5OXLvklii/V2pbu5iUbwfScGeg153cUowK2ZM4d0dJVQ2dZ5xfPexBo5WtQCQV91i0e9gKWxdWzV5c1sxT319hGg/N3KrW3h6VTIuDgo/Lmx+BnQ6WHD/mC8djbZ9RT5PncFxtHPksXmP4evsy6LQRWPudyR0Oh0RHhH9qagHo6S5hGDXYOxPrDeaEzSHjaUbMUvmYcPlJEni8e2Ps6ZgDakBqfx5yZ+x1w+9HmpZ+DJe3v8y7xx+h5/P/jllLWVsr9jOVQlXjf8LTiJi/GoHtbQUDo5CVFdX4+bmprYZAgsgtNUutqytJEnc+uZujhnbeHh5ArdnROFkbzfq63U6HUGeToM6OG/vOIaHkwFvVwdyq2zTwbFlbdXmq4OV+Lk54ulsz+J4f66cHapsB8ZC2LdarnnjFTbmy0ej7WAzOAAr41aOub+xEOkRyaG6Q0MeL2kuIcLzZNKPOUFzWFOwhoLGgkEzovVR3FTMmoI1XJd4HY/MeQQ7/fBjPdY7lguiLmD1kdVcFnsZ96+/n2PNx1gUuogg16Cxf7FJRoxf7aCWlmINjkKUlpaqbYLAQghttYsta7spr5ajVS08eVky9y2NHZNz08cUTyeqTnNwqps7+Ta7iqvnhJEc4tk/k2Nr2LK2atLS2cO+0kZWpYbw4d3zefu2uRjsFH5U2PAUGBzhrF+O6/LRaDvYDM5kEOkZSUVrBd2mbjaVbuK53c/1H5MkSXZw3E86OH3rcD7O+5j3j75PUVPRoO32pbW+OvHqEZ2bPu6beR+95l6u/era/rC5vIa88XytSUeMX+2glpbCwREIBAIb5F+biwjycOKSlOBxtzHF04nK5o4B+77LqabXLHH1nDASg9wpa+igtat3ouYKbISdRfWYzBIZsf6W6eB4JmR/IicWcAsY+fxxYuww4mxwHlAEczKI9IhEQuJ483FeOfAKb+e83Z8lzdhppL23nQiPkw5OsFsw4e7hvH/0fZ7KfIoX9744aLsH6w7i7uDen8hgNIR7hLMybiWtPa3cN/M+AHLrc8f/5QQCG0I4OAoRFxentgkCCyG01S62qm12eRPbC43cujASB8P4b+NBns5UN3VhNp8sTLijyEighyMx/m7EB8qpe21xHY6taqsGe0oauOPtLFo6e9iaX4uzvR2pEV7Kd9TTAZ/fC56h4569gdFpa+w0qrK4PtIzEoDtFdvJNmYDsLZwLXAyu9qpDg7AS+e8xKvnvcrC4IUUNhUO2u7B2oPM8Jsx5rTWD6U9xMvnvsxdM+4ixC2E3IaBDk5RYxFbyraMqc3JQIxf7aCWlsLBUQhHR0e1TRBYCKGtdrFFbU1miWe/zcXN0cC16eETamuKpxPdJjPGtm5ADqHJLDKyIMYPnU7Xn10tzwbD1GxRW7X42w/5fH+kmmfW5bKloI65UT44GsYe8jgi658EYwFc8uLQdW9GwWi0NXYYJz08DU6min7r8FsATPWZypdFX9Jr7uV4y3HgTAcnyjOKeVPmMc13Gsebj9Nj6gGgvacds2SmraeNgsYCZvjPGLM9LvYuZIRkoNPpSPBOGDCDU9dRx23f3sb96++nrKVsHN/Wcojxqx3U0lI4OAqRnZ2ttgkCCyG01S62qO3TXx9hU14tj5yfMOGq8kGeTgD963Dya1qpa+1mfrT8YBjq7YyLg51NrsOxRW3V4Lixnc35tQR6OPLuzhKKats4K075tM20VMHOf0DqzRCzdEJNjUbb6vZqAl0CJ9TPeHC1dyXAOYDajlqm+U7jrhl3UddRx/aK7RxrOoa93p4prlMGvTbGKwaTZKKkuYRecy8XfXYRz+5+lsN1hzFL5nE5OKcS7xPP8ZbjdPR2YDKb+NXmX9HW04Zep+fN7Dcn1LbSiPGrHdTSUjg4AoFAYAOYzRIvrc/nta3F3LIgkpvmR064zSknHJzKJnkdzvaCOgDmx8gOjl6vIy7Q3WYzqQlGZvWuEvQ6He/fOY8wH2cAMizh4OStA8k85qKe40GSJKraqlRxcOBkmNp5EeexKHQRXo5ePLr1Ud46/BZRnlFDJgmI8YoBoLCpkPyGfOo66nj/6PusKVgDQLJf8oTsSvBOwCyZKWws5J2cd9hVtYtfp/+ay2Iv47OCz6huq55Q+wKBNSHSRCtEQIDlFksK1EVoq11sRdvKpg4e/OAAO4qMrJgxhcdWTFOk3Sme8gNtVbM8g7OjyEiIlzNhPicXZicGuvP9Edt78LEVbdWkq9fER1llnDs1gGh/N168NpUvD1SQEDj+8LEhyfsWPMMhYOJ/uyNp29LTQkdvh2rpkCM9ItlVtYvzIs/D3s6em5Nu5ovCL7g68WpWxg6dpjrSIxIdOooai6jvrAfAXm/PF0VfEOkRiafj4HWtRkuCdwIA+2v280b2G2SEZLAybiVzgubwaf6nPLz5YRztHJkTNIefzPjJhPqaKGL8age1tBQOjkLExw+dv15g2whttYstaGsyS9z97h4Kalp55vIZXJkWik6nU6RtX1cH7O10VDR2YjZLZBbXs2zqwLfeU6e480FWKaszS7hubrhifVsaW9BWbX44UkN9WzfXp8trQmaGeTEzzELJBQo3wKwb5OKeE2QkbftmItSawblu6nXEe8cT5i7X+Lkj+Q7uSL5jxOucDE6EuodS2FSIXbMdAc4B3DDtBp7f8/yEw9MAQtxDcDG48MrBV2jqauKuGfJsWqh7KFfGX8nnhZ9jp7OjrKVMdQdHjF/toJaWIkRNIbZu3aq2CQILIbTVLrag7erMEg6UNfHUqmSumhOmqIOh1+sI9HCiqqmDnMpmGtt7+sPT+lg1O5Sz4vz4zWfZ/PyD/ZhOybhmzdiCtmqzraAON0cDC2MtEJJ2KsVboLcDEs5XpLmRtK1qqwJQbQYnxiuGqxOvHte10Z7RFDYWcqD2ACkBKVw/9XqWRSxjRfSKCdul1+mJ946nqauJ9KB0ZgbM7D/2m3m/IfO6TK5MuJLq9mokSd1xLsavdlBLS+HgCAQCgZVS3dzJM+tyOSvOb0L1boZjiqcTlU2drMuuQq+DRfED6594ONnz9q1zeeCcOD7fX8HqzBIA6lq7+PZwFRWNHYM1K7ABdhXXMzvCGzu9BWblervg9eXw6V1w4H2wd4WIDOX7GYTqdnVncCZCtFc0RU1FlLeWMytgFg52Djy/5HnmB89XpP14b/lt+p0z7jzjmE6nI9AlkB5zDw1dDYr0JxCohQhRUwiR0lC7CG21i7Vr+6d1R+k2mXni0ukWCw0L8nTmQGkjXx2qZH6ML35uZ/5O9HodPz83jj0lDTy7LpekYA9+9v5+yk84N4vi/Xn71jlWFb5m7dqqTX1bN/k1rVw2K8QyHex+HUp3QnkWmHshcQXYOynS9EjaVrdXo9fp8XOx8MyUBYjxjMEsmQGY6T9zhLPHzrWJ1xLmHsbcoLmDHg9ykWe9qtuqVakj1IcYv9pBpIm2cebPV+btisD6ENpqF2vWNreqhc/2lXPrgkgi/Vwt1k+wpxPH69sprmtjxYyhZ4l0Oh1PXjadLpOZy1/eQWtXL6/ckMrN8yPYnFfLvtJGi9k4HqxZW2tg9zF5EfvcKAs8xHY2w5bnIHoJ3LMDkq+C+T9VrPmRtK1qq8LPyQ97/cTSqKtBXyY1RztHEn0SFW8/1juWW6bfMuTLiEBXedarbxZMLcT41Q5qaSkcHIXIyspS2wSBhRDaahdr1va5/8rFPO9ZEmPRfvpq4djpdSxPGn7NQqSfK48sTyDIw4nVd6Rz/vQpPLQ8ASd7PZ/ssa5CgdasrTWwq7geB4OeGaETy8x1Bt1tsPGP0G6Ec/4P/OPh8lchQrmHnJG0rW6rVm39zUSJ8owCIMk3CXu7yXfQ+sL6RkoZ3d7TTq+512J2iPGrHdTSUoSoKURra6vaJggshNBWu1ibtlvya3lnRwlujga+y6nmofPi8XJxsGiffbVwFsT44uM6cl93nBXN7RlR/W+A3Z3sOT8piC8OVPDYimk42Q9e40NJzGaJA2WNJAV74mA4+Z6urrWLTbm1zI/xtTptrY3dx+qZGeaFo0EhvSQJPrsbDn0EkgmmXwEhqcq0fRojaVvVXkWsV6xF+rY0rvaunB12Nhmhk7Ne6XR8nHww6AzDzuCYJTOXfn4pq2JXcc/Meyxihxi/2kEtLYWDIxAIBFbA+qPV3P3uXjyc5be20f6u3LowStlOervBzn5Aqt5wHzn87eIxJDE4PbxlVWooa/ZX8MORGi6aMXiVdiX56lAl97+/D19XB66aE8bPz43DwU7Pz97fx/ZCIwCJPnpmpffg6Wx7YUqWprWrl+zyJu5bqqATUPgDHPwPpFwHSZdB9FLl2h4DfUU+FwYvVKV/JXjh7BdU69tOb4e/i/+wDk55SzlVbVVkVYtZFoH1IhwchUhPT1fbBIGFENpqF2vRdk9JA3e/u5f4IDdW3z4PTxcLPJR3NMDfZsF5T8r1SE4wLdiDD34yjzmR41+LsTDWjyAPJz7dWzYpDs6mvFo8nAzMifTh5Y2FFNe2sSDWl+2FRn65LB69Xsdfv8vj7nf38PZtcwfM8gjg2+wqzBIT0nwAkgTr/yAX8rz4r2Cw7KLi4cat2kU+tUCgS+CwIWpH6o/0byVJskhyEWu5Nwsmjlpairu+QpSVWVf8uUA5hLbaxVq0fW1LEa6OdpZzbgByPpednOItZxxKj/ZFP4FUwXZ6HWfF+XGwvGkiFo4KSZLYVlBHRpwfr9w4m8dXTGPd4Soe//wwC2N9+enZsdy3NJYHzwpkR5GRhz8+oHjtnqb2Ht7dWcLd7+7h60OViratFAU1LXT3ms/Yv7+0kd+sOcTMMC/mRfsOcuU4yFsHFXth8cMWd25g+HHbX+TT1fZSRFsLga6Bw87gHK0/CkBLdwuVbZb5+7eWe7Ng4qilpXBwFKK8vFxtEwQWQmirXaxB2/q2br4/Us3KWaGWc24ADn4kb6sOWaR5HzcHmjp6Rjzv8c+zeXfHsXH3U1TXRmVTZ39xytsyovifCxIJ9Xbmj6tm9L9NnurcwiPnJ/D5/gp++t5eunpNg7ZnNkt8vr+czCLjqPovb+zgrGfW89iabLYX1nHv6r3c+uYu7ntvL5f9fRt3vJ3Fn9YdpaVz5N+Fpcgub+Lc5zdz0xuZNJ9ix5HKZu54Ows/N0deuzlNmZmt7jb47nHwjoKUayfe3igYbtz2F/l0ETM44yXQJXDYYp9H6o/goHfo/9kSWMO9WaAMamkpQtQEAoFARdbsK6fHJHFlWqjlOmkqg5Kt4OgJdbnQ06lYTZI+PJ3t6e4109ljGjLRgMks8Z/dpdjpdJw/fQr+7mN/27+toA6AjNiTNU7uXhzDXYuizwiVuXdJLA52ep786gid7+7htZvn9Be17Og2sbPYyF+/y+NAWROOBj3v3TmP2RHew/b/wvd5dPaY+eSeBaSEevLqlmL+sbEAbxcHQr2dKa1vZ/3RanYX1/PWbXNxc1T2v9nyxg52F9dT2dRJRqwfyYNkQftkbxn2djqyjjVw1Ss7uD49nPZuE3/+Lg8vZ3veunXOoPWORkVXC3x8G3Q0wspXYOPTUJcPN34mr+9Smb6ZBxGiNn4CXQLp6O2gubsZT8cz/76O1h9lSdgSvj/+PUfrj3JO+DkqWCkQDI9wcBQiISFBbRMEFkJoq12sQduP9pSRHOLJ1Ckeluvk0MfyNuPn8MPvoPYoBCtbRNDLWX6j29jeQ5Dn4A5ORWNHf9jUS+vz+d2l08fcz7aCOkK9nQn3cRmw/3Tnpk/bO86KxsGg5/HPD/PS+gLuXhLNb9fm8MmeMrpNZgLcHXl6VTKvbCrkzney+PSeBQPqDnX1mnj+v3mkRngTG+DGx3vKuGVBVL8jdM+SmDNSeX99IgnCLW/s4v8uThrUCRnKyuuAAAAgAElEQVQPVU2dnP/XzbR0yul5/6zX8eB58dy9KKY/xLDHZGbt/gqWTQvkmjnh/OKD/Tz2+WFALsj6/FUp43du2upg9RVQeRAc3OAf88DUDWc/CjGTl1RguHFb1VYlF/l0tr0in9bCqbVwTndw6jrqqOuoY1bALAoaC/rD1ZTGGu7NAmVQS0vh4CiEnZ3lU6MK1EFoq13U0ra5s4e1+yvIrWrhSGUzv780ybIdHvoIQufAtEtlB6fqkPIOzonwusaO7v7aOqdTXNcGQGKQO+/tOs7tGdGE+7oMeu7p5FQ04+liz45CIxcmTxlxYfOp2t44L4K9JQ288EMe/82p4nBFM9elh7NsWiDzonxxdrBjXrQvK/+xjYc/PsCHd81Hp9NhMks8+OEBvjoorzMI9HDEyd6Oe5cOX5vowuQpmCWJhz86yMUvbWVWuBePLE9kfszQa16+PlTJ+7uOYzJLBHk4cUHyFOZG+eDhZECn0yFJEr/+7BA9JjOf3DOfUG8Xfv9lDs+sy6WupZvHL54GyKnGjW3drJwVyqJ4f7IePZeq5k7qWrpJCvYY/1orSYIPb4KaI3DNexCYBJ/fC67+kPHL8bU5ToYbt1VtVfg5+2HQi8eb8XJqLZx47/gBx44Y5ZC0RJ9EEn0S2Vuz1yI2iP93tYNaWoo7gELk5OQQEBCgthkCC2Ar2pbWt1PT0jViiI3gJGpou/ZABU98mUNtSxdO9nrmRftw6cwQy3VYsQ+qs+HC5+R1Eg5uFlmH43UiHXNj+9BrT/ocnOeuTOGKV7Zz/3/28fatc0as9ZN1rJ4rXtnR/3lB7Mhv50/VVqfT8eTKZA6WNZFf08oL18w843ce5efKL86N5//WHmZbgZGFsb7839psvjpYySPnJ9DRbeLvGwq4/+y4Uc2ArJgRzFlx/ny2t4xXtxRz7as7OScxgKvnhLE4wX9A/Zlek5knvsyh1ywR4ePC+twaPt0nx63b2+lICHInIdCD9UdreGzFNGZHyNnPXrp2Ft4u9ry5vZiLZgQxO8KHT/aW4+PqwOJ4//7vPsXTmSmeziPaPCwH3oeSbXDJi5Bwvrzv5i8m1uY4GWrc7q7azTfF37AwxHZTRFsDfeF9Ve1VZxzrm7Hpc3C+Lv6axs5GvJy8Rt1+e087mZWZLA5bjF43+DowW/l/VzAyamkpHByBwEbo7DGxq7iemeFeeDidGev+mzXZ7Co2sv1/zhlVwUaBshytaibA3WnA716SJPaXNpIc4onBTs+afeX8/IP9zAj15F83zmZmmJdFUqwOYM9bYHCGGVeBXg+B00d2cDqbwWlsIXN9CRJGcnDcHA0kBXvwwjWzuP+9fVzzr528e3v6sOtxNuTWYKfX8ehFU2lo7+G8aWPPkOXmaODjexbQ0tlDhK/roOdcPSeMVzYV8pfv89hV7Mu/dx7nrsXR3LtErhdz84JIfMcwtjyd7bllYRTXzA3n9a3FvL61mB+O1uDhZOD86UFcPSec2RHefH+kmsqmTl69KY1l0wLpMZnZXmgkr6qFurYudhfX88neMuZEenPLgsj+9nU6Hf9zwVQ2HK3lkY8PsjwpiP8eruL69AhlU2O318N/H4WwdJh5w8jnq8DR+qP8bP3PCHUP5fcLfq+2OTaNr7Mvep1+0FTRR+qPEOYehpuDG4k+if375gfPH3X7T+x8gi+LvuTZRc9yftT5itktEJyKcHAUIihILGjUKkppK0kSr24p4typgUT7u435+v/99BCf7SvHoNdxztQAXrouFXs7+SGmrrWLbQV1mMwS/95Zws/OiVPEZq2jlLZ7Shq48pXtGOz0XJISzEXJUwj3deG3aw+zJb+Oa+eG8esLp/KHr4+QEubFp/cs6F/sblG6WuT1N9MvB6cTsfRByXDgP2A2yw7P6RzfCW8sh5DZkH4PzLhyVF31FdRsHiaTWlFdG1F+ruh0OpYnBfHGLXO47a3d/HNTIY+umDbkdVvy65gV5jWmwqeDaevj6jCs8y+Hn8Xy2Jps9pQ0cHVaGP9zfmL/8fGuXXGyt+O+pbH8ZFE02wrqWHuggq8PVfHJ3nJeuzmNt7eXEOLlzNmJ8ltOezs9i+P9+2dhAGpbunB1tDvj78bN0cBTq5K5+Y1dvLypkPOmBSpbwBNgwx/kpAIXPT/438wkc7q2bT1t/GLDL3C1d+Wfy/45ptkEwZnY6+3xc/IbkCpakiS+K/mOnZU7mTdlHgBTfaYCkGPMGbWD833J93xZ9CUGvYFXD73K8sjlg77k+bE8U0mSRGNXI1VtVeyt2UuOMYc7k+8k0jNSbdMUQy0thYOjEFFRClccF1gNSmmbV93KU18fpbiunadXJY94fmePqX+x8K5j9Xy2r5zr0sMx6HW8s6OELw9WsHKWnHnrm+wqTGaJuAA33t5+jJ8sih4yk5XgJEpo29Ft4uGPDjDF05klCf58urecj/fIef+d7e1YmuDP+7tKOVjWRF1rF6/dlDY5zg3Izk13K8y+5eS+oGTY/Sp8+7+w/z247gOIWHDyeOEG0OmhqxU+vQP8E2DKjBG76gsza+zoHvKc4rpWZoWdDKHMiJOzgB0oaxzymoa2bg6VN/HAGJ328Wp7VVoo7+44RnygO39YOV3RGTZ7Oz1LEgJYkhBAS2cPV/9zJ/f+ey8dPSZ+dX7isH8Xw81wLY7359+3pxPm4zzk7NSYkSTQ6aCuALLehLTbIGjsSSEswenaPrv7Wcpby3nr/LdE9jSFCHIN4ojxCL3mXiQkHtzwIBvLNhLnHcc9KfcA4OXkRaJPIhtKN3B78u0jtlnXUccTO59gqs9Urk64mt/u+C1byrewKHTRGeda2zNVZ28ndR11hLorl+2ypbuF6766jmPNxwbs93T05JE5jyjWj9qopaX6r2I0wo4dO0Y+SWCTKKXtD0flt2Gb82qRJAmTWeK1LUXUtw3+QPjvnSU88slBFj2zgUc+PkhSsAe/vTiJ316cRHygG69sLOqvU/DF/griAtz43aVJGNu6+WyfqCEwGpTQ9tlvcymqa+PZK2fwh5XJ7H1sGavvSOfXFybyzQNn8drNczg7MYDDFc1cNTuMlLBJerssSZD1BgQkQWjayf1BJ5zrzFegqxlKtg+8rmw3BEyD6z+UP5dnjao7Vwc7DHrdkCFqXb0myho6iPIb+ACeHOLJ4YrmAcU4JUliY24NLZ09bC80IklwVpz/6U0Oy3i1dTTYse6BRbx0XSoGO8v9F+nuZM+bt87By8UeB4Oeq+eETai9jDg/5ZybrDfgr8nybN4PvwN7Z1j8K2XaVoBTtf2h5Ac+yf+E26bfRmpgqopWaYtrEq8htyGXlw+8zPNZz7OxbCO/nP1LPlrxEXHeJ182LI9czoHaA1S0VvTvM3YYufbLa/n9jt+TW58LyA7CAxseoL2nnT9k/IFLYi8h2DWYVw++Omi9HWt6pippLuHar67l0jWXUtdRp1i7rx58lZLmEh5IfYDnFj/HN6u+YUHwAraWb1WsD2tALS2FgyMQTBLrj9QAch2LY8Z21h+t4cmvjvDvnSWDnr/2QAWxAW7Mi/HFLEn8+aoUHP6fvfMOi+ra+vB7Zui9SUeKCoogFhQ1iCWxJdH0nphiys1NctPuTbtfes9NctMTc1ONKcbE2BKNRkVEEQuKSkc60nsdGOZ8f2xAkTbA4ADO+zw+6Mw5++xxsfecddZav2WkQKGQuC9iDClFNexOKaagqoGDWeUsC3Fnlp8jwR62fLE3o9smbQYGxjf7Mtl4TDiQfyYU8tW+TG6f5c3sMaLw3dxEyUVjnbg3Ygw+TpYoFRLv3TiZJ5eM55lLJ5y/iaZug8LjEHaveBLfhmuweBp/7ddg6QwVmWfe02iEQ+MZCnbeYG4vRAq0QJIk7CyMqewmRS2nrB5ZBr9RnR2c+qYWMkpq21/bl17GHV8f4r7vjrA7pRhrMyNCdCS1rA39VhrrIy42Zqz/+2x+vm/W0KqbO7oGqnLhm8shaRPM/gdY9c3BPB/El8TzdPTTBDoG8sDkB/Q9nRHFsjHLuGrsVXx+/HPWJK3h1gm3ckfQHSgVHTMDFvssBuDPrD/bX/s+6XsSyhLYdGoT126+lhVbV/Dw7oc5XnKc1+e8zjj7cRgrjLk18FaOlRwjtyb3vH62vpBYlsiNW26koK6AJk0TUXlROhk3tyaXNUlrWD5mOXcH381in8V4WnsS7hFOZlUm+bWGh5QDxeDg6Ahz8wEq1BgYsujCtuV1TcTlVHDFZHdASLmuOyw29T2pJZ2Ozyqt43heFdeHevK/FaEcf34R413PFH0vn+yOu60Zz29K4N7VRwBYFuKOJEncFe7DqZI6otN196RppNJX2+aW1/PilkQe/ukYz244yeM/xxPiZcfTvTguNmbG3D9vTHsh/qCj0cDOl8HBDybf0vE9pTFc/l8IuhocfKE868x7ZenQWAUeocIpcpustYMDog6nqpsITkargtq5EZxJrY7Lifyq9tdWx2RhaqRg/6kyfjmSxyw/xz5HU4bLnuxma87k8xXV04baYsiPg5kPgPcssB0Ns4aW82Bubs7R4qM8sPMBnMyd+PjijzEeAk1GRxrPhD1DsFMwF7lfxGOhj3V5jJe1F0GOQWzL2gYIhbS1KWu5ePTF7LxuJ/8M/SfljeXsP72fR6Y+wiXel7Sf2xZx66qXjr7Wb35tPo9FPkaVSuxHPyT9gITE+uXrcbd0Z3fO7gFfo1HdyBsH38BIYcQ/pv6jw3vhHuEAROeNnCiOvmxpcHB0RFhYmL6nYGCQ0IVt96QWo5Hhzot88XIwZ8PRfHYliyfTR3MqOt0Ubjkuwv2XTxIO0bl1AMZKBf9aEoBCklBIsDLct/3G8dJgN5ysTPh2f9aA5z3S6att1xzIRiFJXD7Jje8OZGNmrOCzW6cOvXqnE+ugOAHm/7vn7vL2vh0jOG3paJ7TxU/3KaLvSXOjVpe1NTfutganTSLa5xwHx2+UFRYmSo7niRuK/MoG/koq4q5wX1aGi9ztOf59jx4Y9uR+krYDkCHkBlixCR46AqZ9F0UZLLKrs/mk/BNWbF2BicKEVQtXGZp6DhJmRmasuXQNn17yKcaK7veRJb5LSCxLJLs6m/Vp66luqub2ibdja2rL7RNvZ9OVm/jjqj861emMtRuLQlKQWpHaaUx9rd+tmVvZkb2DDekbaNY0szt3N/O85uFu5c780fOJKYihvrm+3+PHFsRy9aaricqL4oHJD+Bs0VE+2cfGBw8rjxGVpqYvWxocHB0RGxur7ykYGCR0YdtdySU4WZkyycOWOeNGEZdTiVoj8+xlgWhkOkVbNscXMN3HHne77p98XDXFkz3/ms/GB8N59iwFKlMjJTfNGM3O5GJyy/u/EV8I9MW2DU0t/HQol8UTXfjwpim8fV0I360MG3h/EV1RWyJSil52ht/uFaloE6/u+RwHP6g+fcaByTsEpjbg1Nrcz30KaNRQlKDVFOwsTKhqTVFbdziXB3+I4+Pd6RzMLCe9uBYnK9NOEudKhcREd5v2CM4PsSJl85aw0Ty9dDzv3ziZ66b1vbDXsCf3gbJTsPMlaG6AtD/B2g1cJ4kontEQSp0DPj/+OQmlCTw5/Uk2X7UZL+uB1S4Z6BmFpOhVaGOxz2KMJCOu2XQNHx37iCnOU5jsfKaRsEJS4GXT2U6mSlN8bHxIqUjp9J6+1u/hIvGQ57e03zhYcJDqpmoWei8EYL7XfFQtKmIK+ldTUttUy0O7HkIhKfhi0RfcPvH2TsdIkkS4RzixhbE0tXQv2DKc0JctDQ6OjmhoaND3FAwMEgO1bcypMnYmFTE/YBQKhUTEOPG0cZq3PVdP9cDGzIg9qcXtxyecriKlqIblIe79vubNYaNRSBLfdVPfY0DQF9tujj9NVUMzK2b5IEkS107zZIJb33rFDBoVWULaOe8QTL8bFvyf6Dbfm6Svgy8gQ2Xr70neISEP3Xae+xTx87R23crtzI3bRQa+3pfFnwmF/OfPFK5fFcMvR/Lwc+q6CD7Iw5bE09WU1qpYeyiXBeNd8LS3wEip4IrJHv2KkBn25D7w++Ow9x1Yf49Q0Ru3sGPd1hBBI2uIzo8m2CyYWwNvxdJYR6IKBgaEq6Ur3yz9hmv9r8XbxpuHpjyk9bkB9gGkVaR1el0f61etUXO06CiOZo6cqjrF+3HvY2FkwWwPoTI51WUq1ibW7MrZpfWYudW5lNSLNPRtWdtoUDfwWvhrhLl1H9WY4zGHBnUDR4qODOwDDRH0tRcbHBwDBgaR7w5kc+uXsbjZmrX3ppk91gkXG1PuusgXI6WCOeNGsadVWU2WZV77IwkbM6P29LT+4GZrzvyAUWw9WdDpvbe2JfNrq4yxAe354WAOAS7WhPk66HsqHUnfCf9bAPVlIqVoyWsQ8S+wG937ufat8p3lmdBUJyI1Zyuu2XqChROcPqbVVGwtRA2OLMvklNdz84zRxD+3iA9umsKyEHduDut6TpM8bWlobuGaT/dT3ajmwQU67uNioHuy9kHGbvCcAUmbhbKe/9BsvphUlkR5YzmB5t33TDKgH0JGhfDUjKdYe/laprtO1/o8fwd/8mvzqWmqGcTZaUdyeTL16nr+MfUfWBhZkFSexFzPuZgqhUS7scKYCM8IovKiUGvUvY5X2VjJTX/cxG1bb6O+uZ71aesZazeWYKee20RMd52OkcKI2AJDFHogGBwcHTFrlvZdfA0ML/pr29zyep7feJI545zY8MBFeDlYAKLgPPaZS7hskhsgelgUVauITC1h68lC9qWX8fiiAOwHqKo008+R3PIGiqvP1E9kltbxSeQpXv49kTpV7xv0SEdb25bVqojPq+TySW467YsyYGJXwZprwMoF7t4Jo/uY6+zQ6uBUZIrojaw5U38D4im++xSthQbszE2oUakprlFRq1Lj7WiJrYUxy0Pc+fCmKVw5xaPL84I9hNBAbnk9H940RSdF94Y9WQtkGXa9AlausGKjEBaw8QDfufqeWZdE5UchIbEiYoW+p2JAR/jbi3TYc+tw9LF+DxeK9LQIzwiW+i4FYKHPwg7HzPeaT6WqkmPFvT/0+fDoh9Q01ZBfm88/9/yTE6UnuGbcNb1+h1gYWxDsFMzBwoP9/CRDC33txQYHR0dkZmb2fpCBYUl/bftldCYKSeKNqydhbdZ9geYlgS6425px59eH+Oe6eMa7WnNLN0+6+8I0b9FQ8XB2RftrP8Rmo5Cgsr6ZH2JzBnyN4Y62to1OL0WWIaIfxe6DRlOdUErzmyecG6d+RD0sHMHEGsozIGUbKE3BJ7zjMe6ToSQJsnoverU1F72jT7QKBng7Wmg1DV8nKxYGuvDu9ZNZPFE3jRoNe7IWZO2FnP0w53EwsRDRv0dODClRgbOJzosmeFQwFacrej/YwLCgOwdHH+v3cNFhfGx8cDJ3YmXQSq4Zdw1zPOZ0OCbcIxxjhTG7c3tWU0ssS2Rd6jpuHn8zNwTcwN78vRgrjLnc73Kt5jLDdQYJZQlDIrI1UPS1FxscHB1RWFio7ykYGCT6Y9vK+ibWHspl+WR3XG3NejzWwdKEHY/N5aEFY7E2M+KVK4N00mBworstpkYKDmeJm4HG5hbWHcljaZAbs8c48r+9GTQ2twz4OsMZbW27J7UEOwtjgjzOXy+WXjn5KzTViAaMJto5Ep2QJHDwESlqKb8LZ8nknLqG4OtEv5xvLoPvrupRUc3OQkQdj+dVAmjdeFKpkPjfitBuIzz9wbAna8GJX8DECqaeFRFRDDFFwFbKG8s5UXqCOR5zDLYdQbhYuGBratveELSN823jFk0LcUVxTHOZBoCXjRcvzH4BM6OO39+WxpbMcJvB7tzdyLJMXk0eR4s7R7g/OPoB9mb23D/5fh6d9iieVp4s9V2KnZl20ekwtzA0smZE1OHoa70aHBwDBgaBNQeyaWhu4d4IP62OtzQ14vFFAcQ+cwmhPrqp8TAxUhDiZceR7HIA/jhRQGV9M7eEjebB+WMprlG19+LpjoamFv7zZzJbTxTQpNboZF7DDVmW2ZtWSvhYJ5TnqQGkVhz5BkaNh9EzBzaOvS9k74PKHBh/aef3RwXAw8fgkhfh1C7Y9163Q7X1+YnPq0KSwMthiCjMGeiMRgMpW4WggHHPD2GGAnty9yAjM8dzTu8HGxg2SJKEv70/yeXJ/Jr6K+/HvX/em1QnlCbw+sHXqWmuaXdwemKB1wJya3I5Xnqcu7ffzd1/3k1lY2X7+3XNdcQWxHLF2CuwMbHB0tiS9Ves54XZL2g9p0mjJmGqNDXU4QwAI31PYKQQGGgoehyp9NW2sizzfWwOc8Y5dWjOqQ9Cve35PCqDWpWaL6Mz8XOyZNYYRwBm+Drwzo5ULg12w9HKtMvzX9qSwI8HhRPkYGnCrTO9uWO2z9Dquj4AtLFtUkENJTWqoZWeVnAc8o/AkjcGrnbl4AttfR26Ky43NofwR6DwOOx9V8hPn9oJhSdh+krwEA377MyFg3M8rxI3GzNMjfQXDTDsyb2QfxjqiiHgMn3PpFuqVFXYmtrSoG7g0/hP8bf3Z4LDBEYFDqG1aGDABNgHsCZpDQkxQo7+hoAbztv6PVl6kpt/vxkjhRELvRdy8eiLez1nntc8Xj7wMg/tfIhKVSUyMr+l/8adQXcCcKDgAGqNukN6m7lR3x72mCpNmew8eUTU4ehrL9Z5BEeSJD9Jkr6UJOkXXY89lGlpubBTfUYyfbVtUkENBVWNA5J51hWhPvaoNTKP/HSMhNPVPLLQH0mSkCSJV68Mok6l5pXfk7o8d3P8aX48mMvf5o7h6zunM3W0PR/sTCPird0jpr+ONrbdmyYkPiPGDaGbqgOfinqZSTcMfCyH1iijRyhY91L/suhVUJrAZ+Gw7Sk4+Qv8bz5sFJ3ubVsdnIr6Zq3T0wYLw57cC8m/g8JIRHCGIB8f+5jwn8L54sQXfHXyKwrqCnhqxlMoJIXBtiOMS7wvYYrzFO4JvgcQambny8Y7sneglJRsv3Y77857Fwvj3tN9nS2cCXYKpkJVwd3BdzPNZRprU9bSohFz3pu3Fytjqw69gPrDDNcZpFakUt5YPqBx9I2+1qtWDo4kSV9JklQsSdLJc15fIklSiiRJ6ZIkPQUgy3KGLMsrux5p5JKS0rlRlYGRQV9tuztF9LSZG6D/G+Kpo4XQwF9JRSye6MKyVuU2gHEu1tw/dwy/Hc0nOq1jo9GcsnqeXn+Cad72PL7In/kBznxxeyjr/jaLWpWamFNl5/VzDBY92fb34wVcvyqG93emEeBi3Wst1Xkj7juI/wHC7gMLHaQztklFd5Wedi42brDkdbD3hutXwz/TYNqdcHQNFJ5or8EB7QUGBgvDntwLyb8LQQnzgSvW6ZrfM37ns/jPcLd05/249/ks/jOW+ixtlx822HZkMc1lGquXrmZlsLh1TC5PPm82jsqLYprLNJzMnfp03m2Bt7HQeyH3h9zPjeNvJL82n32n94mU5vy9zHKfhbGie3EhbWjrlbMvf9+AxtE3+lqv2kZwvgE65C5IkqQEPgaWAoHATZIkGXICDFyQfBKZzlfRQikkMqWYIA8bnK11fEPc3CBqIBq6URA6/jP8+e8OL9lZmODvYoWdhTEvXxnUSZ7y7/PH4mZrxpfRGe2vNak1PPRjHAoJ3r9xMsZnCR5MG22PubGSpMJq3X2uIco721PIKavn6qkevHZ1kL6nAy1qSNgAWx4Fv/lw8fO6GdcrDGb+HaZoKb079TZ48BAEXgFmNnDxcyKqE7caG7MzWc/6juAY6IHiZChLg/HaKTqdT9Ir0nlu33NMc5nG5qs28/fJf8fHxofHQh/T99QMDDKWxpaMth7dSVFtsMivzSe9Mp0Iz4g+n7vUdynvznsXY6UxF3tdjJO5E58f/5yjxUcpri/upL7WH4KdgnG2cGZ71vYBj3UhopWDI8tyFHBujGwGkN4asWkCfgKu0PH8hg0eHrpT/zEwtOjNtkXVjby7PZXX/kjiSHYFcTmVzPN31v1Edr4kVKze9IXvrgZ105n3NBrxfsxHUNqxK/S7109mzcqwLh0uM2Mlyye7szetlPI6Md7b21OIz6virWsn4Wnf8Sm8QiER4GpNcsHwl66E7m1bVN1IRmkdd8/x5ZUrg5nmrefmnvE/wbvjYd3tombmuq9BqaMSSmMzEZWx6mfE0cIBJiyH42sx0qiwbnVy9B3BMezJ3aCqhfX3CPW0Ccv0PZtO/JD8A5Ik8c7cdzBRmnB/yP1svmozrpZn0icNth25BDgEkFyefF5sHJUXBdAvB+dsjJXGPDL1EU6WnuTu7XcDQk56oCgkBUt8lhB9OpoqVdWAx9MX+lqvA/mG9ADOlmDKA8IkSXIEXgWmSJL0tCzLr3d1siRJ9wL3Ari7uxMZGQmAn58f1tbWxMfHA+Do6MjEiROJihK/iEZGRoSHhxMXF0d1tXiKHBoaSlFREbm5Yjrjxo3D1NSUkydFRp2zszP+/v5ER4s+DqampsyaNYvDhw9TW1sLQFhYGHl5eeTn5wMQEBCAUqkkMTERAFdXV3x9fYmJiQHA3NycsLAwYmNjaWhoQJZlRo8eTWZmZrskXmBgIC0tLe3hOQ8PDzw9PYmNFaoYVlZWhIaGEhMTg0qlAiA8PJzU1FSKi0WaU1BQECqVirQ0cdPq5eWFi4sLhw+LhlQ2NjZMnTqV6Oho1GrRuDEiIoKEhATKykQaUUhICDU1NWRkiKf0Pj4+ODg4EBcXB4C9vT0hISHs2bMHWZaRJIm5c+cSHx9PRYWIFkydOpXy8nKysrKGtZ1ANJ3qi53MzUVxYHd2+i2tiRaNjJmxgju+2E+LBvytm6itre1op4n+qN6dRKbPzRS6XULEnDmc/uM/ZJoH02Jk2clOvh7OOJ/ewSF1AEbqOmYe/AJFwGXk1hvhdWojKb+8RMCNr5cKBQwAACAASURBVAgbnNpNSJX4f62K/JijTle228mj1U6RaV3baXlIMKv2ZPDer3sYbaPg8wONLJ9gh1lpCpGRKZ3s5GqmIDa/jt27dyNJ0pCxU3/Wk6ura2c7TZ3Kt1v3i/+f8kw0Gh+9riebqmQmH/s3Co8pnAp8iHyzCWhi44fUeioaNZ/RJ38h6dc3sDadQ02jmpLMRCLLUgZl33NS1hCU9RUpZlMocLoIJGWnfW/8+PHk5ORcuPveqAYOn1ZTqzZqt1PmqTScdj6GY9lJqi5bRUOtTMqRSGBofD+pNCq2nN7CfPf5nIg90a2dZsyYMXLspId9byjfRwTYB7AjewdpOWkUFRUNqp1+i/+NUUajMK03pVhVPCA7zQqcxVuhb/FS3Es4mjpSmV+JlafVgO0U4RLB6sTVfLrjUxa5L+pgpwZNA0pfJa41rpSXl59XO/VlPcmyjIWFhc7Wk7ZI2srxSZLkA2yRZTmo9d/XAktkWb679d+3AWGyLD+o9dVbCQ0NldsW2nAlMjKSefPm6XsaBgaBnmyrUrdw0Ru7meRpy+wxjrzyexJ2FsYc+b+FnSWF43+C3+4TvUZWbBSNE7+5DBa+BBc93Hnw/R/B9n+LruJ2oyH+R3joCNh5w+dzxZPYBw+JvhW/rIT0v4SaVVECPJqo9RN+WZZZ+N8o7C2MaWzWUFzTyK7H52Fp2vX53+7P4vlNCcQ+czEuNkOkLqWfdGfbp9cf5/fjBRx9bpF+paFrS2BVBCiN4b49YG6vv7n0hCzDh1PBxoPLa57kZH41J15Y1GOD2wER+SZEvib+7hIEt/7aSSDhvO/JtcWw62VQ1YC5Ayz4P93USPWHjD2wejlYucKl/wHPUNHMdetTUHQClr4lariGGOvT1vP8/udZvXQ1U5yndHuc4ft25BKVF8UDOx/gUZdHuWvJXYN2nfrmeub8NIcbxt/AE9Of0Nm4qhYVao0aS2PdpOjKsszS9UvxtvFm1cJVHd774sQXvB/3Ph8t+Ii5XnN1cr3BQNfrVZKkI7Ish/Z23EBU1PIBr7P+7dn6mgEDFwx/nCigtFbF7bN9WDHLh/Gu1iyZ6Nr1TfHxn8XPrH3iJihpy5l/d0Xan2BmC5l74Oh3MOU2sPcRssBzHofyU5C4UdTkJG2GSdfD9LuhtgjSd2j9GSRJYnmIO4eyKjiRX8Uzl07o1rkBGO9qDUBSwcitwzmQUc4MX0f9973563moL4Mbvhu6zg2I30nfCChJxs7cBEdLk+6dm5PrIffQwK6XGQUuwXDtV6JJ6Y83QVMdHPgM1lwDeef5gZlGI9K+4n+CokSIWw3r7hB1U/og5mOwcATLUfDzbfDuBPEwpb5MiEMMQecG4NfUXxljO4bJowamPmVg+OJv7w9AXnPeoF7nROkJmjRNzHafrdNxTZWmOnNuQHw/L/VdSmxBLDuyd1DffEbB9EDBAUAoDp7v3kHDgYGkqB0CxkmS5ItwbG4EbtbJrIYhVlZW+p6CgUGiJ9t+fyAHPydL5ox1QqGQ2PxQOMqu+pLUFkPGbvCaCbkHICMSklsdnJwY0LR07CDeWA3ZMTDr70LGN+YTiPjnmffHLwPHcUKq19oNWlQw5VZwDhRd5+NWQ8BSrT/j8hB33t2Rygxfh17lrdt6+yQX1jDXfxQ55fXDtqC8K9sWVjWSWVrHLWGj9TCjs6guEE5x6J3gFqLfuWiDuQM0VLBwtjMT3bvp/yTLsPkRIU7w4OH+NZhsboC8gzDjXgi6BozM4aeb4b1JUF8KxhbwxSVM8LkCNBGgGIR+1s0N4sFEbiw4T4CSFLGml70P0+4QqnIbH4Dt/weLX9PtHJI2w+ljojfRhOUwyr/j+6Vp4uHI3KfEnpG0STxQUZqImhtTa93NRYekVqRyvPQ4T0x/opMYyrkYvm9HLi4WLtiZ2lGkKRrU6ySUiZ47QY5DQECmF64eezXr09bzWORjWJtY89NlP+Fi6cKx4mN4WHmQVJ7ErtxdWvXw0Qf6Wq/aykT/CMQAAZIk5UmStFKWZTXwIPAnkAT8LMtywuBNdWgTGtprtMzAMKU72+aW13M4u4JrpnmiaH3Sb6xUtP+9AyfXg6yBy94GE2vRLLEqV6SrqapFA8WzyYgETTOMWyRumB48CLaeZ95XKFrlen1EL4upK8RNsNIYJt8MqdugMhdt8XGy5MObpvDeDZN7vbmwtTDG3daM5IJqPok8xby3I0k4fX4KIJvUGp2O15VtD2SInPOZfo46vVafObgK5BaYeb9+56Et5vagUXN7qBNPXzqh62Nqi0BVJX73D67q+pjeyI2FliaxdkDIWy96RfxfLf8QHk+BGffgkrUBIrssAR0Y1afhvWD4/hqIegt+uRP2vAETr4Kpt4tjptwKYX+D2E/hvSDY9Qo0Nw782hl7YO2tsPdtkQ73v/mQsrXjMbGfCWdm+kqxHwRdI/aQyTcPWecGYFvmNhSSgkt9e5crN3zfjlwkSSLAIYAy5ZlWBFWqKvJrdZsglFCagIeVB3ZmQ08m/Vy8bLz467q/WHXJKhqaG1iXuo5jxcdQtah4YvoT+Nj48Paht3n70NtsOrVJ39PthL7Wq7YqajfJsuwmy7KxLMuesix/2fr6H7Is+8uyPEaW5VcHd6pDm7ZiNAMjj+5su/GY2HCvmNxLQ88Wtehb4hos/oyZD6fjQFKIGzPonKaW9ieY2goJ3+4YtxBWbod7doobuzZC7xJPyo983dtH68CyEHfc7bTrtjzezYaYjDI+2JmGLMO6w4ObTgBQ36Rmxmt/8cXejN4P1pJzbSvLMltPFmBjZsQEt26iEOcDVS0c/ko8cW9rxDnUaUuh607GHKC0Vf7VyhWi3oH6fjSwy4wSTv3omWdem/0gPJEpHH0zG1j6FsUei4QDkqjFF35ljvZziXobGirhxh/h6Xy4azsseQOWfSBS9dpY/JpIoXOZCFH/gW8uhZrCHuaQK477/Z+w61Uh5dxUJ9LtSlLFNTf8HRzHwjMF8GiC+PuPN8FfL0BTvUhZPfo9BF8HVoOg5DhIyLLMjuwdTHeZjqN57w8WDN+3I5tAx0CSy5IpqitClmUe2f0IK//UbXvFhLIEgpyGfvSmDWOFMbM9ZjPPax6bTm1iX/4+lJKSGa4zeGrGU6hlNT8m/8i/o/9NZWOlvqfbAX2t10GI3V+YtKliGBh5dGVbWZbZcOw0M3wcOkkpd6ChQjzpLYgXKTUA/ovFz9GzhcNj7wvZZzk4sgxpO4QjpOxHkba9t0hPO/ItqAfn93K8qzVF1SqMlQpm+jmw8Vi+zqMr53Ist5LK+mY+2JlGVUOzTsY817arojL4M6GIu8J99VN/o9GIJ/Jrb4HGKpj10PmfQ39pc3B6chTaHJwrPoamGvj17r47OZlR4DGtczTibOdCkkgacy94Tof190LOga7HyjkganbeC4ZVc6GqF0e9Ikukf05dISJHplYwOkxE2czOcYgVShE9uWUd3LBGOCyfXgQ7XxYF/2cjyyIys+sVOPGziNB8EgavecAXF8PH0+G/E6GmAK76HEwsRET3zq0w5RaI/i/8NxB+XiFS1uY/o9V/5VAhvTKdrOosFvks0up4w/ftyOZ6/+sB+DT+U/ad3sfhosPk1+ZT2lDay5naUdFYQX5tPhMdJ+pkvPPJ1eOupryxnB+SfyDIKQgrEysu8riIHdfu4MOLxYPO5IpkPc+yI/parwYHx4CBfpBwupr04lqumNJD9KYkFf53sYjOLP9I3BQBjF0o6gaCrxH/9gmH7P3i5hYg75BI5WlzhPrDjHtEPULChv6P0QOBrTUWjy/y5765Y6iob2ZXcvGgXKuNuGwRGahuVPO/KHGDqG7RnVP1Z0Ihb2xNZlmIO/9YME5n4/aJ3a/AjzeKQvWLnwev6fqZR3/QJoJTkir6r4y9GC59Wzgrq+aK13tCrYK970Ds55AfJwQNekFWGMONP4CNO3x/PRSe6HhA8u/wzeVQeBJm/wMaK+HbZZ2jLFV58Pl8+OFG2PywiLyeXQ+nDROWiWirx1TxOT6YAh9Mhd2vC+cmex8UHIPL/wtP5cBjyULpbN7Twjm6/D3xwGPpm+A57cy4JhbCWbx9C4waD/P/DXfv7JjOOgzYnr0dhaRgwegF+p6KgSGAp7Un4dbhbEjfwOuxr2OqNAUgqSyp32NqZA0fHf2IrKosEsuEHPRwdHBmu8/GxcIFVYuKMLeOGR4THERqcHJZ3xyc/af38+bBN3l679Psyd3T/np9c/2wFi/QUac4A+HhA2/qZGBo0pVt1x3OxVgpcVmwW9cnpe+EdXeCkQncsaVjOo21i0gvaZOQ9QkXKmmnj4L7ZNj6hFA/Cug9F71bfOeJ9JW41RByQ8f3SlLAzE7Mo58snujK/1aEsmC8M7Is42xtyq9xeSwJcu395H5yOLsCfxcr/F2s+WpfJsfzq9ibVsLXd0xnXkD/0nHabKvRyLy5NZnxrtb859pJXddRDTal6bDvAwi+Hq78pH/RO32ibYqa0zgRbZm+EtwmCznjmI9g+Qfdn5e4UTSybWPsJb1OJzw8HIyMYMUG+GoJrLlWSG1buwrH/9eVom7t1vVgbgfjLxeNdDc+CLf+IgapPi2cntoS4fjUnIaZDwinqa+4BoloTmWuEApI+1PU7phYCgfHwglCbhLHWrt0VjoLvbP7sX3ngO+2vs9piLAjawfTXKbhZO6k1fGG79uRz3OLnmPZxmXk1OTwTNgzvBb7GknlSczxnNOv8dIq0lh1fBVxxXGEuQrHYIJjN7WCQxilQslV467is/jPmOk2s8N79mb2uFi4kFSuvSOYUZnBAzsfwFhhjInShG2Z2/j4ko9RqVU8ufdJFoxewOvhr/dam9sT+lqvhgiOjkhN7eUJpIFhy7m23XaygG9jsrlmqid2FiadT1CrROGxrQfcs6ujc9OGpeOZlJoxFwuHY+0tsO1p4egsfVPcdPUXhQLGXyYKspvOyEqiboKvl8L6u/s/NkJMYWGgC0qFhJFSwVVTPNidXKyz1LFz0Whk4rIrmOZtz6ML/VFrZNKKajBWKIhO63/aQptto9JKyCit4/55YzAz1r6RmM6QZeHYGpvD4leHn3MDZxz2Hh2cNHA6S/XLc5ro0XL6aM9jJ2wAa3fxYOD+mK7X1Dm0r1u70cKxUFWLhw7HfoRf7hJpbrdtOLPORofB3H8JifW8I0J5bPWVQgHxtvXw6Em4NxIueaHXa/eInZdQR7xtAwReIepnUreJqKuxdjVwI4lTlac4VXWKhd4LtT7H8H078inNKeXJGU+yyHsR1/tfj7eNt9YRnC0ZW4g53bHu40SpiOAeKjzEz6k/42Pjg7XJ0BXd6InbA2/nuVnPMc1lWqf3JjhMIKU8RatxNLKGF2NexMLIgq1Xb2Xr1Vvxs/Pj4V0P8/Duh7E2tub3jN/57PhnA5qvvtarXiM4kiQtA5Z5e3sTGRkJDN8OxLW1tYwZM+aC7kA8HOwEfe8UXV9fT4HkyGfb43E0hV05zUzxsuNGf0X7722IuxmqFpnkIhWOpbEEN1bRcNnHxB7LADJ6tZNl0ItMS3oVxcFVlDpO52SJAz5ZWQOyk0O1LZM0zdQk7eJIhZBp9FEl4VNfBplRHPx9NU22fjqx0zRvX1ZFZfDr9ij8bJU6t1NejYbqRjVjbBXkJhzmnQgzxnl78OSOIqISsom0Ku7XelKpVIwePZp3N8dhayrh2lwIeJz39RRonI/zqZ2kjb2b/MOJODoWDbv1VJyfQwRQW5pHTUFBp/V0eF8kc6rzyFdZ4gHtdvJVOzG6OJrkE0cpKqs6Y6eGWtJOZaFU13NR2g7Uk29j/9F0AGzyG3vd99RqNVZWVu12mjjrOUZFPQU5+6m0DSJ38osEm9l0tNPMu1HveZfK355EbWSFS1kaRYs+I/lUPZzaK/a9mjri4/cDA9/3lA43MsPqKCYNxexvmkBzZOSQ2ffO1/fTUbOjSEhY5FkQWRip1XqSZZnm5mbD99N5tNP5vo+ora3F2c6Zd+a9Q1xcHI5qR+Ly46itre3RTkZ2RjwT/wwyMjMsZ3Cz681cHH4xu5J2YaGwwEJhQXF9MRFOEe3f38PNTscOHmOUehRRp6M62cnbwpuovCi279qOicKkRzvtr95PXHkcL85+kbzUPCoqKlhhsYJVzavwNfflCrMrWFu+lk+OfYKz0hnHUsd+rafa2lpsbW11tp60RpZlvf+ZNm2aPNzZvXu3vqdgYJDYvXu3vPyjaDng//6Qxzz9uzz/P7vl4urGMweom2T57fGy/N4k8fd1d8nyGz7i732hPFOWNz8qy1X5upl4Q5Usv2AnyztfOfPa2hWy/Ia3LL80Spa3PK6b68iynHi6SvZ+cou8OV5Hcz+HNQeyZO8nt8iZJbUdXn9+40l5wrNbZXWLpl/j7t69Wz5VXCN7P7lFfm9Hqi6m2j/WXCfLbwf0/XdmqPGKqyxve6br9/KPyvLzNrKcsKHj6wkbxeu5h868VnZKll/3kuXo92X5+Drxftb+Pk2lyz058k2xPlV13Z8Y+Za43vM2srzr1T5ds1/UFMvy6fjBv84Q5coNV8or/ljRp3MM37cjn3Nt/OWJL+Wgb4LkioaKHs9rO+6l/S/JId+GyK8eEGv4yg1Xyn/b8Tf5j4w/5KBvguTVCasHa+p65a+sv+Sgb4Lk+OKe95SmliZ5wdoF8m1/3CZrNB2/P8/+t0qtku/fcb+8N29vv+ek6/UKHJa18C0MNTg6Iiho+MgNGugbzt7+xG87yr8WB3DPHD+UCqmjwlbiRpGbDxC7SqhgTbq+72lG9j5w+bs6mzdmNqLGIEs8IaGhUsxt2h0iXSf+R7j4uc7qT2cjy1CSLNJ8TLpv5unlIJTkcssbdDd/YM2BbMyNlRzKLMfJygRvx46KdcEetnyzP4uMklrGufQt3UDdoiELF1789jDGSomb9dXYs/q0SIsKf3R4pqadjbm9+D3rijYFNadzGlO6TxE/Tx8V6WoAB/8nVOT+el40tLVy7VkyvQu63JPnPtH7iWH3woFPRNF+hBbHDxSrUeLPBUhGVQbplek8NeOpPp1n+L4d+Zxr47YC+qTyJGa5z+ryHFmW2XxqM5NGTeLZWc9S3VTNn1l/8sDkBzhVeYpF3otY7LMYWZaJ8OxdqGQ4Mt5xPADJ5clMGjWp2+N25+ymuKGYZ2c926m+5ux/myhN+OSSTwY0J32tV4ODoyMMspUjl53JJQAsnuiCiVEXZWuxn4leJZbOsOM50XAw6JrzPMtu8AkXTldzg+ho3qKCSa2iA/E/il4r4Y90fW5TPWx5FI7/BKY2MPFKsHAEIzO46JEOXeitTI1wsDQhp7y+67H6gbpFw/ObEmjRCBWXRYEunTbiSZ624qPkVfXZwflgZxof7MpgvKs1n98WyihrU+1OrC4QTmEPDl+fiP9RNIGdfItuxtMn5vbQ0Cr7XJoOdcUwepaoNytNBUnZua+PracQ1Wirw1HVwNE1oui/PAOKE4XEuqJvJaP93pPNbOGBg+Kn0vAVOZjsyNoBwCWjexeNOBvD9+3I51wba+PgpFSkkF6Zzr/D/g3AEt8lbMvaxlcnv0JGZtKoSaKZrN8ABHyGOO6W7tiY2HQQGmjRtCBJEgrpzB76U8pPuFu6M8ejf6INfUFf69Wwe+uItLQ0PDw89D0NA4PAtpOn8RtlyVjnLm6g844IWeclb4LbJFHAb+UK3rPP/0S7wjsc9n8IadvhwGfgMEZI1UqSkKve+aK4wQy+tuN5DZXwbZuE7kNCRerEL6KDvEYt+veMv6zDKV725uRV6M7BKapR0aKRWR7iTk55PVdP7by+/EZZYWmi5EReJddO014aV6OR+eVIHsFOSjY9PEd7hRi1Cj6fJwrqV+4QfVBARBu+uESoey16VfubcVkWN/Pe4eA4Ruv5D1nM7c+IDGx5BLL2il40k2+B7BgRpTQ6x5GUJBHFyRc54hz7UUQYwx8V4/3+GIT2vcnfgPbkCzSiMtioNWqMFGduO3Zk72DyqMm4WPZN0dHwfTvyOdfGdmZ2eFh5tEs8d8WmU5swUhixxGcJAOEe4VgZW7EmcQ3AsGrs2V8kSWK8w3hiC2J569BbJJQmkFSehI+ND2svX4skSaRVpHGo8BCPTH0EpWLwRXX0tV4NKmoGDPRAVX0zyeUaFk/sRv744CowsYbJNwunJux+0SPjPGwaWjF6JiAJ9aiydKHQ1XYzf/234un6+ntFY9E2ZFn0+yhKhJt+gkWvwNWr4N8F8GSWOKao85eMp4MFuTqM4OS1jnXtNE82PHARS4I6S3IrFRITPWw5nl/V/lpWaR2v/5HUo6JbXE4Fp6sameVu1Df5y+TfobZQRBV+u+9M76L9H4kIxYFPYP09Qq2uNzQtEPOxiFJMuVX7OQxlzO3OODjlGeA8UfR02vIIZEeDczeyrO5ToDQF6kpFRNQjVKSrOY6BFRvBefz5+wwGdMaunF1kV2cDcLzkOBFrI/gsXigyHSo8REpFSp/U0wxc2Pjb+5NWkdble7Issz1rO3M85mBnJpQRTZWmLBi9gCZNEz42Ptia2p7P6eqNkFEh5Nbk8nPKz7TILYS6hJJUnsTRYhEl/yn5J0wUJlw97mo9z3RwMURwdISXl5e+p2BgENiZXESLTNcOTnMDJG2BSdedqWNZ+sb5nWBvmNuJG8XSVOGsnB1ZMrGEm3+Gz+fCrpdF9EGS4Mg3kLhByOEGLOk4nqk12HlDcUKnS3nZW7A9oZAWjdxeo7Q6JovvD+Twx8NzOtYtaUF+pajn8bTvWTo3xNOW1THZNLdoOJZbyb2rD1NR34xKreGF5RORZZnS2qYOKWib4k9jaqRg2ZQ+1t0c+QZsR4s6je3/B9ueEg7tgU+E5K/7FCH7a+sJC1/sfpzSdNGHpeCYaFo58cq+zWOo0hbBUatEbdGU22Duk1CVIxxs524a67lPEWl6n82BmgK46ccBT8WwJ+uXVfGr+OjYR1gYWfDglAf5/PjnNDQ38PGxj3G1dOWDuA/wsfHhGv++p/MabDvy6crGHlYeHCg40K7Sdja5NbkU1Rdx76R7O7y+1Hcpm05t6rEeZaRxX8h9XO53OV42XhgrjKlvrmfBugX8mvYrLpYu/Jb+G8vHLMfezP68zEdf69Xg4OgIF5f+N000MHTZf6oMBwtjJnl08eQnbQc010HgEL85vfEHQOo67cbUCmbeD78/DnmHRerVtqdgzAKY/XDX47lM7DKCM9rBguYWmcLqRjzshFNyMLOclKIa4vMqmTq6b5tpXoVwcNztenZwgj3tUKkzWf7RPtKKavBysGCmnyPfHcjmxhlefBp5it+PF7D5oXAmuNmgbtHwx4kCLpnggq9XHxo2lmdA5h6Y/38w60FxA3/gE0hYD831oov8qADR6yXmYxGVcRrXeZzs/fDTzSAp4OovRHrgAJqoDSnaHJyqPEAGe2+RrmfvI/50h/tU8bOpVjjd/osGPBXDnqw/vjjxBR8d+4ilPkvJr8vnrUNv4WDmwM/LfuapvU/x7L5nMVOa8dnCz7A07nstm8G2I5+ubOxm6UaDuoHqpupO0ZhDhYcACHUN7fB6mFsYczzmcKnvyK27ORdTpSl+dmdqHS2MLVjqu5Qtp7ZQ11yHhMTfQv523uajr/VqSFHTEW065QZGFifzq/C00HTd2T5xgyi69xn8Ir0BYeXcc03BpBuFiEDsZ7DpH6A0hSs/7b6OxDlQPI1Xdywc9HIQjsjZaWptTsrOpKI+Tzuvop5R1qa9Nt6c6eeAt6MFVqZKVs7xZf39s3nlyiAsTZRc88l+Nh4TCnf/2yv6N+w/VUZpbRPLQtz6tm7jVosi+Sm3CIdkyetw2btQXy460I8KEMdd8oJo2Lj1SZHudzb5R2D1FeL35u6/RPRvpDg3AOYOok6ruNUBtvPW7jxrF7j+O7hnt06cGzDsyfoiriiO9+PeZ6nvUl6f8zpfL/6af4b+ky8Xfck4+3G8O+9dxtqN5cXZL+Jv79/7gF1gsO3Ipysbu1qKTIrCusJO7x0qOoSjmSO+Nr4dXjdWGPPJJZ9wkcdFgzPRYcI1466hsaWRnTk7uXnCze3/l+cDfa1XQwTHgIFuaGhqIbWohsv9upDubW6AlG3i6ftwV1oytRI1RLGt3YqXfwTWPWx+LoFCKa40VYgNtOJl3yYVXc9MP9EQrE10YGdSMf9a3Lc6ivzKhl7T0wCcrc3Y86/5nV5/bKE/L2xO5Mkl4ymqbmTNgWwenD+Wl7ck4mRlyrwAZw6UatfxmZZmOPo9+C8Gm7OiPtNXwrhFYHXWEyorZ5j3NPz5NPxwgxBjmHQDKE3g938KJ2DlDhEtG2mYt0bpTh8TP+21dHAAApfrfj4GBpXjJcfRyBomO08GQNWi4vn9z+Nh5cELs15AqVCiRMntE29vP8fbxpvfrvhNX1M2MIxxsxR1mAV1BQQ4BLS/LssyhwoPMd11et9qKi8gJjpOxN/en9O1p1kZ1HfRluHIML8zGzrY2PTQS8TAsCSxoAqNDIGuVp3fTP9LpKeNlNqJ6XcLB8d3bu8F7211FEWJHRwcdztzFBLktkZt6pvU7bUvyYU15FXU42lv0dWI7ZTVqjA1VmJlakReRQPBXaUGasnts31YNNEVdztzcsvrWR2TxbWfxVBR38Tqu2ZgZqzUft2mbBWSx9Pu6PyeXRf5xTPuEbUkCRsg7U8hBR1wKZyOg6s+H5nODZzl4BwFhTFYdxaGOF8Y9uTBRZZlnoh6gqK6It6d9y7hHuG8fehtsqqzWLVwFRbGPa/1gWCw7cinKxu7WZ1xcID2WpzcmlyK64uZ7jr9vM5xOCFJEv+J+A91zXXtIgznC32tV706OJIkLQOWeXt7ExkZCYCfnx/W1tbEx8cD4OjoyMSJE4mKigLAyMiI8PBw4uLi4jYMBwAAIABJREFUqK6uBiA0NJSioiJyc3MBGDduHKamppw8eRIAZ2dn/P39iY4WDQ9NTU2ZNWsWhw8fpra2FoCwsDDy8vLIz88HICAgAKVSSWKiSLVwdXXF19eXmJgYAMzNzQkLCyM2NpaGBnFDp1KpyMzMpLBQhE8DAwNpaWkhJUU8Jfbw8MDT05PY2FgArKysCA0NJSYmpl0nPDw8nNTUVIqLiwHRIEmlUpGWJpRDvLy8cHFxaQ/52djYMHXqVKKjo1Gr1QBERESQkJBAWVkZACEhIdTU1JCRIVJ0fHx8cHBwIC5OyLLa29sTEhLCnj172jeMuXPnEh8fT0WFUESaOnUq5eXlZGVlDSs7mZmZUWXtg0VVFi1NjQDMmjVLKzutjzwCgK+dSJFqt5MsE5H7JRoTW/Zly8i5kcPfTjk1KCe9SK2VLyF1dT3bycmBCUoTcg9vI6vUHqf6NAKXPcDxY3HYm0ocSsqgIdyLfSdOATDbWcPGGth0KINAk9Iu7WRubs6MGTNY9t5uvKzgvhBTTlc2EOZm0r439Hc9JSYmUlxcTKiLkoOFTdwx3YWW/AQi84Wdamtre7VT3Z6PMDZ15EC+ESGjKrSzk+klyJMX4Fyyl8CUDyEnhiqb8Rwtd2ZqdfWwXE9d7Xtnrye7imwmAy35cahMnTgYtVev+15OTs4Fue/1ZicY+PdTcXMx+bX5mCvNeWz3Y9gobShvKedqv6tpSm0iMjVy6O97F4CdYPjeR0RHR3ewk0bWYKwwJikvicjCSL4u+Zp643pmuswEQJOjIbEl0WCnXuzEKM77esrPz9fZetIWST43R1wPhIaGysM9p7ZtIRoYWkSnlXLrl7G8dc0krp/eNyWPx34+xt60Ut6NMGXOnLPqbKLfEx3Wl7wJM89fod6Q4tNwkcZmNxoOfwl3bgXv2dywKoYWjcwv989mV3IRd31zmF/vn83jPx/Dx8mSb+6c0e2Qp0pqufidPdiYGbHtkQhmv7GLl68M4raZfUhz6oGi6kb+OFHAilk+7YpuPa7bmiJR9K4wgvdDhBrY/Kf7d/Hs/bDzZbj0P+A6gnsxFJ6Ez1pz3f3mw4oNepuKYU8eXH5I+oHXD77Oj5f9yOsHX6dF08IDkx8g3CN80NOEDLYd+XRn40vXX0qQUxBvznmT2T/OprZZ3Aw7mDkQeX2kIUVtCKLr9SpJ0hFZlkN7O86QoqYj2rxpA0OL344Kzz+lqKbP557IqyLYw5aWljpRHH58HSiNhUJW4JUQdp+upzt8cAmEpM2Q3to/J/5H8J6Nl4MFe9NKAMgtF0+6vBzMmRfgzI8Hc1CpWzA16voJzJ4UcV51o5o/E8RTsU41OJlR4BYiusz3dco2Ztx5UccC1B7X7bo7IGc/2LQ2EB1Irxrv2XDX1v6fP1wwP0spry/1N4OAYU8eXGJOx+Bp5UmQUxDfX/r9eb22wbYjn+5s7GrpSmFdIfm1+dQ213LT+JvYk7vnvDjWBvqHvtarQUXNwIiloaml/UY5vbi2T+fWqdScKqk9UwOy61XR1HP/B0ImefmHI0v9qq84BwppZHtf4ewlbIDmBkY7WFBUraK+SU1ueT2mRgpGWZkya4wjKrWG43lV3Q4ZmVqCi43oVbP2kAhre54tEV1bDN8uh00PDepHA0TDyZwY8L5I9GeZeGXXtTYGOnK2g6OtgpoBvdGsaeZ4yfG+n9fSzMHCgxe8MpWB84+bpRsFdQWklItUsGV+y9h2zTaeCXtGzzMzMNQwODg6IiIiQt9TMHAOfyUVUatS42Fn3mcHJ7GgGo0MwR62RMycBlnRMPPv8Fw53LvnTGPPCxXvi8DIDK74GELvAlU1pPxBiJcoXjyUVUFuRT2e9uZIksQMH1FUf+BUWZfDNTa3EJtRxmXB7ox3tSa5UETcPM6O4OQfAWRI3AinduvkY3S7btN2iGstfhUeT4LrvtHJ9UY8xuZCZhz0HsEx7MmiCPtgwUG+OPEFrxx4hcrGyg7vf3XiK2754xaOFB3p07jHSo5Rr65nlvssXU5Xawy2Hfl0Z2NXS1dK6ktIKEtAISkYaz8WSZJQKrSvzTBwftHXejU4ODoiIaFzZ3cD+mXjsXxcbcy4LtST/MoG6lTah0mP5YgbgWBPW3L2rIEWFYxbCApl9/1hLiS8psPTeeBzkegDZOMB8WuZ4eOAiVJBdFoJeRUNeDkIJSV7SxPGu1oTm1ne5XAxGWWo1BrmBYxi9hgnABwsTbAwOSuLNu+w6ENj5w1bn4ATv8D2Z0WtTD/pdt2mbhUKYG6T+z32BYkknVGIs/PR61QMezKsTlzNyu0reT/ufdamrGVd6rr29+qb61mTtAaAL0982adx95/ej1JSEuYaptP5aovBtiOf7mzsZulGi9xCdH403jbemBv13krAgH7R13o13KnpiDYFCwNDg+rGZiJTSlg+2Z0AF2sAMkrqtD5/8/HTjHe1xsXGDOPsSDCxgtGzB2m2wxRla38ghQKCr4P0vzBvqSHUx569aaXklte398YBmOnnyOHscprUmk5D7UkpwcxYwQxfBy4aK3rodKq/yT8san+WviV68Py6UqQMnljXaTxt6XLdqpsgfZfob3MhpyH2l7Y0NT1HcC70PXlnzk7eOfwOC70Xsv+m/YS6hLIhfQNtwkK/pf9GpaqSuZ5z2Zu/tz3lRxsOFR4iyCkIK5MuJPTPAxe6bS8EurNxW4PKpPIkxtv3rbeaAf2gr/VqcHAMjEjSi2tRa2TCfB0Y6yy+hNNLtBMaSCqo5nheFdeHeoEs41h2BPzmgZHJ4E14uOM1QzT/LD9F+DgnkgtrqG5U4+VwxkkJ83WgsVnDifzKTqcfyipnuo8DZsZKZvg6oFRIeJxdf6PRQH4ceIRCwBK45RfR9d7aDQr7XkPQIzn7oakG/JfodtwLBXN78UDAwlHfM7lg2Zu3l6einiLYKZjXwl/D2sSaK8deSU5NDnHFcTRrmvk24VumOE/h1fBXsTCy4OuEr7Uau1nTTHJ5MpNGTRrkT2HAQGfamn0C+Dv463EmBoY6BgdHR4SEhOh7CgbOIrM1WuPrZIm3oyVKhaR1Hc7Ph3MxVkpcOcUDipMwU5WIp/kGuqetoLwim/CxTu0vn93Yc4Zvax1ORuc0tYKqRka3prNZmxnz9NLx3Hq2PHRZmqjz8WxVhhy3EDymguskKDzR72l3WreyDMd/FnUkfnP7Pe4Fjb2PEOLQc/TrQt2TN6Zv5KFdD+Fr68sHCz7AzMgMgIXeC7EwsuCX1F94OeZlCuoKWBm0EltTW671v5Ztmdsob+w6hfRs0ivSUbWoCHLUn9z5hWrbC4nubNwWwQEY72CI4AwH9LVeDQ6Ojqip6bsMsYHBI7O0DqVCwsuoEpOfbyLCroy0ot4dHJW6hQ1H81kU6IqDpQmkbRdvjFs4yDMe5rSlI1XmMNHdFjsLkb52doqao5Up/i5WHMjoGK5ubG6hvK4JVxuz9tfunuPHRWc5SuS19snyOEf63jUYSlKguaFf0+6wbmUZ/noBjn0P0+4AE8t+jXnBs/QtuHmtvmdxQe7JpypP8ey+Z5nuOp2vl3yNo/mZKJqFsQWLfRazJWMLv6X/xr2T7iXCUxT/LvFZQovcwsGCg71e42SZaNQX5KQ/B+dCtO2FRnc2tjS2xMZEiPwYHJzhgb7Wq8HB0RFtXWMNDA0yS+sYa6/EeN2tkLqNpeYJpJf07uCsPZRLRX0z14W29j7J3kedhSfYuA/yjIc5ptZg7gCV2SgVEhe1CgWcnaIGMM3bgfjcSs5uMFxcLbo6u9ia0S35h8HUBpzOSUlwmyRS44qT+jXtDuv2rxdg33tCFW7JG/0azwBgatVRLlpPXIh78urE1ZgqTXkr4i0sjTs76DeNvwk3SzdeDX+Vh6Y81N43JNAxEGtjaw4UHOj1GgmlCdiY2OBlrT/Z9AvRthcaPdnYzdINBzMHnMyduj3GwNBBX+vV0OjTwIgko7SO5/kcTh8FhTHjjIrJLqinSa3BxKhrv/6r6Exe2pLILD9H5owbBZoWyImlymEmhmf5WmA3GiqyAbgr3AdnG1Ns63Mg4zgEXQ3ABDdrfjyoprC6ETdb4fwUVInoi1tXDs5fL0J9KWREgvuUzgp2rq11AIXHRcpafzn6vXBupt0Jl72r9/QqAwb6SmlDKZtPbeaqsVdhb9a1gznBcQLbr93e6XWlQsl01+nEnI5BluUeGyaeLD3JRMeJhqaKBvTG/NHzaehn1N7AhYPBwdERPj4++p6CgVY0Gpmm0kxmK/+C8EchMwqPptO0aGSyy+oY16qqdjbbThbw0pZElkx05b0bJ6NUSFCYCKoqjMcaei5ohb03FAk5yGneDkzzdoAtj8Lhr8E3AiydGO8qUguSC2raHZzC6kaADilqAKhVEP1f4WzIGpi6ovM17bxFZKegH0IDpelMLt8Mf+6Ag5+D71y49D8G52aEcKHtyT8l/4Rao+a2wNv6df5M95nsyt1FXk0eXjZdR2ca1A2kV6ZzV9BdA5nqgLnQbHsh0pONH5j8wPmbiIEBo6/1qlcHR5KkZcAyb29vIiMjAfDz88Pa2pr4+HgAHB0dmThxIlFRUQAYGRkRHh5OXFwc1dXVAISGhlJUVERuruh+Pm7cOExNTTl5UuQKOzs74+/vT3R0NACmpqbMmjWLw4cPU1sr0pbCwsLIy8sjPz8fgICAAJRKJYmJiQC4urri6+tLTEwMAObm5oSFhREbG0tDQwMajQY3NzcyMzMpLCwEIDAwkJaWFlJShPymh4cHnp6exMbGAmBlZUVoaCgxMTGoVCJNJzw8nNTUVIqLiwEICgpCpVKRlpYGgJeXFy4uLhw+LGoSbGxsmDp1KtHR0ajVos9LREQECQkJ7dJ8ISEh1NTUtIcJfXx8cHBwIC4uDgB7e3tCQkLYs2dP+9O7uXPnEh8fT0VFBQBTp06lvLycrKysIW8ncwc3PFryQAmJzZ4EOozBMkU0hvxpx/+zd+bhUVXn4//MTJJJQvYdsockkAUCIRgCYRMBUcG6S7Vf99b6dWmt/bZqq63Vn7YutVq1iqKFihUFFVFBhCQQIIEQiCSBLCQh+76TzCSTub8/LgSRJdskN7k5n+fxCblz77nv8OFc551zznvS+L+bFpzn6cN9J3Cz1XCzXytlJUX4+flR/t06woBSjR+eIDz14anaoMersYTdSbuIn5NAeXk57icO44ZEc8andEVcT12hnADtOXqCucHO7N+/n73FXbI7Z9ve/gQwd4o3NkgcD3+QZpdphIQl0lNVdV5/Mtr6o8lPpSAjY0D9KTLnr3jV7UPS2dBmH8D3k+7DPuuo6j1Z8rkHkJCQMCqfe6GhoZSWlo4LT66ervz3+H+Jtoum5HAJNXY1A/Y00U2uTrUuZR3zHOdd0JPDFAd6pB6kaonk5GTFnnszZ84ck57Gcn8a6eee2WymvLxceBrlnqDv/mQ2m7G2traYp34jSZLi/82aNUsa6yQlJSkdguA0ewvqpD8+8ZAkPe0kSa3VkpT0vGR+2lma/+zX0s/XHTzv/NbOLinsya+lP2/JOfeFjXdK0ssRUtKuXSMU+RjnwBr577yl8uyx1+PkYxvv7D2U8P++kx7+KLP39z9tyZYi//jN+e0V7JCvLdl76ft+/X+S9KyPJPWY5N9NXZJUfkiSzOaLX2NolaS/eEll76zuzzsTjEHG0zP54+MfS9EfREsHq85/vvUXs9ksLdm4RHo06dGLnrM+Z70U/UG0VN1ePej7WILx5Ha8IhyrB0u7BDKkfuQWosiAQHUU1Z8iWFON2XoCOHiB22Q0SNw0uZuU/Do6u3rOOX/X8Vq6TGaumna2/CSSBKX7ISBBTFnqL2d2rm+W1+EgSdBcKv/5xE7okb9xmjrRibzqs1VVqlsM+Fxo/U1TifzTNejS9/WZDt0dUJwiV1R7bxmsWXzpDUCPfw0mA7Ve8/t8WwLBaMYsmVmfu55I90hmec8adDsajYb4ifGkV6fTbe4+7/WD1Qf5OO9jvOy88J7gPZSQBQKBYNgRCY6FcHVVvmqQQKa4/hSTdTVo3CfLyYn7ZACu8GrD0G1mT0HdOed/fbQKbyc9sQE/cNhUAm1VEJgg3PYXlwD55+lCA5yqA5MBAhPB0AJl8lD9FB9HCmvb6TKZAXkNzkUTHJ0eHHzOf+2H+F8m/1x/HbxxGTQWgWsw7PqLvI7n+Ffw71XQ8YM9PrI3gbM/usA5Q3jDgtHMeOm3KWUplLSWcEfkHUNe+L88aDktxha2nth6zvH/5P6Hu7ffjbHHyDPznhnSPSzBeHE7nhGO1YNSLkWCYyHExmOjh+L6U4SeSXCgN8EJt67F2c6a7Tk1veeeMppIzqtjRfREtNoffDgolefeEpAg3PaXMwnOmRGcM6M3s+4ArRUUbAdgqo8jJrNEUb08z7a6xYCPk92PW5MTHNfA8yun/RiPMHgoE657Gy7/AzyQBte8It9/y0PwyV3y6E762/L5HY3yiFL09cTMmDnENy0YrYyXfrsudx0+E3xYGjT0vbrm+84nyj2Kt79/+5xRnG9KviHCLYItP9nCPN95Q77PUBkvbsczwrF6EBt9jnFSUlKUDkFwmtK6FrzNNeB2OsGxdQZ7D3RNRSyZ6sXO4zWYeuTRg+S8OowmM1dG/2iU4Ogn4DgRPCOE2/5ibSuPtvw4wfGOgsC5kC+Xp/1hJbUes0RtmxEfZ7187q7n4MgG+c9NJXKVtP7gPhliboUFvwWniTD5cghZDN9/LE9xC1kE6f8CYxtkrAWzCaJvEG5VzHhwW9RcREZNBqunrsZaaz3k9jQaDQ/MeICK9gq2FG4BoNvcTV5jHrN9ZmNrdYm9qkaQ8eB2vCMcqwelXIoEx0JIP9i4UKAc7UYTUtNJdJh7R24A+c8NJ1gW5U1zRzfpxfJ0pZ3Ha3Cxt2Z2kNvZc+sL4MQuiLsHtFrhdiC4Bp6donYmwXH2h7DlUHcMmksJ8ZyAtU7D8eo26tuN9JglfJztwNgul4Xe/4a8fqfpZN/rby7Fir9B1PVw+ya4/I9gaIZP7oRdz8LUa8BnunCrYsaD2y9OfIFOo2PV5FUWa3O+73ymeUxjzdE1mCUzhU2FGHuMRHtEW+weQ2U8uB3vCMfqQSmXIsGxEGLTs9HBG0mFBFAl/+IeevYF91BoOMHCcC8m2OjY+n0VZrNESl4dC8M95X1vznDgHdDZyFOrEG4HhEvguSM4dq5g6wThy+Vj+dux1mmZ7OnAsapWqlt+sAdOyR4wd0NNtryOxtg6tATHMxxueh9c/MEvTt7npvA7CJwHN7wHGo1wq2LU7tZkNvHliS+Z7zvfoju6azQaVk9dTUV7Bdn12WQ3yGVdo91HT4KjdrcC4VhNKOVSJDgWYuHChUqHMO4pqT/Fe3uKudb/9A7Hbj8YwXELgfZq7KROlkZ68012FYdKm2g41cXlU73OnmdoladIRV0nV2BDuB0QroHQUgGmLjnBcT69YaB7qLzwv0CephYf7Mb+ogZyKuWa+ROdbeVRszMc+fB0e0GWi+3K52H2vbD6I3k6HcKtmlG72/2V+6nrrOPa0Gst3vYCvwXoNDqSy5LJqc/BWe+Mn6Ofxe8zWNTuViAcqwmlXIoEx0Kc2QBJoBzPfpWLtU7DMp9Tp9fd/GDa2Znpao0nuGb6JJo7unn2q2NoNbAw3FP+ML7hFng9Frra4bKf914q3A6ASbEg9cDJVGgpO1t4QKORR3GKd0NXBz9LCKTLZOaNpEIAvJ1soXCnvFbG2v7sOhxLJjjeUXD1y/KI0mmEW/WiVrevZb7Gb1N+yxtH3sBF78JCP8t/eHDWOxPrHUtSWRLZ9dlEuUeNqm/U1epWcBbhWD0o5VIkOBbizA6wAmU4VtXKd8dqeWBxKPZtJfLozQ//h+wZIf+symJ+uAdOtlZklTUTG+CKi72NvPbjRBKELpWnL/nF9V4q3A6AyYvBxgFyv5CTxh8WCQhbJpeNLtlDqJcjC8M9qWjuxFqnwb2rEhpPQPiV4B8vl+gGeURoGBFu1Ysa3TZ0NvDu0XdJrUglpyGH68Oux1o39OICF2KR3yIKmwvJb8onyj1qWO4xWNToVnAuwrF6UMqllSJ3FQgszLr9J9FbabktPgCyTsgfkn+I5xS5KlrhTvSx/8OV0T5szChn8VQv6OmGnM8h4hq47i1l3oBasLaTE5mjm+TNN8+M4AAEJYL1BHmaWvhy7kkMJiW/Di9HW7TFSfI5k5dA1ykoSgJ7D9A7KvM+BAIL02xoZm3OWgqaCmjtaiXMJYzZPrNZEbwCraZ/3zWmVqQiIfHe8vcIcgoa1qpmi/0X82LGi0hIo6rAgEAgEPQHMYJjIWJjY5UOYdzS0tnN54cruHbGJFw0HdBSfu76G5BHc0KXyB+ce0zcMtsfB70VK6J95JGbzkaYdtMF2xduB0jktdDVJv/5hwmOlR5CFvautZkf5kG4twOB7vbyMWd/eU+boPny+ZacnnYRhFv1Mtrc/uPwP1iXs476znr0Oj3flX7H7/f8nru23UVJS0m/2kgpT8HL3osItwjsre37nRgNBn8nf0Jd5EItoy3BGW1uBZZHOFYPSrkUCY6FaGxs7PskwbCwObOczu4efjYnSN7rRDLD1KvOPzH0CjC0QEUGswLdyP7zckI8HSD7U7B1kUcPLoBwO0DCloLV6Y07XfzPfW1SrFwhzdCKRqPhP/fE8/dbZkBNrjwtUKOBSTPldTgjkOAIt+plNLnt6O7g66KvuSbkGj5Z+Qlrl69lzy17eGbuMxQ0F3DPt/dglsznXPN+9vu8ceSN3hKrXT1d7K3Yy0K/hSO2HubG8BuZ5T0LL3uvvk8eQUaTW8HwIByrB6VcigTHQpSUlCgdwrjEbJZYn3aSGf4uTHOXYP+b8h4nEy+wc27IItBo5VLBZ+jqgGNb5VEHK5sL3kO4HSA2EyDsCvnPzj9KcHxOfxNcewwALydbvB318qjbmXOtbOCW/8Ci3w97qMKtehlut109Xb0jMn2xvWQ7HaYObgi/ofeYRqPhurDreDL+SWo7asmpz+l9bVvJNl459Ar/yvqXPE1MksiozqDD1MEi/0XD8XYuyG0Rt/HBlR+M2P36i+i36kc4Vg9KuVR0DY5Go1kJrAwMDCQ5ORmAkJAQHB0de6suuLu7ExUVxe7duwGwsrIiMTGRzMxMWlvlErNxcXHU1NRQVlYGQFhYGHq9nuxsuX6/l5cX4eHhpKamAqDX60lISCAjI4P29nYA4uPjKS8vp6KiAoApU6ag0+nIzc0FwMfHh+DgYPbv3w+AnZ0d8fHxpKen09nZSXt7O0ajkeLiYqqrqwGIjIykp6eHvLw8AHx9ffHz8yM9PR0ABwcH4uLi2L9/P0ajEYDExETy8/Opra0FIDo6GqPRSEFBAQD+/v54e3uTkZEBgJOTE7GxsaSmpmIymQBYsGABOTk5NDQ0ABATE0NbWxtFRUUABAUF4ebmRmZmJgCurq7ExMSQkpKCJEloNBoWLlxIVlZW7+Kw2NhYGhsbe/+hjhZPNVbeFNWd4v7pekr++38EGVvomvtr9p3+9/RjTzMdp+CY/y35k26kuroaz9q9RHWfomHSYo6evubHnjo6OgCEpwF4mhP/CO3WvmSnHwHO9qcTxe0kANVZ3+HqPYP9+/dj3dXMvB4jOPv3egIdCf4BFB8/Pqz9yWg00t7ePm49DfW5B5CQkDAqn3smk4nS0tJh8/RN8zd83fI1O07u4E67O9FpdBf1tOHoBrytvGnOaaaiu+IcT+6u7mjQsH7veq5yuYomTRMvlL/AZLvJTLKaxPrc9ZS3lNPQ3oC1xhpDvoEqXZVqPA2mPwGiP40BT0N57rW3t5Oamio8jXJP0Hd/am9vp6KiwmKe+otmNOwWGxcXJ50ROFYpLS0lICCg7xMFFkOSJK57cx8Np4wk/WoeVi+HQfB8uPXDi1+U8iIkPQuPFcj73Hz+ABz/Cn57AnQXzveFWwsiSfDXQIi6Hla+Kh+ryIQ1i+HWDTD16hENR7hVL8PptrilmBu23ECgUyCFzYWsnroaXwdf9lbs5Tdxv2GK25TecwuaCrh+y/U8FvcYd0TdccH2bvv6NiRJ4sOrPuSObXdQ0lLCxpUb8bL34tXMV/m84HOajE0sDVzKK4teGZb3NJYQ/Vb9CMfqwdIuNRrNIUmS4vo6T0xRsxCOjqLa00iTXtzIkbJmfr5gMlYNx8HYIm/QeSnCl8s/j20Bs1merjb58osmNyDcWhSNBrynQU322WOt8rczOI/8RoLCrXoZLreSJPGXtL9ga2XLmmVruGXKLXx0/CNeyniJI3VH+PmOn1PUIn97WtdRx6+Tf42DtQMrJ6+8aJuJvolk12fzVfFXHK49zIMzH8Rngg9ajZZHZz1Kyi0pfPmTL3lm7jPD8p7GGqLfqh/hWD0o5VIkOBZCbEo18vwr5QQeDjbcNMsPKg/LByfNvPRFPtPAKxKOfAQ1R6G9Rl4UfwmEWwvjEy0XFTCfXlTdUi7//PF6nRFAuFUvw+V2+8ntHKw+yK9if4WHnQf/N/v/eCL+CTat2sTGazaiQcNd2+7iydQnuXv73dR21PLWFW/hZut20Tbn+85HQuLP+/7MxAkTuS703C9qNBoNQc5BONg4DMt7GmuIfqt+hGP1IDb6FAgGQEeXiT0F9dw4yx9ba508zcnWBdxCLn2hRgMxq6EiA9JO73kTesXwByw4i3cUdJ+CpmL595ZyueqanauycQkEfdDV08Wrh14l3DWcG8LkggE2OhtWT11NuGs4Qc5BrFm2hjDXMNKr0mnrauONJW8ww2vGJduNdI/EzdYNQ4+BX0z/xbBt3ikQCATjBbHRp4Vwd3dXOoRxRVZZCz1mifjg09+KVmbKozf9KZ86/Wb47mnI+ggmzpDX4lwC4dbCeJ+upFaTDe5kJknpAAAgAElEQVSToaVMnp42QqVvf4hwq16Gw+2GYxuoaK/gnaXvoNNeeLFrmGsY7y57d0DtajValgYu5WD1QVaFrrJEqKpG9Fv1IxyrB6VcihEcCxEVFaV0COOKzFK52sfMABfo7pSnPPn2czMpR5+ze970MT0NhFuL4xUhl+uuOV0Wt6VCkfU3INyqGUu7NfYYeef7d5jvO5+ESQkWbRvg8cse55OVn2CtFaM3fSH6rfoRjtWDUi5FgmMhzpTLE4wMh042EerlgIu9DVQfBalH3kSyv8w6Xc1oygU2BP0Rwq2FsbYD9zCoPl1ooKUcnH0VCUW4VS+WdlvcUkxbd9uwjbDotDpsdBfei0twLqLfqh/hWD0o5VIkOIIxhyRJZJY2MSvg9JqNMwUG+juCAxCxEn6VPbBrBJZj0kwoS5NH39qrFSkwIBAMhMLmQgBCnUMVjkQgEAgEfSESHAthZSWWM40URfWnaO7oZlbg6QSnIhMcfMBp0sAacunfh2rhdhgIWwodDXBsq/y7QlPUhFv1Ymm3Rc1FWGmsCHQKtGi7goEj+q36EY7Vg1IuRYJjIRITE5UOYdxw6OTp3XbPJDiVmcM6EiPcDgOTLweNDjLek393UmaKmnCrXizttrC5kACnAFHhbBQg+q36EY7Vg1IuRYJjITIzM5UOYdyQebIJF3trQjwmQEcj1OeD76zhu59wa3ns3cA/Hkr3y78rNEVNuFUvlnZ7ovkEk10mW7RNweAQ/Vb9CMfqQSmXIsGxEK2trUqHMG7ILG1ipr8LWq0GTu6TDwYN3zcEwu0wEb787J8VKjIg3KoXS7o1mAyUtZUR6iLW34wGRL9VP8KxelDKpUhwBGMKQ3cPhbXtTPN1lg+c3AtWtvKidcHY4kyCY+8uV1YTCEYpxS3FSEhiBEcgEAjGCGIVl4WIi4tTOoRxQV51G2YJIic5yQdO7gW/2WClH7Z7CrfDhOdUcAkAO1fFQhBu1Ysl3fZWUBMjOKMC0W/Vj3CsHpRyKUZwLERNTY3SIYwLjlXJQ50RE53A0CLvgTOM09NAuB02NBpY9TosfUaxEIRb9WJJt0UtcgW1AMcAi7UpGDyi36of4Vg9KOVSJDgWoqysTOkQxgW5Va046K3wd7WH0jSQzBA4d1jvKdwOIyGL5P8UYjy5NUtm3vn+HUpaSpQOZUSwpNvC5kICnQJFBbVRwnjqt+MV4Vg9KOVSJDiCMcWxqlam+jjKBQZKUkFnI09REwgEl2THyR28fvh1Psj5QOlQxhSSJFHYVCjW3wgEAsEYQtE1OBqNZiWwMjAwkOTkZABCQkJwdHQkKysLAHd3d6Kioti9ezcgbxiUmJhIZmZmb2WGuLg4ampqerPEsLAw9Ho92dnZAHh5eREeHk5qaioAer2ehIQEMjIyaG9vByA+Pp7y8nIqKioAmDJlCjqdjtzcXAB8fHwIDg5m/365rK2dnR3x8fGkp6fT2dlJd3c3RqOR4uJiqqurAYiMjKSnp4e8vDwAfH198fPzIz09HQAHBwfi4uLYv38/RqMRkOuF5+fnU1tbC0B0dDRGo5GCggIA/P398fb2JiMjAwAnJydiY2NJTU3FZDIBsGDBAnJycmhoaAAgJiaGtrY2ioqKAAgKCsLNza23dJ+rqysxMTGkpKQgSRIajYaFCxeSlZVFU9PpPWdiY2lsbKSkpEQxT2ZJIrfSyJLJDiQnJxN7dBu2ntNobmojNze9X54AEhISBuRJq5W/BxCeRq4/DcbTYPqTk5MT7e3tqvdklsy8XP0yAN8Vf8cC4wK0Gu2Y8TSY/jRx4kRKS0sH5elk/UlKjaXYTbTjsxOfUX6qnNnWsyktLRX9aRQ898LCwsRzbwx4Gspzr7u7m9TUVOFplHuCvvtTd3c3FRUVFvPUXzSSJPX75OEiLi5OOiNwrFJfX4+Hh4fSYaia0oYOFryYxPPXT2N1jBu8EACJv4IlTw3rfYVb9TJe3H554kueSH2CJQFL2Fm6kw1XbWCa5zSlwxpWBuu20dDItZ9fS7OxGZALC9wZdSdXh1yNlVbU5RkNjJd+O54RjtWDpV1qNJpDkiT1WblATFGzEGeyUsHwkVvVApwuMFCWDlIPBM4b9vsKt+plPLg19hh5K+stprpN5U8Jf0Kn0ZFUlqR0WMPOYN2+fvh12rvaeXPJm+y4cQebV23m2tBrRXIzihgP/Xa8IxyrB6VcigRHMGbIrWpDq4Ep3o5yeWiNDvzjlQ5LIBjV/PPwPylrK+PRWY/iYutCrHfsuEhwBkNOQw6b8jexOmI18/3m4zPBB41Go3RYAoFAIBgg4ispC+Hl5aV0CKont7KVYI8J2Nno4OQ+mDQD9A7Dfl/hVr2o1W31qWo6TB3Ud9Tz75x/c3P4zSRMSgBgsf9i/nbwb3xd9DUONg4kTEw4pzpYk6GJ1w6/RntXO/bW9jx+2ePYWtkq9VYGzUDdSpLE3w78DVdbV34Z88thikpgCdTabwVnEY7Vg1IuxQiOhQgPD1c6BFVjNPVwoLiBGf6u0N0JFYdGZHoaCLdqRo1uO7o7uPnLm7n282u559t7mOQwid/E/ab39cX+i9FqtPxuz+/4353/yxcnvjjn+g3HN7ApfxPf133P5oLNHKw+ONJvwSIM1O3+qv1k1mbyy5hf4mjjOExRCSyBGvut4FyEY/WglEuR4FiIM5UgBMNDcl4drQYTK2MmQvlB6Oka9g0+zyDcqhc1ut1csJkmYxO/iv0VD8Q8wD8W/wN7a/ve1/0c/fhk5SesX7EeLzsv0qrSel/rNnezKX8Tib6JfHbtZ1hprDhUc0iJtzFkBuJWkiT+lfUvvO29uT7s+mGMSmAJ1NhvBeciHKsHpVyKKWqCMcEXRyrwcLAhMdQDdu8FNGL9jUDwI7rN3azLXUesVyz3TLvnoueFu8rfqMVPjGdv5d7ecqFJpUnUddbx9JSnsbe2J9I9kszazJEKXzHSqtI4XHuYJ+OfxEZno3Q4AoFAIBgiYgTHQuj1eqVDUC1thm6+O1bLNdMnYaXTygUGfKaBncuI3F+4VS9qcStJEt3mbrYVb6PqVBV3R9/dr+tm+8ym0dBIYXMhABvzNjJpwiQSfeXR0VneszhafxSDyTBssQ8HxS3F7GjfwV8P/JX/5P6HS22HkFWXxbNpz+Jl7yVGb8YIaum3gosjHKsHpVyKERwLkZCQoHQIqmVbdjVdJjOrZkwCsxkqD0PMrSN2f+FWvYy025KWEp5IfYIrAq/g1im3njN1rL8cbzzOx3kf09jZyDTPaTR0NrC9ZDt1nXUATHaezHy/+f1qK36iPAp6oPoAEhLp1ek8EvsIOq28mdos71m8n/M+R+uPMttn9oBjHWkkSeLzws95/sDzdJo6sWuxo9PUSVlbGb+/7PfnVEQray3j3ex3+azgM7zsvXhh/gti9GaMIJ7J6kc4Vg9KuRQJjoXIyMggLq7PfYcE/aDN0E1SXh1Hy5v5vryF78tbCHCzZ6a/CzQVQ1e7PIIzQgi36mW43XZ0d/Bs2rP8fPrPCXIOYm32WrLrszlaf5QPcz/kw6s/xGeCT7/bey3zNdYcXYOtzhbvCd7sKtuFjdaG+X7zmeo2FYBF/ovQavo3OD/JYRJ+Dn6kVaXxbcm3OOuduTHsxt7XZ3jNQIOGQzWHxkSC89Hxj3j+wPPE+8Rzq9OtLJmzhJcyXmJd7jpsdDY8OutRAF47/Bprs9ei0+i4LeI2Hpz5IBOsJygcvaC/iGey+hGO1YNSLkWCYyHa29uVDkEVGLp7uPntNI5VtWJjpSVyohM3xflx6+wA+dvX6tMbRo1ggiPcqpfhdrvj5A6+LPqSylOVvLTwJbYWbeXmKTdzZdCV/HzHz3nn+3d4KuGpfrVV11HHBzkfsDRwKU8nPI2z3pkWYwtWWqshfTiPnxjPpoJNADwz9xlcbM9O/XTWOxPmGjYmCg0YTAbe+f4dLvO5jLeXvs2e3XvQaDQ8FvcYXT1dfJDzATY6G5xsnHj36LusmryKR2IfwctelKMda4hnsvoRjtWDUi5FgiMYdrp7zBytaCE2wLXPc//8ZQ7Hqlp5bfVMVkT7YK370TfRNdmg0YJX5DBFKxBYjm0l23orkT208yG6zd3cHnE7Qc5BXB92PZsKNnHvtHuZ5DCpz7b+c+w/9Eg9/Cr2VzjrnQF6fw6F2T6z2VSwiVivWH4S+pPzXo/1iuXzws/5+6G/4+/ozw1hN4zKzS83FWyiwdDASzEv9U6xA9BoNDwe/zjd5m7e+f4dAJYGLuUv8/7S75EugUAgEIwtRIJjIeLjRUWvi/HpoXIe33yUrQ8lEu174Q9kkiTx/t4SPjpQxgOLJrMq5iIf+KqPgnsoWNsNY8TnItyql+F022JsIa0yjdsibuNQzSGyG7JZ5LeIIOcgAO6ddi+bCzbz6qFXCXEJ4UTzCf6Y8EecbJzOa6utq42NeRtZGriUAKcAi8a5wG8By4OW8+CMBy+YuCwLWsY3Jd+wLncdJrOJ+s567o+536IxDJS8xjweS3mM6Z7TSfRNJNg5mLXZa5nlPYs4H3kqxA/dajVankp4CmutNdWnqnl+/vMiuRnDiGey+hGO1YNSLkWCYyHKy8sJCwtTOoxRSVpRAwDfZFedl+BIkkRhbTt/257HjtwaFk/x5NGll9gUqjob/EZ2Lqdwq16G0+2u0l2YJBMrglewIngFD+x84JzSzT4TfLgh7Ab+m/dfQP4QbjAZ+Mfl/zjnw3enqZMXD75Ie3d7v6ujDQRHG0deWvjSRV+f7TOb1FtTkSSJJ1Of5I0jbyBJEmlVaZS0lnB5wOWsnrq6t/T0SLCtZBtlbWU0GZvYcmJL7/Fn5z3b++cfu9VqtDw558kRi1EwfIhnsvoRjtWDUi5FgmMhKioqRGe8CAeLGwHYnlPDb5dP5cusSv6yNRdbax3tRhONp7qwsdLyh6sjuHteMFrtRaa/dDZDSynE3TWC0Qu3amY43W4r2Yafgx+R7pFoNBpSbkk575yHYh8iyDmIBX4L2FO+h+cPPM/b37/NL2N+CcCR2iP8bvfvqDxVye0RtxPprtzUTI1Gw9Nzn6aktYQ3s95k0oRJxHnH8VXRV2wv2U7SzUnodSNTDjStMo3pntNZu3wt+U35lLaVIkkScybO6T1H9Fv1ItyqH+FYPSjlUiQ4gmGlormTyhYDoV4OFNa2k1vZyv/7+hj2NjpmBrhirdMQF+hGYpgHk1z6mHZWkyP/HMECAwLBYGjobCC9Kp07o+685HoVJxsnbou4DYDVU1eTXZ/Nm0fk5GGm10z+d+f/4qx35v3l7/dOvVISvU7PW1e8RVZdFnMnzcVKa8Xeir3c/9397K/czyL/RX228daRtwhyDmJF8IpBxdBibCGnIYf7Y+7HSmtFpHukoomfQCAQCEYfIsGxEFOmTFE6hFHJmdGb3185lXvXZfDgR5lUtRjYcG88c0M9BtZYzekKat7RFo7y0gi36mW43H6a/yk9Ug+rJq/q9zVnRkjqO+t5at9TeNp5otVoeXvp2/g7+g9LnIPBWe/MAr8Fvb9f5nMZjjaO7Di5o88Ep8fcw3vZ72GltWK2z2w87Ab4DAAOVh9E4tzRmgsh+q16EW7Vj3CsHpRyKVZZWgidTtf3SeOQgyWNOOitWDzVixg/Z4rqTjEv1H3gyQ1A9fdg7w6O/d83xBIIt+plONx2m7vZmLeRhIkJhLiEDOhavU7Pq4tfZYbnDBo6G3hl0SujKrm5ENY6axb7LyapLInunu5Lnlt5qhJjj5FT3af45+F/Dup+aVVp2FvZM83z0iO5ot+qF+FW/QjH6kEplyLBsRC5ublKhzAqOVjSSGygKzqthhXTJgLw2LJBZvMVh+XpaSNcola4VS/D4XZn6U5qO2v5acRPB3W9vbU9a5atYev1W8fE5pogl11u62ojvTr9kucVtxQDMNNrJpsLNrOrdBddPV19ti9JEkmlSb1T/+J84rDWWl/yGtFv1Ytwq36EY/WglEuR4AiGjeaOLvJr2rksSN7/5q55QXz98Hxm9mM/nPOoy4faHAi/0sJRCgSW5aNjH+Hn4Md83/mDbsNGZ4Ovg68FoxpeEiYlYG9lz3cnv7vkeUXNRQA8l/gcnvaePJL0CAkbEth5cuclr0spT+HhpIdZ+ulSSlpL+pyeJhAIBILxjaJrcDQazUpgZWBgIMnJyQCEhITg6OhIVlYWAO7u7kRFRbF7924ArKysSExMJDMzk9bWVgDi4uKoqamhrKwMgLCwMPR6PdnZ8poNLy8vwsPDSU1NBUCv15OQkEBGRkbvDqvx8fGUl5dTUVEByHMGdTpdb+bp4+NDcHAw+/fvB8DOzo74+HjS09Pp7OzEYDBgNBopLi6muroagMjISHp6esjLywPA19cXPz8/0tPlbzkdHByIi4tj//79GI1GABITE8nPz6e2thaA6OhojEYjBQUFAPj7++Pt7U1GRgYATk5OxMbGkpqaislkAmDBggXk5OTQ0CCXZ46JiaGtrY2iIvnDRVBQEG5ubmRmZgLg6upKTEwMKSkpSJKERqNh4cKFZGVl0dTUBEBsbCyNjY2UlJT021OXh1w1Q9dUSnJyBXFxceg760hOzhywJ4+j7xCIFsPkFZQXFAzaE0BCQsKAPJnNZgDVehqN/WkwngbTn/R6Pe3t7RbzVNtdS2ZtJr+Z9RtS96SOK0/hNuEkFSXxQOgDF/W0r2EfjjpH/B39eWLiE2S3ZrO5cTMbjm9g4qmJF/X0WednOFo7MkM/g3xDPl6tXgCX9OTs7ExpaanoTyPYn0bquefj4yM8jQFPQ+lPBoOB1NRU4WmUe4K++5PBYKCiosJinvqLRpKkfp88XMTFxUlnBI5VjEYjev3IlEgdK/zjuwJe3ZlP9p+WM0E/hFxakuD1WHD2hzu29H2+hRFu1Yul3b579F3+kfkPdty4A58JI7tWTGleOfQK63PXk3l75kUrx/3s65+h0+r44MoPeo+9dPAlNhzfQOqtqdhb2/ceN0tmtBotJrOJxRsXk+ibyPPzn+93PKLfqhfhVv0Ix+rB0i41Gs0hSZL6LCsqpqhZiDOZvuAs2ZUtBHtMGFpyA1CZCY1FMO0mywQ2QIRb9WJptztO7mC6x/Rxl9wAeNp5YjKbaDG2XPB1SZIoaikixPncwgtzfefSbe4mo+bsl1wV7RUs/WQpnxV8RmZNJs3GZpYELBlQPKLfqhfhVv0Ix+pBKZciwREMGzkVLURPcobWKtj5DPRRYamXbgOUpkHmetj9Iux4GnQ2ELFyeAMWCIZAeVs5uQ25LA1cqnQoiuBp5wlAXWfdBV9vMDTQ2tV6XoIzy3sWtjpb9lXu6z3275x/U9tZy/MHnmd97nr0Oj1zJ80dvuAFAoFAoCrEPjgWws6uj00qxxmNp7qobDEQNckJDr0Pe16GwLkQesWlL2wuhQ9vgrrjZ4/pbGDmz8DOZXiDvgjCrXqxpNudpfJC+SsC+/g3rlLO7GlT11lHmOv5u1afqaD24wRHr9Mzy2cWeyv2AtBoaOSzgs9Y6LeQzNpMksuTWeS/6Jzpa/1B9Fv1ItyqH+FYPSjlUiQ4FiI+Pl7pEEYVOZXyNJVoX2dITpIPFnx36QTn5D7YeAf0GOH6d8FvFjj5gpWy83CFW/ViSbc7Tu4gwi0CP0c/i7U5lvC0l0dw6jvre4+dWcQKZyuoXWhvoLkT5/JixYtUtlfyWeFnGHoMPDrrUY43Hud3e37HssBlA45H9Fv1ItyqH+FYPSjlUkxRsxBnKmUIZLIr5Eoa0W4SVJyeW194gRKy7XVQlAyf3AXvrwBrO7hnB0y/CdxCFE9uQLhVM5Zy29DZQFZd1oDXiaiJ3ilqHfIUtT/t+xPxG+K5ZestvHHkDXIacrC3ssfb3vu8a+f5zgPg9q9vZ+3RtSzyX0SISwhXhVzF5lWbuTrk6gHHI/qtehFu1Y9wrB6UcilGcCzEmdKBApmcyhb8XO1wrkkDyQwRq+DYFmgqAXMPJD8vr7NpkUs9YmUHC38P8x4GmwmKxv5jhFv1Yim3B6oPAIzrdSL21vbYW9n3juBk1GTgaefJBOsJ/CvrXwBEuUddsMJaiHMIv5j+C8rby9Gi5d5p9/a+dqHpbv1B9Fv1ItyqH+FYPSjlUiQ4gmEhp7JVXn9zYivYOMDiJ+QE59hWOLweWishdAnM+SV4R4HPdLB3UzpsgWBQpFel42jtSKR7pNKhKIqnvSd1nXWYzCYq2iq4M/pOHol9hCO1R3j98Osk+iZe8DqNRsODMx8c4WgFAoFAoFZEgmMhEhISlA5h1NBm6Ka4/hTXz/SF7F0QNB88p4JrEOz8M/R0we2b+i44MEoQbtWLpdymVaUx22c2Om3/NyFTIx52HtR11FHVXoVJMhHgGADADK8ZvLf8vRGNRfRb9SLcqh/hWD0o5VKswbEQxcXFSocwajiz/maWczM0FcPky0GjgdClcnJz2S/GTHIDwq2asYTbsrYyKtormDNpjgUiGtt42nnSYGigtK0UAH9Hf8ViEf1WvQi36kc4Vg9KuRQJjoWorq5WOoRRw97CenRaDTOkPPlA8Hz55+x75f+W/lm54AaBcKteBuPWZDZhlsy9v6dVpQEwZ6JIcM6M4JxsPQlAoFOgYrGIfqtehFv1IxyrB6VcigRHYHFS8uuIDXDBviFXLh7gES6/4DUVrn5ZrpQmEIwxzJKZzQWbuXzj5Ty480G6zfLGtWmVaXjZexHkFKRsgKMAT3tPOkwd5DXlYWdl17s3jkAgEAgEI4lYg2MhIiPH9+LiM9S3Gzla0cJjy8Kh9HvwjoQxvi5BuFUvA3H725Tf8u3Jbwl1CWVPxR6e2f8Mcd5xpFakckXgFResDjbeOFMqOrMmkwDHAEX/TkS/VS/CrfoRjtWDUi7FCI6F6OnpUTqEUcGeAnkPjIVhnlCTDT7TFI5o6Ai36qW/botaivj25LfcGXUnm1dt5v6Y+/m88HP+sPcPhLqEcv/0+4c50rHBmRGbktYSApwCFI1F9Fv1ItyqH+FYPSjlUozgWIi8vDwmTpyodBiKk5JXh/sEG6Ic2qCzCbyjlQ5pyAi36qW/bj/N/xQrrRV3RN2BRqPhgZgHmGA1AU97T1YEr0CrEd8VwdkRHFC2wACIfqtmhFv1IxyrB6VcigRHYDHMZondBfUsDPdEW5sjH/SZrmxQAsEgaTG2YDKbmGA9gS8Kv2BJwJLeEQqNRsOd0XcqG+AoxNP+bIKjZIEBgUAgEIxvRIJjIXx9fZUOQXFyKltpPNXFgnAPqN4hH/Qe+/NohVv1cim3f0j9A/sq9zFn0hxau1q5KfymEYxsbOJk44SN1oYuc5fiIzii36oX4Vb9CMfqQSmXYl6FhfDz81M6BMVJK2oAYO5kD6g5Cm4hoHdUOKqhI9yql0u5/b7+e+yt7dldvptAp0Au87lsBCMbm2g0mt5RLqVHcES/VS/CrfoRjtWDUi5FgmMh0tPTlQ5BcdKLGwhyt8fbyRaqj6pi/Q0It2rmYm4bOhtoNDRy37T72HDVBl6//HVRJa2feNh7YKuzPWc9jhKIfqtehFv1IxyrB6VciilqAovQY5Y4UNzIiuiJYGyDxmKI+anSYQkEg6KwuRCAUNdQpnmO/UqAI0mIcwg6jU4khAKBQCBQDJHgWAgHBwelQ1CU49WttBpMxIe4QU0OIIGPOkZwxrtbNXMxtwVNBQCEu4aPZDiq4In4J+gxK1/iVfRb9SLcqh/hWD0o5VJMUbMQcXFxSoegKOlFjQDEh7hDyR75oN9sBSOyHOPdrZq5mNvC5kJc9a6427qPcERjHzsrOxxslP9wIvqtehFu1Y9wrB6UcikSHAuxf/9+pUNQlPTiBvxc7fB1sYOiFPCeBhM8lA7LIox3t2rmYm4LmgoIdQ0V06zGMKLfqhfhVv0Ix+pBKZciwbEQRqNR6RAUw3x6/U18sDt0d0LZAQhZqHRYFmM8u1U7F3JrlswUNhcS5hKmQEQCSyH6rXoRbtWPcKwelHIpEhzBkCmqb6epo5v4YDcoS4ceIwSrJ8GxJMYe8dAe7VS2V9Jh6iDUNVTpUAQCgUAgEAwCkeBYiMTERKVDUIzj1W0ARPs6y9PTtFYQOFfhqCzHUN2aJTPPpj3LFZ9cQdx/4thcsNlCkQmGyoXcnqmgJkZwxjbj+ZmsdoRb9SMcqwelXIoEx0Lk5+crHYJi5Fe3odNqCPGcAMUp4BsHeuUXGVuKobrdU76Hj/M+JsItAme9MweqD1goMsFQuZDbMxXUQl3ECM5YZjw/k9WOcKt+hGP1oJRLRctEazSalcDKwMBAkpOTAQgJCcHR0ZGsrCwA3N3diYqKYvfu3QBYWVmRmJhIZmYmra2tgFyhoaamhrKyMgDCwsLQ6/VkZ2cD4OXlRXh4OKmpqQDo9XoSEhLIyMigvb0dgPj4eMrLy6moqABgypQp6HQ6cnNzAfDx8SE4OLh3sZSdnR3x8fGkp6fT2dlJe3s7kydPpri4mOrqagAiIyPp6ekhLy8PAF9fX/z8/Ho3PXJwcCAuLo79+/f3zlFMTEwkPz+f2tpaAKKjozEajRQUyB+6/P398fb2JiMjAwAnJydiY2NJTU3FZDIBsGDBAnJycmhoaAAgJiaGtrY2ioqKAAgKCsLNzY3MzEwAXF1diYmJISUlBUmS0Gg0LFy4kKysLJqamgCIjY2lsbGRkpKS8zztzTEw0UGHTXcrUsVhTgbeRHlq6qj0BJCQkDAgTx0dHURGRg7K08GDB/l7zd/xsPbglcWvcMemOzhUdojk5OQR9wRjpz8NxlN/+1PzqWZSj6cSpA/CaDQSEBBwTn861HgINys3MvbJx4QnZTwN9blnMplwcHAQnka5p8H0J0mS6O7uFp5Guaeh9Kf29nYaGxuFp1HuCfruT+3t7Tg7O1vMU3/RSJLU75OHi7i4OOmMwOAy43QAACAASURBVLFKcnIyixYtUjoMRVj8UjIREx15c3oxbLoH7toGgQlKh2Ux+uP2mf3PYG9lz2OzHzvn+KGaQ9y57U4ev+xxfhrxU/55+J+sObqGtJ+mYWdlN4xRCy7G0/ue5vPCz9l2/TbyMvLOcbunfA8P7HyAh2c+zH3T71MuSMGQGc/PZLUj3Kof4Vg9WNqlRqM5JElSn7WnxRQ1CxEdrY5NLQeKobuHkoZThHs7Qu7n4OAN/pcpHZZF6cttW1cbnxV+xofHPqS2Q/4mxiyZOVJ7hFcOvYKbrRvXhV0HQIRbhFylq6lw2ONWA0frjtJoaOz9faBFGkxm0zm/V7VXsaVwC2bJzNfFX5/j1mAy8P/S/x/BzsHcGXXnkOIWKM94fSaPB4Rb9SMcqwelXIoEx0KM15KGhbXtSBJEumuhYAdEXgva/g8hjgX6cptakYrJbMIkmfg472M6ujtY/dVqfvbNz8htyOXhmQ/3jtZMcZsCwLHGY8Me91hHkiR+seMXPJf2HABNhiaWfrKUVw+92q/r95TvYcF/F3C49nDvsfdz3gcNBDsHs7VoKwaDofe1d4++S3l7OU/GP4m1ztqyb0Yw4ozXZ/J4QLhVP8KxehBlosc4Z+ZMjjfyTldQm96ZDiYDRP5E4YgsT19uk0qTcLN1Y4HfAj7N/5Q/7fsTxxqO8cc5f2T3Lbu5IfyG3nN9HXxxtHHkeOPx4Q57zNNh6qCtu42ksiRajC1sLdpKk7GJ97LfI60qDUmSKGsr42LTbP+d+2/autt4MvVJOro7qOuoY3PBZlZNXsVtU2+jsLmQ5NxkAEpaSlibvZarQ64mfmL8CL5LwXAxXp/J4wHhVv0Ix+pBKZciwREMifyaNmystHiVfiNPTwuYo3RII0p3Tzd7KvawyH8RP4v8GY2GRr4p+YZfzvglN0+5GUcbx3PO12g0THWbSl5j3pDu++MP9Z2mTl448AJP7X1qSO2OJuo76wHoNnezvWQ7mws2E+EWQZBTEE/ueZJbtt7CVZuvYmvR1vOuPdl6kvSqdBb5LaKsrYxHkh7hpi9vokfq4Z7oe1getBwrjRUHTx1EkiSeS38OW50tj8U9dl5bAoFAIBAIxhYiwbEQ/v7+SoegCHk1bUR76NAW7oCIVaqbngaXdnuw5iDt3e0s9l9MvE88M71mcrn/5fxi+i8ues0U1ynkN+VT2FTIXdvuGvBozqf5nzLvo3l8kP0BrV2t7CzdyS1bb+HDYx/yWeFnHGtQx/S3MwmOlcaKt7LeorC5kJun3MwLC16g2diMoceAm60b35789rxrP83/FJ1Gx1MJT3F7xO2kVaUR6BTI+hXrCXAKwMXWhUS/RFLbU7ll6y2kVaXxcOzDeNh5jPTbFAwT4/WZPB4QbtWPcKwelHKpaJloNeHt7a10CIqQX93Gbd7l0GyA8CuVDmdYuJTbXaW7sLOyY87EOWg0Gt5f/j66PpK8CPcIDD0G/mfb/9DW1caWE1uY6ja1X7GYJTPvZ7+PSTLx8qGXefnQywB42Xnx8sKXeXzP42wq2MQf3P/Q/zc4SjmT4FwVchVbTmzBzsqOFcErmGA9gaRbknCwduCFAy/wWcFnGEwGbK1sAejq6eKLwi9Y7L8YT3tPHot7jFWTVzHVbSoajaa3/YdnPoyDzoGqziqWBy3npvCbFHmfguFhvD6TxwPCrfoRjtWDUi7FCI6FGOtlrgdDS2c3lS0GZliXywcmTlc2oGHiYm4lSSK5LJmEiQm9H677Sm6A3mRGg4YQ5xAyqi/cfs2pGp5Ne5ZT3ad6j6VXpVPaVspTCU/xxpI3uG/afaxZtoZtN2xjWdAylgUt46uir+jo7hjo2xx1nElw/ifyf9BpdFwZdCUTrCcA4GTjhFajZZHfIgw9BtKr0nuv21W6iyZjU2/CotPqiHCPOCe5AQhzDWO5tJwPrvyAlxa+1C93grHDeHwmjxeEW/UjHKsHpVyKBEcwaNKL5I2lwqRief2Ng5fCEY0suY251HTUsDhg8YCum+w8mTsi7+CdZe9wZfCVHG88Toux5bzz1ueu5+O8j9lwbEPvsU/yP8FF78LSwKUs8FvAw7EPM2finN6qXzeG30h7dzvbS7YP7c2NAuo767HSWBHmGsYHV37Ab+J+c945cT5x2FvZk1ye3HvsixNf4DPBhzmTxtd6MIFAIBAIBDJiipqFcHJyUjqEEScprw4HvRWepwrAW7016y/mNqk0Ca1Gy0K/hQNqT6fV9W4I2tndyZu8SWZN5jmJUre5my+LvgRgXe46bou4jfbudnaV7uJnkT9Dr9NfsO1Yr1iCnYN57fBrVHdUc2PYjXjaew4ovh9S2lrKm1lv0mpspdvcTU1HDe1d7byx5A0i3CMG3W5/qO+sx83ODa1GywyvGRc8x0ZnwzzfeaSUpWCeY6bR0Mi+yn3cHX03Wk3f39+Mx347XhBu1Ytwq36EY/WglEsxgmMhYmNjlQ5hRJEkieS8WhaFOqOpOw4+6k1wLuY2qSyJGZ4zcLV1HXTb0z2no9fpOVhz8Jzje8r30Gho5L5p99FsbObNI2/y66RfIyFxY/iNF21Po9Hwl3l/YbLzZN468hb3fHsPPeae3tfzm/L564G/8vHxjzFL5kvG9uWJL7npy5tIKUuh0dBIR3cHoS6hmMwmnj/wPJIkUX2qmvez36fT1Dnov4OLUd9Z369F/4v8F1HXWcf+yv18VfQVZsnMyskr+3WP8dZvxxPCrXoRbtWPcKwelHIpEhwLkZqaqnQII0peTRtVLQZWTmoHczf4qHP9DVzYbXlbOflN+VwecPmQ2rbR2TDDcwYHq89NcD4v/BwPOw8emPEAcybO4d+5/6aguYCXFr5EoFPgJduM8Yzh3eXv8tcFf6W4pZjksmQkSeLJ1Ce5YcsNfHT8I55Nf5Z7v72X6lPVF2xjY95Gnkh9gkj3SD679jP+e81/+fDqD3ll0Ss8EvsIh2sPsy53HXdtu4tXDr3CI7sewdhj2c28Gjob+pXgLPZfTIBjAL9K+hXrctcxzWMaIc4h/brHeOu34wnhVr0It+pHOFYPSrkUCY6FMJlMSocwouw6XgvAnAmV8gEVT1H7odvv677no+Mf8e7RdwH5w/VQifOJI68xr3cdTm1HLbvLd7Ny8kqstFY8FvcYi/0Xs+GqDSwNXNrvdpcFLsPPwY+12WvZVLCJLSe2cHvE7STdnMQzc58htyGXe7bfQ5Oh6ZzrdpXu4rn051jgt4A1y9bgM8HnnNd/EvoTItwieCnjJZqMTdwTfQ/7q/bzm+Tf9DkqNBDqO+vxtOt7ep2jjSP/XvFvgp2Dqe2o7ffoDYy/fjueEG7Vi3CrfoRj9aCUS7EGRzAoko/XETXJCeeWfWBlC+6hSoc0rJS3lfPXg38luSy599hUt6kEOAUMue3LfC7jDd7g9cOv89DMh3ho10NYaa24IewGAKa4TeG1y18bcLs6rY47o+7k2fRnOdZ4jHifeH47+7doNVquC7uOYOdg7tl+D48kPcKaZWvQ6/QUtRTxu92/I8o9ihcXvIiV9vxHhE6r48k5T/Js2rM8Ef8EM71m4mrryksZL3Go5hCzfWYP+e+kx9xDo6ERdzv3fp3vYefB2uVr2VaybUAJjkAgEAgEAvWh+fGO6EoQFxcnjfWSgGazGa1W3QNirYZuvsut4eujVew8Xsv/LgrlserfgrEVfp6sdHjDRpepi9u+uY2ytjLuib6HlZNX0mnqxM3WDWe985DblySJvx38G/859h8crB0wmAz84/J/sMBvwZDbNpgMLN+0nK6eLjav2sxEh4nnvL69ZDuPpTxGom8if1vwN+799l4q2yvZvGrzgIoTdHR3sGjjIlZNXsUf5gx9D56GzgYWbVzEE/FPsHrq6iG3dzHGQ78drwi36kW4VT/CsXqwtEuNRnNIkqS4vs4T/3osRE5OjtIhDBtms8T/fZpF3F++49GNWeRUtnLX3GB+sSAYqo+O6ulpxh4jr2S8Qs2pmkG38WrKqxxvPM4zc5/hvun34TPBh2DnYIskNyAXBvjdZb/jqYSnsNJa8VzicxZJbgBsrWx5c8mbrF2+9rzkBmB50HKeTniavRV7ueaza8htyOXphKcHXHnN3tqeBX4L2HFyBybz0Iejz+yB0581OENBzf12vCPcqhfhVv0Ix+pBKZdiipqFaGhoUDqEYWNbTjUbM8q5aZYft14WwEx/F7RaDTSXQmcj+ExTOsSL8m3Jt7yf8z4ajYZfz/r1gK+vOVXDxoqNzPOdN6D1L4PhpvCbuDHsxvM2pBwqUR5Rl3z9xvAbcbB24PHUx/lJ6E+4IvCKQd1nedBytpdsJ6MmgzkTh7YHzUglOGrut+Md4Va9CLfqRzhWD0q5FCM4gkvSY5Z4ZUc+oV4OvHDDdGYFusrJDUD+6c0kQxYpFV6fbCrYBMC24m0MZjrmO9+/Q4/Uw5OXPWnxxONCjMQ9LsSVwVey48Yd/Hnunwfdxnzf+dhb2bOteFvvsY15G7l/x/0XrdZ2MXoTHNvhTXAEAoFAIBCoD5HgWIiYmBilQxgWtmRVUFjbzqNLw9Fpf/Th+/hXcnEBj3BlguuDkpYSDtUcIsItgspTlWTVZQ3o+o7uDrYWbeUK/yvwd/IfpihHDx52Hv3aHPNi2FrZssh/ETtO7qCopYgDVQd4Lv059lbu5bavbiO3IbffbZ1JcPpbZGCwqLXfCoRbNSPcqh/hWD0o5VIkOBaira1N6RCGhdd3FRI50Ykro84tFYyhBUpSYcpVoNCoQ19sLtyMTqPjxYUvotfp+ab4mwFd/03xN3SYOljiuWSYIlQfd0bdiU6j49att/JoyqMEOQWxfsV6dFodD3z3AN093f1qp76zngnWE7C3th/WeNXabwXCrZoRbtWPcKwelHIpEhwLUVRUpHQIFqessYOiulPcMtv/7LS0MxTskDf4nHq1MsH1Qbe5my8Kv2Ch30ICnQJZ4LeA7SXbB7QA/tP8Twl1CUVfrx/GSNVFhHsEn676lOke0zFLZv6++O/M8JrBH+b8gQZDA3sq9lzy+m3F29hXsa/fm3wOFTX2W4GMcKtehFv1IxyrB6VciiIDgouSXtwIQHyIG2SuA60VhC4FB095etoET/Ab+p4nw8HB6oM0GhpZFboKgBXBK9hxcgdpVWkk+ib2ef2xhmNkN2Tz+8t+j6ZmdI5QjVa87L1Ys2wNxh4jtla2AMydNBd3W3e+KPyCywMuv+B1ZW1lPL7nccyYcdG7EOQUNIJRCwQCgUAgUAsiwbEQQUFBSodgcQ4UN+Bib01413HY8tDZFyZ4QWcTxNwKWp1yAV6CXaW7sLOyY96keQAs9FuIh50HHx77sF8JzqaCTeh1eq4JuYYmu6bhDld1aDSa3uQGwEprxTUh1/DhsQ9pNDTiZut23jXvfP8OOq2Oae7TOFx7mDjvPsvcDxk19luBjHCrXoRb9SMcqwelXIopahbCze38D2xjnfTiRmYHuaFNeQHs3ODub2HJUzBlBYQvh/hfKB3iBTFLZnaV7mLepHm9H7JtdDbcOuVWUitSOdF84rxr9lXu44YtN1DfWU9HdwdfFX3FssBlOOudVelWCVaFrsIkmS64Fupk60m+PPElN0+5mbeXvs2qyasGXa56IAi36kW4VS/CrfoRjtWDUi5FgmMhMjMzlQ7BolS3GDjZ0MFKtzI4sRPmPQwB8TD/N7DqNbj1w1G7/012fTZ1nXXnTYW6ecrN6HV61ueuP++at468RX5TPm8ceYPtJdtp727nxvAbAfW5VYpw13Ai3CL4quir81575/t3sNZac3f03dhZ2fFc4nOsCF4x7DEJt+pFuFUvwq36EY7Vg1IuRYIjuCDpxfLGTIurPwB7d5h9n7IBDYCdpTux0lixwG/BOcddbV1ZOXklW4u20mho7D2eVZfFkboj+Dr4srlgM2uOriHEOYSZXjNHOnTVM3fSXI41HjuvmlpGdQaL/RePSGEBgUAgEAgE6kYkOBbC1dVV6RAsSnpxI5P0BhzKUyDubtA7KB1Sv5AkiV2lu4jzicNZ73ze67dMuQVjj5GUspTeY+ty1uFo7cja5WuZYD2BsrYybgy/sXfTTbW5VZJw13BMZhNFLWerqnT1dFHdUU2Qc9CIxyPcqhfhVr0It+pHOFYPSrkUCY6FUNumVGlFDaz2Kvn/7d15fJTVvfjxz8lkIWQhCyQBspBAEghgIERDFEFwQytoq1RbrdLWLve6Vq23tf3VrvfW2luvS6ttrbULrlUsasENA6aGQAigrAGSkMUsQEKSIclkmfP7Y4YYkJBtJs/k8H2/XvMSnnlmnjP5OOjh2VBomOb9cyE8pbSplPLmci5OPP29a9Ij04kaE0VhbSEA1fZq3q14l+vSr2NS6CTunHsnEUERLEtZ1vMa09paKT0qHYCSxpKeZdX2apzaSULYyN9MVdqaS9qaS9qaTxqbQ270Ocpt2LCh/5VGiYqjrvvfXBK0BwJDYfI8q4c0YOsr1gOwOGHxaZ9XSpETl0NhTSFaa1bvXw3Al6d/GYAbpt/Ahus3EDEmouc1JrW1WlJ4EoF+gexr2NezrLKlEoDE8MQRH4+0NZe0NZe0NZ80NodVLWWC4yFaa6uH4DHr99YBMM2+FZIuAFuAxSMauPcq3mP2+NnEhsT2uU7OxByOtB3h4LGDvFH6BjlxOcSFxPU876dO/lqY1NZq/n7+TI2YetIenIrmCgASw0Z+giNtzSVtzSVtzSeNzWFVS5ngeMiJ8zVM8N7eenKiWwk4Vgopi6weTr/Kmspo6Wih9ngtu47u6vNGkifkTMwB4Pcf/Z5qezXLpi474/omtfUF6VHp7Gv8dA9ORUsFYQFhRARFnOFV3iFtzSVtzSVtzSeNzWFVS5ngeMiiRb4/ERgIu6OLwtIGboopdy1I9u3PdbTtKCteX8FX/vUV/lHyD4A+z785IT4snsmhk1lXvo5g/+B+1zelra9Ii0yjob2BI21HANcEJz4s3pI/BKWtuaStuaSt+aSxOaxqKRMcD9mxY4fVQ/CI/P1H6Oh2Mp+PYex4iMmwekhn9Mr+V3B0O6hsqeT3H/2elHEpJI9L7vd18yfOB2BJ4hLGBow947qmtPUV6ZHuCw00uA5Tq2yutOT8G5C2JpO25pK25pPG5rCqpUxwPKSxsdHqIXjE+r11hI/xY3x9gevwND/f/Veky9nFi/teZP7E+Ty25DEC/AK4MvnKAb32gskXALB86vJ+1zWlra9Ii0wDYF/jPjqdnXxi/8SS829A2ppM2ppL2ppPGpvDqpb+lmxV+KSOLifv7qnn5sQGVEU9pC21ekhntL5iPfWt9fww54dcMPkC1q9YT3hQ+IBee0niJTx35XPMnjDby6MUp4oYE0HM2BhKGkuotdfSpbssuUS0EEIIIczku389P8pkZWVZPYRhW7+3jobjHVwX+jEom8/f/+b5vc8zOXQyC+MXAq7/cT71Cmh9UUoNeHJjQltfkxGdwaaaTT0XG7DqEDVpay5pay5paz5pbA6rWsoEx0MaGhqsHsKw/WNrFTFhQSQdzoOk82FslNVD6lNpUylFdUWsSFuBzc/m1W2Z0NbXfG3W1zjSdoRfF/0asOYS0SBtTSZtzSVtzSeNzWFVS5ngeEh5ebnVQxiW+pZ23t93mK9mKNThPZB+hdVDOqNXSl7BX/lz9bSrvb6t0d7WF82NmcsVU66g2l5NsH8w44PHWzIOaWsuaWsuaWs+aWwOq1paeg6OUmoZsCwpKYm8vDwAUlJSCAsL67nqQnR0NDNnzmTjxo0A+Pv7s2DBAoqLi2lubgYgOzuburo6Kitdd0RPTU0lKCiInTt3AhATE0NaWhr5+fkABAUFkZubS1FREXa7HYCcnByqqqqorq4GID09HZvNxu7duwGIi4sjOTmZgoICAIKDg8nJyaGwsJC2tjbsdjsOh4OysjJqa2sByMjIoLu7m337XIfhTJ48mfj4eAoLCwEIDQ0lOzubgoICHA4HAAsWLKCkpIT6+noAZs2ahcPhYP/+/QAkJCQQGxtLUVERAOHh4WRlZZGfn09XVxcACxcuZNeuXRw9ehSAzMxMWlpaKC0tBWDKlClERUVRXFwMQGRkJIVNoXQ7NTkNb7jipF/Bjh07ek4Oy8rKoqGhoedfVCs7lVWU8creV5gVPIvOY53Ut9QPuBNAbm7uoDq1trYC+ESnzMxMNmzYgNYapRSLFi3y2U79fZ9um30b7x56l0gVyebNm4fdaSjfJ4fDgd1ul05D/HNvpDoN5fvU1dVFRUWFdPLxTkP5PgHSaRR0Gs73yW63k5+fL518vBP0/32y2+1UV1d7rNNAKV+4W2x2drY+EXC0qqioIDHRmsNshqur28klv9lAVEggr479Hzh+GG4rtHpYfVpbtpb7N97PU5c81XM1NG8azW193XuH3sNP+bE4cbEl25e25pK25pK25pPG5vB0S6XUVq11dn/ryVXUPCQsLMzqIQzZ6m3VlB9t5ScXRcKb+bDwu1YPqU9O7eT5vc8zKWQSuZNyR2Sbo7mtr7s46cw3WfU2aWsuaWsuaWs+aWwOq1rKOTgeMlpvStXZ7eTx9QeYNTmchY48QEPmDVYPq0/P7HyGbfXb+Prsrw/4imnDNVrbiv5JW3NJW3NJW/NJY3PIjT7FiOvocvJMfhkVDa3cvSQV9dGLMDkboqeOyPa31G7hV1t+xUAPk9xSu4XHtz3O5VMuZ0XaCi+PTgghhBBCjEZyiJqHREdHWz2EQVlVeIhf/msvLY4uspMiuTiqDup3w5W/HpHtt3a28kD+A9Qer+W6tOtIGZdyxvW11vxs089ICEvgJ+f/pOdE05Ew2tqKgZO25pK25pK25pPG5rCqpUxwPGTmzJlWD2HA2ju7+dW6faTEhHLbRVNZmDYBtf5H4BcAs64dkTH88eM/UnvcdfWRD6o+IGVcCvWt9aw5uIa643WkRaWdtJdmb8NeyprKeDD3QUICQkZkjCeMprZicKStuaStuaSt+aSxOaxqKYeoeciJy+WNBmt31tDU1sl/XZ7OZTPjGKMdsP05SLt8RG7uWdpUyrO7nmX51OVMi5jGB1UfAPDdDd/l0eJHWX1gNb/Y9AsONR/6dMzla/FX/lySeInXx3eq0dRWDI60NZe0NZe0NZ80NodVLWWCcxZ6vrCSKdFjmZ/i3m24fRW0NUDu7V7f9r6Gfdz61q2EBITwnXnf4cL4C9lav5XNNZspri/mvuz7WHftOgL8Anhqx1OA68pp68rWkTspl4gxEV4foxBCCCGEGL3kEDUP8ff3zR/lW7tqefqDUhSKiRFjuDB1ApvLG/jeFdPx81PQ3QUfPg7x50HifK+OZXPNZu56/y5CAkJ49vJnGR88ngsnX8ifd/6Z7+d/n5CAEK5NvZbQwFC+NP1L/GX3X/jG7G/Q3NFMzfEa7ph7h1fH1xdfbSuGT9qaS9qaS9qaTxqbw6qWcqNPgxyxO4gIDsDf5toxt7O6iWuf/JC4cWOYNC6Y3TXNNLV1EmBTFHxvCeNVM+z+J/zrPrj+7zBjmdfGtq58HQ988ABJ4Uk8ecmTxIXEAdDp7GTRC4to6Wzhphk38V/n/RcADe0NLH1lKeODxxNkC6KypZK8L+YRGhjqtTEKIYQQQgjfJTf6HGHFxcVkZWVZsm2tNT9/cw9/yi8jwKaYFhPG+VOjWbezluiQQF79j/OJDg2iraOb13d8QlCAH+PX3wvb/u56g/HpkH6l18a3pXYL92+4n7kxc3lsyWOMCxrX81yAXwC5k3J5t+JdbpxxY8/yqDFR/PT8n/LCvheoPV7L9enXWza5sbKt8C5pay5pay5paz5pbA6rWsoEx0Oam5tHbFu1Te3EhAW5DjED/rCxlD/ll/H5uZOJDR/Dx9XH+Nsm1wn6L38rl+jQIACCA2188dwEsB+GNS/C9KvgnC9C0gLws3ltvG+Vv8UY/zE8delTBPsHf+b5u+fdzfKpy4kPiz9p+dLkpSxNXuq1cQ3USLYVI0vamkvamkvamk8am8OqljLBGWW2Hmrk2ic/JDFqLIvTJ7C7ppkt5Y1cdc5E/ndFZs+kp62jm5b2TmLCx3z2Tbb/HZydcPGPYEK618dcWFPIuXHnnnZyA5AQlkBCWILXxyGEEEIIIcwnV1HzkOzsfg8H9Ij1e+uw+SkSooL5e2EFji4nd12cyv9+8dPJDbj21px2cuN0wtZnIemCEZnc1NhrKG8uJycux+vb8paRaitGnrQ1l7Q1l7Q1nzQ2h1UtZQ+Oh9TV1REa6v1zRPIPHGVOQgSrbp2P06lPmtQMyMH3oLEcFv/QK+M71aaaTQDMn+TdK7R500i1FSNP2ppL2ppL2ppPGpvDqpayB8dDKisrvb6NptZOPq46xgXTxgMMfHJz/Ais/wU8ng2rroOQCZCx3Isj/dSmmk1EjYkiNSJ1RLbnDSPRVlhD2ppL2ppL2ppPGpvDqpayB2cUKSg9glPDhanjP/uk0wlHD8D4VFC9Jj5Ff4Z134euNph6Mcy9yTW58Q/y+ni11hTWFDJ/4nyUGuSeJiGEEEIIIYZAJjgekprq/T0U+QeOEBJoY05CxGef3Pgw5P03TJwDubdD2mWw53V4426YugSW/nJEzrnpbVPNJo62H2X+xNF7eBqMTFthDWlrLmlrLmlrPmlsDqtaygTHQ4KCvLNHpL2zmyfzDjJjYhgf7D/C/JRoAmynHFnYVAX5j0D8udDWCK/eCn7+4Ox2TW6+9MKI7LE5obG9kV8X/Zo1B9cwPng8F8ZfOGLb9gZvtRXWk7bmkrbmkrbmk8bmsKqlnIPjITt37vTK+/5y7V4efW8/3/57MYeOtvacf3OSd38C2gnX/glu2wJfXQvn3wnzVsL1q0Z0crOldgvXrbmOtWVr+dqsr7HmGtckZzTzVlthPWlrLmlrLmlrIx/wJQAAHJBJREFUPmlsDqtayh4cH/bO7jqe/bCcledPYcn0GD48eJQvZE0+eaVdr8HHL8GF90FkkmtZ0vmuxwg60naEJ7Y9wav7XyUpPInfXvJbpkdNH9ExCCGEEEIIIRMcD4mJifHo+zW1dXL/P3Ywc1I4379yOkH+NhamTfh0Ba1hw0OQ9z8weR4s+I5Htz8YpcdKuelfN9HW1caNM27kjrl3MDZgrGXj8TRPtxW+Q9qaS9qaS9qaTxqbw6qWMsHxkLS0NI++3+riKhpbO/nL184jyN/22RU+fMw1ucn8Mlz1CASc5qaeI8CpnTz44YMopXjl6ldIGZdiyTi8ydNthe+QtuaStuaStuaTxuawqqWcg+Mh+fn5HnsvrTXPba4gM34c58Sf5oppn2yD934KM5bDNb+zbHID8OK+F9l+eDv3n3u/kZMb8Gxb4VukrbmkrbmkrfmksTmsaikTHB9UdKiRkjo7N+YkffbJjlZ45VYIjYVlj558z5sRdqj5EP+39f84f9L5LJ86MjcOFUIIIYQQ4kzkEDUPOdNl8D451gbApIjgk5Y7uroJtPl95iaYqzYdIizIn6syJ372zbb+2XVDz5v/CWOjhj/wITreeZy71t9FoC2QB3MfNPpGnnK5SnNJW3NJW3NJW/NJY3NY1VJprS3ZcG/Z2dm6qKjI6mF4RXN7J5f+ZgNd3Zo377yQuHFjepZ/7rEPmBEXzlM3zcPPzzVB+Of2au57eQdfPi+Rn1w96+Q36+qAx+ZAVAqsfGOkP0oPp3Zy34b7eK/iPX5/6e9H/Y08hRBCCCGE71NKbdVaZ/e3nhyi5iFFRUU4nZq2ju6Tlj+0di+HWxy0dnTzn6u20tHl7Fle2dDG27vreOTdEg63OPjxml3c9cJ25iZEcvclpzkp6+OXobkaLrh7JD7SaWmteWjzQ7xz6B3umXfPWTG5MXXyLaStyaStuaSt+aSxOaxqKYeoeYjdbueht/by2rZq1ty+gNjwMWwua2BVYQW3LkhmbmIktz1XzNf/soUl02NYVVjB1xckY2/v4vH1B3hqw0E6uzU35ybx/67KIMDmnnu21MJbD0BQOJTmQexsmHaxZZ/zqR1P8dze57g542ZuzrjZsnGMJLvdbvUQhJdIW3NJW3NJW/NJY3NY1VImOB70UWUTdc0O/nNVMfdcmsZtzxUTHxnMPZelMTbQn5qmGfz2/QN8sP8I8ZHB3HtZGjY/RUe3k3HBAXwlN4mpE0I/fcP2Zlh1HRzZD7ZAcDTDimctu7BAZXMlv9vxO5ZPXc592fcZfd6NEEIIIYQYneQcHA9pa2tj8SMfEuCvqGxwXVQgZUIIz9xyLlPGh/Ss5+jq5v29h5kWE8K0mLC+39DphFXXQukG+PJLMHUx2OsgfJK3P0qfHt/2OE9//DRvX/s2sSGxlo1jpLW1tREcHNz/imLUkbbmkrbmkrbmk8bm8HRLOQdnhO0vq6C2uZ3rsxO477I0Pjd7Iqv/44KTJjcAQf42ls6KO/PkBuDgetdj6S8h9RLws1k6uel2drPm4BpyJ+WeVZMbgKqqKquHILxE2ppL2ppL2ppPGpvDqpYywfGQ7QdcAZPHh3L7klR+e2MW48YGuJ4sedu1J+ZUnW3Q1x60omdg7HiYt9I7Ax6kwtpCao/Xcs20a6weyoirrq62egjCS6StuaStuaSt+aSxOaxqKRMcD6lr1fjhJDmq1/W+uzth3QPw3Ap4/kvQWP7pc10d8OT58OJNrsPRemv+BErWwdybwD9wRMbfn9cOvEZ4YDiLExZbPRQhhBBCCCH6JBMcD+kKjuYe/5eZsWoeHCoA+2H46zWw6beQdTMoP1hzx6d7bHa9Cg2lsPcNKHgCjlXC2u/B5j/ClqdBd8O8W6z9UG5vlb/F2+Vvc1XKVQTZzr6bb6Wnp1s9BOEl0tZc0tZc0tZ80tgcVrWUq6h5SFWTgzsCPka1NcBfl0NwFLQfg8//ATKvh0lZ8MbdrgnMed9wTWomTIfxqfDeTyDvf6DL4ZrYAKQsdt3Qc4R1O7txdDsY4z+GmuM1vF/xPg8XPcycCXO4Y+4dIz4eX2Cz2awegvASaWsuaWsuaWs+aWwOq1rKBMdDSqvrmKYrIOsW156Zpkq48W2YmOlaYd5K2PsmrL0f6nZC7cew7DHIuNo1IYpIhMv/GxrKoOhPkDvyk4m2rjZuWXsLexr2nLQ8Jy6Hx5Y8xtiAsSM+Jl+we/duYmJirB6G8AJpay5pay5paz5pbA6rWsoEx0PGtR7C39blugnnjEdBO11XPjtBKbj+b/DSLVD8FxgbDed8EQKC4VsbP10vIhFSFo38BwAe3vIwexr28I3Z38DmZ2P8mPFkRGeQEZ2BzU/+NkUIIYQQQvg+meB4QFNrJ9OcpWDDdSiaUqBOMyEICIYbVsF7P3Xt2QnwnWu8v3PoHV4ueZmvzvwqd2bdafVwfEpcXJzVQxBeIm3NJW3NJW3NJ43NYVVLmeB4QNnR45yjSukIiiJwXPyZV7YFwGU/G5mBDUCTo4lHix/lHyX/ICM646w9z+ZMkpOTrR6C8BJpay5pay5paz5pbA6rWspV1Dyg7Iid2X6ldMZmuvbejAJO7WT1/tUsW72MV/a/wo0zbuTpy54mwBZg9dB8TkFBgdVDEF4ibc0lbc0lbc0njc1hVUvZg+MB2w7WsFxVoROvt3ooA/bjD3/M6gOrmRszlx/k/ID0KLkkoxBCCCGEGP1kgjMMWmt+804Ju7Z+gC1IQ0K21UPq0eRoYvfR3cwePxt/P3/erXiX9q52rk29lm3121h9YDU3Z9zMvdn34qdkR96ZBAf7zrlSwrOkrbmkrbmkrfmksTmsaqn0iRtPWig7O1sXFRVZPYxBe/bfZfz49d08kfwhV9U8AffshfCJVg+L7fXbuW/DfdS11uGv/AnyD+J453EAVs5cSWFNIQ3tDay5Zs1Ze+lnIYQQQggxuiiltmqt+92jIH91P0StHV08tv4A1ya18bljqzgeluKRyU23s5u3yt9ifcV6ao/XDug1nc5OHi1+lPnPzWfhCwtZuW4lAX4BPLzwYW6ZeQtLpyzl6cue5ob0G3h217PsadjDPfPukcnNABUWFlo9BOEl0tZc0tZc0tZ80tgcVrWUQ9SG6G8Fh9DHj/CLsb9EKT8+zrif+UN8r05nJ53dndg77fwg/wdsqtnU89y98+5l5ayVfb72o8Mf8dCWh/jo8EdcmnQpkUGRhASEcOs5txIeGM7S5KU9654Xdx5hgWHUHq/liuQrhjjas09bW5vVQxBeIm3NJW3NJW3NJ43NYVVLmeAMQWtHF7/fWMpD49cy5ng1rHyT9tL+A75+8HUOHjtIVmwWiWGJ2PxsrDm4hr/v/jv2TjsAY2xj+FHuj0iLTONPH/+JR4ofISM6g/MmntfzPt3ObtZXruevu/7K9sPbCQ8M5+FFD7N0ytK+Ng2AUkrucSOEEEIIIYwm5+AMwd82HeKnr21nz7i78J+2GFb8GYfDQVBQUJ+vae5o5uKXLqa9u/0zz12ceDGZEzLpcnaxJHEJUyOmAtDa2coNb95Ak6OJG2fcyBjbGA4cO0BhTSGfHP+E+NB4bsq4ic9P+7wcbuZF/bUVo5e0NZe0NZe0NZ80NoenWw70HBzZgzMEBQeP8IWw3fg7GiHzBgDKysqYPn16n6954+AbtHe38+zSZ+l2dlPfVk97Vzuzx8/u8xLNYwPG8shFj/Dtd7/N49seByAyKJLZE2bz3XO/y+KExdj8bJ7/gOIk/bUVo5e0NZe0NZe0NZ80NodVLWWCM0haa4rKG/nDmA8hcAJMXQJAbW1tT8DK5koqWyqZP2k+fsoPrTUvl7xMRnQG82LnDWp7UyOm8s5179DR3cHxzuNEBEWgRsnNRE3Ru60wi7Q1l7Q1l7Q1nzQ2h1UtZYIzSFWNbThajjK7qwDOuxVsASc93+Xs4vb1t1PaVMqU8CncNOMmJoZO5MCxAzyY++CQtxtoCyTQFjjc4QshhBBCCGE0meAMUtGhBq6wbcamO3sOTwPIyMgA4LUDr1HaVMotGbewuXYzPy/8OQAhASFcmXylJWMWw3OirTCPtDWXtDWXtDWfNDaHVS1lgjNIReWNLPHfiQ6PR03M7Fne3d1Na2crv9v+O+ZMmMO92fcCsKdhD2+UvkFqRKpcCGCU6u7utnoIwkukrbmkrbmkrfmksTmsaik3+hyk4vKjzLftQSVfCL3Ohdm7dy9PbH+Cw22HuTf7XpRSKKXIiM7g/nPv5/Opn7dw1GI49u3bZ/UQhJdIW3NJW3NJW/NJY3NY1VL24AxCU1snHN5DeGATTLmwZ7nWmtePvc47Fe9wffr1zImZY+EohRBCCCGEOHvJBGcQisobmK92uX6TfCFO7WRD5QZe3Pci/27+NyvSVvBAzgPWDlJ43OTJk60egvASaWsuaWsuaWs+aWwOq1rKBGeAapra+OFrO/ll4F6c46bgF5HIb7c9zh8++gMTgidw2+zb+Nbcb8klnA0UHx9v9RCEl0hbc0lbc0lb80ljc1jVUs7BGYDm9k5WPrOF4+0dLAjYh1/KQpo7mlm1ZxWXJF7CW9e9xfTm6TK5MVRhYaHVQxBeIm3NJW3NJW3NJ43NYVVL2YNzBlUtVfzw3z/k4NFaGkIcLE2Zye5d7cyespCX9r3E8c7jfPOcbxLgF9D/mwkhhBBCCCG8TiY4Z7CufB1b67YS0D6H6AAHeY0beHtyHMuOfsiH9du4YNIFzIieAUBoaKjFoxXeIm3NJW3NJW3NJW3NJ43NYVVLpbW2ZMO9ZWdn66KiIquH8RnffPubVDTVcXTrCt6P/hV01PPMedfz55qNdOkunrn8Gc6NO9fqYQohhBBCCGE8pdRWrXV2f+vJOTh96OjuYFv9NmyOVL4T9DohbZ8Q+pXXuPPSR3nhqhf42QU/Izv2059vQUGBhaMV3iRtzSVtzSVtzSVtzSeNzWFVS48foqaUCgF+B3QAeVrrVZ7exkj4qPrftHe3U1sTwXW2v6Fmr4DE+QCkR6WTHpV+0voOh8OKYYoRIG3NJW3NJW3NJW3NJ43NYVXLAe3BUUo9o5SqV0rtPGX5UqXUPqXUAaXU99yLvwD8Q2v9DWC5h8c7Ipo2PsmWV29GabimtYxAZzvk3mb1sIQQQgghhBD9GNA5OEqphYAd+KvWepZ7mQ0oAS4FqoAtwJeAq4G1WuvtSqnntNZf7u/9fekcnLrtbxH92g2sjIuly8/Jc/XN+CXmwM3/POPrurq68PeXazaYSNqaS9qaS9qaS9qaTxqbw9MtPXoOjtZ6I9BwyuLzgANa61KtdQfwAq7JTRVw4q4+o+ocny07N/D1Ld/hZ5GT2Dk2mPNCkvDraoPcO/p9bUlJyQiMUFhB2ppL2ppL2ppL2ppPGpvDqpbDmVJNBip7/b4KyAEeA55QSn0OeL2vFyulvgl8E2DSpEnk5eUBkJKSQlhYGDt27AAgOjqamTNnsnHjRteA/f1ZsGABxcXFNDc3A5CdnU1dXR2Vla7hpKamEhQUxM6driPqYmJiSEtLIz8/H4CgoCByc3MpKirCbrcDkJOTwyd1ZYR1B/BaBDh1FzPm3MWWcUc5Xu1PXPdekpOTe06WCg4OJicnh8LCQtra2rDb7UydOpWysjJqa2sByMjIoLu7m3379rl+YJMnEx8f33PTo9DQULKzsykoKOg5RnHBggWUlJRQX18PwKxZs3A4HOzfvx+AhIQEYmNjObHHKzw8nKysLPLz8+nq6gJg4cKF7Nq1i6NHjwKQmZlJS0sLpaWlAEyZMoWoqCiKi4sBiIyMJDMzkw0bNqC1RinFokWL2LFjB42NjQBkZWXR0NBAeXm55Z2qqqqorq4GID09HZvNxu7duwGIi4s7YyeA3NzcQXVqbW0lIyNDOvl4p6F8nxwOB4mJidLJxzsN5fvU1dVFaGiodPLxTkP5Pmmt6ezslE4+3mk43ye73U5DQ4N08vFO0P/3yW63M27cOI91GqgBXyZaKTUFeKPXIWrXAUu11re6f/8VIEdrffuAt+7mS4eoaaeTli47pcdKyZyQiVJqQK/Ly8vjoosu8u7ghCWkrbmkrbmkrbmkrfmksTk83XKgh6gNZw9ONZDQ6/fx7mWjmvLzIzwwnDkxcwb1ulmzZnlpRMJq0tZc0tZc0tZc0tZ80tgcVrUczjkyW4BUpVSyUioQuAFY45lhjT5ySUNzSVtzSVtzSVtzSVvzSWNz+Pplop8HCoB0pVSVUurrWusu4HbgLWAP8JLWepf3hurbThwzKcwjbc0lbc0lbc0lbc0njc1hVcsBHaKmtf5SH8v/BfzLoyMSQgghhBBCiCEaVZdx9mUJCQn9ryRGJWlrLmlrLmlrLmlrPmlsDqtaygTHQ2JjY60egvASaWsuaWsuaWsuaWs+aWwOq1rKBMdDfOUy18LzpK25pK25pK25pK35pLE5rGopExwhhBBCCCGEMYZzH5xhU0otA5YlJSWRl5cHjN47ELe2tuJwOOTOtj7eCQZ/B+KOjg4A6eTjnYbyfVJKYbfbpZOPdxrK9ykoKIiKigrp5OOdhvJ9Cg8Pl06joNNwvk+tra3k5+dLJx/vBP1/n1pbW6murvZYp4FSWusBr+wt2dnZWnZHCiGEEEIIIfqilNqqtc7ubz05RM1DTsxChXmkrbmkrbmkrbmkrfmksTmsaikTHA85sbtQmEfamkvamkvamkvamk8am8OqljLBEUIIIYQQQhhDzsHxEKfTiZ+fzBdNJG3NJW3NJW3NJW3NJ43N4emWcg7OCNu1a5fVQxBeIm3NJW3NJW3NJW3NJ43NYVVLmeB4yIlL9AnzSFtzSVtzSVtzSVvzSWNzWNVSJjhCCCGEEEIIY8gEx0MyMzOtHoLwEmlrLmlrLmlrLmlrPmlsDqtaygTHQ1paWqwegvASaWsuaWsuaWsuaWs+aWwOq1r6W7JVN6XUMmBZUlISeXl5AKSkpBAWFsaOHTsAiI6OZubMmWzcuBEAf39/FixYQHFxMc3NzQBkZ2dTV1dHZWUlAKmpqQQFBbFz504AYmJiSEtL67nZUFBQELm5uRQVFWG32wHIycmhqqqK6upqANLT07HZbOzevRuAuLg4kpOTKSgoACA4OJicnBwKCwtpa2vDbrcTGxtLWVkZtbW1AGRkZNDd3c2+ffsAmDx5MvHx8RQWFgIQGhpKdnY2BQUFOBwOABYsWEBJSQn19fUAzJo1C4fDwf79+wFISEggNjaWE1edCw8PJysri/z8/J5rjS9cuJBdu3b1HPeYmZlJS0sLpaWlAEyZMoWoqCiKi4sBiIyMJDMzkw0bNqC1RinFokWL2LFjB42NjQBkZWXR0NBAeXn5qO4EkJubO6hOra2tJCYmSicf7zSU75PD4SAqKko6+XinoXyfTiyXTr7daSjfJ601jY2N0snHOw3n+2S326moqJBOPt4J+v8+2e12bDabxzoNlFwm2kPy8vK46KKLrB6G8AJpay5pay5pay5paz5pbA5PtxzoZaJ9YoKjlDoMHLJ6HMM0Hjhi9SCEV0hbc0lbc0lbc0lb80ljc3i6ZZLWekJ/K/nEBMcESqmigcwoxegjbc0lbc0lbc0lbc0njc1hVUu5yIAQQgghhBDCGDLBEUIIIYQQQhhDJjie8werByC8RtqaS9qaS9qaS9qaTxqbw5KWcg6OEEIIIYQQwhiyB0cIIYQQQghhjLN2gqOUSlBKva+U2q2U2qWUusu9PEop9Y5Sar/7n5Hu5dOVUgVKKYdS6r5e75OulNre69GslLq7j20uVUrtU0odUEp97zTPP6aUsnvrM58tfKmtcvmFUqpEKbVHKXWntz+/yXys7cVKqWL36/OVUtO8/flNZlHbZ5RS9UqpnacsP+02xdD4WNuHlVJ7lVIfKaVWK6UivPnZzxaeaux+7jvu99iplHpeKTWmj23e4n7f/UqpW9zLxiql3nQ33qWU+qW3P7tpfKXlKc+vOfW73C+t9Vn5ACYCWe5fhwElQAbwK+B77uXfAx5y/zoGOBf4BXBfH+9pA2pxXaP7dM8dBFKAQGAHkNHr+Wzgb4Dd6p/NaH/4Ulvgq8BfAb8T27L65zOaHz7WtgSY4f71fwLPWv3zGc2PkW7rfn4hkAXsPGX5abcpDyPaXgb4u3/9kLT1rcbAZKAMCHb//iVg5Wm2FwWUuv8Z6f51JDAWWOxeJxD4ALjC6p/PaHr4Sstez38BeO7U73J/j7N2D47WukZrXez+dQuwB1eMq4G/uFf7C3CNe516rfUWoPMMb3sxcFBrfbqblp4HHNBal2qtO4AX3NtCKWUDHgbuH/YHEz7VFvgP4Kdaa+eJbQ3rw53lfKytBsLdvx4HfDLkDyasaIvWeiPQcJqnTrtNMTS+1FZr/bbWusv9201A/OA/kTiVhxv7A8FKKX9cE5bT/dl6OfCO1rpBa90IvAMs1Vq3aq3fd2+jAyhGGg+Kr7QEUEqFAvcAPx/s5zhrJzi9KaWmAHOBQiBWa13jfqoWiB3EW90APN/Hc5OByl6/r3IvA7gdWNNru8JDfKDtVOB6pVSRUmqtUip1ENsUZ+ADbW8F/qWUqgK+AsihEB4yQm3PZDjbFGfgA217+xqwdpjvIU4xnMZa62rg10AFUAM0aa3fPs2qZ/qz+cQ4IoBlwHuD/hAC8ImWPwP+F2gd7NjP+gmOe3b4CnC31rq593PatW9sQJeZU0oFAsuBlwe5/UnACuDxwbxO9M/qtm5BQLt23cX3j8AzQ3gPcQofafsd4EqtdTzwZ+A3Q3gPcQofaTukbYoz86W2SqkfAF3AqqG+h/is4TZ2n9dxNZAMTAJClFI3DWEc/rgmwI9prUsH+3phfUul1BxgqtZ69WDHDmf5BEcpFYAr3iqt9avuxXVKqYnu5ycCAz2k6AqgWGtd535tQq8TIb8NVAMJvdaPdy+bC0wDDiilyoGxSqkDw/xoZz0faQuuv4k4sf3VwDlD/UzCxRfaKqUmAJla60L38heB84f1wcRItz2ToW5T9MGH2qKUWglcBdzo/h814QEeanwJUKa1Pqy17sT138/zlVI5vRov58z/3QXXvVf2a63/b/if7OzjIy1zgWz3/xvnA2lKqbyBfgb/ga5oGqWUAv4E7NFa9/6b1zXALbgON7kF+OcA3/JL9NpdrrWuBOb02p4/kKqUSsYV7gbgy1rrXUBcr/XsWmu5GtMw+Epb99OvAYtxnWi3CNfJemKIfKhtIzBOKZWmtS4BLsV1nLIYopFu24+hblOchi+1VUotxXW+6yKt9aAPexGn58HGFcB8pdRYoA3XuVZF7r9M6v1ncxTw3+rTKxxeBnzf/dzPcZ0XeetwP9fZyFdaaq0bgCfd60wB3tBaXzTgD6J94IoNVjyABbh2r30EbHc/rgSicR2vuR94F4hyrx+H62/jm4Fj7l+Hu58LAY4C4/rZ5pW4/gf3IPCDPtaRq6gZ1BaIAN4EPgYKcP2tv+U/o9H68LG2n3d33QHkASlW/3xG88Oits/jOja80/36r7uXn3ab8jCi7QFcx/ufGMdTVv98THh4uPFPgL3ATlxXlw3qY5tfc/c8AHzVvSzePY49vcZxq9U/n9H08JWWpzw/hUFeRU25XyiEEEIIIYQQo95ZfQ6OEEIIIYQQwiwywRFCCCGEEEIYQyY4QgghhBBCCGPIBEcIIYQQQghhDJngCCGEEEIIIYwhExwhhBBCCCGEMWSCI4QQQgghhDCGTHCEEEIIIYQQxvj/v8fcF9C8UUgAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f08f9714780>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"index = pd.to_datetime(perfDf.index)\n",
"\n",
"plt.figure(figsize=(14,9))\n",
"plt.grid(linestyle='--', which='both', axis='both')\n",
"plt.semilogy(perfDf.binance, label='Binance')\n",
"plt.semilogy(perfDf.poloniex, label='Poloniex')\n",
"plt.semilogy(perfDf.bitcoin, label='Bitcoin')\n",
