Skip to content

Instantly share code, notes, and snippets.

View natemurthy's full-sized avatar

Nathan Murthy natemurthy

View GitHub Profile
case `uname` in
"Linux")
export DOCKER_HOST="localhost"
#scala -e "println(sys.env(\"DOCKER_HOST\"))"
;;
"Darwin")
if hash docker-machine 2>/dev/null; then
export DOCKER_HOST=`docker-machine ip default`
#scala -e "println(sys.env(\"DOCKER_HOST\"))"
else
# Install release
./configure
make
make check
sudo make install
sudo ldconfig /usr/local/lib
# confirm install
protoc --version
import akka.actor._, concurrent.ExecutionContext.Implicits.global, concurrent.duration._
case object CreateChild
case object GetChildren
case object GetParent
case class Message(str:String, forward:Boolean=false)
class ChildActor extends Actor {
def receive = {
case msg: String => println(s"${context.self.path.name}: $msg")
import scala.collection.JavaConversions._
object ScalaSample {
def main(args: Array[String]) {
val rand = new java.util.Random()
final val N = Integer.valueOf(args(0))
var list = new java.util.ArrayList[Double](N)
for (i <- 0 until N) {
list.add(rand.nextDouble)
}
import java.util.*;
class JavaSample {
public static void main(String [] args) {
Random rand = new Random();
final int N = Integer.valueOf(args[0]);
List<Double> list = new ArrayList<Double>(N);
for (int i = 0; i < N; i++) {
list.add(rand.nextDouble());
}
import breeze.linalg._
def generateMat(n: Int): DenseMatrix[Double] = {
val mat = DenseMatrix.zeros[Double](n,n)
for (k <- 0 until n) {
var rv = DenseVector.ones[Double](n)
rv = rv*math.random
rv(k) = rv(k)*(k+1)
mat(k,::) := rv.t
}
@natemurthy
natemurthy / linalg_benchmarks.py
Last active August 29, 2015 14:19
linear algebra benchmarks
from numpy import linalg
import numpy as np
import time
""" This will generate a random NxN invertible matrix [1] """
def generate_mat(n):
mat = list()
for k in range(n):
rv = np.linspace(1,1,n)
rv = rv*np.random.random(n)
@natemurthy
natemurthy / bst-node.scala
Last active August 29, 2015 14:06
Print elements of binary search tree
case class BSTNode(payload: Int, left: Option[BSTNode] = None, right: Option[BSTNode] = None)
object Treeutils {
def inOrder(root: Option[BSTNode]): List[Int] = root match {
case None => List()
case Some(BSTNode(payload, left, right)) => inOrder(left) ::: List(payload) ::: inOrder(right)
}
}
scala> val tree = BSTNode(10,Some(BSTNode(8,Some(BSTNode(7,Some(BSTNode(6,None,None)),Some(BSTNode(7,None,None)))),Some(BSTNode(9,None,None)))),Some(BSTNode(11,None,None)))
class Animal(object):
def __init__(self, *args, **kwargs):
print "Animal args", args
print "Animal kwargs", kwargs
print "Animal name", kwargs['name']
class Dog(Animal):
def __init(self, *args, **kwargs):
super(Dog, self).__init__(*args, **kwargs)
self.name = name
object `map` {
def main (args: Array[String]) {
val start = System.nanoTime
println("\n(Map) multiplying 20 million elements by 2")
val dbls = (1L to 20000000L).map(_*2)
//val dbls = (1L to 20000000L).toArray.map(_*2)
//val dbls = (1L to 20000000L).toVector.map(_*2)
//val dbls = (1L to 20000000L).par.map(_*2)
println("(Reduce) sum: %d".format(dbls.sum))