"plt.legend();"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Pode-se notar o aumento no desempenho do índice executado na Binance quando comparado a execução na Poloniex. Deve-se levar em consideração que, nesta análise, não foram levadas em conta as taxas de execução das exchanges. Vale salientar que as taxas de execução na Binance são de apenas 0.05% do valor movimentado, enquanto na Poloniex é cobrado 0.25% sobre o valor movimentado. A melhoria nesta área, de 5 vezes no valor da taxa, é significativa. Além disso, o índice executado na Binance ainda apresenta desempenho superior ao executado na Poloniex, principalmente pela velocidade com que novos ativos são incorporados nessa exchange, quando comparado com aquela. Sendo a Binance a maior exchange do período atual, esta está sempre a par com as novidades da indústria, lançando ativos assim que estes passam a ser considerados confiáveis pela comunidade. Desta forma, podemos usufruir dos crescimentos iniciais no valor dessas novas tecnologias o mais rápido possível. \n",
"\n",
"A seguir faremos a análise de risco dos ativos utilizando o VaR e o CVaR."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"pctDf = perfDf.pct_change().fillna(0)\n",
"\n",
"alpha = 0.05\n",
"rf = 0.005 / 30\n",
"\n",
"csr = []\n",
"asset = []"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Estatísticas para a Bitcoin\n",
"Média da distribuição: 0.7459 %\n",
"95% Empirical VaR: 9.58 %\n",
"95% Empirical CVaR: 10.97 %\n",
"95% Conditional Sharpe Ratio: 0.066501\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAGDCAYAAADtQhtPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XucVXW9//HXZ/aeGUHuGKAzKCCXYJChcWycJEA7pZmZlYZWR0vLX57M9GRe6hjZsbIyT3npppbWKbG00ko9mjkgNmLDCAqooIACKeRwv83Mnvn+/lh7zQwwDBuYzXfB9/18PPaD2WuvvdZn9nrPd/tx3cw5h4iIiIiISCgKfBcgIiIiIiJyIKkJEhERERGRoKgJEhERERGRoKgJEhERERGRoKgJEhERERGRoKgJEhERERGRoKgJEhFJADP7iZld103LOtrMNptZKvu8xsw+s4/L+oqZ3ZnjvI+b2ezs+n+/L+vbzXL3uX4REZHOqAkSEckzM1tuZtvMbJOZrTezv5vZ58ysbQx2zn3OOfffOS7r37qaxzn3unOul3OuZX9rd859yzm3xwbEzAYAK4HpwAPAL/Z33T4cLA2Xmd1tZk3ZZneTmc01synZ176Snb7ZzLabWUuH5wuz85iZXWZmC8xsi5mtNLPfmdlxfn8zEZEDQ02QiMiB8UHnXG/gGOBG4Grgru5eiZmlu3uZuXDOrXXOfdo594Rz7gTn3J981NGVfH822cbiQH6vftc51wvoA/wY+L2ZpbKNa6/sa58DauPnzrmy7Ht/CHwRuAwYAIwG/gh84ADWLyLijZogEZEDyDm3wTn3EDANuMDMxkPb/9m/IfvzEWb25+xeo7Vm9pSZFZjZr4CjgT9l/6/+VWY2zMycmV1kZq8Df+swreN/9B9rZs+a2UYzezC75wYzm2pmKzvW2HFvk5l93cz+t8Nrk7J7stab2Qoz+1R2+gfM7Lns8leY2dd3WuaZZrYw+74aMxu7u8/IzN5rZi+Z2QYzuw2wnV6/0MxeNLN1ZvZ/ZnbMbpazy2eTnX5ih99hvplNzU7/JvBu4Lbs53tbdvq7zOwf2Xr+YWbv6rCOGjP7ppk9DWwFRmSn/beZPZ3dS/OYmR2Ry2dhZleb2ars+142s/fs7nOKOecc8BuiZmbwnuY3s1HA54HznHN/c841Oue2Oud+7Zy7cU/vFxE5FKgJEhHxwDn3LNHhY+/u5OUvZV97G9F/1H4leov7d+B1or1KvZxz3+3wninAWODU3azyfOBC4EggA9yytzVnm41HgFuztU0E5mVf3pJdRz+ivQmXmNlZ2feNBu4FLs++72GiRq6ok3UcAfwe+C/gCOBV4KQOr3+I6PP4SHZZT2WX3ZW2z8bMSoC/ADcQNQ1XAg+Y2ducc1/NLu/S7Od7abZZ/AvR5zUQuBn4i5kN7LD8fwcuBnoDr2WnfRz4NDAIKMqup8vPwszGAJcCJ2T3Gp4KLN/D74ZF536dDywDVu9pfuA9wMpsBkVEgqQmSETEn38S/Yf4zpqJmpVjnHPNzrmnsv+3vytfd85tcc5t283rv3LOLXDObQGuAz6W/Y/nvfFx4K/OuXuzdTU45+YBOOdqnHMvOOdanXPPE/2H/pTs+6YBf3HOPe6cawZuAnoA7+pkHacDC51z92fn/QHwZofXPwd82zn3onMuA3wLmLi7vUFZHT+bTwIPO+ceztb6OFCXXW9nPgAscc79yjmXcc7dC7wEfLDDPHc75xZmX2/OTvuFc25xdp2/JWoY9/RZtADFwDgzK3TOLXfOvdrF73Wlma0HNmc/p+tyPA9sIPBGDvOJiByy1ASJiPhTAqztZPr3gFeAx8xsqZldk8OyVuzF668BhUR7WvbGUKI9M7swsyoze9LM/mVmG4ialXj5R9G+hwTnXGu2npJOFnVUx1qzzV/H2o8Bfpg9lGw90ednu1lWbOf3nxO/P7uMSURNZ2d2qD3rtZ3W19ln37Fx2wr06mx5HT8L59wrRHuIvg6sMbMZZnZUF7/XTc65fkBPoBL4npm9v4v5Yw3s/vcVEQmCmiAREQ/M7ASi/5CevfNrzrlNzrkvOedGAGcC/9nh3JDd7RHa056ioR1+Pppob9NbRIex9exQV4roMK3OrACO3c1rvwEeAoY65/oCP6H9XJ5/EjUf8TosW8+qTpbzRsdaO8zbsYb/55zr1+HRwzn3993UBTt+NiuI9op1fP/hHc6F2flz3KH2rKN3qn1Pn/1ul7fzZ+Gc+41zblJ2Hgd8Z08LdJEFwNPkdmGDJ4BSM6vci7pFRA4paoJERA4gM+tjZmcAM4D/dc690Mk8Z5jZyOx/IG8gOkyqNfvyamDEPqz6k2Y2zsx6At8A7s8eOrUYOCx7YYNConNxinezjF8D/2ZmHzOztJkNNLP4MK/ewFrn3HYzeyfRoXOx3wIfMLP3ZNfxJaAR6Kxx+QtQZmYfsejCDpcBQzq8/hPgWjMrAzCzvmZ2zl58Dv8LfNDMTjWzlJkdZtHFIUqzr+/8+T4MjDazj2d/52nAOODPe7HOjnb7WZjZGDM7xcyKge3ANtq3e5fM7O1Ee7QW7mle59wS4EfAvdnfvSj7OZyb415HEZGDnpogEZED409mtoloT8RXiU6w//Ru5h0F/JXoXI9a4EfOuSezr30b+K/soVxX7sX6fwXcTXSY1mFEzQXOuQ3AfwB3Eu2N2EJ0UYZdOOdeJzp35ktEe5IWAOXZl/8D+Eb2d/wa0X/sx+97mehcnFuJ9j59kOjiDk2drOMt4Byiy4g3ZD+Lpzu8/geivSMzzGxjtoZcDgGL378CiC+u8C+i7fFl2r8Pfwicnb3y3C3OuQbgjOzv3ABcBZyRrXOv7eGzKM7+3m8RbadBwLVdLO6q7FXstgCPEd2b6ac5lnIZcBtwO7Ce6DDHDwOJu7S5iEg+2J7PtRUREdmRmf07UOSc6/Z7HYmIiOSb9gSJiMheMbNeRJfqPtl3LSIiIvtCTZCIiOytXxAdNvWI70JERET2hQ6HExERERGRoGhPkIiIiIiIBEVNkIiIiIiIBCXtu4BcHHHEEW7YsGG+yxARERERkQSbO3fuW8653d30u81B0QQNGzaMurq6fX7/Cy+8wHHHHdeNFYnsHWVQkkA5FN+UQfFNGTz0mdlrucwXxOFwDQ0NvkuQwCmDkgTKofimDIpvyqDEgmiCREREREREYkE0QeXl5b5LkMApg5IEyqH4pgyKb8qgxIJogjZt2uS7BAmcMihJoByKb8qg+KYMSiyIJmjp0qW+S5DAKYOSBMqh+KYMim/KoMSCaIJEROTA++lPf8q6det8lyEiIrKLIJog3WNIfFMGJQm6I4dmxic/+cm255lMhre97W2cccYZO8z3jW98g/79+9O/f/9OlzN16tS2Wx+cfvrprF+/fp/qaWxsZNq0aYwcOZKqqiqWL1/e6XyPPvooY8aMYeTIkdx4441t05ctW0ZVVRUjR45k2rRpNDU1AXDFFVcwceJEJk6cyOjRo+nXr1/be1KpVNtrZ5555j7VHSqNheKbMiixg+I+QftrwIABvkuQwCmDkgTdkcPDDz+cBQsWsG3bNnr06MHjjz9OSUnJLvN97Wtfy3mZDz/88D7Xc9ddd9G/f39eeeUVZsyYwdVXX8199923wzwtLS18/vOf5/HHH6e0tJQTTjiBM888k3HjxnH11VdzxRVXcO655/K5z32Ou+66i0suuYT/+Z//aXv/rbfeynPPPdf2vEePHsybN2+faw6ZxkLxTRmUWBB7gurr632XIIFTBiUJuiuHp59+On/5y18AuPfeeznvvPPaXtuyZQsXXngh73znO3nHO97Bgw8+CMC2bds499xzGTt2LB/+8IfZtm1b23uGDRvGW2+9BcBZZ53F8ccfT1lZGT/72c/2WMuDDz7IBRdcAMDZZ5/NE088gXNuh3meffZZRo4cyYgRIygqKuLcc8/lwQcfxDnH3/72N84++2wALrjgAv74xz/uso6df0fZdxoLxTdlUGJBNEEiItJ9zj33XGbMmMH27dt5/vnnqaqqanvtm9/8JqeccgrPPvssTz75JF/+8pfZsmULP/7xj+nZsycvvvgi119/PXPnzu102T//+c+ZO3cudXV13HLLLW03NvzMZz7TdvhcR6tWrWLo0KEApNNp+vbtu8vNEDvOA1BaWsqqVatoaGigX79+pNPpHaZ39Nprr7Fs2TJOOeWUtmnbt2+nsrKSE088sdOmSUREki+Iw+F2d0y6yIGiDEoSdFcOJ0yYwPLly7n33ns5/fTTd3jtscce46GHHuKmm24Coobh9ddfZ9asWVx22WVt758wYUKny77lllv4wx/+AMCKFStYsmQJAwcO5M477+yW2vfWjBkzOPvss0mlUm3TXnvtNUpKSli6dCmnnHIKxx13HMcee6yX+g42GgvFN2VQYkE0QboxlvimDEoSdGcOzzzzTK688kpqamp22PPinOOBBx5gzJgxe73Mmpoa/vrXv1JbW0vPnj2ZOnUq27dv7/I9JSUlrFixgtLSUjKZDBs2bGDgwIGdzhNbuXIlJSUlDBw4kPXr15PJZEin023TO5oxYwa33377LssDGDFiBFOnTuW5555TE5QjjYXimzIosSAOh5s5c6bvEiRwyqAkwd7k8PLLL+fyyy/f7esXXngh06dP57jjjtth+qmnnsqtt97adl5OfEGByZMn85vf/AaABQsW8Pzzz++yzA0bNtC/f3969uzJSy+9xDPPPLPHOs8880zuueceAO6//35OOeUUzGyHeU444QSWLFnCsmXLaGpqYsaMGZx55pmYGSeffDL3338/APfccw8f+tCH2t730ksvsW7dOqqrq9umrVu3jsbGRgDeeustnn76acaNG7fHOiWisVB8UwYlFkQTtPNJsiIHmjIoSbA3OZw3b16XV0ArLS1tO7yto+uuu47m5mYmTJhAWVkZ1113HQCXXHIJmzdvZuzYsXzta1/j+OOP3+W9p512GplMhrFjx3LNNddw4okntr22u3OCLrroIhoaGhg5ciQ333xz2+Wv//nPf7YdqpdOp7nttts49dRTGTt2LB/72McoKysD4Dvf+Q4333wzI0eOpKGhgYsuuqht2TNmzODcc8/doal68cUXqayspLy8nJNPPplrrrlGTdBe0FgovimDErODIQyVlZWusy+/XM2cOZMpU6Z0Y0Uie0cZlCTYmxxOnToViA5RE+kuGgvFN2Xw0Gdmc51zlXucL4QmSERE9o6aIBERORjl2gQFcTjc/PnzfZcggVMGJQmUQ/FNGRTflEGJBdEErVu3zncJEjhlUJJAORTflEHxTRmUWBBNkIiIiIiISCyIJqiiosJ3CRI4ZVCSQDkU35RB8U0ZlFgQTdDatWt9lyCBUwYlCZRD8U0ZFN+UQYkF0QQtX77cdwkSOGVQkkA5FN+UQfFNGZRYEE2QiIiIiIhILIgmaMSIEb5LkMApg5IEyqH4pgyKb8qgxIJognr37u27BAmcMihJoByKb8qg+KYMSiyIJkg3xhLflEFJAuVQfFMGxTdlUGJBNEEiIiIiIiKxIJqggQMH+i5BAqcMShIoh+KbMii+KYMSC6IJKisr812CBE4ZlCRQDsU3ZVB8UwYlFkQTNGvWLN8lSOCUQUkC5VB8UwbFN2VQYkE0QSIiIiIiIrEgmqB0Ou27BAmcMihJoByKb8qg+KYMSsycc75r2KPKykpXV1fnuwwRkWBMnToVgJqaGq91iIiI7A0zm+ucq9zTfEHsCaqvr/ddggROGZQkUA7FN2VQfFMGJZbXJsjMfm5ma8xsQYdp3zOzl8zseTP7g5n1y2cNABs3bsz3KkS6pAxKEiiH4psyKL4pgxLL956gu4HTdpr2ODDeOTcBWAxcm+caRERERERE2uS1CXLOzQLW7jTtMedcJvv0GaA0nzUAVFbu8bBAkbxSBiUJlEPxTRkU35RBifm+RMaFwH2dvWBmFwMXAxx11FFtJ+eOGDGC3r17M3/+fCC6829ZWVnbdd/T6TSTJk2ivr6+bZfnoEGDKC4uZsWKFQCMGjWK4uJiFixY0Pb66NGjmT17NgDFxcVUV1dTV1fH5s2bAaiqqmLlypWsWrUKgDFjxpBKpVi0aBEAQ4YMYfjw4dTW1gLQo0cPqqqqmDNnDtu2bQOgurqaZcuW8eabbwIwbtw4WlpaePnllwEoKSmhtLSUOXPmANCrVy8qKyupra2lsbERgEmTJrF48WLWrFkDwPjx42lsbGTJkiUADB06lMGDBxNfSKJPnz5UVFQwe/ZsMpmo95w8eTILFy6koaEBgPLycjZt2sTSpUsBGDZsGAMGDGg7brZ///6Ul5czc+ZMnHOYGVOmTGH+/PmsW7cOgIqKCtauXcvy5cv3eTtVVlayevXqQ3I7DRgwgIEDB2o7JXw7Hep/Tw0NDaxduzan7bR+/Xr69OnDkiVLtJ3099Rt26mxsbHtdW2n5G6nQ/nvKZ1O889//lPbKeHbaX//nnKR96vDmdkw4M/OufE7Tf8qUAl8xO2hiP29OlxNTU3blY5EfFAGJQn2Joe6Opzkg8ZC8U0ZPPTlenU4L3uCzOxTwBnAe/bUAImIiIiIiHSnA94EmdlpwFXAFOfc1gOxzlGjRh2I1YjsljIoSaAcim/KoPimDEosr02Qmd0LTAWOMLOVwHSiq8EVA4+bGcAzzrnP5bOO4uLifC5eZI+UQUmCXHJ4331PA7BmzYYdnudi2rST9q0wCYbGQvFNGZRYvq8Od55z7kjnXKFzrtQ5d5dzbqRzbqhzbmL2kdcGCGg70UrEF2VQkkA5FN+UQfFNGZRYvu8TJCIiIiIikihBNEGDBg3yXYIEThmUJFAOxTdlUHxTBiUWRBM0evRo3yVI4JRBSQLlUHxTBsU3ZVBiQTRB8c2WRHxRBiUJlEPxTRkU35RBiQXRBImIiIiIiMSCaIJ0OUTxTRmUJFAOxTdlUHxTBiUWRBNUXV3tuwQJnDIoSaAcim/KoPimDEosiCaorq7OdwkSOGVQkkA5FN+UQfFNGZRYEE3Q5s2bfZcggVMGJQmUQ/FNGRTflEGJBdEEiYiIiIiIxIJogqqqqnyXIIFTBiUJlEPxTRkU35RBiQXRBK1cudJ3CRI4ZVCSQDkU35RB8U0ZlFgQTdCqVat8lyCBUwYlCZRD8U0ZFN+UQYmlfRcgIiLd7777nt5lWlHRlk6ni4iIhCaIPUFjxozxXYIEThmUJMhkevguQQKnsVB8UwYlFkQTlEqlfJcggVMGJRnMdwESOI2F4psyKLEgmqBFixb5LkECpwxKEqTTW32XIIHTWCi+KYMSC6IJEhERERERiQXRBA0ZMsR3CRI4ZVCSoKWlyHcJEjiNheKbMiixIJqg4cOH+y5BAqcMShK0tBzmuwQJnMZC8U0ZlFgQTVBtba3vEiRwyqAkQVHRRt8lSOA0FopvyqDEgmiCREREREREYkE0QT166N4Y4pcyKEngXBBDviSYxkLxTRmUWBDfiFVVVb5LkMApg5IEzc19fJcggdNYKL4pgxILogmaM2eO7xIkcMqgJEFhoc4JEr80FopvyqDEgmiCtm3b5rsECZwyKElg1uq7BAmcxkLxTRmUWBBNkIiIiIiISCyIJqi6utp3CRI4ZVCSoKlJ5wSJXxoLxTdlUGJBNEHLli3zXYIEThmUJEiltvsuQQKnsVB8UwYlFkQT9Oabb/ouQQKnDEoSpFJNvkuQwGksFN+UQYkF0QSJiIiIiIjEgmiCxo0b57sECZwyKEmQyfT0XYIETmOh+KYMSiyIJqilpcV3CRI4ZVCSwfkuQAKnsVB8UwYlFkQT9PLLL/suQQKnDEoSpNO6P4b4pbFQfFMGJRZEEyQiIiIiIhILogkqKSnxXYIEThmUJGhpKfJdggROY6H4pgxKLIgmqLS01HcJEjhlUJKgpaXYdwkSOI2F4psyKLEgmqA5c+b4LkECpwxKEhQVbfJdggROY6H4pgxKLIgmSEREREREJJbXJsjMfm5ma8xsQYdpA8zscTNbkv23fz5rAOjVq1e+VyHSJWVQksA5/X8v8UtjofimDEos39+IdwOn7TTtGuAJ59wo4Ins87yqrKzM9ypEuqQMShI0N/fxXYIETmOh+KYMSiyvTZBzbhawdqfJHwLuyf58D3BWPmsAqK2tzfcqRLqkDEoSFBZu8F2CBE5jofimDEos7WGdg51zb2R/fhMY3NlMZnYxcDHAUUcdRU1NDQAjRoygd+/ezJ8/H4CBAwdSVlbGrFmzAEin00yaNIn6+no2btwIRHcHfvXVV1mxYgUAo0aNori4mAULoqP0Bg0axOjRo5k9ezYAxcXFVFdXU1dXx+bNmwGoqqpi5cqVrFq1CoAxY8aQSqVYtGgRAEOGDGH48OFtf1w9evSgqqqKOXPmsG1bdIPC6upqli1bxptvvgnAuHHjaGlpabtxV0lJCaWlpW0n7fXq1YvKykpqa2tpbGwEYNKkSSxevJg1a9YAMH78eBobG1myZAkAQ4cOZfDgwdTV1QHQp08fKioqmD17NplMBoDJkyezcOFCGhoaACgvL2fTpk0sXboUgGHDhjFgwADq6+sB6N+/P+Xl5cycORPnHGbGlClTmD9/PuvWrQOgoqKCtWvXsnz58n3eTpWVlaxevfqQ3E6ZTIZVq1ZpOyV8Ox1Kf09mBRQUNJFKNWYz2AOzVoqK1gPQ2lpIJtOToqKoMXLOaG7uS2HhRsxaKSjI0NqaJpXaSirV1LYMMNLprUB0ye2WlsMoKorWOWfOHG0n/T11uZ22bt3a9n2u7ZTc7XQo/z1t3769LYPaTsndTvv795QLc87lPPO+MLNhwJ+dc+Ozz9c75/p1eH2dc67L84IqKytdvJH3RU1NDVOnTt3n94vsL2VQDrT77nt6l2lFRetpaurXydy7uv76SwGYPv22nNc5bdpJOc8rYdJYKL4pg4c+M5vrnNvjcY8+zpJdbWZHAmT/XZPvFU6aNCnfqxDpkjIoSdDU1Nd3CRI4jYXimzIoMR9N0EPABdmfLwAezPcKFy9enO9ViHRJGZQkiA9jE/FFY6H4pgxKLN+XyL4XqAXGmNlKM7sIuBF4r5ktAf4t+zyv4uMpRXxRBiUJCgqafZcggdNYKL4pgxLL64URnHPn7eal9+RzvSIiIiIiIrsTxJ3zxo8f77sECZwyKEnQ3Hy47xIkcBoLxTdlUGJBNEHx5QZFfFEGJQnMWn2XIIHTWCi+KYMSC6IJiq+pLuKLMihJkE5v812CBE5jofimDEosiCZIREREREQkFkQTNHToUN8lSOCUQUmClpZi3yVI4DQWim/KoMSCaIIGDx7suwQJnDIoSdDaWuS7BAmcxkLxTRmUWBBNUF1dne8SJHDKoCRBYeEm3yVI4DQWim/KoMSCaIJERERERERiQTRBffr08V2CBE4ZlCRwLuW7BAmcxkLxTRmUWBBNUEVFhe8SJHDKoCRBc3Nv3yVI4DQWim/KoMSCaIJmz57tuwQJnDIoSVBUtN53CRI4jYXimzIosSCaoEwm47sECZwyKCKisVD8UwYlFkQTJCIiIiIiEguiCZo8ebLvEiRwyqAkQVNTX98lSOA0FopvyqDEgmiCFi5c6LsECZwyKEmQTm/xXYIETmOh+KYMSiyIJqihocF3CRI4ZVCSoKBAx8KLXxoLxTdlUGJBNEEiIiIiIiKxIJqg8vJy3yVI4JRBSYLm5sN9lyCB01govimDEguiCdq0aZPvEiRwyqAkgVmL7xIkcBoLxTdlUGJBNEFLly71XYIEThmUJEint/suQQKnsVB8UwYlFkQTJCIiIiIiEguiCRo2bJjvEiRwyqAkQUvLYb5LkMBpLBTflEGJBdEEDRgwwHcJEjhlUJKgtTXtuwQJnMZC8U0ZlFgQTVB9fb3vEiRwyqAkQWHhZt8lSOA0FopvyqDEgmiCREREREREYkE0Qf379/ddggROGZQk0OFw4pvGQvFNGZRYEE2QbowlvimDkgSZTC/fJUjgNBaKb8qgxIJogmbOnOm7BAmcMihJUFS03ncJEjiNheKbMiixIJog55zvEiRwyqCIiMZC8U8ZlFgQTZCZ+S5BAqcMiohoLBT/lEGJBdEETZkyxXcJEjhlUJKgqamf7xIkcBoLxTdlUGJBNEHz58/3XYIEThmUJEindZ8g8UtjofimDEosiCZo3bp1vkuQwCmDkgQFBRnfJUjgNBaKb8qgxIJogkRERERERGJBNEEVFRW+S5DAKYOSBM3Nuk+Q+KWxUHxTBiUWRBO0du1a3yVI4JRBSQIdDie+aSwU35RBiQXRBC1fvtx3CRI4ZVCSIJXa7rsECZzGQvFNGZRYEE2QiIiIiIhIzFsTZGZXmNlCM1tgZvea2WH5WteIESPytWiRnCiDkgSZTN6GWZGcaCwU35RBiXlpgsysBLgMqHTOjQdSwLn5Wl/v3r3ztWiRnCiDkgTOpXyXIIHTWCi+KYMS83k4XBroYWZpoCfwz3ytSDfGEt+UQUmCwsItvkuQwGksFN+UQYl5aYKcc6uAm4DXgTeADc65x3zUIiIiIiIiYUn7WKmZ9Qc+BAwH1gO/M7NPOuf+t8M8FwMXAxx11FHU1NQA0bGcvXv3buvkBw4cSFlZGbNmzQIgnU4zadIk6uvr2bhxIwB9+vTh1VdfZcWKFQCMGjWK4uJiFixYAMCgQYMYPXo0s2fPBqC4uJjq6mrq6urYvHkzAFVVVaxcuZJVq1YBMGbMGFKpFIsWLQJgyJAhDB8+nNraWgB69OhBVVUVc+bMYdu2bQBUV1ezbNky3nzzTQDGjRtHS0sLL7/8MgAlJSWUlpYyZ84cAHr16kVlZSW1tbU0NjYCMGnSJBYvXsyaNWsAGD9+PI2NjSxZsgSAoUOHMnjwYOrq6tp+94qKCmbPnk0mE10ed/LkySxcuJCGhgYAysvL2bRpE0uXLgVg2LBhDBgwgPr6egD69+9PeXk5M2fOxDmHmTFlyhTmz5/fdufliooK1q5d23bVlX3ZTpWVlaxevfqQ3E49e/Zk1apV2k4J306H0t+TWQEFBU2kUtHvmsn0oLW1gKKi9QC0thaSyfSkqGgDAM7HeZbyAAAgAElEQVQZzc19KSzciFkrBQUZWlvTpFJbSaWa2pYBRjq9FYCWliJaWg6jqCha55w5c7Sd9PfU5Xbq06dP2/e5tlNyt9Oh/PfUv3//tgxqOyV3O+3v31MuzDmX88zdxczOAU5zzl2UfX4+cKJz7j86m7+ystLFG3lftLa2UlCgC+GJP8qgHGj33fd0J1MdYDm9//rrLwVg+vTbcl7ntGkn5TyvhEljofimDB76zGyuc65yT/P5SsHrwIlm1tPMDHgP8GK+VhZ3oyK+KIOSBPFeHxFfNBaKb8qgxHydEzQHuB+oB17I1vEzH7WIiIiIiEhYcmqCzOxtZnaTmT1sZn+LH/uzYufcdOfc251z451z/+6ca9yf5XUlnfZy6pME5Ic/hPHjoawMfvCD9ulf/zqUlMBnP1vJxInw8MPR9KefhgkToLISsof3sn49vO990Nq66/Kvvx6uvXbHafPmwdixXdc1dSqMGQPl5XDCCdF7RER80fex+KYMSizXJPwauA/4APA54ALgX/kqqrtNmjTJdwlyCFuwAO64A559FoqK4LTT4IwzYOTI6PUrroArr+y1w3u+//2oIVq+HH7yk+j5DTfAV74CnR2qfN550XK//e32aTNmRNP35Ne/jpqtX/wCvvxlePzxff9d5cDr/NyefdPU1K/bltWZ7qw1FzoH6eCj72PxTRmUWK6Hww10zt0FNDvnZjrnLgROyWNd3Sq+6oVIPrz4IlRVQc+ekE7DlCnw+9/vOM/OGSwshK1bo0dhIbz6KqxYEe256czo0dC/P2QvJAPAb3/b3gRdcknU6JSVwfTpnS+juhqyF1GRQBUWbvJdggRO38fimzIosVyboObsv2+Y2QfM7B3AgDzV1O3iS/KJ5MP48fDUU9DQEDU1Dz8cNTSx226Dc84ZzYUXQvYKk1x7LZx/frRn59JL4atfjfYEdeW886K9PwDPPAMDBsCoUdHzb34T6urg+edh5szo3509+iicddb+/75y8DJr8V2CBE7fx+KbMiixXJugG8ysL/Al4ErgTuCKvFUlchAZOxauvjo6n+e002DiREilotcuuSTay3PHHXUceSR86UvR9IkTo0bmySdh6VI48khwDqZNg09+Elav3nU906bB/fdH5wztfCjcb38LFRXwjnfAwoXQ8TL5n/gEDB8eNUqf/3z+PgcRERGRg0VOTZBz7s/OuQ3OuQXOuZOdc8c75x7Kd3HdpbJyj5cKF9kvF10Ec+fCrFnRYWujR0fTBw+OGqJ3vrOSz342Om+oI+eiPUDXXRdd/OC734XPfhZuuWXXdQwdGjUzM2fCAw9ETRHAsmVw003wxBPRHqAPfAC2b29/369/HTVaF1wAX/hCfn5/OTg0N/f2XYIETt/H4psyKLEuL4xgZlc5575rZrcS3WVvB865y/JWWTdavXo1vXr12vOMIvtozRoYNAhefz06H+iZZ6Lpb7wR7eVZvXo1Dz3Ui/Hjd3zfL38Jp58eHdq2dWt0UYSCgujnzpx3XnShhREjoLQ0mrZxIxx+OPTtG+1BeuSRXc8tMoP//m849lh46SV4+9u79deXg0RBQRMtLT18lyEB0/ex+KYMSmxPV4eLb2Bal+9C8mnFihUce+yxvsuQQ9hHPxqdE1RYCLffDv2yF+G66qrostRbtw6mrAx++tP292zdCnffDY89Fj3/z/+MGqKiIvjNbzpfzznnwGWXwa23tk8rL48Og3v726O9RSft5oJZPXpEh+N973tw1137/SvLQSiValQTJF7p+1h8UwYl1mUT5Jz7U/bfew5MOSIHp6ee6nz6r34V/VtTU8fUnXbP9OwZnRMUe/e74YUXul7PEUdAc/Ou0+++u/P5a2p2fB6fkyQiIiISslxvlvq4mfXr8Ly/mf1f/srqXqPiS2iJeKIMShJkMtoLJH5pLBTflEGJ5Xp1uLc559bHT5xz64BB+Smp+xUXF/suQQKnDEoSOJfrkC+SHxoLxTdlUGK5fiO2mNnR8RMzO4ZOLpSQVAsWLPBdggROGZQkKCzc4rsECZzGQvFNGZTYni6MEPsqMNvMZgIGvBu4OG9ViYiIiIiI5ElOTZBz7lEzqwBOzE663Dn3Vv7K6l6DBh00R+7JIUoZlCRobS30XYIETmOh+KYMSizXPUEAxcDa7HvGmRnOuVn5Kat7jY7vXCniiTIoSZDJ9PRdggROY6H4pgxKLNerw30HeJrosLgvZx9X5rGubjV79mzfJUjglEFJgqKiDb5LkMBpLBTflEGJ5bon6CxgjHOuMZ/FiIiIiIiI5FuuV4dbChy0B5PrcojimzIoSeCc+S5BAqexUHxTBiWW656grcA8M3sCaNsb5Jy7LC9VdbPq6mrfJUjglEFJgubmvr5LkMBpLBTflEGJ5bon6CHgv4G/A3M7PA4KdXV1vkuQwCmDkgSFhRt9lyCB01govimDEsv1Etn3mFkP4Gjn3Mt5rqnbbd682XcJEjhlUJLArNV3CRI4jYXimzIosS73BGUbH8zsg8A84NHs84lm9lD+yxMREREREeleu22CzGwEcHv26deBdwLrAZxz84AR+S6uu1RVVfkuQQKnDEoSNDX19l2CBE5jofimDEqsqz1BpwH/l/252Tm38w0mDprjKlauXOm7BAmcMihJkErpLgfil8ZC8U0ZlNhumyDn3I+AgdmnC83s40DKzEaZ2a1EF0k4KKxatcp3CRII5+Cyy2DkSJgwAerro+k7Z3DuXDjuuGi+yy6L3gcwfz5UV0evffCDsDF7Hvvy5dCjB0ycGD0+97n2Zd17bzT/hAlw2mnw1ls71vT974NZ+/R16+DDH47mf+c7YcGC9nl/+EMYPx7KyuAHP2ifvru65OCSSjX5LkECp+9j8U0ZlFiX5wRlGyGALwBlRJfHvhfYCFye39JEDj6PPAJLlkSPn/0MLrmk8/kuuQTuuKN93kcfjaZ/5jNw443wwgtRo/K977W/59hjYd686PGTn0TTMhn44hfhySfh+eejxua229rfs2IFPPYYHH10+7RvfStqpJ5/Hn75y+j9EDVDd9wBzz4bNT1//jO88sqe6xIRERE52OR0iWzn3Fbn3Fedcyc45yqzP2/Pd3HdZcyYMb5LkEA8+CCcf3605+XEE2H9enjjjR0z+MYb0Z6UE0+M5jv/fPjjH6PXFi+GyZOjn9/7Xnjgga7X51z02LIl+nfjRjjqqPbXr7gCvvvdaD2xRYvglFOin9/+9mgv0+rV8OKLUFUFPXtCOg1TpsDvf79vdUkyZTI9fJcggdP3sfimDEospybIzJ40s7/t/Mh3cd0llUr5LkECsWoVDB3a/ry0NJrWMYOrVkXTd54HosPQHnww+vl3v4v25MSWLYN3vCNqTp56KppWWAg//nF0mNpRR0UNzkUXRa89+CCUlEB5+Y41lpe3NzfPPguvvQYrV0aHwT31FDQ0wNat8PDD7evvqi45mNieZxHJI30fi2/KoMRyvVnqlcCXs4/riC6XfdDcbWrRokW+S5DA5ZrBn/8cfvQjOP542LQJioqi6UceCa+/Ds89BzffDB//eLTXp7k5aoKeew7++c/ocLhvfztqYr71LfjGN3ZdxzXXRHuoJk6EW2+NGqtUCsaOhauvhve9Lzq3aOLEaHpXdcnBJZ3e6rsECZy+j8U3ZVBiud4sde5Ok542s2fzUI/IQef226NzaQBOOGHHvSQrV0Z7Y17ucIvhkpJo+s7zQHR42mOPRT8vXgx/+Uv0c3Fx9ICoETn22Oj1+IIKxx4b/fuxj0Xn7nzoQ9Geo3gv0MqVUFER7fkZMgR+8YtounMwfDiMyF7w/qKL2vckfeUr7XusdleXiIiIyMEo18PhBnR4HGFmpwJ981xbtxkyZIjvEuQQ9vnPt1+w4KyzoosNOAfPPAN9+0Z7cTpm8MgjoU+f6HXnovk/9KHotTVron9bW+GGG9qvAvevf0FLS/Tz0qXRxRRGjIiap0WLotcBHn882qNz3HHRspYvjx6lpdGV6oYMifYCNWUvEnbnndG5Pn367Lj+11+PDpn7+Me7rksOLi0t2oUnfun7WHxTBiWW054gYC7giA4ozwDLgIvyVVR3Gz58uO8SJBCnnx6dSzNyZHSBgXiPy/Dhw5k4MWqUIDq07FOfgm3b4P3vjx4QXe769uwtij/yEfj0p6OfZ82Cr30tOgeooCC6OtyAAdFr06dHjUxhIRxzDNx9d9c1vvgiXHBBdLGEsjK466721z760eicoMLCqI5+/bquSw4uLS2H+S5BAqfvY/FNGZSYufh4mgSrrKx0dXX7fgpSTU0NU6dO7b6CRPaSMij76r77nu62ZRUVraepqV9O815//aUATJ9+2x7m9GfatJN8lyB7SWOh+KYMHvrMbK5zrnJP8+W0J8jMPtLV68653+damIiIiIiIiE+5Hg53EfAuIL4s9snA34F/ER0ml+gmqEcP3RtD/FIGJQmcy/WCoCL5obFQfFMGJZZrE1QIjHPOvQFgZkcCdzvnDoozA6qqqnyXIIFTBiUJmpv7+C5BAqexUHxTBiWW6/8WHBo3QFmrgaPzUE9ezJkzx3cJEjhlUJKgsHCj7xIkcBoLxTdlUGK57gl6wsz+D7g3+3wa8Nf8lNT9tm3b5rsECZwyKElg1uq7BAmcxkLxTRmUWK43S73UzD4MTM5O+plz7g/5K0tEJJm682ptIiIi4keue4IA6oFNzrm/mllPM+vtnNuUr8K6U3V1te8SJHDKoCRBU5POCRK/NBaKb8qgxHI6J8jMPgvcD/w0O6kE+OP+rNjM+pnZ/Wb2kpm9aGZ5S+WyZcvytWiRnCiDkgSp1HbfJUjgNBaKb8qgxHK9MMLngZOAjQDOuSXAoP1c9w+BR51zbwfKgRf3c3m79eabb+Zr0SI5UQYlCVKpJt8lSOA0FopvyqDEcj0crtE512RmAJhZmuj+QPvEzPoSnV/0KQDnXBOgb2cREREREcm7XPcEzTSzrwA9zOy9wO+AP+3HeocT3Wj1F2b2nJndaWaH78fyujRu3Lh8LVokJ7vL4OWXRw+RAyGT6em7BAmcvo/FN2VQYrnuCboGuAh4Afh/wMPAnfu53grgC865OWb2w+w6rotnMLOLgYsBjjrqKGpqagAYMWIEvXv3Zv78+QAMHDiQsrIyZs2aFS04nWbSpEnU19ezcWN0T4xjjjmGV199lRUrVgAwatQoiouLWbBgAQCDBg1i9OjRzJ49G4Di4mKqq6upq6tj8+bNQHRzrZUrV7Jq1SoAxowZQyqVYtGiRQAMGTKE4cOHU1tbC0R3JK6qqmLOnDltl2Osrq5m2bJlbbtix40bR0tLCy+//DIAJSUllJaWtl3DvlevXlRWVlJbW0tjYyMAkyZNYvHixaxZswaA8ePH09jYyJIlSwAYOnQogwcPpq6uDoA+ffpQUVHB7NmzyWQyAEyePJmFCxfS0NAAQHl5OZs2bWLp0qUADBs2jAEDBlBfXw9A//79KS8vZ+bMmTjnMDOmTJnC/PnzWbduHQAVFRWsXbuW5cuX7/N2qqysZPXq1YfkdjryyCNpbm7eZTvV1ETbpL5+qbZTArZTLn9PAEVF64k1NfUlnd5CQUG03ZqbD8eshXQ6Ov+mpeUwWlvTFBZGv3tra5pMptdOy+hHOr25wzJ6UVCQaTuHJ5M5DOdSFBZu6bCMwykq2rDDMgoLN2HWkl1GbwoKmkilGrPL6IFZhqKirdllFJLJ9GxbhnNGc3NfCgs3YtZKQUGG1tY0qdTWtsPoMpkegJFOb83+bkW0tBxGUdHG7DIKaG7u07aMqK4+pFLbOyyjJ+BIp7d1WEYxRUWbdlrGBsxch894KwUFzR0+49a27wWNewfP31NBQUHbdtN2Su52OpT/nvr06dOWQW2n5G6n/f17yoU51/VRbWaWAn7pnPtEzkvd00rNhgDPOOeGZZ+/G7jGOfeBzuavrKx08UbeFzU1NUydOnWf3y+yv3aXwXhSdjyWg8DBfInsoqL1NDX1y2ne66+/FIDp02/LZ0n7Zdq0k3yXIHtJ38fimzJ46DOzuc65yj3Nt8c9Qc65FjM7xsyKsufu7Dfn3JtmtsLMxjjnXgbeA+TeuomIiOwjH42sGjYRkWTJ9XC4pcDTZvYQsCWe6Jy7eT/W/QXg12ZWlF3+p/djWV0qKSnJ16JFcqIMShK0tBT5LkECp7FQfFMGJdblhRHM7FfZH88E/pydv3eHxz5zzs1zzlU65yY4585yzq3bn+V1pbS0NF+LloPJD38I48dDWRn84Aft07/+dSgpgYkTo8fDD0fTn34aJkyAykrIHoPL+vXwvvdBa2vn62huhmuugVGjoKICqqvhkUcY/o1vwE9/uuO8f/wj33n+/V3XPGwYHHdcVMeUKfDaa/vym4sA0NJS7LsECZy+j8U3ZVBie7o63PFmdhTwOnBrJ4+DQnzimQRswQK44w549lmYPx/+/Gd45ZX216+4AubNix6nnx5N+/73o4boBz+An/wkmnbDDfCVr0DBbv50rrsO3ngjWl99Pfzxj7BpEwsnTIAZM3acd8YMnhh03p5rf/JJeP756ASiG27Y619dJBZffEDEF30fi2/KoMT21AT9BHgCGA3UdXjMzf4rcnB48UWoqoKePSGdjvaq/P73Xb+nsBC2bo0ehYXw6quwYkX71Qx2tnVr1GjdeisUZ/+P++DB8LGPsa6iAl56KWqQALZsgb/+ldlHnBU9P+ssOP74aC/Vz37W+fKrqyF7FRQRERER2XddNkHOuVucc2OBXzjnRnR4DHfOjThANe63Xr16+S5BfBs/Hp56Choaombl4YejhiZ2223RIWcXXgjZy0By7bVw/vnw7W/DpZfCV7/a9Z6YV16Bo4+G7GWUO+rVty989KPw299GE/70J5g6la3p7Lw//znMnQt1dXDLLVGdO3v00ahZEtlHzuV6aziR/ND3sfimDEosp29E59wl+S4knyor93iVPDnUjR0LV18dnc9z2mnRuT+pVPTaJZdEe3nmzYMjj4QvfSmaPnEiPPNMdDja0qXRa87BtGnwyU/C6tU5r76yshLOO6/9kLgZM6LnsVtugfJyOPHEqDmLz0ECOPnk6JylRx7Z8T0ie6m5edcGXeRA0vex+KYMSizXq8Md1Gpra6murvZdhvh20UXRA6LzeuKTIwcPbp/ns5+FM87Y8X3ORXuAZsyAL3wBvvtdWL48aly++c32+UaOhNdfh40bd9kbVFtbS/W73hUdDjd/Pvz979HyboWJ62vgr3+F2trocL2pU2H79vY3P/kk9OsHn/gETJ8ON+/PRRklZIWFG2hu7uu7jG5zMN+zKVT6PhbflEGJBXFsRHz3XQlc9q7LvP56dD7Qxz8ePY/P0wH4wx+iQ+c6+uUvo4slDBgQHUpXUBA9tm7dcb6ePaMm64tfhKbsLbX+9S/43e+iDJpFe5EuuADe/3447DAADs9sgP79o/e/9FK092ln6XR0gYZf/hLWru2GD0NCZNb1zbFF8k3fx+KbMiixIPYEiQDROTkNDdFFDm6/Pdq7AnDVVdGhcGbRJak7Xsp661a4+2547LHo+X/+Z9QQFRXBb36z6zpuuAH+679g3LioyTn8cPjGN9pfP++8aE/SjTe2TXp2wGmQ+Ul0yN6YMdEhcZ058sjo/bffHl2FTkRERET2iTmX/P8zWFlZ6erq9v1idJlMhnRa/Z74s7sMxheaq6k5oOXIfji4D8FygOU05/XXXwrA9Om35bGecEybdpLvEhJB38fimzJ46DOzuc65PZ78FcThcIsXL/ZdggROGZQkSKe37nkmkTzSWCi+KYMSC6IJWhOfCyLiiTIoSVBQ0Oy7BAmcxkLxTRmUWBBNkIiIiIiISCyIJmj8zlf7EjnAlEFJgubmw32XIIHTWCi+KYMSC6IJ0uUQxTdlUJLArNV3CRI4jYXimzIosSCaoCVLlvguQQKnDEoSpNPbfJcggdNYKL4pgxILogkSERERERGJBdEEDR061HcJEjhlUJKgpaXYdwkSOI2F4psyKLEgmqDBgwf7LkECpwxKErS2FvkuQQKnsVB8UwYlFkQTVFdX57sECZwyKElQWLjJdwkSOI2F4psyKLEgmiAREREREZFYEE1Qnz59fJcggVMGJQmcS/kuQQKnsVB8UwYlFkQTVFFR4bsECZwyKEnQ3NzbdwkSOI2F4psyKLEgmqDZs2f7LkECpwxKEhQVrfddggROY6H4pgxKLIgmKJPJ+C5BAqcMiohoLBT/lEGJBdEEiezCObjsMhg5EiZMgPr6zuf76ldh6FDo1WvH6Y2NMG1a9P6qKli+PJre1ASf/jQcdxyUl0NNTft7mprg4oth9Gh4+9vhgQcAOO3Nu+Ftb4OJE6PHnXe2v+eqq6CsDMaOjep1ruu6rriifTmjR0O/fju+vnEjlJbCpZfuzaclIiIickhJ+y7gQJg8ebLvEiRpHnkEliyJHnPmwCWXRP/u7IMfjBqGUaN2nH7XXdC/P7zyCsyYAVdfDffdB3fcEb3+wguwZg28//3wj39EGbz+ehg0CBYvhtZWWLsWbs0ub9o0uO22Hdfx97/D00/D889HzydNgpkzYerU3df1P//T/vOtt8Jzz+34+nXXgf4egtXU1Nd3CRI4fR+Lb8qgxILYE7Rw4ULfJUjSPPggnH8+mMGJJ8L69fDGG7vOd+KJcOSRnb//gguin88+G554ItpLs2gRnHJKNH3QoGhPTF1dlMGf/xyuvTZ6raAAjjii6xrNYPv2aA9SYyM0N0N8k7fd1dXRvffCeee1P587F1avhve9r+v3ySErnd7iuwQJnL6PxTdlUGJBNEENDQ2+S5CkWbUqOpwsVloaTduX96fT0LcvNDREh8A99BBkMrBsWdR4rFjBhtdei+a97jqoqIBzzokaktgDD0SH5Z19NqxYEU2rroaTT46anSOPhFNPjQ6Ly8Vrr0Xrjxuy1lb40pfgppty/x3lkFNQoGPhxS99H4tvyqDEgmiCRA6YCy+MGqrKSrj8cnjXuyCVwlpaYOXK6Hl9fdTgXHklAH8f+MHonKLnn4f3vrd9D9Mrr8CLL0bvW7UK/vY3eOqp3OqYMSNqqFLZ+8L86Edw+ulRbSIiIiKBC+KcoPLyct8lSBLcfnv7OTsnnNC+xwWiRqOkJPdllZRE7y8tjfb6bNgAAwdGh7B1PC/nXe+C0aMZN2QI9OwJH/lINP2cc6Lzit4GGwsHQnF2/s98JroYAsAf/hAd9hZf/OD974faWnj3u/dc34wZ0e8bq62NGqgf/Qg2b44OsevVC268MfffWQ56zc2H+y5BAqfvY/FNGZRYEHuCNm3a5LsESYLPfx7mzYseZ50Fv/xldB7PM89Eh7Pt6Rybjs48E+65J/r5/vujw87MYOtW2JI97+Lxx6ND5caNY9PmzdHFDOKrxT3xBIwbB8CAxg7nIj30UPshb0cfHV0IIZOJzgeaOTO3w+FeegnWrYv2NsV+/Wt4/fVoj9NNN0XnQ6kBCo5Zi+8SJHD6PhbflEGJBdEELV261HcJkjSnnw4jRkSXuP7sZ6M9JLGJE9t/vuqqaG/P1q3Rv1//ejT9oouic4BGjoSbb25vKNasic75GTsWvvMd+NWvgGwGv/Od6P0TJkTTv/99AD666pboMtjl5XDLLXD33dGyzj4bjj22/XLb5eVRI9VVXRDtBTr33KgpE+kgnd7uuwQJnL6PxTdlUGJBHA4nsguzHQ8X62jevPafv/vd6LGzww6D3/1u1+nDhsHLL3e+3GOOgVmzdpl8x4hv84mab+86fyoFP/1p58vaXV2wY0PUmU99KnqIiIiIBCqIPUHDhg3zXYIEThmUJGhpOcx3CRI4jYXimzIosSCaoAEDBvguQQKnDEoStLZq57/4pbFQfFMGJRZEE1RfX++7BAmcMihJUFi42XcJEjiNheKbMiixIJogERERERGRWBBNUP/+/X2XIIFTBiUJdDic+KaxUHxTBiUWRBOkG2OJb8qgJEEm08t3CRI4jYXimzIosSCaoJkzZ/ouQQKnDEoSFBWt912CBE5jofimDErMaxNkZikze87M/pzP9Tjn8rl4kT1SBkVENBaKf8qgxHzvCfoi8GK+V2Jm+V6FSJeUQRERjYXinzIoMW9NkJmVAh8A7sz3uqZMmZLvVcih7PLLo8d+UAYlCZqa+vkuQQKnsVB8UwYl5vNSQT8ArgJ6d/aimV0MXAxw1FFHUVNTA8CIESPo3bs38+fPB2DgwIGUlZUxa9YsANLpNJMmTaK+vp6NGzcC0KtXL/r378+KFSsAGDVqFMXFxSxYsACAQYMGMXr0aGbPng1AcXEx1dXV1NXVsXlzdF+NqqoqVq5cyapVqwAYM2YMqVSKRYsWATBkyBCGDx9ObW0tAD169KCqqoo5c+awbds2AKqrq1m2bBlvvvkmAOPGjaOlpYWXX34ZgJKSEkpLS5kzZ05b3ZWVldTW1tLY2AjApEmTWLx4MWvWrAFg/PjxNDY2smTJEgCGDh3K4MGDqaurA6BPnz5UVFQwe/ZsMpkMAJMnT2bhwoU0NDQA0UmCmzZtYunSpUB0N+UBAwa0XUu/f//+lJeXM3PmTJxzmBlTpkxh/vz5rFu3DoCKigrWrl3L8uXL93k7VVZWsnr16sRtp3f94x8456jNZnBftlOPHj0oLS3dZTutXx9tk/r6pdpOB8nfE+x4bk1TU1/S6S0UFETbrbn5cMxaSKe3A9DSchitrem2e/S0tqbJZHrttIx+pNObOyyjFwUFGVKpaBmZzGE4l6KwcEuHZRxOUdGGHZZRWLgJs5bsMnpTUNBEKtWYXUYPCgoaKShozS6jkEymZ9synDOam/tSWLgRs1YKCjK0tqZJpbaSSjW1LQOMdHpr9ncroqXlMIqKNmaXUUBzc5+2ZUR19SGV2t5hGT0BRzq9rcMyitWUwIwAABSISURBVCkq2rTTMjZg5jp8xlspKGju8Bm3dlhGMa2tRRQWxstI0dzcO1HbqaamRn9PQ4eybt26trr1/ZTc7XQo/3dEY2MjGzZs0HZK+Hba37+nXJiPYyPN7AzgdOfcf5jZVOBK59wZu5u/srLSxRt5X9TU1DB16tR9fr8ELs5OtgnaF7vLYDcsWg6w++572ncJ+6yoaH3Oe4Ouv/5SAKZPvy2fJQVj2rSTfJeQCPo+Ft+UwUOfmc11zlXuaT5fh8OdBJxpZsuBGcApZva/nmoREREREZGAeGmCnHPXOudKnXPDgHOBvznnPpmv9VVUVORr0SI5UQYlCZqbdZ8g8UtjofimDErM99XhDoi1a9f6LkECpwxKEsTnsoj4orFQfFMGJea9CXLO1XR1PlB3iE/eEvFFGZQkiE/gF/FFY6H4pgxKzHsTJCIiIiIiciD5vET2ATNixAjfJUjgQsngvl45bV+vnHWg13ewy2QO812CBC6UsVCSSxmUWBB7gnr37vRWRCIHjDIoSeBcyncJEjiNheKbMiixIJqg+AZOIr4og5IE8U08RXzRWCi+KYMSC6IJEhERERERiQXRBA0cONB3CRI4ZVCSoLU1iNNAJcE0FopvyqDEgmiCysrKfJcggVMGJQkymcN9lyCB01govimDEguiCZo1a5bvEiRwyqAkQVHRBt8lSOA0FopvyqDEdGyEiHi3r5e6FjlY6HLuIiLJEsSeoHRavZ74pQyKiGgsFP+UQYkF0QRNmjTJdwkSOGVQkqCpqZ/vEiRwGgvFN2VQYkE0QfX19b5LkMApg5IEhYWbfJcggdNYKL4pgxILognauHGj7xIkcMqgJIFZi+8SJHAaC8U3ZVBiQTRBIiIiIiIisSCaoMrKSt8lSOCUQUmC5ubevkuQwGksFN+UQYkFcYmM1atX06tXL99lSMCUwWQJ9ZLcBQVNtLT08F2GBExjofimDEosiD1BK1as8F2CBE4ZlCRIpRp9lyCB01govimDEguiCRIREREREYkF0QSNGjXKdwkSOGVQkiCT0aFw4pfGQvFNGZRYEE1QcXGx7xIkcMqgJIFzQQz5kmAaC8U3ZVBiQXwjLliwwHcJEjhlUJKgsHCL7xIkcBoLxTdlUGJBNEEiIiIiIiKxIJqgQYMG+S5BAqcMShK0thb6LkECp7FQfFMGJRbEfYJGjx7tuwQJnI8M7s+9cKZNO6kbK5GkyGR6/v/27j5GrvK64/jv7LzYxm8YJ9hgO9g0xqlxanC3rLa4hjZUgvyRtJTEpAkBiRRFEVKlNn/Qpi2lLa2aqm0iNVEStWloRRVHtKgoSZuAy0uXLlsWg4nXiW2wXbADrGqMvcb2zuzs6R97r5k6Bo/XM3PG83w/ksXM7J3nHub+9s5z9t65E10CEsf7MaKRQeSSOBI0MDAQXQISRwbRCcrlQ9ElIHHsCxGNDCKXRBMEAAAAALkkmiAuh4hoZBCdwN2iS0Di2BciGhlELokmqL+/P7oEJI4MohNUq/OjS0Di2BciGhlELokmaHh4OLoEJI4MohOUSoejS0Di2BciGhlELokm6MiRI9ElIHFkEJ3AbDK6BCSOfSGikUHkkmiCAAAAACCXRBPU19cXXQISRwbRCSqVudElIHHsCxGNDCKXRBO0b9++6BKQODKITlAojEeXgMSxL0Q0MohcEk3Q/v37o0tA4sggOkGhUIkuAYljX4hoZBC5JJogAAAAAMgl0QStWrUqugQkjgyiE0xMzIouAYljX4hoZBC5JJqgQqEQXQISRwbRGSy6ACSOfSGikUHkkmiCtm/fHl0CEkcG0QmKxaPRJSBx7AsRjQwiV4wuADjXbNr05Bk/p1x+swWVtM50/h8BNN90fxc3bry6yZUAQHcJORJkZsvM7FEz225mI2b2m61c3+LFi1s5PHBatVo5ugSAHCIc78eIRgaRizoSNCHpt919i5nNlfSMmT3s7i05RrlixYpWDAs0rFabGV0CQA4RjvdjRCODyIUcCXL3V9x9S3Z7TNIPJS1p1foGBwdbNTTQkHL5cHQJADlEON6PEY0MIhf+mSAzWy7pSklDJz1+h6Q7JOniiy/WY489Jkm69NJLNXfuXG3dulWStHDhQl1++eV64oknJEnFYlHr16/Xli1bdPjw1Bt+rVbTiy++qJdfflmStHLlSs2YMUPbtm2TJF144YW67LLLNDAwIEmaMWOG+vv7NTw8rCNHjkiS+vr6tG/fvhNfsrVq1SoVCoUTH7BbvHixVqxYceKXa9asWerr69PQ0JCOHTsmServ79eePXv06quvSpJWr16tWq2mHTt2SJKWLFmipUuXamho6qWYM2eOent7NTg4qPHxqW96X79+vXbu3KnR0VFJ0po1azQ+Pq5du3ZJkpYtW6ZFixZpeHhYkjRv3jytW7dOAwMDmpiYkCRt2LBBIyMjOnDggCRp7dq1Ghsb0+7duyVJy5cv1wUXXKAtW7ZIkhYsWKC1a9fq8ccfl7vLzHTNNddo69atOnjwoCRp3bp1ev3117V3795pb6fe3l699tprHbedfr5albtrMMtgoVBVrTZD5fKYJMm9R9XqPJVKh2TmkqRKZb6KxaPq6alqimv//v0/sZ3eeGNqm2zZsrvp26lcflOVyvkqFo+op2dqzGp1jnp6JlQoHJckTUzMlHtBpdLUZ5YmJ4uamJitcvmQcpXK+SqVxmRWy8aYq56eigqF8WyMWXLvqRujpImJ806M4W6qVuerVDoss8lszLkqFMZPfHnn1KWb7cQH92u1smq1mScm7W+9xvVjzFOhcLxujPMkuYrFY3VjnNl2qlZny2yybowZmpwsq1TKxyioWp2rcvmNutdnvorFN+te49kyq6lYPJ6NMVOTk0WVSkfqXuM5J43Rnu0k+Yn1nm479fRMaHKyqELhKNupzdupGb9Po6OjHfn+VKvVTryf8/7EPCJiO7n7iQyynTp3O53t71MjzN0bXrjZzGyOpMcl3evu//J2y/X29nq+kadjaGhIfX19034+EnfttVP/zXaa0/mgcql0WDfeeMPphm4qLm6Ak5VKh1Wtzmto2XvuuVOSdPfdf9PKktAinXphBN6PEY0Mdj8ze8bde0+3XNglss2sJOmfJd3/Tg1QMxB2RGt04gm0EjlENN6PEY0MIhdyOpyZmaS/k/RDd/+rVq+Prh/RSiU+i4F4Z3IkCOe2dl9au9H1nSqDnXrUCt2JOSFyUUeCrpZ0i6RfMrPnsn8fbNXK8nM0gSj5uftAJHKIaGQQ0ZgTIhdyJMjdByRZxLoBAAAApC3sM0Ht1N/fH10CElepcAoS4pFDRCODiMacELkkmqA9e/ZEl4DE5ZfQBSKRQ0Qjg4jGnBC5JJqg/DrtQJT8+zuASOQQ0cggojEnRC6JJggAAAAAckk0QatXr44uAYmbmDgvugSAHCIcGUQ05oTIJdEE1Wq16BKQPI8uABA5RDwyiFjMCZFLognasWNHdAlIXLHI9xIgHjlENDKIaMwJkUuiCQIAAACAXBJN0JIlS6JLQOJqtXJ0CQA5RDgyiGjMCZFLoglaunRpdAlIXK02I7oEgBwiHBlENOaEyCXRBA0NDUWXgMSVy2PRJQDkEOHIIKIxJ0QuiSYIAAAAAHJJNEFz5syJLgGJc0/iVw0djhwiGhlENOaEyCWxN+rt7Y0uAYmrVudFlwCQQ4Qjg4jGnBC5JJqgwcHB6BKQuFLpUHQJADlEODKIaMwJkUuiCRofH48uAYkz41vSEY8cIhoZRDTmhMgl0QQBAAAAQC6JJmj9+vXRJSBxlcr86BIAcohwZBDRmBMil0QTtHPnzugSkLhi8Wh0CQA5RDgyiGjMCZFLogkaHR2NLgGJ6+mpRpcAkEOEI4OIxpwQuWJ0AQAAAPhJmzY9Oa3nbdx4dZMrAbpPEkeC1qxZE10CEletzo4uASCHCEcGEY05IXJJNEFcDhHRzCajSwDIIcKRQURjTohcEk3Qrl27oktA4orFY9ElAOQQ4cggojEnRC6JJggAAAAAckk0QcuWLYsuAYmr1WZElwCQQ4Qjg4jGnBC5JJqgRYsWRZeAxE1OlqNLAMghwpFBRGNOiFwSl8geHh7WtddeG10GElYqjUWXAKhUGlOlcn50Gehg070kc6NOlcFWr7NZuOx0d2BOiFwSR4IAAAAAIJdEEzRv3rzoEpA490J0CQA5RDgyiGjMCZFLoglat25ddAlIXLU6N7oEgBwiHBlENOaEyCXRBA0MDESXgMSVy29ElwCQQ4Qjg4jGnBC5JJqgiYmJ6BIAAAAQjDkhckk0QQAAAACQS+IS2Rs2bGjqeNO9nOd0L68ZcfnQc+VSoO14bX5x9JAk6dGzWFelMv+UtY6OrpEkbdq0bdpjA42qVOZHl4DEncsZbPd7P97ZdLfHRz7S3DlhJ2r3vPFczXgSR4JGRkaiS0DiisU3o0sAyCHCkUFEY06IXBJN0IEDB6JLQOJ6ejgHGfHIIaKRQURjTohcEk0QAAAAAOTCmiAzu97MdpjZC2Z2VyvXtXbt2lYOD5xWtTo7ugSAHCIcGUQ05oTIhTRBZlaQ9CVJN0haLeljZra6VesbGxtr1dBAQ8xq0SUA5BDhyCCiMSdELupI0FWSXnD33e5ekfRNSR9u1cp2797dqqGBhhSLx6NLAMghwpFBRGNOiFxUE7RE0st19/dljwEAAABAS5m7t3+lZjdJut7dP5Xdv0VSn7vfWbfMHZLuyO6ukrTjLFb5Lkn/exbPB84WGUQnIIeIRgYRjQx2v0vc/d2nWyjqy1L3S1pWd39p9tgJ7v41SV9rxsrMbNjde5sxFjAdZBCdgBwiGhlENDKIXNTpcE9LWmlmK8ysLOlmSQ8F1QIAAAAgISFHgtx9wszulPQ9SQVJX3d3vsIXAAAAQMtFnQ4nd/+upO+2aXVNOa0OOAtkEJ2AHCIaGUQ0MghJQRdGAAAAAIAoUZ8JAgAAAIAQXdkEmdkFZvawme3K/rvgFMtcYWaDZjZiZs+b2caIWtGdGslgtty/m9kbZvbtdteI7mRm15vZDjN7wczuOsXPZ5jZpuznQ2a2vP1Vots1kMMNZrbFzCayr80AmqqBDP6WmW3P5oCbzeySiDoRpyubIEl3Sdrs7islbc7un+yopE+6++WSrpf0BTM7v401ors1kkFJ+gtJt7StKnQ1MytI+pKkGyStlvQxM1t90mK3Szro7u+V9NeS/ry9VaLbNZjDlyTdJumf2lsdUtBgBp+V1OvuPyPpAUmfb2+ViNatTdCHJd2X3b5P0q+cvIC773T3XdntH0salXTaL1YCGnTaDEqSu2+WNNauotD1rpL0grvvdveKpG9qKov16rP5gKQPmJm1sUZ0v9Pm0N33uvvzkiYjCkTXaySDj7r70ezuU5r6zkokpFuboEXu/kp2+1VJi95pYTO7SlJZ0outLgzJOKMMAk2yRNLLdff3ZY+dchl3n5B0SNLCtlSHVDSSQ6CVzjSDt0v6t5ZWhI4Tdonss2Vmj0hafIoffa7+jru7mb3tJfDM7CJJ/yjpVnfnL1JoWLMyCAAAYpjZJyT1Sromuha01znbBLn7dW/3MzN7zcwucvdXsiZn9G2WmyfpO5I+5+5PtahUdKlmZBBosv2SltXdX5o9dqpl9plZUdJ8SQfaUx4S0UgOgVZqKINmdp2m/nB5jbuPt6k2dIhuPR3uIUm3ZrdvlfSvJy9gZmVJD0r6B3d/oI21IQ2nzSDQAk9LWmlmK7J93M2aymK9+mzeJOk/nC+MQ3M1kkOglU6bQTO7UtJXJX3I3flDZYK68stSzWyhpG9Jeo+k/5H0UXd/3cx6JX3a3T+VHf78e0kjdU+9zd2fa3/F6DaNZDBb7j8lvU/SHE39Nf52d/9eUNnoAmb2QUlfkFSQ9HV3v9fM/kjSsLs/ZGYzNXUK8JWSXpd0s7vvjqsY3aiBHP6cpv4QuUDScUmvZldrBZqigQw+Iun9kvLP777k7h8KKhcBurIJAgAAAIC3062nwwEAAADAKdEEAQAAAEgKTRAAAACApNAEAQAAAEgKTRAAAACApNAEAQDOaWb2aTP7ZHb7NjO7eBpj7DWzdzW/OgBAJypGFwAAwNlw96/U3b1N0jZJP46pBgBwLuBIEACgqcxsuZn9yMy+YWY7zex+M7vOzJ40s11mdlX2b9DMnjWz/zKzVdlzzzOzb5nZdjN70MyGsi8ZlpkdMbN7zWyrmT1lZouyx//QzD5rZjdJ6pV0v5k9Z2az6o/wmFmvmT2W3V5oZt83sxEz+1tJVlf/J8zsv7Mxvmpmhfa+ggCAVqMJAgC0wnsl/aWk92X/fl3SekmflfS7kn4k6Rfc/UpJfyDpT7PnfUbSQXdfLen3Jf1s3ZizJT3l7mslPSHpN+pX6O4PSBqW9HF3v8Ldj71DfXdLGnD3yyU9KOk9kmRmPy1po6Sr3f0KSTVJH5/WKwAA6FicDgcAaIU97v4DSTKzEUmb3d3N7AeSlkuaL+k+M1spySWVsuetl/RFSXL3bWb2fN2YFUnfzm4/I+mXz6K+DZJuzNbzHTM7mD3+AU01Xk+bmSTNkjR6FusBAHQgmiAAQCuM192erLs/qan3nj+W9Ki7/6qZLZf0WANjVt3ds9s1NfYeNqG3znqY2cDyJuk+d/+dBpYFAJyjOB0OABBhvqT92e3b6h5/UtJHJcnMVkt6/xmOOyZpbt39vXrrlLpfq3v8CU2doiczu0HSguzxzZJuMrMLs59dYGaXnGENAIAORxMEAIjweUl/ZmbP6v8f0fmypHeb2XZJfyJpRNKhMxj3G5K+kl8YQdI9kr5oZsOaOnqUu0fShuxUvRslvSRJ7r5d0u9J+n52Kt7Dki6axv8fAKCD2VtnFgAAECu7ElvJ3Y+b2U9JekTSKnevBJcGAOgifCYIANBJzpP0qJmVNPX5nM/QAAEAmo0jQQAAAACSwmeCAAAAACSFJggAAABAUmiCAAAAACSFJggAAABAUmiCAAAAACSFJggAAABAUv4P1FfAvs2qNZ4AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f090734fba8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\"\"\"Bitcoin returns analysis\"\"\"\n",
"\n",
"ret = pctDf.bitcoin\n",
"\n",
"sorted_ret = np.sort(ret)\n",
"\n",
"mu = ret.mean()\n",
"\n",
"print('Estatísticas para a Bitcoin')\n",
"print('Média da distribuição: %.4f %%' % \n",
" (mu * 100)\n",
" )\n",
"\n",
"var95 = abs(sorted_ret[int((1 - alpha) * sorted_ret.shape[0])])\n",
"print('%.d%% Empirical VaR: %.2f %%' % ((1 - alpha) * 100,\n",
" var95 * 100)\n",
" )\n",
"\n",
"cvar95 = abs(sorted_ret[:int(alpha * sorted_ret.shape[0])].mean())\n",
"print('%.d%% Empirical CVaR: %.2f %%' % ((1 - alpha) * 100,\n",
" cvar95 * 100)\n",
" )\n",
"\n",
"bitcoinCsr = (mu - rf) / cvar95\n",
"print('%.d%% Conditional Sharpe Ratio: %.6f' % ((1 - alpha) * 100,\n",
" bitcoinCsr)\n",
" )\n",
"\n",
"asset.append('bitcoin')\n",
"csr.append(bitcoinCsr)\n",
"\n",
"grey = .66, .66, .77\n",
"plt.figure(figsize=(14, 6))\n",
"plt.title(\"Distribuição de retornos BTC\")\n",
"plt.ylabel(\"frequência\")\n",
"plt.xlabel(\"magnitude\")\n",
"bv, bins, _ = plt.hist(ret, bins=50, normed=True, color=grey, edgecolor='none');\n",
"plt.text(mu+0.003, bv.max() * 1.1, \"Média: %.4f\" % mu, color='black')\n",
"plt.plot([mu, mu], [0, bv.max() * 1.1], c='black')\n",
"plt.plot([-var95, -var95], [0, 6], c='b')\n",
"plt.text(-var95-0.01, 7.5, \"95% VaR\", color='b')\n",
"plt.text(-var95-0.01, 6.5, -var95, color='b')\n",
"plt.plot([-cvar95, -cvar95], [0, 4], c='r')\n",
"plt.text(-cvar95-0.01, 5.5, \"95% CVaR\", color='r')\n",
"plt.text(-cvar95-0.01, 4.5, -cvar95, color='r');\n",
"plt.grid(linestyle='--')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Estatísticas para o CMI20 executado na Poloniex\n",
"Média da distribuição: 1.0568 %\n",
"95% Empirical VaR: 10.42 %\n",
"95% Empirical CVaR: 14.04 %\n",
"95% Conditional Sharpe Ratio: 0.074085\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAGDCAYAAADtQhtPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl4VdW5x/Hvm4lBZhRkUqAMZZBgjMYoArWtWhyuVStirbZavXWo1dap9Tq21tZrbxWxWltbZ6FqrdaqrVNALIMBQQEVLCCDgso8k4R1/1g7yUnIxJCzNtm/z/PkSc4e1n7P3u/ZOe9Za+9jzjlERERERESSIiN0ACIiIiIiIumkIkhERERERBJFRZCIiIiIiCSKiiAREREREUkUFUEiIiIiIpIoKoJERERERCRRVASJJJyZ3W9mN+yltg4ys41mlhk9LjKz7+9mWz8zsz82cNlXzGxytP2/7s72aml3t+MXSSIz+66ZTQ4dx+4ys5vN7LG90M4xZvbh3ohJRBqHiiCRJszMFpvZFjPbYGZrzezfZvYDM6t47TvnfuCc+3kD2/paXcs455Y451o558r2NHbn3C+dc/UWIGbWAVgG3AQ8A/x5T7cdggquvc+8y81sjpltMrNlZvaUmR0SzX/IzJyZ/Ve19X4bTf9u9Ljijb2ZNTOzB83s4+h1NcvMvlFt/a+a2QdmttnM3jCzg9P0lPdYQ17n+4KUc99GM1sZHetW6dq+c+5N51z/dG1PRHadiiCRpu9k51xr4GDgV8C1wIN7eyNmlrW322wI59xq59z3nHOvOecOd879PUQcdWnsfRO92d/nzudpyJm7gR8BlwMdgH7A34ATU5aZD5xbLaYzgf/U0mYWsBQYAbQF/gf4i5n1jNbfH/grcEO0zWJgwl56PrJrTnbOtQLygHz8sRIRAVQEiSSGc26dc+55YDRwnpkNhopPw38R/b2/mb0Q9RqtNrM3zSzDzB4FDgL+Hn2yeo2Z9Yw+Lb/AzJYAr6dMS31z+yUzm25m683suajnBjMbaWbLUmNM/RS6+rAUMxsW9WStNbOlKZ/Sn2hm70TtLzWzm6u1eYqZzY3WKzKzAbXtIzP7evQJ/jozGwdYtfnnm9n7ZrbGzP5Z2yf8Ne2baPqRKc9htpmNjKbfBhwDjIv277ho+lFm9nYUz9tmdlTKNorM7DYzewvYDPSOpv3czN6Kein+Fb0pr3dfmNm1ZrY8Wu9DM/tqLc/tIfNDKF+Jlp2Yuh/M7O7oOKw3sxlmdkzKvJvN7Gkze8zM1gPfNbMjzGxKFNOnZjbOzHLqOEYNOp5m1he4FBjjnHvdObfNObfZOfe4c+5XKYv+HRhmZu2jxycA7wIramrXObfJOXezc26xc26Hc+4FYBFwWLTIacBc59xTzrmtwM1Arpl9uZY4u5rZM2b2uZktMrPLU+a9aGa/SXk83sz+lPK41nw0s0HRMVptvifkZ9H0itd79LjidWg1vM6j6U+Z2YooDyeZ2aCU9Tua2fPR8Z4OfKna86s1h2vYF4vN7CozezdafoKZNY/mtTd/bvo8er4vmFn32tpK5ZxbDrwElJ/zukYxrzazj8zswjpiqus1U1e8Vc5ve3KcRaRxqAgSSRjn3HT88LFjapj9k2jeAUBn4Gd+FfcdYAnRJ6vOuTtS1hkBDACOr2WT5wLnA12AUmDsrsYcvbl7Cbgnim0oMCuavSnaRjv8J/wXm9mp0Xr9gCeBK6L1XsS/wdvpTbZVfoL/P8D++J6Ao1Pm/xd+f5wWtfVm1HZdKvaNmXUD/gH8At9DcBXwjJkd4Jy7Pmrvsmj/Xma+WPwHfn91BP4P+IeZdUxp/zvARUBr4ONo2tnA94BOQE60nTr3hZn1By4DDo96DY8HFtfxvL4N/DzaT7OAx1PmvY0/Ph2AJ4Cnyt8YRv4LeBp/vB4HyoAro7YKga8Cl9S00V05nlE7y6J8r8tW4DngrOjxucAj9ayTGlNnfA/T3GjSIGB2+Xzn3CZ8Lg2qYd0MfBE2G+gWxXyFmZW/ls4HvmNmx5rZt4Ej8D1bdeajmbUGXgVeBroCfYDX6nsudbzOXwL64nNqJlWP9734fdglivf8lOfXkByu7kx8IdoLGAJ8N5qegR/qejC+UNsCjKvvOUVx9ABGAe9Ek8bjz3NdgTOAX5rZsTWs15B8qy3e1HZ2+ziLSONRESSSTJ/g36RWV4J/M3Owc64kGtfu6mnr5ujT8S21zH/UOTcnejN4A3CmRTdO2AVnA686556M4lrlnJsF4Jwrcs69F30q/y7+TcuIaL3RwD+cc68450qAO4EWQE2fRo/Cf4L/dLTsXVTtDfgBcLtz7n3nXCnwS2Co1X29R+q+OQd40Tn3YhTrK/ihUqNqWfdEYIFz7lHnXKlz7kngA+DklGUecs7NjeaXRNP+7JybH23zL/iCpL59UQY0AwaaWXbUy1HbcDCidiY557YB1wOF0RtNnHOPRcen1Dn3m6jd1Gsjpjjn/hbtgy3OuRnOuanR8ouB31N5/KrblePZEfi0jueQ6hHgXDNrF237bw1Zycyy8QXBw865D6LJrYB11RZdhy9UqzscOMA5d6tzbrtzbiHwB6KCzDm3ArgYeBg/tO9c59yGaN268vEkYIVz7jfOua3OuQ3OuWkNeU41cc79KWpjG5U9W22j1/HpwI1Rns+JYi3XkByubqxz7hPn3Gp84TA0imGVc+6ZqDdvA3AbtedJub+Z2VpgMjARX+z0wH+4cW20b2YBfyRlSGSKhuRbjfFWsyfHWUQaiYogkWTqBqyuYfr/Ah8B/zKzhWZ2XQPaWroL8z8GsvGf+u+KHtRyjYaZFZi/+PxzM1uHf3NY3n5XKntIcM7tiOLpVkNTXVNjjYq/1NgPBu6OhsWsxe8/q6WtctXX/1b5+lEbw/BFZ02qxB75uNr2atr3qYXbZvyb8p3aS90XzrmP8J923wx8Fg3H6dqQ5+Wc24jfF10BouFB70fDg9bir5vZv6Z1o+X7RUObVpgfIvdLas+PXTmeq6h931bhnJuM/6T/euCFOgr61LgzgEeB7fhetHIbgTbVFm8D1PSm9mCga7Wc+Bm+F7bc34FM4MMoztR1a8vHWl8vu8rMMs3sV2b2n+j4LI5m7Y/fZ+XXSJVLzdmG5HB1NeavmbU0s9+bvyHFemAS0K6eD1ROdc61c84d7Jy7JDquXYHV1YqM2mJqSL7V9npLtSfHWUQaiYogkYQxs8Px/8R3+kcbfdr7E+dcb+AU4MdWeW1IbT1C9fUU9Uj5+yB8b9MX+GFsLVPiysS/qarJUqpda5DiCeB5oIdzri1wP5XX8nyCfwNSvg2L4lleQzufpsaasmxqDP8dvakq/2nhnPt3LXFB1X2zFN8rlrr+fq7y+pTq+7FK7JGDqsVe376vtb3q+8I594Rzbli0jAN+XUdbqfupFb5X8RPz1/9cgx8i1N451w7fC5J6bVX1mO/D9w70dc61wb85NGq2K8fzNaC7meXX8TxSPYYfDlrvULhouw/i38SentILB35YXG7Ksvvhc3cuO1sKLKqWE62dc6m9g7cB7wNdzGxMtXVry8elQO9awq/yugMOrDa/+vE5Gz+E8Wv4grZn+VMDPscPca3+Gi/XkBxuqJ/gexQLojwZnhLHrvgE6BANGawvpl3Jt7rsyXEWkUaiIkgkIcysjZmdhB8P/5hz7r0aljnJzPpE/+zX4YdJ7Yhmr6T2N1Z1OcfMBppZS+BW4Gnnb6E9H2hu/sYG2fhrcZrV0sbjwNfM7EwzyzJ/MXb5sJPW+E92t5rZEfg3beX+Apxo/pbF2fg3UtuAmgqXfwCDzOw08zd2uJyqbxDvB35q0UXh0XCgb+3CfngMONnMjo8+XW9u/uLp8ou7q+/fF4F+ZnZ29JxHAwOBF3Zhm6lq3Rdm1j+6HqEZ/vqOLVQe95qMMn+jihz8tUFTnXNL8ceiFP/mOMvMbmTnXpHqWgPrgY3mbx5w8e48h+oLOucWAL8Dnoz2c060z8+qpYdzLPB1fA9Dfe7DX+t1cg29Rs8Cg83sdPPXQt0IvJsyXC7VdGCD+ZtStIjyYnD0QQVmNhx/fde5wHnAPeavLYO68/EF/JvpK8zf0ru1mRVE82bhj18HMzsQ3wOYqnoetsbv41X44umX5TOi1/FfgZujnpqBUZzl9mYOt8bn5Vrz1xrdtBttEOXpv4Hbo3wYAlyAf31Wtyvnj7rsyXEWkUaiIkik6fu7mW3Afxp5Pf7i5O/Vsmxf/AXVG4EpwO+cc29E824H/icaznHVLmz/UeAh/LCR5vjiAufcOvwF8H/Ef7K6CX+x8k6cc0vw1878BN+TNIfKT9svAW6NnuON+Dcu5et9iL8W5x5879PJ+Deu22vYxhfAt/C3EV8V7Yu3UuY/i+8dGR8Nx5kDfKN6O7WJ3nyVX8z+Of54XE3lefhu4Azzd74a65xbhb+24ydRPNcAJ0Vx7rJ69kWz6Hl/gT9OnYCf1tHcE/g3oavxd0U7J5r+T/zF+PPxw4i2Uv9wyavwhesG/HUStd5OeleOZ+Ry/MXz9wJr8UPEvokfelS97dXO32a9zt4189fc/Df+2o8V5u+ittH8Be045z7HXydzG7AGKKDypgvVt1mGP8ZD8XeY+wL/emhrZm3wvVKXOeeWO+fexPc+/dnMrK58jIZ6fT3aPyuABcBXos0+ir9AfzHwL3be39Vf54/gj+VyYB4wtdryl+GHgK3Av84rvqdrL+fwXfjrcb6IYnh5N9ooNwbfo/UJvmi9yTn3avWFdiPfarQnx3n3np6INITVc74XEYkVM/sOkOOc2+vfdST1M7OH8Hdd03euiIjIPks9QSKyz4iuP1lC5afaIiIiIrtMRZCI7Ev+jB/K9FLoQERERGTfpeFwIiIiIiKSKOoJEhERERGRRFERJCIiIiIiiZIVOoCG2H///V3Pnj1DhyEiIiIiIjE2Y8aML5xztX35eoV9ogjq2bMnxcXFocOQPfTee+9xyCGHhA5DEkr5J6EpByUk5Z+Elq4cNLOPG7KchsNJ2qxatSp0CJJgyj8JTTkoISn/JLS45aCKIBERERERSRQVQZI2ubm5oUOQBFP+SWjKQQlJ+SehxS0HVQRJ2mzYsCF0CJJgyj8JTTkoISn/JLS45aCKIEmbhQsXhg5BEkz5J6EpByUk5Z+EFrccVBEkIiKSEL///e9Zs2ZN6DBERIJTESRpo+96kpCUfxJaY+WgmXHOOedUPC4tLeWAAw7gpJNOqrLcrbfeSvv27Wnfvn2N7YwcObLi6yhGjRrF2rVrdyuebdu2MXr0aPr06UNBQQGLFy+ucbmXX36Z/v3706dPH371q19VTB83bhx9+vTBzPjiiy8qpjvnuPzyy+nTpw9Dhgxh5syZFfOWLFnCcccdx4ABAxg4cGCt20wynQMltLjloIogSZsOHTqEDkESTPknoTVWDu63337MmTOHLVu2APDKK6/QrVu3nZa78cYbOfPMMxvU5osvvki7du12K54HH3yQ9u3b89FHH3HllVdy7bXX7rRMWVkZl156KS+99BLz5s3jySefZN68eQAcffTRvPrqqxx88MFV1nnppZdYsGABCxYs4IEHHuDiiy+umHfuuedy9dVX8/777zN9+nQ6deq0W7E3ZToHSmhxy0EVQZI2qZ/aiaSb8k9Ca8wcHDVqFP/4xz8AePLJJxkzZkzFvE2bNnH++edzxBFHcOihh/Lcc88BsGXLFs466ywGDBjAN7/5zYoiCvwntuW9MKeeeiqHHXYYgwYN4oEHHqg3lueee47zzjsPgDPOOIPXXnsN51yVZaZPn06fPn3o3bs3OTk5nHXWWRVxHXrooTV+Yvzcc89x7rnnYmYceeSRrF27lk8//ZR58+ZRWlrK17/+dQBatWpFy5YtG7rrEkPnQAktbjmoIkhERGQfd9ZZZzF+/Hi2bt3Ku+++S0FBQcW82267jWOPPZbp06fzxhtvcPXVV7Np0ybuu+8+WrZsyfvvv88tt9zCjBkzamz7T3/6EzNmzKC4uJixY8dWfOHh97///Yrhc6mWL19Ojx49AMjKyqJt27Y7fUli6jIA3bt3Z/ny5XU+x9rWmT9/Pu3ateO0007j0EMP5eqrr6asrKyePSYiSZcVOgBJjtrGoYukg/JPQmvMHBwyZAiLFy/mySefZNSoUVXm/etf/+L555/nzjvvBGDr1q0sWbKESZMmcfnll1esP2TIkBrbHjt2LM8++ywAS5cuZcGCBXTs2JE//vGPjfZ8dkVpaSlvvvkm77zzDgcddBCjR4/moYce4oILLggdWqzoHCihxS0HVQRJ2sTtS7IkWZR/Elpj5+App5zCVVddRVFRUZWeF+cczzzzDP3799/lNouKinj11VeZMmUKLVu2ZOTIkWzdurXOdbp168bSpUvp3r07paWlrFu3jo4dO9a4TLlly5bVeB1TQ9YpLS1l6NCh9O7dG/DD96ZOnaoiqBqdAyW0uOWghsNJ2kycODF0CJJgyj8JbU9z8IorruCKK66odf7555/PTTfdxCGHHFJl+vHHH88999xTcV3OO++8A8Dw4cN54oknAJgzZw7vvvvuTm2uW7eO9u3b07JlSz744AOmTp1ab5ynnHIKDz/8MABPP/00xx57LGZWZZnDDz+cBQsWsGjRIrZv38748eM55ZRT6m33kUcewTnH1KlTadu2LV26dOHwww9n7dq1fP755wC8/vrrDBw4sN44k0bnQAktbjmoIkjSpvqFsSLppPyT0PY0B2fNmsWsWbNqnd+9e/eK4W2pbrjhBkpKShgyZAiDBg3ihhtuAODiiy9m48aNDBgwgBtvvJHDDjtsp3VPOOEESktLGTBgANdddx1HHnlkxbzargm64IILWLVqFX369OH//u//Km5//cknn1QM1cvKymLcuHEcf/zxDBgwgDPPPJNBgwYBfvhd9+7dWbZsGUOGDOH73/8+4G/+0Lt3b/r06cOFF17I7373OwAyMzO58847+epXv8ohhxyCc44LL7ywQfs0SXQOlNDiloMWt4Bqkp+f72o60cq+ZeLEiYwYMSJ0GJJQyj8JbU9zcOTIkYAfoiayq3QOlNDSlYNmNsM5l1/vciqCRERE4k9FkIhI/RpaBDXqcDgz+5OZfWZmc1KmdTCzV8xsQfQ7XreKkEYze/bs0CFIgin/JDTloISk/JPQ4paDjX1N0EPACdWmXQe85pzrC7wWPZYEWLNmTegQJMGUfxKaclBCUv5JaHHLwUYtgpxzk4DV1Sb/F/Bw9PfDwKmNGYOIiIiIiEiqEHeH6+yc+zT6ewXQOUAMEkBeXl7oECTBlH8SmnJQQlL+SWhxy8GgX5bqnHNmVuOdGczsIuAigK5du1ZcCNq7d29at25dMa6wY8eODBo0iEmTJgH+tpvDhg1j5syZrF+/HoD8/HxWrlxZ8SVrffv2pVmzZsyZ4y9V6tSpE/369WPy5MkANGvWjMLCQoqLi9m4cSMABQUFLFu2jOXLlwPQv39/MjMzmTdvHgAHHnggvXr1YsqUKQC0aNGCgoICpk2bxpYtWwAoLCxk0aJFrFixAoCBAwdSVlbGhx9+CPgvguvevTvTpk0DoFWrVuTn5zNlyhS2bdsGwLBhw5g/fz6fffYZAIMHD2bbtm0sWLAAgB49etC5c+eK25a2adOGvLw8Jk+eTGlpKeC/G2Lu3LkVX6aXm5vLhg0bWLhwIQA9e/akQ4cOzJw5E/Df8Jubm8vEiRNxzmFmjBgxgtmzZ1d0bebl5bF69WoWL15c63Fq1apVRZs6TvE9Tk319VS+P3Sc4n2cmvLrqbS0lK997Wu7fZzWrl1LRob/7FLHSa+nXT1OGzZsICcnR8cp5sepKb+evvjiC3JyctJynBqi0e8OZ2Y9gRecc4Ojxx8CI51zn5pZF6DIOVfn11jr7nBNQ1FRUcXdjUTSTfknoe1pDurucLIndA6U0NKVg7G4O1wtngfOi/4+D3guQAwiIiIiIpJQjX2L7CeBKUB/M1tmZhcAvwK+bmYLgK9FjyUBevfuHToESTDln4SmHJSQlH8SWtxysFGvCXLOjall1lcbc7sST61btw4dgiSY8k9CUw5KSMo/CS1uORhiOJwkVNy+JEuSRfknoSkHJSTln4QWtxxUESQiIiIiIomiIkjSpmPHjqFDkART/kloykEJSfknocUtB1UESdoMGjQodAiSYMo/CU05KCEp/yS0uOWgiiBJm/IvzhIJQfknoSkHJSTln4QWtxxUESQiIiIiIomiIkjSJiurUe/ILlIn5Z+EphyUkJR/ElrcctCcc6FjqFd+fr4rLi4OHYaIiEgwI0eOBKCoqChoHCIicWZmM5xz+fUtp54gSZuZM2eGDkESTPknoSkHJSTln4QWtxxUESRps379+tAhSIIp/yQ05aCEpPyT0OKWgyqCREREREQkUVQESdrk59c7PFOk0Sj/JDTloISk/JPQ4paDKoIkbVauXBk6BEkw5Z+EphyUkJR/ElrcclBFkKTN0qVLQ4cgCab8k9CUgxKS8k9Ci1sOqggSEREREZFEUREkadO3b9/QIUiCKf8kNOWghKT8k9DiloPx+upWadKaNWsWOgRJMOWf7KkJE97a7XVHjz5aOShBKf8ktLjloHqCJG3mzJkTOgRJMOWfhKYclJCUfxJa3HJQRZCIiIiIiCSKiiBJm06dOoUOQRJM+SehKQclJOWfhBa3HFQRJGnTr1+/0CFIgin/JDTloISk/JPQ4paDKoIkbSZPnhw6BEkw5Z+EphyUkJR/ElrcclBFkIiIiIiIJIqKIEmbuN0aUZJF+SehKQclJOWfhBa3HFQRJGlTWFgYOgRJMOWfhKYclJCUfxJa3HJQRZCkTXFxcegQJMGUfxKaclBCUv5JaHHLQRVBkjYbN24MHYIkmPJPQlMOSkjKPwktbjmoIkhERERERBJFRZCkTUFBQegQJMGUfxKaclBCUv5JaHHLQRVBkjbLli0LHYIkmPJPQlMOSkjKPwktbjmoIkjSZvny5aFDkART/kloykEJSfknocUtB1UEiYiIiIhIoqgIkrTp379/6BAkwZR/EppyUEJS/klocctBFUGSNpmZmaFDkART/kloykEJSfknocUtB1UESdrMmzcvdAiSYMo/CU05KCEp/yS0uOWgiiAREREREUkUFUGSNgceeGDoECTBlH8SmnJQQlL+SWhxy0EVQZI2vXr1Ch2CJJjyT0JTDkpIyj8JLW45qCJI0mbKlCmhQ5AEU/5JaMpBCUn5J6HFLQdVBImIiIiISKKoCJK0adGiRegQJMGUfxKaclBCUv5JaHHLQRVBkjYFBQWhQ5AEU/5JaMpBCUn5J6HFLQdVBEnaTJs2LXQIkmDKPwlNOSghKf8ktLjloIogSZstW7aEDkESTPknoSkHJSTln4QWtxxUESQiIiIiIomSFToASY7CwsLQIUiCKf8ktHTm4IQJb+3WeqNHH72XI5G40DlQQotbDqonSNJm0aJFoUOQBFP+SWjKQQlJ+SehxS0HVQRJ2qxYsSJ0CJJgyj8JTTkoISn/JLS45aCKIBERERERSRQVQZI2AwcODB2CJJjyT0JTDkpIyj8JLW45qCJI0qasrCx0CJJgyj8JTTkoISn/JLS45aCKIEmbDz/8MHQIkmDKPwlNOSghKf8ktLjlYLAiyMyuNLO5ZjbHzJ40s+ahYhERERERkeQIUgSZWTfgciDfOTcYyATOChGLpE+3bt1ChyAJpvyT0JSDEpLyT0KLWw6GHA6XBbQwsyygJfBJwFgkDbp37x46BEkw5Z+EphyUkJR/ElrccjBIEeScWw7cCSwBPgXWOef+FSIWSZ9p06aFDkESTPknoSkHJSTln4QWtxzMCrFRM2sP/BfQC1gLPGVm5zjnHktZ5iLgIoCuXbtSVFQEQO/evWndujWzZ88GoGPHjgwaNIhJkyYBkJWVxbBhw5g5cybr168HID8/n5UrV7J06VIA+vbtS7NmzZgzZw4AnTp1ol+/fkyePBmAZs2aUVhYSHFxMRs3bgSgoKCAZcuWsXz5cgD69+9PZmYm8+bNA+DAAw+kV69eTJkyBYAWLVpQUFDAtGnT2LJlCwCFhYUsWrSo4suiBg4cSFlZWcWFYt26daN79+4VSdKqVSvy8/OZMmUK27ZtA2DYsGHMnz+fzz77DIDBgwezbds2FixYAECPHj3o3LkzxcXFALRp04a8vDwmT55MaWkpAMOHD2fu3LmsWrUKgNzcXDZs2MDChQsB6NmzJx06dGDmzJkAtG/fntzcXCZOnIhzDjNjxIgRzJ49mzVr1gCQl5fH6tWrWbx4ca3HyTlXcRx1nOJ7nJrq62nz5s0AOk4xP05xfj1BFllZG8nI8G2WlLQiI6OUzMytAJSWNse5TLKzNwGwY0cWpaX7kZOzjqKioor9urvHae3atWRk+M8u6ztOGRnbycryOV9WlkNZWXNycvw2ncugpKQN2dnrMdsBwPbtbcjM3Fpxjt6Xj5NeTzUfp40bN1JUVKTjFPPj1JRfT+U5mI7j1BDmnGvwwnuLmX0LOME5d0H0+FzgSOfcJTUtn5+f78oPsuy7iouLyc/PDx2GJJTyT/bUhAlv7fa6o0cfvcc5OHLkSICKQqUuuxvr6NFH79Z6En86B0po6cpBM5vhnKt3Q6GuCVoCHGlmLc1/vPZV4P1AsUia6OQrISn/JDTloISk/JPQ4paDoa4JmgY8DcwE3ovieCBELJI+5V3HIiEo/yQ05aCEpPyT0OKWg0GuCQJwzt0E3BRq+5J+5eNcRUJQ/kloykEJSfknocUtB0PeIltERERERCTtVARJ2gwbNix0CJJgyj8JTTkoISn/JLS45aCKIEmb+fPnhw5B9gF33w2DB8OgQXDXXZXTb74ZunWDoUP9z4sv+ulvvQVDhkB+PkR3DmXtWjjuONixo3L98vy75Rb46U+rbnPWLBgwoO64Ro6E/v0hNxcOP9yvI7IrdA6UkJR/ElrcclBFkKRN+b3uRWozZw784Q8wfTrMng0vvAAffVQ5/8orffExaxaMGuWn/eY3viC66y64/34/7Re/gJ/9DDJSznDl+TdmDEyC1YwjAAAgAElEQVSYUHW748f76fV5/HEf1yWXwNVX78ETlUTSOVBCUv5JaHHLQRVBIhIb778PBQXQsiVkZcGIEfDXv9a9TnY2bN7sf7Kz4T//gaVLfc9NTfr1g/btIfWLq//yl8oi6OKLfa/SoEFwUy23bikshOj72URERGQfpCJI0mbw4MGhQ5CYGzwY3nwTVq3yRc2LL/qCpty4cX7o2/nnQ/Tl1fz0p3DuuXD77XDZZXD99b4naOe2K/NvzBjf+wMwdSp06AB9+/rHt90GxcXw7rswcaL/Xd3LL8Opp+6lJy2JoXOghKT8k9DiloMqgiRt4nZrRImfAQPg2mv99TwnnOCv/cnM9PMuvtj38syaBV26wE9+4qcPHeoLmTfegIUL/TznYPRoOOccWLnSL5eaf6NHw9NP+2uGqg+F+8tfIC8PDj0U5s6FefMq533729Crly+ULr20kXeGNDk6B0pIyj8JLW45qCJI0mZB+VXrInW44AKYMQMmTfLD1vr189M7d/YFUUYGXHihv24olXO+B+iGG/zND+64wy83dqyfn5p/PXr4YmbiRHjmGV8UASxaBHfeCa+95nuATjwRtm6t3Mbjj/tC67zz4Ic/bMSdIE2SzoESkvJPQotbDqoIEpFYKb9ucskSfz3Q2Wf7x59+WrnMs8/6oXOpHnnE3yyhQwc/lC4jw/9s3lzzdsaM8Tda6N0bunf309avh/32g7ZtfQ/SSy/tvJ4Z/Pznvvfpgw/27LmKiIhIGFmhA5Dk6NGjR+gQZB9w+un+mqDsbLj3XmjXzk+/5ho/FM4MevaE3/++cp3Nm+Ghh+Bf//KPf/xjXxDl5MATT/hp1fPvW9+Cyy+He+6pnJab64fBffnLvrfo6KNrjrFFCz8c73//Fx58cK88bUkAnQMlJOWfhBa3HFQRJGnTuXPn0CHIPuDNN2ue/uijta/TsqW/JqjcMcfAe+9VXaZ6/u2/P5SU7NzWQw/VvI2ioqqPy69JEmkonQMlJOWfhBa3HNRwOEmb4uLi0CFIgin/JDTloISk/JPQ4paD6gkSEZF90oQJb+3WeqNH1zLOMYZSn+Nnn63baZqIiOwe9QRJ2rRp0yZ0CJJgyj8JTTkoISn/JLS45aCKIEmbvLy80CFIgin/JDTloISk/JPQ4paDKoIkbSZPnhw6BEkw5Z+EphyUkJR/ElrcclBFkKRNaWlp6BAkwZR/EppyUEJS/klocctBFUEiIiIiIpIoKoIkbYYPHx46BEkw5Z+EphyUkJR/ElrcclBFkKTN3LlzQ4cgCab8k9CUgxKS8k9Ci1sOqgiStFm1alXoECTBlH8SmnJQQlL+SWhxy0F9WaqIiCRKiC8bnTDhLXJyNumLTkVEYkI9QZI2ubm5oUOQBFP+SWglJfuFDkESTOdACS1uOagiSNJmw4YNoUOQBFP+SWhmZaFDkATTOVBCi1sOqgiStFm4cGHoECTBlH8SWlbW1tAhSILpHCihxS0HVQSJiIiIiEiiqAiStOnZs2foECTBlH8SWllZ89AhSILpHCihxS0HVQRJ2nTo0CF0CJJgyj8JbccO3ZBVwtE5UEKLWw6qCJK0mTlzZugQJMGUfxJadvbG0CFIgukcKKHFLQdVBImIiIiISKKoCJK0ad++fegQJMGUfxKahsNJSDoHSmhxy0GdkSVt4vYlWZIsyj8JrbS0VegQ6jVhwlu7td7o0Ufv5Uhkb9M5UEKLWw6qJ0jSZuLEiaFDkART/kloOTlrQ4cgCaZzoIQWtxxUESRp45wLHYLsY5yDyy+HPn1gyBCo7ZrK66+HHj2gVbUP2rdtg9Gj/fo/+MGhLF5cdf6SJX6dO++snHb++dCpEwweXHXZWbPgyCNh6FDIz4fp06vOf/ttyMqCp5+unHbNNTBoEAwY4J9H+UvgySfhkEP8czrhBPjiCz/9hhv8tKFD4bjj4JNP/PSiImjb1k8fOhRuvbXqtsvK4NBD4aSTKqeNG+eft1ll+wCPP+63ccghcNRRMHt25bzf/tbHO3gwjBkDW6t9t+fll1fdx5MmQV7ezs8b4NprfTuDB8OECYhIYPofLKHFLQdVBEnamFnoEGQf89JLsGCB/3ngAbj44pqXO/nknYsSgAcfhPbt4aOP4FvfWsa111ad/+Mfwze+UXXad78LL7+8c1vXXAM33eSLoVtv9Y/LlZX5N/3HHVc57d//hrfegnffhTlzfJE0cSKUlsKPfgRvvOHnDRniCxaAq6/202bN8gVNarFzzDF++qxZcOONVWO7+25faKU6+mh49VU4+OCq03v18nG8954vui66yE9fvhzGjoXiYh9vWRmMH1+5XnExrFlTta2DDoKHHoKzz646/R//8AXrrFkwbZovMtev33mfikj66H+whBa3HFQRJGkzYsSI0CHIPua55+Dcc31vxpFHwtq18OmnOy935JHQpUvN6593nv/7xhsH8tprlb0xf/ubLwgGDaq6zvDhUNNXGZhVvpFftw66dq2cd889cPrpvgcpdfmtW2H7dt8jVVICnTv77TsHmzb53+vXV7bVpk3l+ps2+Tbqs2yZLzq+//2q0w89FGr6XrqjjvKFIfj9tmxZ5bzSUtiyxf/evLkyrrIyX6DdcUfVtnr29EVcRrX/JPPm+f2YlQX77eeXqamwTJrt29uFDkESTP+DJbS45aCKIEmb2anjbkQaYPlyP8ytXPfuftrurD937mzatoVVq2DjRvj1r33PTkPddZcvBHr0gKuugttvr9zGs8/u3EtVWAhf+Yovzrp0geOP97012dlw331+OFrXrr5guOCCyvXKh/Y9/njVnqApUyA31/dczZ1bOf2KK3xxUr0QaYgHH6zsCevWzT+vgw7y8bZtW9mzNW4cnHJKzYVmTXJzfdGzebMfivfGG7B06a7H19RkZel7giQc/Q+W0OKWgyqCJG3WVB9LI5JGqfl3881w5ZU7X0NUl/vu89fMLF3qf5cXLldc4Quq6kXIRx/B++/7npbly+H11+HNN32P0H33wTvv+Gt+hgypLKgAbrvNb+Pb364cJpeXBx9/7K/f+eEP4dRT/fQXXvC9T4cdtuv74403fBH061/7x2vW+J6zRYt8XJs2wWOP+b+fespvt6GOOw5GjfK9TmPG+IIwM3PXY2xqMjJKQ4cgCab/wRJa3HJQRZCIxMq991beAKBLl6o9CMuW+R6LhurWrXL9sjJj3Tro2NFfp3LNNX441113wS9/WVlw1Obhh+G00/zf3/pW5TVIxcVw1lm+raefhksu8UPtnn3WDzdr1cr/fOMbvjdn1iy/3pe+5Ie7nXmmv36oum9/G555xv/dpk1lwTZqlC+kvvjCX3P0/PN+22ed5Qutc86pf7+8+64fPvfcc35/gL9+qFcvOOAA31t12mk+rnfe8QVdnz5+O5s3+7/rc/31/rm+8oof9tevX/3riIiIpIuKIEmbvLy80CHIPuDSSytvAHDqqfDII/5N9NSpfohWQ4dkgR/C9fDD/u+PPz6cY4/1hcebb8Lixf7niivgZz+Dyy6ru62uXf0NBcAXG337+r8XLaps64wz4He/83EfdFDljRBKSvzfAwb4wmzePPj8c7/+K69U3tRgwYLK7T33HHz5y/7vFSsqr2WaPh127PDFy+23+8Jw8WJ/E4Njj/W9N3VZssQXOI8+WrUwOeggv483b/bbeu01H9eJJ/rtlz/Hli19UVSXsjI/7BB8wfXuu1VvGpFUJSXx/54gabr0P1hCi1sO6stSJW1Wr15Nm9Qrv0XqMWoUvPii73lo2RL+/OfKeUOHVvaqXHMNPPGEfwPfvbvv5bj5Zj9k7Tvf8evvt18mzz5b/zbHjPG3pP7iC9/WLbf4dv7wB39Xt9JSaN7c362uLmec4YulQw7xhdcJJ/i72IG/Fmn4cN/jcvDB/g5rANddBx9+6IfWHXww3H+/n/70034IXVYWtGjhC576bpowdqy/VmjFCj/kbtQo+OMf/XVGq1b5HivwbRYXQ0GBj7n8lteHHlp557javP02fPObfijd3//un9fcub7oO+YYv0ybNr4wy9J/GzIySikra5o7Yne/ZHVP6Atad43+B0tocctBi9s9u2uSn5/viouLQ4che6ioqIiRI0eGDkMSSvnX9IR4470ncnLW7tEd4m65xXdX3nRTPWM3E0JF0K7ROVBCS1cOmtkM51x+fctpOJyIiIiIiCSKiiBJm969e4cOQRJM+SehlZY2Dx2CJJjOgRJa3HJQRZCkTevWrUOHIAmm/JPQnNN9wiUcnQMltLjloIogSZu4fUmWJIvyT0LLzt4UOgRJMJ0DJbS45aCKIBERERERSRQVQZI2Hcu/lVEkAOWfhLZjR9O8PbbsG3QOlNDiloMqgiRtBg0aFDoESTDln4RWWrpf6BAkwXQOlNDiloMqgiRtJk2aFDoESTDln4SWk7MudAiSYDoHSmhxy0EVQSIiIiIikigNGqBsZgcA1wIDgYovOnDOHdtIcUkTlJWl8fASjvJPRJJM50AJLW452NCeoMeB94FewC3AYuDtPdmwmbUzs6fN7AMze9/MCvekPYm/YcOGhQ5BEkz5J6Ft394udAiSYDoHSmhxy8GGFkEdnXMPAiXOuYnOufOBPe0Fuht42Tn3ZSAXX2RJEzZz5szQIUiCKf8ktOzsDaFDkATTOVBCi1sONrRfqiT6/amZnQh8AnTY3Y2aWVtgOPBdAOfcdmD77rYn+4b169eHDkGasCuu8L/vuqvm+co/Cc2sLHQIkmA6B0poccvBhhZBv4gKl58A9wBtgCv3YLu9gM+BP5tZLjAD+JFzruLrtM3sIuAigK5du1JUVARA7969ad26dcW3znbs2JFBgwZV3HEiKyuLYcOGMXPmzIqdnZ+fz8qVK1m6dCkAffv2pVmzZsyZMweATp060a9fPyZPngxAs2bNKCwspLi4mI0bNwJQUFDAsmXLWL58OQD9+/cnMzOTefPmAXDggQfSq1cvpkyZAkCLFi0oKChg2rRpbNmyBYDCwkIWLVrEihUrABg4cCBlZWV8+OGHAHTr1o3u3bszbdo0AFq1akV+fj5Tpkxh27ZtgO9KnD9/Pp999hkAgwcPZtu2bSxYsACAHj160LlzZ4qLiwFo06YNeXl5TJ48mdLSUgCGDx/O3LlzWbVqFQC5ubls2LCBhQsXAtCzZ086dOhQUbG3b9+e3NxcJk6ciHMOM2PEiBHMnj2bNWvWAJCXl8fq1atZvHhxrcfJOVdxHHWc4nuc9tXX09tvHxXl2JQaj9PmzZsBdJya0OspJ2ctAGVlzdixI6eip8W5TEpKWlfMB9i+vS1ZWZvIyPDHraRkP8zKyMraGrXRnB07ssjO9s99x44sSktbVWujHVlZG1PaaEVGRimZmb6N0tLmOJdJdvamlDb2q7grnJlfLzt7Q0VBVFLSmoyM7WRmbovaaIFzGSltZFNa2pKcnHXRdi1qYz1mO6K4WpOZuY3MzO0VbYCRlbU5em45lJU1JydnfbR/MigpaVOtjTZkZm5NaaMl4MjK2pLSRjNycjZUa2MdZi5lH28mI6MkZR/vSGlj7x6noqIivZ524fW0caPfZzrvxfs4NeX/T+U5mI7j1BDmnGvwwnuLmeUDU4GjnXPTzOxuYL1z7oaals/Pz3flB1n2XRs3bqRVq1ahw5AmauRI/zuqs3ei/Gt6Jkx4K3QIu8SsDOcyd3v9W265DICbbhq3t0Lap40efXToEPYpOgdKaOnKQTOb4ZzLr2+5OnuCzOwa59wdZnYPsFO15Jy7fDfjWwYsc85Nix4/DVy3m23JPmLlypU6AUswyj8JLSNjO2VlLUKHIQmlc6CEFrccrO/GCOU3KyjGD1mr/rNbnHMrgKVm1j+a9FWg4f1Xsk8q7/YUCUH5J6GVD3kTCUHnQAktbjlYZ0+Qc+7v0e+HG2HbPwQeN7McYCHwvUbYhoiIiIiISBUNukW2mb1iZu1SHrc3s3/uyYadc7Occ/nOuSHOuVOdc2v2pD2Jv759+4YOQRJM+Seh+RsWiIShc6CEFrccbOj3BB3gnKu4fUtUsHRqnJCkqWrWrFnoECTBlH8SmnMN/ZcrsvfpHCihxS0HG3pGLjOzg8ofmNnB1HCjBJG6lN/6UCQE5Z+EVn7ba5EQdA6U0OKWgw0tgq4HJpvZo2b2GDAJ+GnjhSUiO7n7bhg8GAYNqvqNoDffDN26wdCh/ufFF/30t96CIUMgPx+i7xVg7Vo47jjYsaPmbZSUwHXXQd++kJcHhYXw0kvwve/B739fddm//Q2+8Y26Y+7ZEw45xMcxYgR8/PHuPHMRERGRvapBRZBz7mUgD5gAjAcOc87t0TVBkjydOmkE5W6bMwf+8AeYPh1mz4YXXoCPPqqcf+WVMGuW/xk1yk/7zW98QXTXXXD//X7aL34BP/sZZNTy0r/hBvj0U7+9mTN9obNhA4wZA+PHV112/Hg/vT5vvAHvvuu/yOcXv9jlp763KP8ktB07skOHIAmmc6CEFrcc3JUBys2A1cB6YKCZDW+ckKSp6tevX+gQ9l3vvw8FBdCyJWRl+V6Vv/617nWys2HzZv+TnQ3/+Q8sXVr5raLVbd7sC6177oHycbudO8OZZ8JXvwoffOALJIBNm+DVV+HUU/3jU0+Fww7zvVQPPFBz+4WFEH2zcwjKPwmttLRl6BAkwXQOlNDiloMNvTvcr4G38MPiro5+rmrEuKQJmjx5cugQ9l2DB8Obb8KqVb5YefFFX9CUGzfODzk7/3xYE91o8ac/hXPPhdtvh8sug+uvr7sn5qOP4KCDoE2bnedlZsLpp8Nf/uIf//3vvpgqX/ZPf4IZM6C4GMaO9XFW9/LLlUVTAMo/CS0nZ13oECTBdA6U0OKWgw3tCToV6O+cO9E5d3L0c0pjBiYiKQYMgGuv9dfznHCCv/YnM9PPu/hi38szaxZ06QI/+YmfPnQoTJ3qh6MtXOjnOQejR8M558DKlbsWQ+qQuOpD4caOhdxcOPJIX5yVX4ME8JWv+GuWXnqpYcPnRERERBpZQ4ughYAGM8seidutEfc5F1zge1smTYL27aG8W7lzZ18QZWTAhRf664ZSOed7gG64AW65Be64wy83dmzV5fr0gSVLYP36mrd/1FF+ONzs2fDvf8OJJ/rpRUV+aNyUKX7eoYfC1q2V673xhr8hwtChcNNNe2VX7A7ln4TmnIUOQRJM50AJLW452NAiaDMwy8x+b2Zjy38aMzBpegoLC0OHsG/77DP/e8kSfz3Q2Wf7x+XX6QA8+6wfOpfqkUf8zRI6dPBD6TIy/M/mzVWXa9nSF1o/+hFs3+6nff45PPWU/9vM9yKdd56/K1zz5n76unW+KGvZ0l83NHXqzrFnZfkbNDzyCKxevWf7YTcp/yS0kpK2oUOQBNM5UEKLWw42tAh6Hvg58G9gRsqPSIMVFxeHDmHfdvrpMHAgnHwy3HsvtGvnp19zTeVtqN94A37728p1Nm+Ghx6CSy/1j3/8Y18QXXEF/OAHO2/jF7+AAw7w2xk8GE46qeo1QmPG+N6e1GFtJ5wApaV+yN511/khcTXp0sWvd++9e7QbdpfyT0LLzq6ll1UkDXQOlNDiloNZDVnIOfewmbUADnLOfdjIMUkTtXHjxtAh7NvefLPm6Y8+Wvs6LVv6wqjcMcfAe+/VvnxOjh8ud8cdNc8fOtQPr0vVrJm/3qcmixdXfXzPPbVvu5Ep/yQ0s1q+n0skDXQOlNDiloN19gRFhQ9mdjIwC3g5ejzUzJ5v/PBERERERET2rlqLIDPrDZSPW7kZOAJYC+CcmwX0buzgpGkpKCgIHYIkmPJPQtu+vXXoECTBdA6U0OKWg3X1BJ0A/DP6u8Q5V/0LDtSvL7tk2bJloUOQBFP+SWiZmdtChyAJpnOghBa3HKy1CHLO/Q7oGD2ca2ZnA5lm1tfM7sHfJEGkwZYvXx46BEkw5Z+Elpm5PXQIkmA6B0poccvBOq8JigohgB8Cg4BtwJPAeuCKxg1NRERERERk72vo3eE2A9dHPyK7pX///qFDkART/klopaUtQocgCaZzoIQWtxxsUBFkZm8Arvp059yxez0iabIyMzNDhyAJpvyT8Cx0AE3KhAlv7dZ6o0cfvZcj2TfoHCihxS0HG1QEAVel/N0cOB0o3fvhSFM2b948OnXqFDoMSSjln4SWlbWZ7dtzQochCaVzoIQWtxxs6HC4GdUmvWVm0xshHhERERERkUbV0OFwHVIeZgCHAW0bJSJpsg488MDQIUiCKf8ktLIy9QJJODoHSmhxy8GGDoebgb8myPDD4BYBFzRWUNI09erVK3QIkmDKPwmtrKx56BAkwXQOlNDiloN13iK7nHOul3Oud/S7r3PuOOfc5MYOTpqWKVOmhA5BEkz5J6Hl5KwPHYIkmM6BElrccrChw+FOq2u+c+6veyccERERERGRxtXQ4XAXAEcBr0ePvwL8G/gcP0xORZDUq0ULfUeGhKP8k9Cca9DgC5FGoXOghBa3HGxoEZQNDHTOfQpgZl2Ah5xz32u0yKTJKSgoCB2CJJjyT0IrKWkTOgRJMJ0DJbS45WBDP5bqUV4ARVYCBzVCPNKETZs2LXQIkmDKPwktO1vXBEk4OgdKaHHLwYb2BL1mZv8EnowejwZebZyQpKnasmVL6BAkwZR/EprZjtAhSILpHCihxS0HG/plqZeZ2TeB4dGkB5xzzzZeWCIiIiIiIo2joT1BADOBDc65V82spZm1ds5taKzApOkpLCwMHYIkmPJPQtu+XdcESTg6B0poccvBBl0TZGYXAk8Dv48mdQP+1lhBSdO0aNGi0CFIgin/JLTMzK2hQ5AE0zlQQotbDjb0xgiXAkcD6wGccwuATo0VlDRNK1asCB2CJJjyT0LLzNweOgRJMJ0DJbS45WBDi6BtzrmKs7eZZeG/H0hERERERGSf0tAiaKKZ/QxoYWZfB54C/t54YUlTNHDgwNAhNB3OweWXQ58+MGQIzJxZ83LXXw89ekCrVjXPf+YZMIPi4sppt9/u2+3fH/75Tz9t61Y44gjIzYVBg+CmmyqXf/11yMuDwYPhvPOgtNRPf/xxH9shh8BRR8Hs2ZXr/Pa3vp3Bg2HMGN9+XW198AEUFkKzZnDnnVWfQ9TWn98ezA3zUtoqd/nl0KrVzvlX/bmvWgVf+YrfV5ddVnXZkSP9/hg61P989pmfvm0bjB7t91dBASxe7KdPn165bG4uPKv7yAiUlrYMHYIkmP4HS2hxy8GGFkHXAZ8D7wH/DbwI/E9jBSVNU1lZWegQmo6XXoIFC/zPAw/AxRfXvNzJJ/s35DXZsAHuvtu/eS83bx6MHw9z58LLL8Mll0BZmS8+Xn/dFzKzZvl5U6fCjh2+WBk/HubMgYMPhocf9m316gUTJ8J778ENN8BFF/npy5fD2LG++Jgzx7c/fnzdbXXo4Ne56qqqzyGlre8dPocMorbKFRfDmjVAtfyr6bk3bw4///nORVa5xx/3z33WLOgUjQZ+8EFo3x4++giuvBKuvdZPHzzYb7t8X/33f1cWdJJgGkAh4eh/sIQWtxystwgys0zgUefcH5xz33LOnRH9rbO57JIPP/wwdAhNx3PPwbnn+p6MI4+EtWvh0093Xu7II6FLl5rbuOEG/6a9efOq7Z51li96evXyPRzTp/vtlPcmlZT4HzPfe5KTA/36+Xlf/7rvYQHf+9O+fWUcy5ZVbqe0FLZs8b83b4auXetuq1MnOPxwyM7e+XlEbWW6UpqXRW2BL66uvhruuAOoln81Pff99oNhw6pOq89zz/nCDeCMM+C113wvXcuWkBXdfHPrVr+vJPGysuL1HRmSLPofLKHFLQfrLYKcc2XAwWaWk4Z4RKQhli/3w9zKde/upzXUzJmwdCmceGLD2y0r88O7OnXyBUpBAey/vy9CyoeUPf20b7e6Bx+Eb3zD/92tm+/ROeggX6C1bQvHHdfwtlKltPXMlC5szIraAhg3Dk45ZecisLbnXp/vfc8//5//3Bc6UHV/ZWX557JqlX88bZof8nfIIXD//ZVFkYiIiATX0OFwC4G3zOwGM/tx+U9jBiZNT7du3UKHIOCHnf34x/Cb3+zaepmZfnjXsmW+d2jOHN/DMX68Hwp2xBHQurVfLtUbb/gi6Ne/9o/XrPE9KIsWwSefwKZN8NhjDWurupS2Tj/yE1qURW198gk89RT88IcVi3br1m33n/vjj/thfW++6X8efbT+dQoK/LDCt9/211lVv1ZJEqesTJ8lSjj6HyyhxS0H6yyCzKz8P/0pwAvR8q1TfkQarHv37qFD2Lfde2/lxfZdulTtJVm2zPeKNMSGDb6AGTkSevb01/accorvgenWrf5227XzNxB4+WX/uLDQFwbTp8Pw4ZXD2QDefRe+/31fqHTs6Ke9+qofanfAAX5422mnwb//XX9bNUlpqywjm0n7R229846/TqdPH/8cN2/mSyecUPdzr0v5PmjdGs4+u/I6q9T9VVoK69ZVPs9yAwb4oYRz5tS9DWnyysqahQ5BEkz/gyW0uOVgfT1Bh5lZV2AJcE8NPyINNm3atNAh7NsuvbTywvxTT4VHHvHDsqZO9cOwarv2p7q2beGLL/ydzBYv9tfrPP885Of7gmD8eH/Xs0WL/I0XjjgCPv/cX3cE/lqeV16BL3/ZP069U9qvfw0/+IF/vGSJL3AefbRqMXPQQT7mzZt9/K+95guFutqqTbW28tZGbZ14IqxYUfkcW7Zk0oMP1v3ca1Na6tcBfy3UCy/4Gx+A31/lN294+mk49ljfo7VoUeWNED7+2N/drmfPup+LNHk5ORtChyAJpv/BElrccrC+Qer3A68BvYDUj0oNf5ub3o0Ul4jUZdQoePFF39PRsiX8+c+V84YO9YUSwDXXwBNP+CKhe3ffK3PzzbW3O2gQnHkmDBzor2G591K0fQQAABuzSURBVF4/JO3TT/0NAMrK/JCyM8+Ek07y6/zv//rCYMcOf5e6Y4/102+91V8fc8kl/nFWlu9xKSjwNxHIy/PTDj208s5xtbW1YoUvVNavh4wMuOsufye7lLb+vDSLBa1S2todPXv6bWzfDn/7G/zrX/4udccf7wugsjL42tfgwgv98hdcAN/5jj8OHTpU3plu8mT41a98T1dGBvzud/6aJxEREYkFa8hN3szsPudcLffgbXz5+fmuuL7hKhJ7xcXF5Nf1ibvIHhg50v8uKqp5vvKv6Zkw4a3QIeyS7Oz1lJS02e31b7nFf3/VTTeN21shJdLo0UeHDiEInQMltHTloJnNcM7Vu6EG3RghZAEkTYdOvhKS8k9C25MCSGRP6RwoocUtBxt6dziRPTZlypTQIUiCKf8ktOzsdaFDkATTOVBCi1sOqgiStNm2bVvoECTBlH8Smpm+Y1zC0TlQQotbDqoIEhERERGRRFERJGkzbNiw0CFIgin/JLTt29uGDkESTOdACS1uOagiSNJm/vz5oUOQBFP+SWhZWZtDhyAJpnOghBa3HFQRJGnzWfkXYYoEoPyT0DIySkKHIAmmc6CEFrccVBEkIiIiIiKJoiJI0mbw4MGhQ5AEU/5JaCUl+4UOQRJM50AJLW45qCJI0iZut0aUZFH+SWhmO0KHIAmmc6CEFrccDFoEmVmmmb1jZi+EjEPSY8GCBaFDkART/kloWVlbQocgCaZzoIQWtxwM3RP0I+D9wDGIiIiIiEiCZIXasJl1B04EbgN+HCoOSZ8ePXqEDiGZrrjC/77rrrBxBKb8k9DKypqFDkGACRPe2q31Ro8+ei9Hkl46B0poccvBYEUQcBdwDdC6pplmdhFwEUDXrl0pKioCoHfv3rRu3ZrZs2cD0LFjRwYNGsSkSZMAyMrKYtiwYcycOZP169cDkJ+fz8qVK1m6dCkAffv2pVmzZsyZMweATp060a9fPyZPngxAs2bNKCwspLi4mI0bNwJQUFDAsmXLWL58OQD9+/cnMzOTefPmAXDggQfSq1cvpkyZAkCLFi0oKChg2rRpbNnih0AUFhayaNEiVqxYAcDAgQMpKyvjww8/BKBbt250796dadOmAdCqVSvy8/OZMmVKxTjKYcOGMX/+/IrbDA4ePJht27ZVdDH26NGDzp07U1xcDECbNm3Iy8tj8uTJlJaWAjB8+HDmzp3LqlWrAMjNzWXDhg0sXLgQgJ49e9KhQwdmzpwJQPv27cnNzWXixIk45zAzRowYwezZs1mzZg0AeXl5rF69msWLF9d6nA4++OCK46jjlL7jtDFqc1ZRUYOO0776eiopOQrnHEVFU2o8Ts2aNeNLX/pSbI/Trr6e9tXjtDdfTzk5awFfXOzYkUN29gYAnMukpKR1xXzwX1SalbWJjIzSKF/2w6yMrKytURvN2bEji+xs/9x37MiitLRVtTbakZW1MaWNVmRklJKZ6dsoLW2Oc5lkZ29KaWM/cnLWVbRRVtaC7OwNmJVFbbQmI2M7mZnbojZa4FxGShvZlJa2JCdnXbRdAyA7e33FNUbbt7cmM3MbmZnbK9oAq/heorKyHMrKmpOTsz7aPxmUlLSp1kYbMjO3prTREnAVQ/h8G83IydlQrY11mLmUfby54lbgfh/vSGlj3zlO27e32+k4/ec//9mnX09btmxh6dKlOu/F/Dg15f9Pa9euZenSpWk5Tg1hzrkGL7y3mNlJwCjn3CVmNhK4yjl3Um3L5+fnu/KDLPuuoqIiRo4cGTqM5Cnf51EB2lTV9zSVf03P7n6iH0pOzlq2b2+32+vfcstlANx007i9FZLsgn29J0jnQAktXTloZjOcc/n1LRfqmqCjgVPMbDEwHjjWzB4LFIuIiIiIiCRIkCLIOfdT51x351xP4CzgdefcOSFikfRp06ZN6BAkwZR/EppzmaFDkATTOVBCi1sOhr47nCRIXl5e6BAkwZR/ElpJSY2XwIqkhc6BElrccjB4EeScK6rreiBpOsovcBMJQfknoaVevC+SbjoHSmhxy8HgRZAkR/ndSkRCUP6JSJLpHCihxS0HVQSJiIiIiEiiqAiStBk+fHjoECTBlH8S2vbtbUOHIAmmc6CEFrccVBEkaTN37tzQIUiCKf8ktKysTaFDkATTOVBCi1sOqgiStCn/xmKREJR/ElpGRrzGw0uy6BwoocUtB1UEiYiIiIhIoqgIkrTJzc0NHYIkmPJPQisp2S90CJJgOgdKaHHLQRVBkjYbNmwIHYIkmPJPQjMrCx2CJJjOgRJa3HJQRZD8f3v3H2TVXd5x/PPs/QEkLARQwAAKqQQLWAzdhqFsIa12JvqHtjYjWn9lRptxHGc60/qHrW1t2tpO7bTVmeqo01rTjh1x0maaUVt/pFnopput6xo0oEAKVIgCUyCwBNi99+7TP/ZAbimEZdk9z3f3+37NZHLv3btnP9z7ueecZ+/Ze0pz8ODB6AjIGP1DtGr1YnQEZIx1IKKl1kGGIAAAAABZYQhCaVauXBkdARmjf4jWas2OjoCMsQ5EtNQ6yBCE0ixcuDA6AjJG/xBtdLQaHQEZYx2IaKl1kDUySjM4OKh77rknOgYyRf/GZ8eOJ0r/mdu3byn9Z0ao1c5pZOS26BjIFOtAREutg7wTBAAAACArDEEozYIFC6IjIGP0D9E4HA6RWAciWmodZAhCaVI7SRbyQv8QrdmcGx0BGWMdiGipdZAhCKXZuXNndARkjP4hWr3+XHQEZIx1IKKl1kGGIJTG3aMjIGP0D0DOWAciWmodZAhCacwsOgIyRv8A5Ix1IKKl1kGGIJRm27Zt0RGQMfqHaHw8NiKxDkS01DrIEITS7N69OzoCMkb/EK1aPRcdARljHYhoqXWQIQilOX36dHQEZIz+IVpHRzM6AjLGOhDRUusgJy0AgITt2PHEhL5v+/Ytk5wEwERM9DUs8ToGphLvBKE0GzdujI6AjNE/RGs0OE8Q4rAORLTUOsgQhNKcOnUqOgIyRv8QjcPhEIl1IKKl1kGGIJTm8OHD0RGQMfqHaJXKxegIyBjrQERLrYMMQQAAAACywhCE0txxxx3REZAx+odozebs6AjIGOtAREutgwxBKE1nZ2d0BGSM/iGaeyU6AjLGOhDRUusgQxBKk9pJspAX+odotdrz0RGQMdaBiJZaBxmCAAAAAGSFk6WiNIsWLYqOgIzRP0QbHWWTO53dzElPU8A6ENFS6yDvBKE069ati46AjNE/RGs2b42OgIyxDkS01DrIEITS7Nq1KzoCMkb/EK1ePxMdARljHYhoqXWQIQgAAABAVhiCUJpqlePhEYf+AcgZ60BES62DDEEoTXd3d3QEZIz+IdrIyG3REZAx1oGIlloHGYJQmsHBwegIyBj9Q7RabSg6AjLGOhDRUusgQxBKc/bs2egIyBj9QzSzVnQEZIx1IKKl1kGGIAAAAABZYQhCabq6uqIjIGP0D9Eajc7oCMgY60BES62DDEEozfHjx6MjIGP0D9E6OkaiIyBjrAMRLbUOMgShNEeOHImOgIzRP0SrVIajIyBjrAMRLbUOMgQBAAAAyApDEEqzevXq6AjIGP1DtGZzTnQEZIx1IKKl1kGGIJRm1qxZ0RGQMfqHaO5schGHdSCipdZB1sgozdNPPx0dARmjf4hWqz0fHQEZYx2IaKl1kCEIAAAAQFYYglCaxYsXR0dAxugfoo2O1qIjIGOsAxEttQ4yBKE0d955Z3QEZIz+IVqzeUt0BGSMdSCipdbBanQA5KO3t1f33HNPdAxkKrf+7djxRHQEXKFeP6ORkduiYyADV3v91+vPXbd/27dvmapIQHLbYd4JAgAAAJCVkCHIzFaY2eNmttfM9pjZr0fkQLlS+2hE5IX+IZq7RUdAxugfoqW2HY46HK4p6TfdfdDMOiV928y+4e57g/KgBJs3b46OgIzRP0RrNOZHR0DG6B+ipbYdDnknyN1/7O6DxeUhSd+XtCwiC8ozMDAQHQEZo3+IVqudjY6AjNE/REttOxz+wQhmtlLSXZL6r7j9AUkPSNLtt9+unp4eSdIdd9yhzs5O7d69W5K0aNEirVu3Trt27ZIkVatVdXd3a3BwUGfPjr3gu7q6dPz4cR05ckSStHr1as2aNevySZsWL16sO++8U729vZLG3q7bvHmzBgYGdO7cOUnSpk2bdPToUT377LOSpDVr1qhSqWjv3rE3r5YuXapVq1apr69PkjRnzhxt2rRJ/f39unDhgqSxCfjQoUM6duyYJGnt2rVqtVrat2+fJGnZsmVavny5+vvHHoq5c+eqq6tLfX19Gh4eliR1d3dr//79OnHihCRp/fr1Gh4e1oEDByRJK1as0JIlSy4Xbd68edq4caN6e3vVbDYlSVu3btWePXt08uRJSdKGDRs0NDSkgwcPSpJWrlyphQsXanBwUJK0YMECbdiwQTt37pS7y8y0bds27d69W6dPn5Ykbdy4UadOndLhw4ev+TwNDQ1dfh55nsp7ns6dO6dms6mnenrG9TxN19dTo/Gzcnf19PRd9Xk6f/68JCX7PF3r9VSvP69mc7bcK5dPtjk6WlWzeavq9TO6ZGTkNtVqQzJrFY9Hpzo6RlSpjP1bm805cu9oW0ZNzeYtl5fhbmo05qtWOyuz0WKZnapUhlWpjFxehmSqVscey1arrlZrtur1s8UyOtRozLtiGfNUqVxsW8YtklzV6oXLy7hw4cKEXk/1+nPFMmZpdLSuWm2oyFFRo9F5+etjOearWn1eHR3N4vG5VWYtVasXi2XM1uhoVbXaubbHeO4Vy7hN1eq5tmXMVUdHU5XKxeLf9uLPk9nY9030eRr7uVYso/znqdWapXp96IplnJGZtz3G59XR0Wh7jEfbljE9nqdLy0jh9SRpQtunS49H+/PU0dEoPhzh2s9TT09PEus9aWZtn6b7fsRkPU/Hjh1TT09PKc/TeJi7j/vOk83M5kraKemj7v5P17pfV1eXpzY94sb19PQk9akg2bj0mBcD6Ex1vX/mdO1fDp/yNtFPpJpuj814Pp3rxTz44AckSR/5yF9NViQkbjJfG3w6HKKVtR02s2+7e9f17hf26XBmVpP0j5K+8GIDEGaOTZs2RUdAxugfoo2MdEZHQMboH6Klth2O+nQ4k/Q3kr7v7n8RkQHlO3r0aHQEZIz+IdqlQ6mACPQP0VLbDke9E7RF0jsl/YKZPVX894agLCjJpeM2gQj0D9Eu/S0IEIH+IVpq2+GQD0Zw915d+utOAAAAAChR2N8EIT9r1qyJjoCM0T9EG/s0MCAG/UO01LbDDEEoTaVSiY6AjNE/xOMACESif4iV2naYIQiluZHPbgcmG/1DtEvngwEi0D9ES207zBAEAAAAICsMQSjN0qVLoyMgY/QP0VqtenQEZIz+IVpq22GGIJRm1apV0RGQMfqHaK3W7OgIyBj9Q7TUtsMMQShNX19fdARkjP4hWr1+NjoCMkb/EC217TBDEAAAAICshJwsFXmaM4dzFEwHO3Y8MeHv3b59yyQmmVz0L10307npxJ3fOyLOVPZvoq/hlLcZmHypbYdZI6M0mzZtio6AjNE/RGs05kVHQMboH6Klth1mCEJp+vv7oyMgY/QP0Wo1/iYDcegfoqW2HWYIQmkuXLgQHQEZo3+IZjYaHQEZo3+Iltp2mCEIAAAAQFYYglCazZs3R0dAxugfoo2M8DcZiEP/EC217TBDEEpz6NCh6AjIGP1DtErlYnQEZIz+IVpq22GGIJTm2LFj0RGQMfqHaJXKSHQEZIz+IVpq22GGIAAAAABZ4WSpKM3atWujIyBj7f2LOLFfLicExbU1m7dER8A0M5nrDfqHaKntB/JOEErTarWiIyBj9A/xPDoAskb/ECu17TBDEEqzb9++6AjIGP1DtGo1rXNkIC/0D9FS2w4zBAEAAADICkMQSrNs2bLoCMgY/UO0VqseHQEZo3+Iltp2mCEIpVm+fHl0BGSM/iFaqzUrOgIyRv8QLbXtMEMQStPf3x8dARmjf4hWrw9FR0DG6B+ipbYdZggCAAAAkBWGIJRm7ty50RGQMfqHaO5schGH/iFaatthXhEoTVdXV3QEZIz+IVqjMS86AjJG/xAtte1wNToA8tHX16fNmzdHx8AM0n429RMn1he3PX3V+9ZqZ9RozC8lF3A1dBCRZlr/2tf/Zdi+fUupP28mSm0/kHeCUJrh4eHoCMiYGWdLRyw6iEj0D9FS2w9kCAIAAACQFYYglKa7uzs6AjI2MjJzDgPB9EQHEYn+IVpq+4EMQSjN/v37oyMgY9Xq+egIyBwdRCT6h2ip7QcyBKE0J06ciI6AjHV0NKIjIHN0EJHoH6Klth/IEAQAAAAgKwxBKM369eujIyBjjcat0RGQOTqISPQP0VLbD2QIQmlS+2hE5MVsNDoCMkcHEYn+IVpq+4GcLHUCJnqCrtxPtHXgwAEtW7YsOgamUNknr7sR1eoFjYzMuqllpPzvQ/omo4PARNE/XM9U79+mth/IO0EAAAAAssIQhNKsWLEiOgIy1mrxG1DEooOIRP8QLbX9QIYglGbJkiXREZCx0dF6dARkjg4iEv1DtNT2AxmCUJqBgYHoCMhYrTYUHQGZo4OIRP8QLbX9QIYgAAAAAFlhCEJp5s2bFx0BGXOvREdA5uggItE/REttP5AhCKXZuHFjdARkrNHojI6AzNFBRKJ/iJbafiBDEErT29sbHQEZq9efi46AzNFBRKJ/iJbafiAnS0Vpms3mpC8z4sS1Zf/Mmz1B58+fOCNJepwTfQIAEjKdTkA9nbKmair2A28G7wQBAAAAyApDEEqzdevW6AjI2MjI/OgIyBwdRCT6h2ip7QcyBKE0e/bsiY6AjFWrz0dHQOboICLRP0RLbT+QIQilOXnyZHQEZKyjI61jkZEfOohI9A/RUtsPZAgCAAAAkJWwIcjM7jWzfWb2jJl9KCoHyrNhw4boCMhYo3FrdARkjg4iEv1DtNT2A0OGIDOrSPqkpNdLWivpbWa2NiILyjM0NBQdARkza0VHQOboICLRP0RLbT8w6p2guyU94+4H3X1E0hclvSkoC0py8ODB6AjIWLV6MToCMkcHEYn+IVpq+4FRQ9AySUfarh8tbgMAAACAKWXuXv4PNbtP0r3u/t7i+jslbXL3D7Td5wFJDxRX10jaV3pQTLaXSPqf6BDIFv1DNDqISPQP0crq4Cvc/aXXu1O1hCBX86ykFW3Xlxe3Xebun5X02TJDYWqZ2YC7d0XnQJ7oH6LRQUSif4iWWgejDof7lqTVZrbKzOqS3irp0aAsAAAAADIS8k6QuzfN7AOSviapIulz7p7WaWQBAAAAzEhRh8PJ3b8q6atRPx8hOLwRkegfotFBRKJ/iJZUB0M+GAEAAAAAokT9TRAAAAAAhGAIwpQxs4Vm9g0zO1D8f8FV7vMaM+szsz1m9l0z2x6RFTPPePpX3O9fzew5M/ty2Rkx85jZvWa2z8yeMbMPXeXrs8xsR/H1fjNbWX5KzGTj6OBWMxs0s2ZxyhJg0oyjf79hZnuLfb7HzOwVETklhiBMrQ9JeszdV0t6rLh+pfOS3uXu6yTdK+njZnZbiRkxc42nf5L0Z5LeWVoqzFhmVpH0SUmvl7RW0tvMbO0Vd3uPpNPu/kpJfynpT8tNiZlsnB38oaT7Jf1Duekw042zf9+R1OXuPyXpYUkfKzflCxiCMJXeJOmh4vJDkn7pyju4+353P1Bc/pGkE5Kue4IrYByu2z9JcvfHJA2VFQoz2t2SnnH3g+4+IumLGuthu/ZePizptWZmJWbEzHbdDrr7YXf/rqTRiICY0cbTv8fd/Xxx9UmNnSs0BEMQptISd/9xcfmYpCUvdmczu1tSXdJ/TXUwZOGG+gdMgmWSjrRdP1rcdtX7uHtT0hlJi0pJhxyMp4PAVLnR/r1H0r9MaaIXEfYR2ZgZzOybkpZe5Usfbr/i7m5m1/woQjN7maS/l/Rud+e3UxiXyeofAAAoj5m9Q1KXpG1RGRiCcFPc/XXX+pqZHTezl7n7j4sh58Q17jdP0lckfdjdn5yiqJiBJqN/wCR6VtKKtuvLi9uudp+jZlaVNF/SyXLiIQPj6SAwVcbVPzN7ncZ+WbnN3YdLyvb/cDgcptKjkt5dXH63pH++8g5mVpf0iKS/c/eHS8yGme+6/QMm2bckrTazVcW67a0a62G79l7eJ+nfnBP2YfKMp4PAVLlu/8zsLkmfkfRGdw/95SQnS8WUMbNFkr4k6eWS/lvSW9z9lJl1SXqfu7+3eDv0byXtafvW+939qfITYyYZT/+K+/27pFdJmqux38i/x92/FhQb05yZvUHSxyVVJH3O3T9qZn8gacDdHzWz2Ro79PcuSackvdXdD8Ylxkwzjg7+jMZ++bhA0kVJx4pPaAVu2jj6901Jr5Z06W92f+jubwzJyhAEAAAAICccDgcAAAAgKwxBAAAAALLCEAQAAAAgKwxBAAAAALLCEAQAAAAgKwxBAIBpzczeZ2bvKi7fb2a3T2AZh83sJZOfDgCQomp0AAAAboa7f7rt6v2Snpb0o5g0AIDpgHeCAACTysxWmtkPzOzzZrbfzL5gZq8zsyfM7ICZ3V3812dm3zGz/zCzNcX33mJmXzKzvWb2iJn1Fye4lZmdM7OPmtluM3vSzJYUt/++mX3QzO6T1CXpC2b2lJnNaX+Hx8y6zKynuLzIzL5uZnvM7K8lWVv+d5jZfxbL+IyZVcp9BAEAU40hCAAwFV4p6c8lvar471cldUv6oKTflvQDST/n7ndJ+j1Jf1x83/slnXb3tZJ+V9JPty3zVklPuvsGSbsk/Vr7D3T3hyUNSHq7u7/G3S+8SL6PSOp193WSHpH0ckkys5+UtF3SFnd/jaSWpLdP6BEAACSLw+EAAFPhkLt/T5LMbI+kx9zdzex7klZKmi/pITNbLckl1Yrv65b0CUly96fN7LttyxyR9OXi8rcl/eJN5Nsq6c3Fz/mKmZ0ubn+txgavb5mZJM2RdOImfg4AIEEMQQCAqTDcdnm07fqoxrY9fyjpcXf/ZTNbKalnHMtsuLsXl1sa3zasqReOepg9jvubpIfc/bfGcV8AwDTF4XAAgAjzJT1bXL6/7fYnJL1FksxsraRX3+ByhyR1tl0/rBcOqfuVttt3aewQPZnZ6yUtKG5/TNJ9Zra4+NpCM3vFDWYAACSOIQgAEOFjkv7EzL6j//uOzqckvdTM9kr6I0l7JJ25geV+XtKnL30wgqQHJX3CzAY09u7RJQ9K2locqvdmST+UJHffK+l3JH29OBTvG5JeNoF/HwAgYfbCkQUAAMQqPomt5u4XzewnJH1T0hp3HwmOBgCYQfibIABASm6R9LiZ1TT29znvZwACAEw23gkCAAAAkBX+JggAAABAVhiCAAAAAGSFIQgAAABAVhiCAAAAAGSFIQgAAABAVhiCAAAAAGTlfwFoZ+jw7IFfvgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f090722c1d0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\"\"\"Poloniex cmi20 execution returns analysis\"\"\"\n",
"\n",
"ret = pctDf.poloniex\n",
"\n",
"sorted_ret = np.sort(ret)\n",
"\n",
"mu = ret.mean()\n",
"\n",
"print('Estatísticas para o CMI20 executado na Poloniex')\n",
"print('Média da distribuição: %.4f %%' % \n",
" (mu * 100)\n",
" )\n",
"\n",
"var95 = abs(sorted_ret[int((1 - alpha) * sorted_ret.shape[0])])\n",
"print('%.d%% Empirical VaR: %.2f %%' % ((1 - alpha) * 100,\n",
" var95 * 100)\n",
" )\n",
"\n",
"cvar95 = abs(sorted_ret[:int(alpha * sorted_ret.shape[0])].mean())\n",
"print('%.d%% Empirical CVaR: %.2f %%' % ((1 - alpha) * 100,\n",
" cvar95 * 100)\n",
" )\n",
"\n",
"poloniexCsr = (mu - rf) / cvar95\n",
"print('%.d%% Conditional Sharpe Ratio: %.6f' % ((1 - alpha) * 100,\n",
" poloniexCsr)\n",
" )\n",
"\n",
"asset.append('poloniexCmi')\n",
"csr.append(poloniexCsr)\n",
"\n",
"grey = .66, .66, .77\n",
"plt.figure(figsize=(14, 6))\n",
"plt.title(\"Distribuição de retornos para o CMI20 executado na Poloniex\")\n",
"plt.ylabel(\"frequência\")\n",
"plt.xlabel(\"magnitude\")\n",
"bv, bins, _ = plt.hist(ret, bins=50, normed=True, color=grey, edgecolor='none');\n",
"plt.text(mu+0.003, bv.max() * 1.1, \"Média: %.4f\" % mu, color='black')\n",
"plt.plot([mu, mu], [0, bv.max() * 1.1], c='black')\n",
"plt.plot([-var95, -var95], [0, 6], c='b')\n",
"plt.text(-var95-0.01, 7.5, \"95% VaR\", color='b')\n",
"plt.text(-var95-0.01, 6.5, -var95, color='b')\n",
"plt.plot([-cvar95, -cvar95], [0, 4], c='r')\n",
"plt.text(-cvar95-0.01, 5.5, \"95% CVaR\", color='r')\n",
"plt.text(-cvar95-0.01, 4.5, -cvar95, color='r');\n",
"plt.grid(linestyle='--')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Estatísticas para o CMI20 executado na Binance\n",
"Média da distribuição: 1.1838 %\n",
"95% Empirical VaR: 11.09 %\n",
"95% Empirical CVaR: 14.33 %\n",
"95% Conditional Sharpe Ratio: 0.081469\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAGDCAYAAADtQhtPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl8FeW9x/HPLyv7qiAQFChLIUgwxgYqF7Bel2KrVq1I9Wqr1tbW61KtWq1rtfV2VcRqbW1dqoBrrYrWpQaKYmygxAIqqFACCih7CIQsz/3jmZOchGwsmSHM9/165ZWcmTkzvzPzO5PzO88zz5hzDhERERERkbhIiToAERERERGRMKkIEhERERGRWFERJCIiIiIisaIiSEREREREYkVFkIiIiIiIxIqKIBERERERiRUVQSKCmd1nZjfso3UdamalZpYaPC4wswv3cF3XmdkfWrjsK2Y2N9j+03uyvUbWu8fxi8SRmX3TzOZGHUdz9uV5T0TaHhVBIgc4M1thZtvNbKuZbTKzN83su2ZW8/53zn3XOfeTFq7rv5taxjm30jnXyTlXtbexO+d+6pxrtgAxsx7AKuAm4CngT3u77Sio4Nr3zLvUzBaZ2TYzW2VmT5jZ4cH8B83Mmdkp9Z73m2D6N4PHNR/szSzTzB4ws/8E76uFZvbles8/1szeM7MyM3vdzA4L6SXvtZa8z9uCpHNfqZltNLMXzKx/Yn5Lz3sicmBSESQSD191znUGDgPuAK4BHtjXGzGztH29zpZwzm1wzn3LOfeac+4o59xzUcTRlNbeN8GH/TZ3Tg8hZ+4CLgMuBXoAQ4G/ACclLbMUOLdeTGcCHzayzjSgBJgAdAV+DDxuZgOC5x8EPA3cEGyzCJi5j16P7J6vOuc6AX2AtcDdEccjIvuJNvcPU0T2nHNus3Pur8Bk4DwzGwk134bfFvx9kJk9H7QabTCzf5hZipk9AhwKPBd8s3q1mQ0Ivi2/wMxWAn9Pmpb84fZzZva2mW0xs2eDlhvMbKKZrUqOMflbaDO72cz+nDRvXNCStcnMSpK+pT/JzP4VrL/EzG6ut86TzWxx8LwCMxve2D4ys+OCb/A3m9k0wOrNP9/M3g2+Wf5bY9/wN7Rvguljkl5DsZlNDKbfDvwXMC3Yv9OC6V80s38G8fzTzL6YtI0CM7vdzN4AyoBBwbSfmNkbQSvFy8GH8mb3hZldY2arg+e9b2bHNvLaHjTfleiVYNnZyfvBzO4KjsMWM5tvZv+VNO9mM3vSzP5sZluAb5rZF8xsXhDTJ2Y2zcwymjhGLTqeZjYE+D4wxTn3d+dcuXOuzDn3qHPujqRFnwPGmVn34PGJwDvAmobW65zb5py72Tm3wjlX7Zx7HlgOHBkschqw2Dn3hHNuB3AzkGNmn28kzr5m9pSZfWpmy83s0qR5s8zsV0mPZ5jZH5MeN5qPZpYdHKMNZrbWzK4Lpte834PHNe9Da+B9Hkx/wszWBHk4x8yyk57f08z+Ghzvt4HP1Xt9jeZwA/tihZldZWbvBMvPNLN2wbzu5s9Nnwav93kzy2psXcmC4/AkMCJpW8nnvYnmWwmvNLN1QR5+K2nZRs8xVvteP8/MVprZZ2Z2fdL8VPNdez8M3i/zLWiRMrPPJx2j983szJa8HhHZeyqCRGLIOfc2vvvYfzUw+8pg3sFAb+A6/xT3P8BKgm9WnXM/T3rOBGA4cEIjmzwXOB//bWwlMHV3Yw4+3L2I/yb3YGA0sDCYvS3YRjf8N/wXm9mpwfOGAtOBy4PnzcJ/wNvlQ7bVfoP/Y+AgfEvA0UnzT8Hvj9OCdf0jWHdTavaNmfUDXgBuw7cQXAU8ZWYHO+euD9Z3SbB/LzFfLL6A3189gV8DL5hZz6T1/w9wEdAZ+E8w7RvAt4BeQEawnSb3hZkNAy4BjgpaDU8AVjTxus4GfhLsp4XAo0nz/ok/Pj2Ax4AnEh9kA6fgP5B2C55XBVwRrGsscCzwvYY2ujvHM1jPqiDfm7IDeBY4K3h8LvBwM89Jjqk3voVpcTApGyhOzHfObcPnUnYDz03BF2HFQL8g5svNLPFeOh/4HzP7kpmdDXwB37LVZD6aWWfgVeAloC8wGHitudfSxPv8RWAIPqcWUPd434Pfh32CeM9Pen0tyeH6zsQXogOBUcA3g+kp+K6uh+ELte3AtOZeUxBHB/yXP281sdgh+Ja9fsAFwD1JhXGj55gk44Bh+GN4Y1Jx/gNgCjAJ6ILfP2Vm1hF4Bf8e6YXPv9+a2QhEpNWpCBKJr4/xH1Lrq8B/mDnMOVfhnPuHc841s66bg2/Htzcy/xHn3KLgw+ANwJkWDJywG74BvOqcmx7Etd45txDAOVfgnPt38K38O/gPghOC500GXnDOveKcqwB+CbQHGvo2ehL+G/wng2XvpG5rwHeBnznn3nXOVQI/BUZb09d7JO+bc4BZzrlZQayv4LtKTWrkuScBy5xzjzjnKp1z04H3gK8mLfOgc25xML8imPYn59zSYJuP4wuS5vZFFZAJjDCz9KCVo7HuYATrmeOcKweuB8Ymvt12zv05OD6VzrlfBesdlvTcec65vwT7YLtzbr5z7q1g+RXA76g9fvXtzvHsCXzSxGtI9jBwrpl1C7b9l5Y8yczS8QXBQ86594LJnYDN9RbdjC9U6zsKONg5d6tzbqdz7iPg9wQFmXNuDXAx8BC+a9+5zrmtwXObysevAGucc79yzu1wzm11zhW25DU1xDn3x2Ad5dS2bHUN3senAzcGeb4oiDWhJTlc31Tn3MfOuQ34AnF0EMN659xTQWveVuB2Gs+ThL+Y2Sb8/j8O+EUTy1YAtwbnl1lAKUHeNnOOSbglyOdifFGbE0y/EPixc+595xU759bjj9EK59yfgn3zL/w1jV9v5jWJyD6gIkgkvvoBGxqY/gvgA+BlM/vIzK5twbpKdmP+f4B0/Lf+u6M/jVyjYWb55i8+/9TMNuM/HCbW35faFhKcc9VBPP0aWFXf5FiD4i859sOAu8x3w9qE33/WyLoS6j//64nnB+sYhy86G1In9sB/6m2voX2fXLiV4T+U77K+5H3hnPsA37pyM7Au6HbVtyWvyzlXit8XfQGC7kzvBt2ZNuG/XT+ooecGyw8NujatMd9F7qc0nh+7czzX0/i+rcM5NxffmnI98HwTBX1y3CnAI8BOfCtaQin+G/9kXYCt7OowoG+9nLgO3wqb8ByQCrwfxJn83MbysdH3y+4KunPdEXTn2kJtC+FB+H2WuEYqITlnW5LD9TWYv2bWwcx+Z35Aii3AHKBbM1+onOqc6wa0wx+j2WZ2SCPLrg+KyYa23dQ5psm4afxYHAbk1zv2Z+NbpESklakIEokhMzsK/yFkl2Fsg297r3TODQJOBn5gtdeGNNYi1FxLUf+kvw/Ff+P6Gb6LSYekuFLxH6oaUkK9aw2SPAb8FejvnOsK3EfttTwf4z9sJLZhQTyrG1jPJ8mxJi2bHMN3nHPdkn7aO+febCQuqLtvSvCtYsnP7+hqr0+pvx/rxB44tF7sze37RtdXf1845x5zzo0LlnHA/zWxruT91Anfqvix+et/rsZ3aeoefADdTN1rq+rHfC++dWCIc64LvggwGrY7x/M1IMvM8pp4Hcn+jO8O2mxXuGC7D+CLldOTWuHAd4vLSVq2Iz53F7OrEmB5vZzo7JxLbh28HXgX6GNmU+o9t7F8LAEGNRJ+nfcdu37orn98voHvwvjf+IJ2QOKlAZ/iu7jWf48ntCSHW+pKfMtMfpAn45PiaJJzrso59zS+xXPcHmy7qXNMcxo7d5UAs+sdv07OuYv3ID4R2U0qgkRixMy6mNlXgBnAn51z/25gma+Y2eDgQ95m/IeG6mD2Whr/YNWUc8xsRNAv/1bgSeeH0F4KtDN/0XE6/lqczEbW8Sjw32Z2ppmlmb8YO9HNqzOwwTm3w8y+gP/QlvA4cJL5IYvT8R+kyoGGCpcXgGwzO838wA6XUvcD4n3Ajyy4KDzoDrQ7XVf+DHzVzE4Ivl1vZ/6C7MTF3fX37yxgqJl9I3jNk/EXdj+/G9tM1ui+MLNhwXUnmfjrO7ZTe9wbMsn8QBUZ+GuD3nLOleCPRSX+w3Gamd3Irq0i9XUGtgCl5gcPaOpDYIuPp3NuGfBbYHqwnzOCfX5WIy2cU/FdpuY0Ey/4wm04/tqZ+q1GzwAjzex089dC3Qi8k9RdLtnbwFbzg1K0D/JiZPBFBWY2Hn9917nAecDd5q8tg6bz8Xl80XS5+SG9O5tZfjBvIf749QhaRS6vF1P9POyM38fr8cXTTxMzgvfx08DNQUvNiCDOhH2Zw53xebnJ/LVGN7X0ieadAnTHF5R7su3GzjHN+QPwEzMbEsQxyvw1Uc/j983/mFl68HOUNTFwi4jsOyqCROLhOTPbiv/m8Xr8xcnfamTZIfgLqkuBecBvnXOvB/N+Bvw46Lpx1W5s/xHgQXx3kXb44gLn3Gb8BfB/wH8zvA0/KMMunHMr8dfOXIlvSVpE7bft3wNuDV7jjfgPyonnvY+/FudufOvTV/EfXHc2sI3P8P3x78B/4BsCvJE0/xl868iMoDvOIuDL9dfTmKBISFzM/in+ePyQ2nPxXcAZ5ke+mpp03cCVQTxXA18J4txtzeyLzOB1f4Y/Tr2AHzWxusfwH0I34EdFOyeY/jf8xfhL8d2edtB8d8mr8B8qt+Kvh2l0OOndOZ6BS/EXz98DbMJ3S/oavotZ/XVvcH6Y9SZb18xfc/Md/LUqa8yPolZqfuACnHOf4q+TuR3YCORTO+hC/W1W4Y/xaPwIc5/h3w9dzawLvlXqEufcaufcP/CtT38yM2sqH4NrZo4L9s8aYBlwTLDZR/DXrKwAXmbX/V3/ff4w/liuBpaw6+ACl+C7fq3Bv89r7tO1j3P4Tvz1X58FMbzUguc8Z2al+CL7duA851xDLXLNafQc0wK/DpZ/OYjjAaB9cIyOx+fGx/j99380/kWQiOxD1sy5XkRkv2Nm/wNkOOf2+b2OpHlm9iB+1LUfRx2LiIjInlBLkIi0KcH1Jyup/VZbREREZLeoCBKRtuZP+K5ML0YdiIiIiLRN6g4nIiIiIiKx0qotQWb2RzNbZ2aLkqb9wszeM7N3zOwZ8zemExERERERCUVrd4d7EDix3rRXgJHOuVH40YOaGn1IRERERERkn0przZU75+aY2YB6015OevgWcEZz6znooIPcgAEDmltMRERERERibP78+Z855xq78XqNVi2CWuB8GrkfhJldBFwE0LdvX375y18CMGjQIDp37kxxcTEAPXv2JDs7mzlz/L3t0tLSGDduHAsWLGDLli0A5OXlsXbtWkpK/K0qhgwZQmZmJosW+V56vXr1YujQocydOxeAzMxMxo4dS1FREaWlpQDk5+ezatUqVq/2N7keNmwYqampLFmyBIBDDjmEgQMHMm/ePADat29Pfn4+hYWFbN/u76M3duxYli9fzpo1awAYMWIEVVVVvP/++wD069ePrKwsCgsLAejUqRN5eXnMmzeP8vJyAMaNG8fSpUtZt24dACNHjqS8vJxly5YB0L9/f3r37k1RUREAXbp0ITc3l7lz51JZWQnA+PHjWbx4MevXrwcgJyeHrVu38tFHHwEwYMAAevTowYIFCwDo3r07OTk5zJ49G+ccZsaECRMoLi5m48aNAOTm5rJhwwZWrFjRouNUXl7OCSecoOO0nx+ntv5+Ki0tZfPmzTpO+/lxOhDeT9u3byc7O1vHaT8/TtD230+FhYVUV1frOO3nx6mtv5/Kysro0KFDmzxOxxxzzH9ogVYfGCFoCXreOTey3vTrgTzgtOZuTJeXl+cSB1kODAUFBUycODHqMOQApzyTsCjXJCzKNQlDW84zM5vvnMtrbrlIWoLM7Jv4O0gf21wBJCIiIiIisi+FXgSZ2YnA1cAE51xZ2NuX/UNOTk7UIUgMKM8kLMo1CYtyTcIQhzxr7SGypwPzgGFmtsrMLgCmAZ2BV8xsoZnd15oxyP5p69atUYcgMaA8k7Ao1yQsyjUJQxzyrFWLIOfcFOdcH+dcunMuyzn3gHNusHOuv3NudPDz3daMQfZPiYvyRFqT8kzColyTsCjXJAxxyLPWvk+QiIiIhOh3v/tdzUhOIiLSMBVBEgnd90nCoDyTsLR2rpkZ55xzTs3jyspKDj74YL7yla/UWe7WW2+le/fudO/evcH1TJw4sWZI3UmTJrFp06Y9iqe8vJzJkyczePBg8vPza4bLre+ll15i2LBhDB48mDvuuKNm+rRp0xg8eDBmxmeffVYz/b333mPs2LFkZmbW3Boj4Te/+Q3Z2dmMHDmSKVOmsGPHjj2Kva3TeU3CEIc8UxEkkejRo0fUIUgMKM8kLK2dax07dmTRokU19yF55ZVX6Nev3y7L3XjjjZx55pktWuesWbPo1q3bHsXzwAMP0L17dz744AOuuOIKrrnmml2Wqaqq4vvf/z4vvvgiS5YsYfr06TX3Wjn66KN59dVXOeyww+o8p0ePHkydOpWrrrqqzvTVq1czdepUioqKWLRoEVVVVcyYMWOPYm/rdF6TMMQhz1QESSQSN+YSaU3KMwlLGLk2adIkXnjhBQCmT5/OlClTauZt27aN888/ny984QscccQRPPvsswBs376ds846i+HDh/O1r32tpogC/01vohXm1FNP5cgjjyQ7O5v777+/2VieffZZzjvvPADOOOMMXnvtNerf8eLtt99m8ODBDBo0iIyMDM4666yauI444ogGv2nu1asXRx11FOnp6bvMq6ysZPv27VRWVlJWVkbfvn2bjfNApPOahCEOeaYiSEREpA0466yzmDFjBjt27OCdd94hPz+/Zt7tt9/Ol770Jd5++21ef/11fvjDH7Jt2zbuvfdeOnTowLvvvsstt9zC/PnzG1z3H//4R+bPn09RURFTp06tucP8hRdeSEM3K1+9ejX9+/cH/B3hu3btWvOchpYByMrKqrm7++7q168fV111FYceeih9+vSha9euHH/88Xu0LhERUBEkEWmsv7rIvqQ8k7CEkWujRo1ixYoVTJ8+nUmTJtWZ9/LLL3PHHXcwevRoJk6cyI4dO1i5ciVz5sypuZZo1KhRjBo1qsF1T506lZycHMaMGUNJSQnLli0D4A9/+AN5ec3eeL3Vbdy4kWeffZbly5fz8ccfs23bNv785z9HHVYkdF6TMMQhz0K/WaoIxOMmXBI95ZmEJaxcO/nkk7nqqqsoKCio0/LinOOpp55i2LBhu73OgoICXn31VebNm0eHDh1qiqim9OvXj5KSErKysqisrGTz5s307NmzwWUSVq1a1eB1TC3x6quvMnDgQA4++GAATjvtNN588806g0XEhc5rEoY45JlagiQSs2fPjjoEiQHlmYRlX+Ta5ZdfzuWXX97kMueffz433XQThx9+eJ3pJ5xwAnfffXfNdTn/+te/ABg/fjyPPfYYAIsWLeKdd97ZZZ2bN2+me/fudOjQgffee4+33nqr2VhPPvlkHnroIQCefPJJvvSlL2FmdZY56qijWLZsGcuXL2fnzp3MmDGDk08+udl1N+TQQw/lrbfeoqysDOccr732GsOHD9+jdbV1Oq9JGOKQZyqCJBL1L6AVaQ3KMwnLvsi1hQsXsnDhwiaXycrK4tJLL91l+g033EBFRQWjRo0iOzubG264AYCLL76Y0tJShg8fzo033siRRx65y3NPPPFEKisrGT58ONdeey1jxoypmdfYNUEXXHAB69evZ/Dgwfz617+uGf76448/rumql5aWxrRp0zjhhBMYPnw4Z555JtnZ2YDvfpeVlcWqVasYNWoUF154IQBr1qwhKyuLX//619x2221kZWWxZcsW8vPzOeOMM8jNzeXwww+nurqaiy66qCW79YCj85qEIQ55Zm3hRebl5bmGTsLSds2ePZsJEyZEHYYc4JRnEpZ9kWsTJ04EfPc0kcbovCZhaMt5ZmbznXPNXsyoIkhERGQ/oCJIRGTvtbQIUnc4iURxcXHUIUgMKM8kLMo1CYtyTcIQhzxTESSR2LhxY9QhSAwozyQsyjUJi3JNwhCHPFMRJCIiIiIisaIiSCKRm5sbdQgSA8ozCYtyTcKiXJMwxCHPVARJJDZs2BB1CBIDyjMJi3JNwqJckzDEIc9UBEkkVqxYEXUIEgPKMwmLck3ColyTMMQhz1QEiYiIiIhIrKgIkkgMGjQo6hAkBpRnEhblmoRFuSZhiEOeqQiSSHTu3DnqECQGlGcSFuWahEW5JmGIQ56pCJJIxOEmXBI95ZmERbkmYVGuSRjikGcqgkREREREJFZUBEkkevbsGXUIEgPKMwmLck3ColyTMMQhz1QESSSys7OjDkFiQHkmYVGuSViUaxKGOOSZiiCJxJw5c6IOQWJAeSZhUa5JWJRrEoY45JmKIBERERERiRUVQRKJtLS0qEOQGFCeSViUaxIW5ZqEIQ55Zs65qGNoVl5enisqKoo6DBERkVYzceJEAAoKCiKNQ0SkLTOz+c65vOaWU0uQRGLBggVRhyAxoDyTsCjXJCzKNQlDHPJMRZBEYsuWLVGHIDGgPJOwKNckLMo1CUMc8kxFkIiIiIiIxIqKIIlEXl6zXTVF9pryTMKiXJOwKNckDHHIMxVBEom1a9dGHYLEgPJMwqJck7Ao1yQMccgzFUESiZKSkqhDkBhQnklYlGsSFuWahCEOeaYiSEREREREYkVFkERiyJAhUYcgMaA8k7Ao1yQsyjUJQxzy7MC/HazslzIzM6MOQWJAeSYNmTnzjT163uTJRzc6T7kmYVGuSRjikGdqCZJILFq0KOoQJAaUZxIW5ZqERbkmYYhDnqkIEhERERGRWFERJJHo1atX1CFIDCjPJCzKNQmLck3CEIc8UxEkkRg6dGjUIUgMKM8kLMo1CYtyTcIQhzxTESSRmDt3btQhSAwozyQsyjUJi3JNwhCHPFMRJCIiIiIisaIiSCIRh6EXJXrKMwmLck3ColyTMMQhz1QESSTGjh0bdQgSA8ozCYtyTcKiXJMwxCHPWrUIMrM/mtk6M1uUNK2Hmb1iZsuC391bMwbZPxUVFUUdgsSA8kzColyTsCjXJAxxyLPWbgl6EDix3rRrgdecc0OA14LHEjOlpaVRhyAxoDyTsCjXJCzKNQlDHPKsVYsg59wcYEO9yacADwV/PwSc2poxiIiIiIiIJEuLYJu9nXOfBH+vAXo3tJCZXQRcBNC3b18KCgoAGDRoEJ07d6a4uBiAnj17kp2dzZw5cwBIS0tj3LhxLFiwgC1btgCQl5fH2rVrKSkpAWDIkCFkZmayaJHvpderVy+GDh1aMxxgZmYmY8eOpaioqKYSzs/PZ9WqVaxevRqAYcOGkZqaypIlSwA45JBDGDhwIPPmzQOgffv25OfnU1hYyPbt2wHfv3L58uWsWbMGgBEjRlBVVcX7778PQL9+/cjKyqKwsBCATp06kZeXx7x58ygvLwdg3LhxLF26lHXr1gEwcuRIysvLWbZsGQD9+/end+/eNc2YXbp0ITc3l7lz51JZWQnA+PHjWbx4MevXrwcgJyeHrVu38tFHHwEwYMAAevTowYIFCwDo3r07OTk5zJ49G+ccZsaECRMoLi5m48aNAOTm5rJhwwZWrFjRouOUkuLrbx2n/fs4tfX3U05OTs25Q8dp/z1OYb+fMjK2UVHREbMq0tJ2AFBV1Y7q6jTS0/1rr65Oo7KyExkZm0jW2HFyzrFy5cq9Ok6bNm2iffv2fPbZZzpOej81epwOOuigmvOajtP+e5wOhPfT7Nmz2+xxaglzzrV44T1hZgOA551zI4PHm5xz3ZLmb3TONXldUF5enotD38Q4WbZsGUOGDIk6DDnAKc+kITNnvrFHz5s8+ehG5+2LXJs4cSJAzQdckYbovCZhaMt5ZmbznXN5zS0Xxehwa82sD0Dwe10EMUjEEpW7SGtSnklYlGsSFuWahCEOeRZFEfRX4Lzg7/OAZyOIQUREREREYqq1h8ieDswDhpnZKjO7ALgDOM7MlgH/HTyWmBk2bFjUIUgMKM8kLMo1CYtyTcIQhzxr1YERnHNTGpl1bGtuV/Z/qampUYcgMaA8k7Ao1yQsyjUJQxzyLIrucCK7NXqHyJ5SnklYlGsSFuWahCEOeaYiSEREREREYkVFkETikEMOiToEiQHlmYRFuSZhUa5JGOKQZyqCJBIDBw6MOgSJAeWZhEW5JmFRrkkY4pBnKoIkEok7LYu0JuWZhEW5JmFRrkkY4pBnKoJERERERCRWVARJJNq3bx91CBIDyjMJi3JNwqJckzDEIc9UBEkk8vPzow5BYkB5JmFRrklYlGsShjjkmYogiURhYWHUIUgMKM8kLMo1CYtyTcIQhzxTESSR2L59e9QhSAwozyQsyjUJi3JNwhCHPFMRJCIiIiIisaIiSCIxduzYqEOQGFCeSViUaxIW5ZqEIQ55piJIIrF8+fKoQ5AYUJ5JWJRrEhblmoQhDnmmIkgisWbNmqhDkBhQnklYlGsSFuWahCEOeaYiSEREREREYkVFkERixIgRUYcgMaA8k7Ao1yQsyjUJQxzyTEWQRKKqqirqECQGlGcSFuWahEW5JmGIQ56pCJJIvP/++1GHIDGgPJOwKNckLMo1CUMc8kxFkIiIiIiIxIqKIIlEv379og5BYkB5JmFRrklYlGsShjjkmYogiURWVlbUIUgMKM8kLMo1CYtyTcIQhzxTESSRKCwsjDoEiQHlmYRFuSZhUa5JGOKQZyqCREREREQkVlQESSQ6deoUdQgSA8ozCYtyTcKiXJMwxCHPVARJJPLy8qIOQWJAeSZhUa5JWJRrEoY45JmKIInEvHnzog5BYkB5JmFRrklYlGsShjjkmYogiUR5eXnUIUgMKM8kLMo1CYtyTcIQhzxTESQiIiIiIrGiIkgiMW7cuKhDkBhQnklYlGsSFuWahCEOeaYiSCKxdOnSqEOQGFCeSViUaxIW5ZqEIQ55piJIIrFu3bqoQ5AYUJ5JWJRrEhblmoQhDnmWFnUAIiIibcHMmW80Oi8jY1uT8ydPPro1QhIRkT2kliCJxMiRI6MOQWJAeSZhqajoGHW8UBwsAAAgAElEQVQIEhM6r0kY4pBnKoIkEnEYelGipzyTsJhVRx2CxITOaxKGOOSZiiCJxLJly6IOQWJAeSZhSUvbHnUIEhM6r0kY4pBnKoJERERERCRWVARJJPr37x91CBIDyjMJS1VVZtQhSEzovCZhiEOeqQiSSPTu3TvqECQGlGcSlurqjKhDkJjQeU3CEIc8UxEkkSgqKoo6BIkB5ZmEJT19a9QhSEzovCZhiEOeqQgSEREREZFYUREkkejSpUvUIUgMKM8kLM6lRh2CxITOaxKGOOSZiiCJRG5ubtQhSAwozyQsFRWdow5BYkLnNQlDHPJMRZBEYu7cuVGHIDGgPJOwZGRsijoEiQmd1yQMccgzFUESicrKyqhDkBhQnonIgUbnNQlDHPJMRZCIiIiIiMRKZEWQmV1hZovNbJGZTTezdlHFIuEbP3581CFIDCjPJCw7d3aNOgSJCZ3XJAxxyLNIiiAz6wdcCuQ550YCqcBZUcQi0Vi8eHHUIUgMKM8kLGlp26IOQWJC5zUJQxzyLC3ibbc3swqgA/BxhLFIyNavXx91CBIDyjMJS0rK/tV/fubMN/boeZMnH72PI5F9Tec1CUMc8iySIsg5t9rMfgmsBLYDLzvnXk5exswuAi4C6Nu3LwUFBQAMGjSIzp07U1xcDEDPnj3Jzs5mzpw5AKSlpTFu3DgWLFjAli1bAMjLy2Pt2rWUlJQAMGTIEDIzM1m0aBEAvXr1YujQoTUjYWRmZjJ27FiKioooLS0FID8/n1WrVrF69WoAhg0bRmpqKkuWLAHgkEMOYeDAgcybNw+A9u3bk5+fT2FhIdu3bwdg7NixLF++nDVr1gAwYsQIqqqqeP/99wHo168fWVlZFBYWAtCpUyfy8vKYN28e5eXlAIwbN46lS5eybt06AEaOHEl5eTnLli0DoH///vTu3bvmTr9dunQhNzeXuXPn1lzkNn78eBYvXlyT4Dk5OWzdupWPPvoIgAEDBtCjRw8WLFgAQPfu3cnJyWH27Nk45zAzJkyYQHFxMRs3bgT8UIobNmxgxYoVLTpOif2q47R/H6e2/n6qrq6uOXfoOO2/xyns91NGxjYqKjpiVkVa2g4AqqraUV2dRnq6f+3V1WlUVnaqM+rbzp3dSEsrrSl4Kio6kZJSSWrqDswqSUnZgXOppKdvS1pHRzIyNlNQUNDscdq0aRPt27fns88+2+vjlJKyk7S0suC1ZVBV1Y6MDL9N51KoqOhCevoWzKqD19aF1NQdNe+X/eE4gd5PDb2fduzQcWoLx2l/O+/t7nEqLS1l9uzZbfY4tYQ551q88L5iZt2Bp4DJwCbgCeBJ59yfG1o+Ly/PJQ6yHBg2btxI9+7dow5DDnDKM2nInraSNMWsAufSG53fkhaWiRMnAtR8wN0bagk6cOm8JmFoy3lmZvOdc3nNLRfVwAj/DSx3zn3qnKsAnga+GFEsEoGtW7dGHYLEgPJMwmJWFXUIEhM6r0kY4pBnURVBK4ExZtbBzAw4Fng3olgkAommWJHWpDyTsCS61Ym0Np3XJAxxyLNIiiDnXCHwJLAA+HcQx/1RxCIiIiIiIvES2ehwzrmbgJui2r5Ea8CAAVGHIDGgPJOwVFXpVncSDp3XJAxxyLPIbpYq8dajR4+oQ5CQ3HUXjBwJ2dlw552102++Gfr1g9Gj/c+sWX76G2/AqFGQlwfBIDhs2gTHHw/V1buu/5Zb4Ec/qjtt4UIYPrzpPJs4EYYNg5wcOOoo/xyRPVVdHeUdJyRO9P9TwhCHPFMRJJFIDMcoB7ZFi+D3v4e334biYnj+efjgg9r5V1zhi4+FC2HSJD/tV7/yBdGdd8J99/lpt90G110HKQ2csaZMgZkz606bMcNPby7PHn3Ux/W978EPf7gXL1RiLzG0tkhr0/9PCUMc8kxFkIi0mnffhfx86NAB0tJgwgR4+ummn5OeDmVl/ic9HT78EEpKfMtNQ4YOhe7dIbjdAgCPP+6LIICLL/atStnZcFMjHXDHjoXgVgMiIiISAyqCJBJtdex52T0jR8I//gHr1/uiZtYsX9AkTJvmu76dfz4E92HjRz+Cc8+Fn/0MLrkErr/etwQ1ZcoU3/oD8NZb0KMHDBni8+z226GoCN55B2bP9r/re+klOPXUffOaJZ7UHU7Cov+fEoY45JmKIIlETk5O1CFICIYPh2uu8dfznHiiv/YnNdXPu/hi38qzcCH06QNXXumnjx7tC5nXX4ePPvLznIPJk+Gcc2Dt2l23M3kyPPmkv2Yo0RUOfJ49/jjk5sIRR8DixZB8M+mzz4aBA+H22+H732/dfSEHtsrKTlGHIDGh/58ShjjkmYogicTs2bOjDkFCcsEFMH8+zJnju60NHeqn9+7tC6KUFPj2t/11Q8mc8y1AN9zgBz/4+c/9clOn7rqN/v19MTN7Njz1lC+KAGbMKOSXv4TXXvMtQCedBDuSbufy6KO+0DrvPPjf/22d1y/xkJGxKeoQJCb0/1PCEIc8UxEkkXDORR2ChGTdOv975Up/PdA3vuEff/JJ7TLPPOO7ziV7+GE/WEKPHr4rXUqK/ykra3g7U6b4gRYGDYKsLD+ttDSFjh2ha1ffgvTii7s+zwx+8hPf+vTee3v3WkVEWpv+f0oY4pBn6sQskTCzqEOQkJx+ur8mKD0d7rkHunXz06++2neFM4MBA+B3v6t9TlkZPPggvPyyf/yDH/iCKCMDHnus4e18/etw6aVw992104YMKeOII+Dzn/etRUcf3fBz27f33fF+8Qt44IG9fcUiIq1H/z8lDHHIM2sLlV5eXp4rKiqKOgwRETkAzJz5RujbnDy5kQo8ycRgCMSCgoK93t6evsaWxCkisj8zs/nOubzmllNLkESiuLg4FhfdSbSUZxKWtLTSA2JwBBVP+z+d1yQMccgzXRMkkdiYGA9ZpBUpzyQsKSmVUYcgMaHzmoQhDnmmIkhERERERGJFRZBEIjc3N+oQJAaUZxKWioq23xVO2gad1yQMccgzFUESiQ0bNkQdgsSA8kzCou5wEhad1yQMccgzFUESiRUrVkQdgsSA8kzCkpq6o/mFRPYBndckDHHIMxVBIiIiIiISKyqCJBKDBg2KOgSJAeWZhKWysl3UIUhM6LwmYYhDnuk+QRKJzp07Rx2CxIDyTMLiXGqrrDeKG7vK/k3nNQlDHPJMLUESieLi4qhDkBhQnklY0tO3RR2CxITOaxKGOOSZiiAREREREYkVFUESiZ49e0YdgsSA8kzCUl2t3uUSDp3XJAxxyDMVQRKJ7OzsqEOQGFCeSVgqKztGHYLEhM5rEoY45JmKIInEnDlzog5BYkB5JmHJyNgcdQgSEzqvSRjikGcqgkREREREJFZa1InZzA4GrgFGADU3Q3DOfamV4pIDXFqa+s9L61OeiciBRuc1CUMc8qylr/BRYCZwEvBd4Dzg09YKSg5848aNizoEiQHlmYRl585uTc5vyf1+1q3b3OJlJb50XpMwxCHPWtodrqdz7gGgwjk32zl3PqBWINljCxYsiDoEiQHlmYQlPX1r1CFITOi8JmGIQ561tCWoIvj9iZmdBHwM9GidkCQOtmzZEnUIEgPKMwmLWVXUIUhM6LwmYYhDnrW0Jeg2M+sKXAlcBfwBuKLVohKRA5JzcOmlMHgwjBoFjX3RdP310L8/dOpUd/qcOZCbC2lp8OSTdec99BAMGeJ/Hnqodvr06XD44X57J54In33mpy9cCGPGwOjRkJcHb7/tp//iF37a6NEwciSkpsKGDVBSAsccAyNGQHY23HVX3e3ffTd8/vN+3tVX+2mPPlq7rtGjISXFbxd8LDk5fvnvfheqgs/QN9zgYx09Go4/Hj7+uHZdo0b51/LFL0LyzbwHDPDTE68l4Ykn/PpTUqCoqHb6+vX+tXTqBJdcUju9rAxOOqn2dVx7bcPHR0REpK0z51zUMTQrLy/PFSX/B5c2r7S0lE71P+HKAW/WLF8szJoFhYVw2WX+d31vvQWHHeYLmtLS2ukrVsCWLfDLX8LJJ8MZZ/jpGzb4D/9FRWAGRx4J8+eDWSlDh3ZiyRI46CBfnHToADff7AuMK66AL3/Zx/Pzn0NBQd04nnsOfvMb+Pvf4ZNP/E9uLmzd6rfxl7/4ouj11+H22+GFFyAzE9atg1696q7r3/+GU0+FDz/0j7dsgS5dfGF4xhnw9a/DWWfVTgeYOhWWLIH77oM334Thw6F7d3jxRf8aEvtuwAD/2g86qO42333XF0Df+Y7fZ4kCads2+Ne/YNEi/zNtmp9eVubXecwxsHMnHHssXHed30cHkta45sasCudS92odt9ziK9Kbbpq2L0IK1eTJR0cdQmzo/6eEoS3nmZnNd87lNbdck93hzOxq59zPzexuYJdqyTl36V7EKDG2du3aNvvmkj337LNw7rm+UBkzBjZt8oVFnz51lxszpuHnDxjgf6fUa8P+29/guOOgR9BJ97jj4KWX4Igj1uJcJ7Ztg549fYExeLBfxsw/Bti8Gfr23XV706fDlCn+7z59auPs3NkXJKtX+yLo3nt9q0lmpp9fvwBKrOuss2ofJwqdykpfcJjVnQ6+WElM/+IXa6ePGQOrVjW4i+oYPrzh6R07wrhx8MEHdad36OALIICMDF/wtWQ7AikpO6mqah91GBID+v8pYYhDnjXXHe7d4HcRML+BH5E9UlJSEnUIEoHVq303t4SsLD+ttda7Zk0J997ru4r17etbVS64wC9z553wwx/65111FfzsZ3XXWVbmC6nTT991eytW+JaU/Hz/eOlS+Mc//OMJE+Cf/9z1OTNn1hZUCSec4Aumzp1rW7Wgtjvgo4/Crbfuuq4HHqjbOmPmW7aOPBLuv7/R3bRbNm3yLWHHHrtv1negS00tjzoEiQn9/5QwxCHPmiyCnHPPBb8faugnnBBFRPZMZaVx772+YPn4Y39NTaLYufde39WtpMT/ThRHCc89B0cfXdu6lFBa6gujO++s25qzYYPvxveLX8CZZ/pubgmFhb6VZeTIuuv62998S1h5ue9yl3D77T6us8+u7aqW8Prrvgj6v/+rnTZ3rr++6sUX4Z57/LVTe6Oy0hdsl14Kgwbt3bpERET2Ry0aGMHMXjGzbkmPu5vZ31ovLDnQDRkyJOoQJCT33FM7MECfPv7DfcKqVdCv395vo1+/htdbXu77g33uc7615Mwz/bU14AdPOO00//fXv147MELCjBm7ttxUVPgC6Oyza58LvuXptNP8Nr7wBd9dLzEAQ2PrSmjXDk45xXcVrO/ss+Gpp2ofv/MOXHihX7Znz7qvH3yr0te+tutr2V0XXeSvx7r88r1bT5xUVqornIRD/z8lDHHIs5aODnewc25T4oFzbiPQQK93kZbJTFw8IQe873/fj4i2cKEfGODhh30ryVtvQdeuu14PtCdOOAFefhk2bvQ/L7/spx12WBpLlsCnwa2dX3ml9jqZvn1h9mz/99//7j/0J2ze7OedckrtNOd8a9Hw4fCDH9Td/qmn+hYa8F3jdu6sHaSguhoef7zu9UClpb4FCHyrywsv+BHZAJYtq13u2Wdrp69c6QutRx6BoUNrl9m2zQ/UkPj75Zd3bXHaHT/+sX/9d9655+uII+da+u9UZO/o/6eEIQ551tKzdpWZHZp4YGaH0cBACSIttWjRoqhDkAhMmuS7Vw0eDN/+Nvz2t7XzRo+u/fvqq33rSlmZ/33zzX76P//pHz/xhB/xLDvbT+/Rww8tfdRR/ufGG/20zz57h5tugvHjfVe4hQv9aGcAv/89XHmlH6b6uuvqXkvzzDP+GpuOHWunvfGGL0D+/vfalq1Zs/y888+Hjz7yxcdZZ/lWpsSABnPm+Ot7kruVbdvmR7dLDIXdq5cfJhv8AAsjR/p5L79cOxT3rbf6oa2/9726Q2GvXesHOcjJ8a1QJ53kh99OvI6sLJg3z08/4YTaGAYM8MXcgw/6ZZYs8S1ot9/u/87N9dv5wx924wDHWHr6tqhDkJjQ/08JQxzyrEVDZJvZicD9wGzAgP8CLnLOhdIlTkNkH3gKCgqYOHFi1GHIAU55Jg1pjSGyMzI2sXNnt+YXbIKGyJaW0HlNwtCW82yfDJGd4Jx7ycxygcTAtZc75z5r6jkiTenV0BjCIvuY8kzCUl2dHnUIEhM6r0kY4pBnLSqCApnAhuA5I8wM59xejkEkcTU0+aIGkVaiPJOwVFZ2iDoEiQmd1yQMccizlo4O93/AG8D1wA+Dn6taMS45wM2dOzfqECQGlGcSloyMzVGHIDGh85qEIQ551tKWoFOBYc453Q1ORERERETatJYWQR8B6YCKINkn4jD0okRPeSZhcc6iDiFSezPYhAZV2D06r0kY4pBnLS2CyoCFZvYaSYWQc+7SVolKDnhjx46NOgSJAeWZhKWiomvUIUhM6LwmYYhDnrX0PkF/BX4CvAnMT/oR2SMa8lzCoDyTsKSnb4k6BIkJndckDHHIs5YOkf2QmbUHDnXOvd/KMUkMlJaWRh2CxIDyTMJiVh11CBITOq9JGOKQZ022BAWFD2b2VWAh8FLweLSZ/XVvNmxm3czsSTN7z8zeNbMDv91NREREREQi12gRZGaDgHuChzcDXwA2ATjnFgKD9nLbdwEvOec+D+QA7+7l+qQNyc/PjzoEiQHlmYRl587OUYcgMaHzmoQhDnnWVEvQicDfgr8rnHP1b4Kwx23/ZtYVGA88AOCc2+mc27Sn65O2Z9WqVVGHIPuxyy/3P3tLeSZhSU3V4KkSDp3XJAxxyLNGrwlyzv3WzL4XPFxsZt8AUs1sCHApfpCEPTUQ+BT4k5nl4AdZuMw5ty2xgJldBFwE0LdvXwoKCgAYNGgQnTt3pri4GICePXuSnZ3NnDlz/AtKS2PcuHEsWLCALVv8hap5eXmsXbuWkpISAIYMGUJmZiaLFi0CoFevXgwdOrTmxlCZmZmMHTuWoqKimj6R+fn5rFq1itWrVwMwbNgwUlNTWbJkCQCHHHIIAwcOZN68eQC0b9+e/Px8CgsL2b59O+BH2li+fDlr1qwBYMSIEVRVVfH++/4yq379+pGVlUVhYSEAnTp1Ii8vj3nz5lFe7v/Bjhs3jqVLl7Ju3ToARo4cSXl5OcuWLQOgf//+9O7du+aCti5dupCbm8vcuXOprKwEYPz48SxevJj169cDkJOTw9atW/noo48AGDBgAD169GDBggUAdO/enZycHGbPno1zDjNjwoQJFBcXs3HjRgByc3PZsGEDK1asaNFxKi0tZciQITpO+/lxiur99OabX6Bdu3YUFMzZq+NUUlJSsw0dJ72fEscpI2MbFRUdMasiLW0HAFVV7aiuTiM93b/26uo0Kis7kZFR+/3czp3dSEsrJSXFr7OiohMpKZWkpu7ArBLnUnAulfT0bUnr6FjnRqo7d3YjPX0rZlXBOjqTkrKT1NRyUlIqcS4Vs4qkdaRTWdmhZh3OGRUVXUlP31JzHdLOnZ1JTS0nNXUnAJWV7QEjLa0seG0ZVFW1IyNjS7COFCoqutRbRxdSU3ckraMD4EhL2560jkwyMrbWW8dmzFywjq6kpZWRklIRvLaOmFUnrSOT6uoM0tMT60iloqKz3k+7+X768MMPa9axP7yfdJzaxnlvd4/T1q1b+fjjj9vscWoJc841v5BZB+B64HjA8C1EP3HO7WjxluquLw94CzjaOVdoZncBW5xzNzS0fF5enovDKBVxUlBQwMSJE6MOQ/ZTidQIvvvYY8ozacje3NOmMRkZm9i5s9tereOWWy4B4Kabpu2LkNoM3Sdo9+i8JmFoy3lmZvOdc3nNLdfS0eHK8EXQ9XsbWGAVsMo5Vxg8fhK4dh+tW9qAYcOGRR2CxIDyTMLiW19EWp/OaxKGOORZi4ogM3sd2KXJyDn3pT3ZqHNujZmVmNmwYMjtY4GWt19Jm5eamhp1CBIDyjMJj0UdgMSEzmsShjjkWYuKIOCqpL/bAacDlXu57f8FHjWzDOAj4Ft7uT5pQ5YsWUKvXr2iDkMOcMozCUtaWhk7d2ZEHYbEgM5rEoY45FlLu8PNrzfpDTN7e282HAyz3Wx/PRERERERkX2ppd3heiQ9TAGOBLq2SkQSC4ccckjUIUgMKM8kLFVVagWScOi8JmGIQ541dZ+gZPOBouD3POBK4ILWCkoOfAMHDow6hP3fXXfByJGQnQ133lk7/eaboV8/GD3a/8ya5ae/8QaMGgV5eRAMocmmTXD88VDdyG29Kirg2mthyBDIzYWxY+HFF+Fb34Lf/a7usn/5C3z5y03HPGAAHH64j2PCBPjPf/bkle8zyjMJS1VVu6hDkJjQeU3CEIc8a1ER5Jwb6JwbFPwe4pw73jk3t7WDkwNXYnx9acSiRfD738Pbb0NxMTz/PHzwQe38K66AhQv9z6RJftqvfuULojvvhPvu89Nuuw2uuw5SGnmr33ADfPKJ396CBb7Q2boVpkyBGTPqLjtjhp/enNdfh3fe8eNc33bbbr/0fUl5JmFJ3INHpLXpvCZhiEOetbQ73GlNzXfOPb1vwhERAN59F/LzoUMH/3jCBHj6abj66safk54OZWX+Jz0dPvwQSkpqb7pTX1mZL7SWL4fMTD+td28480yoqoLzzvMFUp8+sG0bvPoq3H+/X+7UU/26d+yAyy6Diy7adf1jx8LUqXu8C0RERERaS0tHh7sA+CLw9+DxMcCbwKf4obNVBMluad9e99Ro0siRcP31sH49tG/vW3jyksYRmTYNHn7YT/vVr6B7d/jRj+Dcc/3yjzwCV13VdEvMBx/AoYdCly67zktNhdNPh8cf90XOc8/5Yiqx7B//CD16wPbtcNRRftmePeuu46WXfLEUIeWZhMW5lvYuF9k7Oq9JGOKQZy09a6cDI5xzpzvnTgeygXTn3Lecc+e3XnhyoMrPz486hP3b8OFwzTX+ep4TT/TX/iTG7L/4Yt/Ks3Chb6W58ko/ffRoeOst3x3to4/8POdg8mQ45xxYu3b3YkjuEle/K9zUqZCTA2PG+BahxDVIAMcc469ZevHFlnWfa0XKMwlLRUUDXyaItAKd1yQMccizlhZB/Z1znyQ9Xgsc2grxSEwUFhZGHcL+74ILYP58mDPHt/QMHeqn9+7tC6KUFPj2t/11Q8mc8y1AN9wAt9wCP/+5X65+17TBg2HlStjSyLUMX/yi7w5XXAxvvgknneSnFxT4rnHz5vl5Rxzhu8UlvP66HxBh9Gi46aZ9siv2lPJMwpKermuCJBw6r0kY4pBnLS2CXjOzv5nZN83sm8ALwKutF5Yc6LZv3x51CPu/dev875Ur/fVA3/iGf/xJ0vcRzzzju84le/hhP1hCjx7+up+UFP9TVlZ3uQ4dfKF12WWwc6ef9umn8MQT/m8z34p03nl+VLh2wehXmzf7oqxDB3jvPd/6VF9amh+g4eGHYcOGvdsPe0F5JmExa2QERpF9TOc1CUMc8qylN0u9xMy+BowPJt3vnHum9cISEU4/3V8TlJ4O99wD3br56Vdf7bvCmfkhqZOHsi4rgwcfhJdf9o9/8ANfEGVkwGOP7bqN226DH/8YRozwRU7HjnDrrbXzp0zxLUl33FE77cQT/ehzw4fDsGG+S1xD+vTxz7/nHt8qJSIiIrKfMOdcyxY0OwwY4px71cw6AKnOua2tGl0gLy/PFRUVhbEpCUl5eTmZiRHJROpJDGhXULB361GeSUNmznyjFdZaTcs7VzTsllsuAeCmm6btg3jajsmTj446hDZF5zUJQ1vOMzOb75zLa265Fp2xzezbwJNA4ivnfsBf9jw8ibvly5dHHYLEgPJMwpKauqP5hUT2AZ3XJAxxyLOWfm31feBoYAuAc24Z0Ku1gpID35o1a6IOQWJAeSZhSU3dGXUIEhM6r0kY4pBnLS2Cyp1zNWd4M0vD3x9IRERERESkTWlpETTbzK4D2pvZccATwHOtF5Yc6EaMGBF1CBIDyjMJS2Vlh6hDkJjQeU3CEIc8a2kRdC3wKfBv4DvALODHrRWUHPiqqqqiDkFiQHkm4VHnCAmHzmsShjjkWbNFkJmlAo84537vnPu6c+6M4G+d8WWPvf/++1GHIDGgPJOwpKUd+PfUkP2DzmsShjjkWbNFkHOuCjjMzDJCiEdERERERKRVtehmqcBHwBtm9ldgW2Kic+7XrRKVHPD69esXdQgSA8ozCUtVlb4nlHDovCZhiEOeNdkSZGaPBH+eDDwfLN856Udkj2RlZUUdgsSA8kzCUlXVNm8qKG2PzmsShjjkWXPd4Y40s77ASuDuBn5E9khhYWHUIUgMKM8kLBkZW6MOQWJC5zUJQxzyrLnucPcBrwEDgaKk6YYfCmdQK8UlIiIiIiLSKppsCXLOTXXODQf+5JwblPQz0DmnAkj2WKdOnaIOQWJAeSZhca6ld5wQ2Ts6r0kY4pBnLTprO+cubu1AJF7y8vKiDkFiQHkmYamo6BJ1CBITOq9JGOKQZ/rqSiIxb968qEOQGFCeSVjS0zdHHYLEhM5rEoY45JmKIIlEeXl51CFIDCjPJCxmun+4hEPnNQlDHPJMRZCIiIiIiMSKiiCJxLhx46IOQWJAeSZh2bmza9QhSEzovCZhiEOeqQiSSCxdujTqECQGlGcSlrS0sqhDkJjQeU3CEIc8UxEkkVi3bl3UIbQdzsGll8LgwTBqFCxY0PBy118P/ftDY8NaPvUUmEFRcMuvt9+G0aP9T04OPPOMn15SAsccAyNGQHY23HVX7Tpuvhn69at93qxZfvqjj9ZOGz0aUlJg4UI/b/p0OPxwH/uJJ8Jnn/npCxfCmDF++bw8Hw9AQQHPz+3KH4qCdd16a+3277oLRo70cd15Z+30H/4QPv95v42vfQ02bQKCPHvnHRg71j/n8MNhxw7/nPnz/ePBg/3+dcE1HRs2wHHHwZAh/vfGjbXbKSjwMQ7rTE0AAB++SURBVGVnw4QJze8viY2UlIqoQ5CY0P9PCUMc8kxFkMj+7sUXYdky/3P//XBxIyPWf/WrtYVEfVu3+g/n+fm100aO9AXRwoXw0kvwne9AZSWkpcGvfgVLlsBbb8E99/i/E664wj9n4UKYNMlPO/vs2mmPPAIDB/piobISLrsMXn/dFyOjRsG0af45V18NN93kn3Prrf5x4N9d/4sL84L13Xijn7hoEfz+9/41FhfD88/DBx/4eccd5+e/8w4MHQo/+xkAVlUF55wD990Hixf7IiY93T/n4ov9+hL79qWX/PQ77oBjj/XTjj3WPwZfWH3ve/DXv/p1PfGEn97c/hIREZH9joogicTIkSOjDqHtePZZOPdc34ozZoz/MP7JJ7suN2YM9OnT8DpuuAGuuQbataud1qGD/wAPvnXEzP/dpw/k5vq/O3eG4cNh9eqWxzt9Opx1lv/bOf+zbZv/vWUL9O3r55n5xwCbN9dOb8y77/oiLhH3hAnw9NN+3vHH176WMWNg1SoARq9b5wuvnBw/r2dPSE31+2/LFr+smd+/f/mLX+bZZ+G88/zf551XO/2xx+C00+DQQ/3jXr32zf6SA0JFRceoQ5CY0P9PCUMc8kxFkEQiDkMv7jOrV/tubglZWbv3IXvBAt9l66STdp1XWFjbTey++2oLiYQVK+Bf/6rbgjRtmi8szj+/blexhJkzYcoU/3d6Otx7r19/376+heSCC/y8O+/03dj694errqppvQEYsWUefyjKgS9/2be6gG+5+sc/YP16KCvzXfFKSnbd/h//6J8HuKVLfZFzwgm+UPn5z/0yq1f7/ZiQvE/Xrq0tJg85xD8GWLrUv96JE+HII+Hhh3fddkP7S2LBrDrqECQm9P9TwhCHPFMRJJFYtmxZ1CHEQ3U1/OAHvrtWQ/LzfZHxz3/6IiRxvQxAaSmcfrovVrp08dMuvhg+/NB3U+vTB668su76Cgt9S03iG6SKCl8E/etf8PHHvnhKFDv33gu/+Y0vZH7zm9riKDeXs8b8hwvziuF//xdOPdVPHz7ct2Ydf7y/tmj0aN+qk+z2230hd/bZAKxfswbmzvXXLM2d6697eu21lu8/s9oWsspKfx3RCy/A3/4GP/mJL4ya2l8SG2lp26MOQWJC/z8lDHHIMxVBIvuje+6pHWSgT5+6LR6rVvnBCVpi61Z/rczEiTBggL9m5eSTawdHSBg+3A+osGiRf1xR4T/Qn3227wKW0Lu3LzxSUuDb3971GqQZM2pbgaB2cITPfc4XE2eeCW++6ac99FDtur/+9dp1denC9tRgcIdJk3wsicEULrjAFyJz5kD37v76n4QHH/TXCT36aE3hUn7wwTB+PBx0kC/OJk3yLWP9+tV0mdtln/buXdvd8JNParu9ZWX5FqWOHf36xo/31yY1tb9ERERkv6QiSCLRP7l7l+zq+9+vHWjg1FN91yvnfBHTtWvj1/7U17WrLyBWrPA/Y8b4C/vz8mD5ct+6AfCf/8B77/lCyTlfbAwf7luRkiVfi/TMM7UtPuBbnR5/vPZ6IPCFxZIl8Omn/vErr/j1gu8eN3u2//vvf/ejsQGsWVM7Utvbb/v19uzpHydGq1m50l8P9I1v+McvveS7uv31r77YCbQ/9VT4979997nKSr+9ESP8/uvSxe9P5/z+PeUU/6STT/YFGvjfiemnnOJbkyor/foKC/1raWp/SWxUVWVGHYLEhP5/ShjikGdpzS8isu/17t076hDajkmT/PUvgwf7D/h/+lPtvNGja1tbrr7aX7xfVuZbLS680A9p3Zi5c/3IZ+npvmXnt7/1LRxz5/oR3g4/3K8f4Kc/9XFcfbXfnpkvmH73u9r1zZnjr+8ZNKh2Wt++fgS48eP9dg47zLfYgB+Z7bLLfFHRrp0f+Q7gySf5U9G9VFkaXNrety4luqSdfrq/Jig93beWdevmp19yCZSX+1HiwBd7993HwUOH+sLkqKP8OiZNqr026re/hW9+E7Zv99cQBdcRce21vsXqgQd8vI8/7qcPH+674Y0a5ffXhRf6IrCp/SWxUV2dEXUIEhP6/ylhiEOemUt847ofy8vLc0X1u+9Im1ZQUMDEiROjDkP2U4nUKCjYu/Uoz9qGmTPfiDqEvZaRsYmdO7vt1TpuueUSAG66adq+COmAN3ny0VGHEAmd1yQMbTnPzGy+cy6vueXUHU5ERERERGJFRZBEootGz5IQKM8kLM79f3t3H1vnfZ53/Lp5Xki9kLKkVpItyZG0SnIpdUw0zoRgTtLWDEi6ot3aoE7bpDGQziiKAA22YkjXbZ63dcU6bEuBdmiLrmtadKiLrEGD9CVNXFMqXYYNzVipqFRSKqmR5EjC9EpZEs/bvT94yBwLskWJ5O8mz+/7AQzz5fDhxfNc/D26eZ5znsKDbwQsANY1pJBDzxiCEGLfzMUlgUVEz5BKtdodHQGZYF1DCjn0jCEIIYaHh6MjIAP0DKmUy9ejIyATrGtIIYeeMQQhRG3mpZmBRUTPALQb1jWkkEPPGIIAAAAAZIUhCCEOHDgQHQEZoGdIpVJZEx0BmWBdQwo59IwhCCEmJiaiIyAD9AypFItvRkdAJljXkEIOPQsdgsysYGZfMbPPReZAeleuXImOgAzQM6TS0dH+589jaWBdQwo59Cz6kaCfkvS14AwAAAAAMhI2BJnZFkn/RNKvR2VAnL6+vugIyAA9QyrV6qroCMgE6xpSyKFnkY8EfVLSv5LUCMyAIJOTk9ER2tPHPz79HyTRM6RjVo+OgEywriGFHHpWjPimZva9ki67+2tmduhtbvO8pOcl6YknntDQ0JAkaceOHeru7tbRo0clSevXr9eePXt05MgRSVKxWNTg4KDGx8d18+ZNSVJ/f78uXbqkc+fOSZJ27typzs5OHTt2TJK0YcMG7dq1a/bCUJ2dndq/f7/GxsZ069YtSdLAwIDOnz+vCxcuSJJ2796tQqGg48ePS5I2bdqk7du3a2RkRJK0YsUKDQwMaHR0VHfu3JEk7d+/X2fOnNHFixclSb29varX6zpx4oQkafPmzdqyZYtGR0clSatXr1Z/f79GRkY0NTUlSRocHNTJkyd1+fJlSdLevXs1NTWlU6dOSZK2bt2qjRs3amxsTJLU09Ojffv2aXh4ePY13w8cOKCJiYnZ8z37+vo0OTmp06dPS5K2bdumdevWaXx8XJK0du1a9fX16fDhw3J3mZkOHjyoo0eP6tq1a5Kmryx89epVnT17dk776datW3ryySfZTwu9n15/XdevX9frQ0MLsp+ifp9u335aXV1dGho6Mq/9dO7cudn7a0ntpwX+fVru655UV7k8fcB171C12qNS6YbMXNL0K68Vi7fV0VGVNP2oi1lDxeL096jXO9VolFUqzWyjoGq1+y0XMJ3expuzz92Z3kZdxeLd5ja61GgUVSpN/+yNRlG12up7tvGYisVbLdtYrY6OmgqFuzKrqVqd/t6l0pst21ilcvnGW7ZRKk3ODk3Varc6OioqFKbU0VGTe0Fm1ZZtlFSrrZzdhrupWl2jUummzBrNbXarUJhSoVCRJNVqKySZisXbzZ+trHq9S+XyzXvu49Zt9KhQuNuyjZWSvOU+Lqte71xS+2loaCjL36fjx4/Pri/L6viU2X5atv+OaO6nyclJnTlzZtnup7kwd5/zjReKmf28pA9LqknqktQj6ffd/UP3u31/f7/P7GS0h6GhIR06dCg6RvuZuU+bfzRYrhbqx6Bny8NLL70aHWHeyuXrqlQem9c2XnzxY5KkF174pYWI1PaeffaZ6AghWNeQwnLumZm95u79D7pdyOlw7v4z7r7F3bdJ+qCkP3u7AQjtadu2bdERkAF6hlTq9a7oCMgE6xpSyKFnIafDAevWrYuOgAzk3LNHfXQl17+uz1ejweE0tdSPIC6V342c1zWkk0PPol8iW+4+5O7fG50Dac2cfwosJnqGVGaeSwQsNtY1pJBDz8KHIAAAAABIiSEIIdauXRsdARmgZ0iF0+GQCusaUsihZwxBCJHDRbgQj54hlVptdXQEZIJ1DSnk0DOGIIQ4fPhwdARkgJ4hldZr3QCLiXUNKeTQM4YghIi4PhXyQ88AtBvWNaSQQ88YghDCzKIjIAP0DEC7YV1DCjn0jGdyIsTBgwejIyAD9OzhzefaK0vlOioRKpXHoiMgE6xrSCGHnvFIEEIcPXo0OgIyQM+QSrHIdYKQBusaUsihZwxBCHHt2rXoCMgAPUMqHR216AjIBOsaUsihZwxBAAAAALLCEIQQ+/bti46ADNAzpFKtcp0gpMG6hhRy6BlDEEJcvXo1OgIyQM+QCqfDIRXWNaSQQ88YghDi7Nmz0RGQAXqGVAqFu9ERkAnWNaSQQ88YggAAAABkhSEIIXbs2BEdARmgZ0ilVuuKjoBMsK4hhRx6xhCEEN3d3dERkAF6hlTcC9ERkAnWNaSQQ88YghAih4twIR49Qyql0pvREZAJ1jWkkEPPGIIAAAAAZIUhCCHWr18fHQEZoGdIpdEoRkdAJljXkEIOPWMIQog9e/ZER0AG6BlSqdVWRUdAJljXkEIOPWMIQogjR45ER0AG6BlSKZdvREdAJljXkEIOPWMIAgAAAJAVhiCEKBY5fx6Lj54BaDesa0ghh54xBCHE4OBgdARkgJ4hlUrlsegIyATrGlLIoWcMQQgxPj4eHQEZoGdIpVSajI6ATLCuIYUcesYQhBA3b96MjoAM0DOkYlaPjoBMsK4hhRx6xhAEAAAAICsMQQjR398fHQEZoGdIpVrtjo6ATLCuIYUcesYQhBCXLl2KjoAM0DOk0tFRiY6ATLCuIYUcesYQhBDnzp2LjoAM0DOkUihMRUdAJljXkEIOPWv/FwEHAACYp5deevWRvu7ZZ59Z4CQAFgKPBCHEzp07oyMgA/QMqdRqK6IjIBOsa0ghh54xBCFEZ2dndARkgJ4hFXcOp0iDdQ0p5NAzVm2EOHbsWHQEZICeIZVS6c3oCMgE6xpSyKFnDEEAAAAAssIQhBAbNmyIjoAM0DOk0miUoiMgE6xrSCGHnjEEIcSuXbuiIyAD9Ayp1GoroyMgE6xrSCGHnjEEIcTw8HB0BGSAniGVcvlGdARkgnUNKeTQM64TBAAJcI0RAACWDh4JQogcXnoR8egZUnG36AjIBOsaUsihZwxBCLF///7oCMgAPUMq1eqa6AjIBOsaUsihZwxBCDE2NhYdARmgZ0ilVLoZHQGZYF1DCjn0jCEIIW7duhUdARmgZ0jFrBEdAZlgXUMKOfSMIQgAAABAVhiCEGJgYCA6AjJAz5BKpdIdHQGZYF1DCjn0LGQIMrOtZvaKmR03swkz+6mIHIhz/vz56AjIAD1DKoXCVHQEZIJ1DSnk0LOo6wTVJP1Ldx83s25Jr5nZF9z9eFAeJHbhwgXt3LkzOgbaHD1L61GvhdQOCoWK6vWV0TGQgbmsa1yXDPOVw/Ez5JEgd/+mu483356U9DVJmyOyAAAAAMhL+HOCzGybpPdIGo1NgpR2794dHQEZoGdIpVZbER0BmWBdQwo59CzqdDhJkpmtlvR/JX3c3W/e87nnJT0vSU888YSGhoYkSTt27FB3d7eOHj0qSVq/fr327NmjI0eOSJKKxaIGBwc1Pj6umzenN9nf369Lly7p3LlzkqSdO3eqs7NTx44dkyRt2LBBu3bt0vDwsKTpq+Tu379fY2Njsy8RODAwoPPnz+vChQuSpstRKBR0/Pj0GXybNm3S9u3bNTIyIklasWKFBgYGNDo6qjt37kiavvDUmTNndPHiRUlSb2+v6vW6Tpw4IUnavHmztmzZotHR6Xlw9erV6u/v18jIiKamps83Hxwc1MmTJ3X58mVJ0t69ezU1NaVTp05JkrZu3aqNGzfOvr57T0+P9u3bp+HhYdVqNUnSgQMHNDExoStXrkiS+vr6NDk5qdOnT0uStm3bpnXr1ml8fFyStHbtWvX19enw4cNyd5mZDh48qKNHj+ratWuSpH379unq1as6e/bsnPZTo9HQ448/zn5a6P0k6fr163p9aGhB9lPU79Pt20+rq6tLQ0NH5rWfprcxtCT2U7l8XZLUaBRVq62efV+SKpXHVCzeUkfH9Dar1dXq6KipULiroaGhR9pPZh3q6KjMPlelVlsh9w6VSm82c5RUq61UuXxDkuRuqlbXqFS6Oftyz5VKtwqFKRUKldltSKZi8bYkqV4vq17vUrl8s7mNDlWrPfdso0eFwt2WbayU5CoW77Rso1Pl8uQ927ghM29uY42Kxdvq6Kg2759VMmu0bKNTjUZZpdLMNgqqVrvvuY/XqFh8s+U+XiWzuorFu81tdKnRKKpUuvVI+0lqqFZzuRda7uOiarVVs/fxzDZKpUmZ1Zvb6J7dTx0dNbkXZFZlPy3afpJqta557aeZ+3iuv08za9BCHZ/eeOON2XXu7Y5PM/fHw+6noaGhZfPvCP69t7j7qVqt6uTJk8t2P82Fufucb7yQzKwk6XOSPu/u//2dbtvf3+85XLQpJ0NDQzp06FB0jPYzc582D7rL1UL9GEupZ6nP0c/5+TkRyuXrqlQem9c2XnzxY5KkF174pYWIhCVioZ9nM5d1jecEYb6W0vHzYZnZa+7e/6DbRb06nEn6X5K+9qABCAAAAAAWUtRzgp6R9GFJ/8jMXm/+9z1BWRBg06ZN0RGQAXqGVOr1cnQEZIJ1DSnk0LOQ5wS5+7Aki/jeWBq2b98eHQEZoGdIpV7vio6ATLCuIYUcehb6wgjI18jIyLI91xTLBz1DKuXyzXk/JwjtaT7Pz7vfc3RY15BCDj0Lf4lsAAAAAEiJIQghVqzgmhpYfPQMqbhzOEUarGtIIYeesWojxMDAQHQEZICeIZVqtSc6AjLBuoYUcugZQxBCzFwgDFhM9AyplEo3H3wjYAGwriGFHHrGEIQQM1dVBhYTPUMqZo3oCMgE6xpSyKFnDEEAAAAAssIQhBD79++PjoAM0DOkUqnwnCCkwbqGFHLoGdcJQogzZ87oqaeeio6BBfao18O437UwFkI79Gw+1xhBOoXCXdXrK6NjIAPtsK5h6cuhZzwShBAXL16MjoAM0DOkUihUoiMgE6xrSCGHnjEEAQAAAMgKQxBC9Pb2RkdABugZUqnVOBUOabCuIYUcesYQhBD1ej06AjJAz5CORwdAJljXkEIOPWMIQogTJ05ER0AG6BlSKRbb/5oaWBpY15BCDj1jCAIAAACQFYYghNi8eXN0BGSAniGVer0cHQGZYF1DCjn0jCEIIbZs2RIdARmgZ0ilXu+MjoBMsK4hhRx6xsVSEWJ0dFSHDh2KjoE2R8+QSrk8qUrlsegYaDP3u1hyuXydrmHR5XD85JEgAAAAAFlhCEKI1atXR0dABugZUnHncIo06BpSyOH4yW8SQvT390dHQAboGVKpVnuiIyATdA0p5HD8ZAhCiJGRkegIyAA9Qyql0o3oCMgEXUMKORw/GYIQYmpqKjoCMkDPkIqZR0dAJugaUsjh+MkQBAAAACArDEEIMTg4GB0BGaBnSKVSWRMdAZmga0ghh+Mn1wlCiJMnT6q3tzc6BpaIe6+Fcfny3ubHj73j1z377DPv+Pm369n9rr0BzEexeFu12qroGMgAXZv2qOv4g44bC20+x5vUWVvl8O80HglCiMuXL0dHQAboGVLp6KhGR0Am6BpSyOH4yRAEAAAAICsMQQixd+/e6AjIAD1DKtUqpychDbqGFHI4fjIEIUQOL72IePQMqZg1oiMgE3QNKeRw/GQIQohTp05FR0AG6BlSKRbvREdAJugaUsjh+MkQBAAAACArDEEIsXXr1ugIyAA9Qyr1emd0BGSCriGFHI6fXCcIITZu3BgdYdl4mGsM/MPLNyRJr7z06ryuL9Au19GhZ0il0ShHR0AmlmLX2uWY8U5y+Blb5XD85JEghBgbG4uOgAzQM6RSKk1GR0Am6BpSyOH4yRAEAAAAICsMQQjR09MTHQEZoGdIxb0QHQGZoGtIIYfjJ0MQQuzbty86AjJAz5BKtdodHQGZoGtIIYfjJ0MQQgwPD0dHQAboGVIpl69HR0Am6BpSyOH4yRCEELVaLToCMkDPAAB4eDkcPxmCAAAAAGSF6wQ9gtSvFT+f670sVQcOHFiQ7Syn1+1vx/0Y7cH7v7isOoLlq1JZEx0BmVjMruWwXubwMz6qt943cz9+Ltd/3/BIEEJMTExER0AGisU3oyMgE3QNqdA1pJBDzxiCEOLKlSvREZCBjo72P6cZSwNdQyp0DSnk0DOGIAAAAABZCRuCzOx9ZnbCzL5uZp+IyoEYfX190RGQgWp1VXQEZIKuIRW6hhRy6FnIEGRmBUm/LOn9knol/bCZ9UZkQYzJycnoCMiAWT06AjJB15AKXUMKOfQs6pGgpyV93d1Pu3tF0u9K+v6gLAhw+vTp6AjIQLF4NzoCMkHXkApdQwo59CxqCNos6VzL++ebHwMAAACARWXunv6bmn1A0vvc/ceb739Y0oC7f6zlNs9Ler757m5JJ5IHxWL6Nkn/LzoE2h49Qyp0DanQNaSwnHv2Lnf/9gfdKOpiqRckbW15f0vzY7Pc/dck/VrKUEjHzMbcvT86B9obPUMqdA2p0DWkkEPPok6H+7KknWa23czKkj4o6bNBWQAAAABkJOSRIHevmdnHJH1eUkHSb7j7REQWAAAAAHmJOh1O7v5Hkv4o6vsjHKc6IgV6hlToGlKha0ih7XsW8sIIAAAAABAl6jlBAAAAABCCIQhJmNk6M/uCmZ1q/n/tfW7zbjMbMbMJM/uqmT0bkRXL11x61rzdn5jZdTP7XOqMWN7M7H1mdsLMvm5mn7jP5zvN7KXm50fNbFv6lFju5tCzA2Y2bma15mVHgEcyh679CzM73vx32ctm9q6InIuBIQipfELSy+6+U9LLzffvdVvSj7n7Hknvk/RJM3ssYUYsf3PpmST9V0kfTpYKbcHMCpJ+WdL7JfVK+mEz673nZh+VdM3dv0PS/5D0X9KmxHI3x559Q9Jzkv5P2nRoJ3Ps2lck9bv735X0aUm/kDbl4mEIQirfL+lTzbc/Jemf3nsDdz/p7qeab78h6bKkB17sCmjxwJ5Jkru/LGkyVSi0jaclfd3dT7t7RdLvarpzrVo7+GlJ321mljAjlr8H9szdz7r7VyU1IgKibcyla6+4++3mu1/S9LU92wJDEFLZ6O7fbL59UdLGd7qxmT0tqSzpbxY7GNrKQ/UMeEibJZ1ref9882P3vY271yTdkLQ+STq0i7n0DFgID9u1j0r640VNlFDYS2Sj/ZjZFyVtus+nfrb1HXd3M3vblyU0s8cl/bakj7g7f+XCWyxUzwAAwNyY2Yck9Us6GJ1loTAEYcG4+3vf7nNmdsnMHnf3bzaHnMtvc7seSX8o6Wfd/UuLFBXL2EL0DHhEFyRtbXl/S/Nj97vNeTMrSloj6UqaeGgTc+kZsBDm1DUze6+m/9B40N2nEmVbdJwOh1Q+K+kjzbc/IukP7r2BmZUlfUbSb7n7pxNmQ/t4YM+AefiypJ1mtr25Xn1Q051r1drBD0j6M+eCfHg4c+kZsBAe2DUze4+kX5X0fe7eVn9Y5GKpSMLM1kv6PUlPSvpbST/k7lfNrF/ST7j7jzcfav3fkiZavvQ5d389fWIsR3PpWfN2fy7pKUmrNf1X+o+6++eDYmMZMbPvkfRJSQVJv+HuP2dm/0HSmLt/1sy6NH0673skXZX0QXc/HZcYy9Ecevb3Nf1Hw7WS7kq62HxlVeChzKFrX5T0XZJmnm/7DXf/vqC4C4ohCAAAAEBWOB0OAAAAQFYYggAAAABkhSEIAAAAQFYYggAAAABkhSEIAAAAQFYYggAAy5qZ/YSZ/Vjz7efM7IlH2MZZM/u2hU8HAFiKitEBAACYD3f/lZZ3n5N0TNIbMWkAAMsBjwQBABaUmW0zs782s980s5Nm9jtm9l4ze9XMTpnZ083/RszsK2b2F2a2u/m1K83s98zsuJl9xsxGmxe7lZndMrOfM7OjZvYlM9vY/Pi/N7OfNrMPSOqX9Dtm9rqZrWh9hMfM+s1sqPn2ejP7UzObMLNfl2Qt+T9kZn/Z3Mavmlkh7T0IAFhsDEEAgMXwHZL+m6Snmv/9iKRBST8t6V9L+mtJ/8Dd3yPp30n6z82v+0lJ19y9V9K/lfT3Wra5StKX3L1P0hFJ/7z1G7r7pyWNSfpRd3+3u995h3wvSBp29z2SPiPpSUkys++U9KykZ9z93ZLqkn70ke4BAMCSxelwAIDFcMbd/0qSzGxC0svu7mb2V5K2SVoj6VNmtlOSSyo1v25Q0i9KkrsfM7OvtmyzIulzzbdfk/SP55HvgKQfaH6fPzSza82Pf7emB68vm5kkrZB0eR7fBwCwBDEEAQAWw1TL242W9xuaPvb8R0mvuPs/M7NtkobmsM2qu3vz7brmdgyr6VtnPXTN4fYm6VPu/jNzuC0AYJnidDgAQIQ1ki40336u5eOvSvohSTKzXknf9ZDbnZTU3fL+WX3rlLofbPn4EU2foicze7+ktc2PvyzpA2a2ofm5dWb2rofMAABY4hiCAAARfkHSz5vZV/TWR3T+p6RvN7Pjkv6TpAlJNx5iu78p6VdmXhhB0ouSftHMxjT96NGMFyUdaJ6q9wOSviFJ7n5c0r+R9KfNU/G+IOnxR/j5AABLmH3rzAIAAGI1X4mt5O53zezvSPqipN3uXgmOBgBoIzwnCACwlKyU9IqZlTT9/JyfZAACACw0HgkCAAAAkBWeEwQAAAAgKwxBAAAAALLCEAQAAAAgKwxBAAAAALLCEAQAAAAgKwxBAAAAALLy/wHiYMa76ZnOzwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f0906c0ed68>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\"\"\"Binance cmi20 execution returns analysis\"\"\"\n",
"\n",
"ret = pctDf.binance\n",
"\n",
"sorted_ret = np.sort(ret)\n",
"\n",
"mu = ret.mean()\n",
"\n",
"print('Estatísticas para o CMI20 executado na Binance')\n",
"print('Média da distribuição: %.4f %%' % \n",
" (mu * 100)\n",
" )\n",
"\n",
"var95 = abs(sorted_ret[int((1 - alpha) * sorted_ret.shape[0])])\n",
"print('%.d%% Empirical VaR: %.2f %%' % ((1 - alpha) * 100,\n",
" var95 * 100)\n",
" )\n",
"\n",
"cvar95 = abs(sorted_ret[:int(alpha * sorted_ret.shape[0])].mean())\n",
"print('%.d%% Empirical CVaR: %.2f %%' % ((1 - alpha) * 100,\n",
" cvar95 * 100)\n",
" )\n",
"\n",
"binanceCsr = (mu - rf) / cvar95\n",
"print('%.d%% Conditional Sharpe Ratio: %.6f' % ((1 - alpha) * 100,\n",
" binanceCsr)\n",
" )\n",
"\n",
"asset.append('binanceCmi')\n",
"csr.append(binanceCsr)\n",
"\n",
"grey = .66, .66, .77\n",
"plt.figure(figsize=(14, 6))\n",
"plt.title(\"Distribuição de retornos para o CMI20 executado na Binance\")\n",
"plt.ylabel(\"frequência\")\n",
"plt.xlabel(\"magnitude\")\n",
"bv, bins, _ = plt.hist(ret, bins=50, normed=True, color=grey, edgecolor='none');\n",
"plt.text(mu+0.003, bv.max() * 1.1, \"Média: %.4f\" % mu, color='black')\n",
"plt.plot([mu, mu], [0, bv.max() * 1.1], c='black')\n",
"plt.plot([-var95, -var95], [0, 6], c='b')\n",
"plt.text(-var95-0.01, 7.5, \"95% VaR\", color='b')\n",
"plt.text(-var95-0.01, 6.5, -var95, color='b')\n",
"plt.plot([-cvar95, -cvar95], [0, 4], c='r')\n",
"plt.text(-cvar95-0.01, 5.5, \"95% CVaR\", color='r')\n",
"plt.text(-cvar95-0.01, 4.5, -cvar95, color='r');\n",
"plt.grid(linestyle='--')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nota-se um pequeno aumento no risco da alocação do índice executado na Binance, quando comparado com este na Poloniex. Isso é causado pela incorporação de ativos em fase de \"juventude\". Estes ativos, lançados rapidamente na Binance, quando crescem em valor de mercado o suficiente para serem incorporados no índice, trazem para o portifólio um pouco mais de volatilidade. Conclui-se porém que o aumento no risco não é significativo, e pode ser tolerado dado o aumento de performance ocasionado pela mudança. \n",
"Para concluir sobre a viabilidade da execução na Binance, usaremos um indicador de performance regularizado pelo risco, o *Conditional Sharpe Ratio*. Este indicador é uma melhoria quando comparado com o clássico *Sharpe Ratio*, que é formulado como $ \\frac{\\mu - rf}{\\sigma} $, sendo $ \\mu $ a média da distribuição de retornos, $ rf $ o retorno de um ativo \"sem risco\", sendo este usualmente o retorno da poupança, e $ \\sigma $ o desvio padrão da distribuição de retornos do ativo analisado. A grande crítica feita ao *Sharpe Ratio* é que a volatilidade definida como o desvio padrão da distribuição leva em conta o risco de perdas assim como o de ganho, o que não é ideal, ja que adoramos nos expor a \"risco de ganhos\". Além disso, o desvio padrão assume normalidade da distribuição, o que não é o caso na grande maioria das vezes. O *Conditional Sharpe Ratio*, em contrapartida, formula-se como: \n",
"\n",
"$$CSR = \\frac{\\mu - rf}{CVaR}$$ \n",
"\n",
"sendo $\\mu$ e $rf$ como anteriormente e o CVaR sendo o [*Conditional Value at Risk*](https://en.wikipedia.org/wiki/Expected_shortfall) da distribuição. Este indicador de performance é mais confiável pois o CVaR, sendo calculado com a distribuição empírica e capturando de forma satisfatória o risco de cauda, nos da uma base de comparação mais justa e adequada. \n",
"A seguir compararemos o *Conditional Sharpe Ratio* (CSR) para os índices executados na Binance e na Poloniex, bem como para a Bitcoin e, para aumentar a qualidade da comparação e dar uma melhor noção dos valores, usaremos também o CSR para o ouro, a Amazon, a Apple, a Google, grandes empresas do setor de tecnologia, e para o S&P500, o índice representativo das 500 maiores empresas no mercado americano."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"import pandas_datareader as web"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"symbols = [\n",
" 'GOLD', # gold\n",
" 'AMZN', # amazon\n",
" 'AAPL', # apple\n",
" 'GOGL', # google\n",
" 'SPY' # S&P500\n",
"]\n",
"\n",
"stocks = {}\n",
"for symbol in symbols:\n",
" stocks[symbol] = web.DataReader(symbol, 'robinhood').close_price.astype('f').pct_change().fillna(0)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"GOLD Stats:\n",
"Média da distribuição: -0.0055 %\n",
"95% Empirical VaR: 2.48 %\n",
"95% Empirical CVaR: 3.91 %\n",
"95% Conditonal Sharpe Ratio: -0.0057\n",
"\n",
"AMZN Stats:\n",
"Média da distribuição: 0.2397 %\n",
"95% Empirical VaR: 1.81 %\n",
"95% Empirical CVaR: 2.99 %\n",
"95% Conditonal Sharpe Ratio: 0.0745\n",
"\n",
"AAPL Stats:\n",
"Média da distribuição: 0.0776 %\n",
"95% Empirical VaR: 2.07 %\n",
"95% Empirical CVaR: 2.84 %\n",
"95% Conditonal Sharpe Ratio: 0.0215\n",
"\n",
"GOGL Stats:\n",
"Média da distribuição: 0.0831 %\n",
"95% Empirical VaR: 4.81 %\n",
"95% Empirical CVaR: 7.17 %\n",
"95% Conditonal Sharpe Ratio: 0.0093\n",
"\n",
"SPY Stats:\n",
"Média da distribuição: 0.0499 %\n",
"95% Empirical VaR: 1.01 %\n",
"95% Empirical CVaR: 2.05 %\n",
"95% Conditonal Sharpe Ratio: 0.0163\n"
]
}
],
"source": [
"for stock in stocks:\n",
"\n",
" print('\\n%s Stats:' % stock)\n",
" ret = stocks[stock].values\n",
" sorted_ret = np.sort(ret)\n",
" \n",
" mu = ret.mean()\n",
" print(\"Média da distribuição: %.4f %%\" % \n",
" (mu * 100)\n",
" )\n",
"\n",
" var95 = abs(sorted_ret[int(alpha * sorted_ret.shape[0])])\n",
" print(\"%.d%% Empirical VaR: %.2f %%\" % ((1 - alpha) * 100,\n",
" var95 * 100)\n",
" )\n",
"\n",
" cvar95 = abs(sorted_ret[:int(alpha * sorted_ret.shape[0])].mean())\n",
" print(\"%.d%% Empirical CVaR: %.2f %%\" % ((1 - alpha) * 100,\n",
" cvar95 * 100)\n",
" )\n",
"\n",
" assetCsr = (mu - rf) / cvar95\n",
" print(\"%.d%% Conditonal Sharpe Ratio: %.4f\" % ((1 - alpha) * 100,\n",
" assetCsr)\n",
" )\n",
" \n",
" asset.append(stock)\n",
" csr.append(assetCsr)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAGDCAYAAAAVouC4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XvcbXVdJ/DPV06SlwJFO5OCHg2tMIz0iDqj00GbkqywCScQTc2GbKQmL6N0U/SlEzokOoo5mCaphbcsCpImETWvgCmISoOICeYN8ZqIwHf+2OvA5udzznPknP1cDu/363VeZ+/f+q29v+u3nufZ+7N/a61d3R0AAABucIvVLgAAAGCtEZQAAAAGghIAAMBAUAIAABgISgAAAANBCQAAYCAoAbBdVfW4qvrHuftfr6q7b6f/hVW1ZcE1baqqrqoNN2HdG23P7m4l9gfA7khQAlinqupRVXXuFFz+tar+rqoetOjn7e7bdvclUw2vrqrnDsvv1d1nL7qO7amqB1XVe6rqK1X1pap6d1XdbzVr2hFTiLt22qdfraoPV9XPfRfrr8n9AbAeCUoA61BVPSXJi5L8zyQbk9wlycuSHLaada0FVfX9Sf42yUuS3D7JnZM8O8m3FvBc3/WM1g54b3ffNsneme3TU6tq7wU8DwDbISgBrDNVtVeS5yR5Unf/ZXd/o7u/3d1/093/Y+qzZ1W9qKo+M/17UVXtOS3bUlWXVdVTq+rz02zU4+cef5+qOm2a0fhAkh8anr+rav+qOjrJUUmePs2A/M20/NKq+qldUMfDq+qfpjo+XVXH7eAQ3TNJuvsvuvva7v5md/99d58/bMcJVXVlVX2yqg6da398VX2sqr5WVZdU1a/PLdta8zOq6rNJ/nSu7Xer6ovT9h81t86e03P9S1V9rqpeXlW3Wm4juvu6JK9Jcpsk95h7vDdW1Wen2bJ3VtW9pvad2h8A3JigBLD+PDDJ9yZ5y3b6/F6SByQ5KMmPJzk4ye/PLf93SfbKbLblCUlOqqrbTctOSnJVkh9M8qvTv+/Q3ScneV2SF0yH4/38Lq7jG0l+JbOZlYcn+Y2qesR2tnmrf05ybVWdUlWHzj3evPsnuSjJHZK8IMkrq6qmZZ9P8nNJvj/J45OcWFX3GWq+fZK7Jjl6ru0O03Y8NsnJVfXD07LjMwtvByXZf+rzzOU2oqr2mJ7/20k+Nbfo7zILTj+Q5IOZ7YNdtT8AmAhKAOvPPkm+2N3XbKfPUUme092f7+4vZHbo2WPmln97Wv7t7j4jydeT/PD05vyXkjxzmqn6SJJTdqLWm1RHknT32d19QXdfN80G/UWSn1zuCbv7q0kelKSTvCLJF6YZso1z3T7V3a/o7mun7fvBzA5hTHef3t2f6Jl3JPn7JA+eW/e6JM/q7m919zfn2v9gantHktOT/JcpfB2d5Mnd/aXu/lpmh0sesZ1NeEBVfTmzsHpCkkd39+fntu9V3f217v5WkuOS/Pg0y7gjltsfAEwEJYD154okd1jm/Jg75cazEJ+a2q5/jCFo/VuS2ya5Y5INST49rHtT3dQ6UlX3r6q3V9UXquorSZ6Y2azNsrr7Y939uO7eN8mPTc/5orkun53r+2/Tza3Pe2hVvW+6CMSXk/zs8Lxf6O6rhqe8sru/scR23jHJrZOcV1Vfnh7vrVP7tryvu/dOcrskp2UupFXVHlV1fFV9oqq+muTSadEOjUuW3x8ATAQlgPXnvZldmGB7h6F9JrNDw7a6y9S2nC8kuSbJfsO629LLPN5NrSNJ/jyzoLBfd++V5OVJavurLFFg98eTvDqzwLRd0/k6b85sJmfjFFjOGJ53qW2+XVXdZu7+1u38YpJvJrlXd+89/dtruljDcnV/PclvJHlMVf3E1PyozC7Y8VOZHbK4aWvp26lt3s7sD4CbFUEJYJ3p7q9kdo7LSVX1iKq6dVV9zzQT8oKp218k+f2qumNV3WHq/9odeOxrk/xlkuOmxz0gs3NutuVzSbb5nUo3tY7J9yX5UndfVVUHZxYSllVVPzJdIGLf6f5+SY5M8r4dWP2WSfbMFBinizz89A7W++yqumVVPTizc5zeOF2Q4RWZnef0A1M9d66qn9mRB+zuLyX5k9xwTtP3ZRaSr8hspup/Dqsscn8A3KwISgDrUHf/UZKnZHYi/hcyO1TumCR/NXV5bpJzk5yf5ILMTvp/7nc+0pKOyewwtM9mNhPzp9vp+8okB0yHlf3VEst3po7/luQ5VfW1zN7Qv2EH1/taZhdreH9VfSOzgPSRJE9dbsXpHKLfmp7ryszC2Wk78Jyfnfp/JrMLKjxxmslKkmckuTjJ+6bD5f4h03lYO+hFSX62qu6d5M8yO1zu8iQfzXeGv0XuD4CblepebpYeANiWqtqS5LXT+VAA7CbMKAEAAAwEJQAAgIFD7wAAAAZmlAAAAAaCEgAAwGB73+q+rtzhDnfoTZs2rXYZAADAGnbeeed9sbvvuFy/3SYobdq0Keeee+5qlwEAAKxhVfWpHenn0DsAAICBoAQAADAQlAAAAAaCEgAAwEBQAgAAGAhKAAAAA0EJAABgICgBAAAMBCUAAICBoAQAADAQlAAAAAaCEgAAwGDDahcAANw81LNrtUtY8/pZvdolABMzSgAAAIOFBqWqelhVXVRVF1fVsUss37OqXj8tf39VbZrav6eqTqmqC6rqY1X1O4usEwAAYN7CglJV7ZHkpCSHJjkgyZFVdcDQ7QlJruzu/ZOcmOT5U/sjk+zZ3QcmuW+SX98aogAAABZtkTNKBye5uLsv6e6rk5ya5LChz2FJTpluvynJQ6uqknSS21TVhiS3SnJ1kq8usFYAAIDrLfJiDndO8um5+5cluf+2+nT3NVX1lST7ZBaaDkvyr0luneTJ3f2l8Qmq6ugkRyfJxo0bc/bZZ+/iTQAAdpUT7nnCapew5nkvA2vHWr3q3cFJrk1ypyS3S/KuqvqH7r5kvlN3n5zk5CTZvHlzb9myZaXrBAB20CHPPmS1S1jz+khXvYO1YpGH3l2eZL+5+/tObUv2mQ6z2yvJFUkeleSt3f3t7v58kncn2bzAWgEAAK63yKB0TpJ7VNXdquqWSY5IctrQ57Qkj51uH57krO7uJP+S5CFJUlW3SfKAJB9fYK0AAADXW1hQ6u5rkhyT5MwkH0vyhu6+sKqeU1W/MHV7ZZJ9quriJE9JsvUS4icluW1VXZhZ4PrT7j5/UbUCAADMW+g5St19RpIzhrZnzt2+KrNLgY/rfX2pdgAAgJWw0C+cBQAAWI8EJQAAgIGgBAAAMBCUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGAgKAEAAAwEJQAAgIGgBAAAMBCUAAAABoISAADAYMNqFwA7a9Oxp692CWvepcc/fLVLAABYV8woAQAADMwoAQDATeTIluWt1yNbzCgBAAAMBCUAAICBoAQAADAQlAAAAAaCEgAAwEBQAgAAGAhKAAAAA0EJAABgICgBAAAMBCUAAICBoAQAADAQlAAAAAaCEgAAwEBQAgAAGAhKAAAAA0EJAABgICgBAAAMBCUAAICBoAQAADAQlAAAAAaCEgAAwEBQAgAAGAhKAAAAA0EJAABgsGG1CwAAYNfadOzpq13Cmnfp8Q9f7RJY48woAQAADAQlAACAgaAEAAAwEJQAAAAGghIAAMBAUAIAABgISgAAAANBCQAAYCAoAQAADAQlAACAgaAEAAAwEJQAAAAGghIAAMBAUAIAABgISgAAAANBCQAAYCAoAQAADAQlAACAwUKDUlU9rKouqqqLq+rYJZbvWVWvn5a/v6o2zS27d1W9t6ourKoLqup7F1krAADAVgsLSlW1R5KTkhya5IAkR1bVAUO3JyS5srv3T3JikudP625I8tokT+zueyXZkuTbi6oVAABg3iJnlA5OcnF3X9LdVyc5NclhQ5/Dkpwy3X5TkodWVSX56STnd/eHk6S7r+juaxdYKwAAwPUWGZTunOTTc/cvm9qW7NPd1yT5SpJ9ktwzSVfVmVX1wap6+gLrBAAAuJENq13ANmxI8qAk90vyb0neVlXndffb5jtV1dFJjk6SjRs35uyzz17pOlkDnnrgNatdwprndwNYC0645wmrXcKat6v+XnttXJ6xXjnr9X3IIoPS5Un2m7u/79S2VJ/LpvOS9kpyRWazT+/s7i8mSVWdkeQ+SW4UlLr75CQnJ8nmzZt7y5Ytu34rWPMed+zpq13CmnfpUVtWuwSAHPLsQ1a7hDWvj+xd8jheG5e3q14bjfXy1uv7kEUeendOkntU1d2q6pZJjkhy2tDntCSPnW4fnuSs7u4kZyY5sKpuPQWon0zy0QXWCgAAcL2FzSh19zVVdUxmoWePJK/q7gur6jlJzu3u05K8MslrquriJF/KLEylu6+sqhdmFrY6yRndLa4DAAArYqHnKHX3GUnOGNqeOXf7qiSP3Ma6r83sEuEAAAAraqFfOAsAALAeCUoAAAADQQkAAGAgKAEAAAwEJQAAgIGgBAAAMBCUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGAgKAEAAAwEJQAAgIGgBAAAMBCUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGAgKAEAAAwEJQAAgIGgBAAAMBCUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGAgKAEAAAwEJQAAgIGgBAAAMBCUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGAgKAEAAAwEJQAAgIGgBAAAMBCUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGAgKAEAAAwEJQAAgIGgBAAAMBCUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGAgKAEAAAwEJQAAgIGgBAAAMBCUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGCw0KBUVQ+rqouq6uKqOnaJ5XtW1eun5e+vqk3D8rtU1der6mmLrBMAAGDewoJSVe2R5KQkhyY5IMmRVXXA0O0JSa7s7v2TnJjk+cPyFyb5u0XVCAAAsJRFzigdnOTi7r6ku69OcmqSw4Y+hyU5Zbr9piQPrapKkqp6RJJPJrlwgTUCAAB8h5sUlKpq76r6vWW63TnJp+fuXza1Ldmnu69J8pUk+1TVbZM8I8mzb0p9AAAAO2PD9hZW1X5J/iDJnZL8VZK/SPKcJI+Zbi/KcUlO7O6vTxNM26rv6CRHJ8nGjRtz9tlnL7Ak1qqnHnjNapew5vndANaCE+55wmqXsObtqr/XXhuXZ6xXznp9H7LdoJTkz5K8I8mbkzwsyblJPpTk3t392WXWvTzJfnP3953alupzWVVtSLJXkiuS3D/J4VX1giR7J7muqq7q7pfOr9zdJyc5OUk2b97cW7ZsWaYkdkePO/b01S5hzbv0qC2rXQJADnn2IatdwprXR/YueRyvjcvbVa+Nxnp56/V9yHJB6fbdfdx0+8yqemSSo7r7uh147HOS3KOq7pZZIDoiyaOGPqcleWyS9yY5PMlZ3d1JHry1Q1Udl+TrY0gCAABYlOWCUqrqdkm2Hv92RZK9tl5wobu/tK31uvuaqjomyZlJ9kjyqu6+sKqek+Tc7j4tySuTvKaqLk7ypczCFAAAwKpaLijtleS83BCUkuSD0/+d5O7bW7m7z0hyxtD2zLnbVyV55DKPcdwyNQIAAOxS2w1K3b1pheoAAABYM7Z7efCqumtV7TV3/5CqenFVPbmqbrn48gAAAFbect+j9IYkt0mSqjooyRuT/EuSg5K8bLGlAQAArI7lzlG6VXd/Zrr96MwuyPBHVXWLzC4TDgAAsNtZbkZp/iIOD0nytiTZwcuDAwAArEvLzSidVVVvSPKvSW6X5KwkqaofTHL1gmsDAABYFcvNKL00yflJLk3yoO7+9tR+jyR/usC6AAAAVs1yQenEJH/d3Sd29+Vz7VcmedjiygIAAFg9ywWljd19wdg4tW1aSEUAAACrbLmgtPd2lt1qVxYCAACwViwXlM6tqv86NlbVryU5bzElAQAArK7lrnr320neUlVH5YZgtDnJLZP84iILAwAAWC3bDUrd/bkk/76qDknyY1Pz6d191sIrAwAAWCXLzSglSbr77UnevuBaAAAA1oTlzlECAAC42RGUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGAgKAEAAAwEJQAAgIGgBAAAMBCUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGAgKAEAAAwEJQAAgIGgBAAAMBCUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGAgKAEAAAwEJQAAgIGgBAAAMBCUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGAgKAEAAAwEJQAAgIGgBAAAMBCUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGAgKAEAAAwEJQAAgIGgBAAAMBCUAAAABoISAADAQFACAAAYbFjtAnZXm449fbVLWPMuPf7hq10CAAAsaaEzSlX1sKq6qKourqpjl1i+Z1W9flr+/qraNLX/p6o6r6oumP5/yCLrBAAAmLewoFRVeyQ5KcmhSQ5IcmRVHTB0e0KSK7t7/yQnJnn+1P7FJD/f3QcmeWyS1yyqTgAAgNEiZ5QOTnJxd1/S3VcnOTXJYUOfw5KcMt1+U5KHVlV19z9192em9guT3Kqq9lxgrQAAANdbZFC6c5JPz92/bGpbsk93X5PkK0n2Gfr8UpIPdve3FlQnAADAjazpizlU1b0yOxzvp7ex/OgkRyfJxo0bc/bZZ69ccct46oHXrHYJa96u2l/Genlr6XcDuPk64Z4nrHYJa57XxpVjrFfOen0fssigdHmS/ebu7zu1LdXnsqrakGSvJFckSVXtm+QtSX6luz+x1BN098lJTk6SzZs395YtW3Zl/Tvlca56t6xLj9qySx7HWC9vV401wM445NmHrHYJa14f2bvkcbw2Ls/7kJWzXt+HLPLQu3OS3KOq7lZVt0xyRJLThj6nZXaxhiQ5PMlZ3d1VtXeS05Mc293vXmCNAAAA32FhQWk65+iYJGcm+ViSN3T3hVX1nKr6hanbK5PsU1UXJ3lKkq2XED8myf5JnllVH5r+/cCiagUAAJi30HOUuvuMJGcMbc+cu31Vkkcusd5zkzx3kbUBAABsy0K/cBYAAGA9EpQAAAAGghIAAMBAUAIAABgISgAAAANBCQAAYCAoAQAADBb6PUoAsNZtOvb01S5hzbv0+IevdgkAK86MEgAAwEBQAgAAGAhKAAAAA0EJAABgICgBAAAMBCUAAICBoAQAADAQlAAAAAaCEgAAwEBQAgAAGAhKAAAAA0EJAABgICgBAAAMBCUAAICBoAQAADAQlAAAAAaCEgAAwEBQAgAAGAhKAAAAA0EJAABgICgBAAAMBCUAAICBoAQAADDYsNoFAOvHpmNPX+0S1rxLj3/4apcAAOwCZpQAAAAGghIAAMBAUAIAABgISgAAAANBCQAAYCAoAQAADAQlAACAgaAEAAAwEJQAAAAGghIAAMBAUAIAABgISgAAAANBCQAAYCAoAQAADAQlAACAgaAEAAAwEJQAAAAGghIAAMBAUAIAABgISgAAAANBCQAAYCAoAQAADAQlAACAgaAEAAAwEJQAAAAGghIAAMBAUAIAABgsNChV1cOq6qKquriqjl1i+Z5V9fpp+furatPcst+Z2i+qqp9ZZJ0AAADzFhaUqmqPJCclOTTJAUmOrKoDhm5PSHJld++f5MQkz5/WPSDJEUnuleRhSV42PR4AAMDCLXJG6eAkF3f3Jd19dZJTkxw29DksySnT7TcleWhV1dR+and/q7s/meTi6fEAAAAWbpFB6c5JPj13/7Kpbck+3X1Nkq8k2WcH1wUAAFiI6u7FPHDV4Uke1t2/Nt1/TJL7d/cxc30+MvW5bLr/iST3T3Jckvd192un9lcm+bvuftPwHEcnOTpJNm7ceN9TTz11IdsCsNIuuPwrq13Cmnfgnfda7RIAWIcOOeSQ87p783L9NiywhsuT7Dd3f9+pbak+l1XVhiR7JbliB9dNd5+c5OQk2bx5c2/ZsmVX1Q6wqh537OmrXcKad+lRW1a7BAB2Y4s89O6cJPeoqrtV1S0zuzjDaUOf05I8drp9eJKzejbFdVqSI6ar4t0tyT2SfGCBtQIAAFxvYTNK3X1NVR2T5MwkeyR5VXdfWFXPSXJud5+W5JVJXlNVFyf5UmZhKlO/NyT5aJJrkjypu69dVK0AAADzFnnoXbr7jCRnDG3PnLt9VZJHbmPd5yV53iLrAwAAWMpCv3AWAABgPRKUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGAgKAEAAAwEJQAAgIGgBAAAMBCUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGCwYbULAOA7XXr8w1e7BAC4WTOjBAAAMBCUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGAgKAEAAAwEJQAAgIGgBAAAMBCUAAAABoISAADAQFACAAAYCEoAAAADQQkAAGBQ3b3aNewSVfWFJJ9a7TrWsDsk+eJqF3EzYaxXjrFeOcZ65RjrlWOsV5bxXjnGevvu2t13XK7TbhOU2L6qOre7N692HTcHxnrlGOuVY6xXjrFeOcZ6ZRnvlWOsdw2H3gEAAAwEJQAAgIGgdPNx8moXcDNirFeOsV45xnrlGOuVY6xXlvFeOcZ6F3COEgAAwMCMEgAAwEBQWueq6hFV1VX1I0P7b1fVVVW111zblqr6SlV9qKo+VlXPmmv/25WufT0Yx7eqNk33nzvX5w5V9e2qeul0/8xpjLf++0xVvX9a9uqquryq9pxb99JV2LQ1p6o2VtWfV9UlVXVeVb23qn5xWvagqvpAVX18+nf0sO6jq+r8qrqwqj5cVX9SVXtPy86uKlf+GdzU8a6q46rqaUs83rXTz/vWffDUqvIasw1V9XvTWJ0/jdv9p5/Vi6bxe3dV/XBVPa+qnj+33l2nfbb3ata/KNPf2I8s0f4nVXXAatQ01HFoVZ1bVR+tqn+qqj/6Ltc/Yz3vux3ZP1X1uzvx+E+sql/ZmRrXu515zdrZ8auqp01/8z9UVed8N49VVXeqqjfd1Odeq7yIrX9HJvnH6f+x/Zwk/3lof1d3H5Rkc5JHV9V9Fl/iurbU+H4yycPn7j8yyYVb73T3z3T3QdM4/4ckX03y+3P9r03yqwureB2qqkryV0ne2d137+77Jjkiyb5V9e+S/HmSJ3b3jyR5UJJfr6qHT+s+LMmTkxza3fdKcp8k70mycRU2ZV3YmfHejm9OP/f3SvKfkhya5FmL24r1q6oemOTnktynu++d5KeSfHpafFR3/3iSU5L8ryTPTfKIqvrRafmLk/xBd395hcteVd39a9390dWsoap+LMlLkzy6uw/I7HX04u/mMbr7Z3fHfTfsn5sclLr75d39Z7uorJudnRm/qnpiZn+7D57evzw0SX0Xz/2Z7j78pjz3WiYorWNVddvM3sQ8IbM3OVvbfyjJbTN7cz4GqCRJd38jyXlJ9l98pevTtsY3yb8l+djcJz6/nOQN23iYFyc5o7v/71zbi5I8uao27OKS17OHJLm6u1++taG7P9XdL0nypCSv7u4PTu1fTPL0JMdOXX8vydO6+/Jp+bXd/aruvmhFt2B92ZnxXlZ3fz7J0UmOmUIZN/aDSb7Y3d9KZmPc3Z8Z+rwzyf7d/c3MPgg4qap+Nsn3dffrVrbcFbehql5XsyMf3lRVt57/lL2qvj7NtH24qt5XVRun9p+vqvdPMz3/MNd+XFW9anqMS6rqt7Y+UVX9yjSr9+Gqes3UdseqevP0ifo5VfUfpu5PT/K87v54cv3fmj+e1nl1Vf3xVM8lNTtS41XTNrx67vkurao7rMAYLtI2909VHZ/kVtOMxOuSbY7xpqo6a2p/W1XdZWq/fsZ6eszn12x2+5+r6sGrtsU7YdrWjy8xZg+dflYvmH5W9lxi3SOn5R+pG88sb+t3YH78fqiq3lqzIwbeVTccGfPXW2eKqurXt+6nzALub3T3V5Oku7/a3adM/S6tqj+c9uu5VXWfmh0984kpYG1ztnG9E5TWt8OSvLW7/znJFVV136n9iCSnJnlXkh/e+gs0r6r2SfKAzM2E8B22Nb7JbHyPqKr9MpshGt/kpKr+c2afOP7OsOhfMpulesxCql6f7pXkg9tZdt7Qdu7Uvty6LG1nxnuHdPclSfZI8gPfdXW7v79Pst/05u9lVfWTS/T5+SQXJEl3n5Hkysxmmf7bypW5an44ycu6+0czm5Eft/k2Sd43zby9M8l/ndr/MckDuvsnMvsb/fS5dX4kyc8kOTjJs6rqe6rqXpl9oPiQ6bH++9T3xUlO7O77JfmlJH8ytf9YvvN3Y97tkjwws2B7WpITM/u9ObCqDvoutn+t2+b+6e5jc8Ps8lHbGeOXJDllmlF9XZL/vY3n2tDdByf57azvGepxzJ6S5NVJfrm7D0yyIclvzK9QVXdK8vzMPtg6KMn9quoR0+Jt/Q7MOznJb05HDDwtycum9qOTPHMKnk9N8ptV9f2ZfQhzyXa24V+mmaZ3TbUfntn7yGfv6CCsR4LS+nZkZi8Gmf4/cr69u69L8ubMDg3b6sFV9U+ZvVAf392C0rZta3yT5K2ZTVEfkeT144pVdefMXmwftfVT48EfJvkf8Tu4pKo6afqk7Jzvcr0Dp0+8PlFVv7yo+nY3N3W8uWm6++tJ7pvZG5YvJHl9VT1uWvy6qvpQZoftzp8LdlKSc24mM6Wf7u53T7dfm9nM/ryrk2w9r/a8JJum2/smObOqLsjs7+t8uD+9u781zZB+PrNDcx+S5I1TW7r7S1Pfn0ry0mk/nJbk+2t2hMFy/qZnlxK+IMnnuvuC6XX4wrkadwfL7Z952xrjB2Z2iG+SvGY7j/GX0//z+3k9GsfsoUk+OX0Qm8w+BPmPwzr3S3J2d3+hu6/JLFBu7bOt34Ek1x8R8++TvHH6Of4/mc1kp7s/l+SZSd6e5Klz+2Q5p03/X5Dk/d39te7+QpJv1To+7245Dv1Zp6rq9pn9ATqwqjqzT267qk5Jco8k/7dmR7zHtn5mAAAFg0lEQVTcMrNzal46rfqu7v65VSh5XdnW+Gb2ZiXdfXVVnZfZpzEHJPmFuXUrsz96x2/rmPru/n/TH6//stANWT8uzOyT2yRJdz9pOjzl3CRnZvam8q/n+t83N8yGXpjZeUlv7+4LkhxUswtr3GolCl+ndma8d0hV3T2z2dbP73S1u6HuvjbJ2UnOnt7YP3ZadFR3n7vEKtdN/24Oxu8tGe9/u2/4bpNrc8N7mZckeWF3n1ZVW5IcN7fO/AdW8+ss5RaZzUxdNd9YVRdm9rvw4W2st/U5rhue77plnm+9WW7/7Epbx3G5fbbWjWP05ST77MTjbet3YKtbJPnyNAO0lAOTXJHkTsnsMLvpcL67b2dW6eby830jPs1evw5P8pruvmt3b+ru/TILRC9OctzUtqm775TkTlV111Wtdv3Z1vjuN9fnj5I8Y4lPY56W5KruPmmZ53hebvyJ8c3ZWUm+t6rmDz249fT/SUket/XQlemw0ecnecG0/A+TnFBV+86tKyRt386M97Kq6o5JXp7kpXMv5kxqdjW7e8w1HZTkU6tVzxp0l5pd8CJJHpXZIXU7Yq8kl0+3H7u9jpOzkjxy+hnf+gFZMjvi4je3dpo7bO5/Jfndqrrn1H6Lredn3Mwst3++XVXfM93e1hi/Jzec+3tUZodz7c7GMTs3yaaq2nqe+GOSvGNY5wNJfrJmV8fdI7OjWsY+S5rOM/pkVT0ymX2AW1U/Pt0+OLOL7fxEkqdV1d2m1f4ws3Mhv3/qd9u6mV+BMBGU1rMjk7xlaHtzkrst0f6W3PhiBEt5aFVdNvfvgcv0391ta3yvP9+ouy/ceqLj4LlJfrRufInwt4+dpsMenVuTZHoz/YjMXhQ+WVUfyGxW7hnd/a9JHp3kFVX18cxeYF/V3X8zrXtGZse3/13NLtn7nsw+YTtz7ilOn/vZfuMKbtqatDPjPfn9+b8XU9vWE7gvTPIPmb3Z3K2PXd8Jt01yyvTzen5ms9LHrW5Ja8pFSZ5UVR/L7LyfP97B9Y7L7FCj85J8cbnO09/g5yV5R1V9OMkLp0W/lWRzzS408NEkT5z6n5/ZuTJ/MdX2kSR33+Gt2n0st39OTnJ+Vb1uO2P8m0keP/38PyY3nLu0uxrH7MQkj8/s5/WCzGZlXj6/wvS3+NjMDpH7cJLzuvuvs+OOSvKEadwvTHJYzS4Y8YokvzpdQOapSV41HQnzx9NznVOzizK8KzefWextKh/2AQDArldVm5L8bXf/2CqXwk1gRgkAAGBgRgkAAGBgRgkAAGAgKAEAAAwEJQAAgIGgBMC6UlWPqKquqh+Z7m+qqkfNLd9cVf979SoEYHcgKAGw3hyZ2ZdcHjnd35TZlzgmSbr73O7+rVWoC4DdiKAEwLpRVbdN8qAkT8gNX6R9fJIHT194++Sq2lJVf1tVt6iqS6tq77n1/19VbZxmoc6avlT0bVV1l1XYHADWMEEJgPXksCRv7e5/TnJFVd03s2+vf1d3H9TdJ27t2N3XJfnrJL+YJFV1/ySf6u7PJXlJklO6+95JXpfEoXoA3IigBMB6cmSSU6fbp+aGw++25fVJfnm6fcR0P0kemOTPp9uvyWyWCgCut2G1CwCAHVFVt0/ykCQHVlUn2SNJJzl9O6u9N8n+VXXHJI9I8tyFFwrAbsGMEgDrxeFJXtPdd+3uTd29X5JPJrkuyfcttUJ3d5K3JHlhko919xXTovfkhnOcjkryroVWDsC6IygBsF4cmVnomffmzALPtVX14ap68hLrvT7Jo3PDYXdJ8ptJHl9V5yd5TJL/voB6AVjHavZhGwAAAFuZUQIAABgISgAAAANBCQAAYCAoAQAADAQlAACAgaAEAAAwEJQAAAAGghIAAMDg/wOyaYFYSLo8cgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f090680b9b0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(14,6))\n",
"plt.grid(axis='y')\n",
"bars = plt.bar(asset, csr);\n",
"bars[2].set_facecolor('green')\n",
"plt.title('Conditional Sharpe Ratio')\n",
"plt.ylabel('CSR')\n",
"plt.xlabel('Ativo');"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Com isto, conclui-se a melhoria significativa ocasionada pela mudança de exchange. Nota-se o ótimo desempenho alcançado pelo índice CMI20 mesmo quando comparado a Amazon, a empresa no setor de tecnologia que apresentou maior desempenho no último ano. \n",
"Agora que já obtivemos execução otimizada do índice CMI20, temos como próximo passo a expansão de nossas operações para mais exchanges, seguindo a ordem das maiores do mundo. Isto nos dará maior robustez contra ataques de hackers (provável), eventual falência das exchanges (menos provável), e ainda nos trará possibilidades de arbitragem, o que aumentará nosso lucro sem adicão significativa de risco na operação."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment