Last active
April 24, 2017 22:50
-
-
Save nathanieltarshish/6efa4350bf2d7e645922a32423e4bb61 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from pyproj import Proj\n", | |
"import matplotlib \n", | |
"import matplotlib.pyplot as plt\n", | |
"import numpy as np\n", | |
"import math\n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The Floatset I have been using is of resolution 1/32 x 1/32 degrees. The tiling is done by uniformly covering the 2D lat/lon plane. This does not produce a spatially uniform tiling of the 3D sphere. The particle density grows as a function of distance from the equator. \n", | |
"\n", | |
"In the RCLV detection, the minimum RCLV size threshold is expressed interms of a minimum number of interior particles. Because of the non-spatially uniform tiling, the area of a polygon composed of N particles will depend on the geographic location of that polygon. I have been using a threshold of 163 particles. This approximately corresponds to a circular eddy at the equator with a diameter of 50 km\n", | |
"\n", | |
"`Area = np.pi*(50 km/2.)**2 km^2` \n", | |
"\n", | |
"`N = Area/(111(km/deg)*(1/32. degree))**2 = 163 `\n", | |
"\n", | |
"where we I have used the conversion of 111 (km/deg), which is valid for longitude only at the equator.\n", | |
"\n", | |
"It is helpful to know how the true length scale of a 163 particle object varies as function of latitude. \n", | |
"\n", | |
"Below, I taken a square in the 2D lat/lon space with 163 particles and projected it onto the sphere. I then calculate the spatial edge length as a function of latitude. An edge of the square has approx 13 particles, so it has lat/lon dimensions of 13/32. deg x 13/32. deg. " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"def PolyArea(x,y): #http://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates\n", | |
" return 0.5*np.abs(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1)))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"square_lats = np.arange(-81,65,13./32.) # corner lats of the squares\n", | |
"length_scales = []\n", | |
"for lat_0 in square_lats:\n", | |
" square = {\"type\": \"Polygon\", \"coordinates\": [\n", | |
" [(13./32., lat_0),\n", | |
" (13./32., lat_0 + 13./32.),\n", | |
" (0, lat_0 + 13./32.),\n", | |
" (0, lat_0)]]}\n", | |
" \n", | |
" lon, lat = zip(*square['coordinates'][0])\n", | |
" pa = Proj(\"+proj=aea\") #equal area projection\n", | |
" x, y = pa(lon, lat)\n", | |
" square_area = PolyArea(x,y)/10**6 #calculate area and convert to sq km\n", | |
" length = math.sqrt(square_area) #approx. length of square\n", | |
" length_scales.append(length)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.text.Text at 0x2b469adf1390>" | |
] | |
}, | |
"execution_count": 20, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1AAAANYCAYAAADKSAxcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XmYXFWZ+PHvm6ACshhwm3FBBcKwCFlBIAsuEJYZUGSA\nBMEFVxYRf+AI7su4AKOOLIKoqBONMiADSiQEEZKAmrVBFqcDCuqoiDSyiQrp8/vj3KKrb1d1V3eq\nu6q7v5/n6aerbt26dWq7t9573vOeSCkhSZIkSRrYhFY3QJIkSZJGCwMoSZIkSWqQAZQkSZIkNcgA\nSpIkSZIaZAAlSZIkSQ0ygJIkSZKkBhlASZIkSVKDDKAkSZIkqUEGUJIkSZLUIAMoSSMiIlZExNqx\n8jiNiojjI6I7InZv4jYXRsT6BtbbvnjsBQ1ud0FE3B8Rm218K5/aZkNtHQsiYmLxep85yPu9urjf\nPsPVNmk0Kvbn17a6He2o0WNdROwWEU9ExOSRaNd4YQA1xkXECcWB+SetbkurRcQlxWtR+ftrRPxv\nRHwsIp5R5z7PiIhTI+KnEfHniHi8uM+5EbFj1XofLba5TZ3tnF/cvl0/7ftssc4/9bPOwoh4cDDP\neyRFxAsi4iMRsVuNm9MQt/mJ0vtW769ykB3S4wyzZrcpNXubETER+Cjw+ZTS403cdAK6m7i9louI\nQyLiQ3VuHup7046f24ZFxAci4sqI+EMjQWREzI+In0TEoxHRVfwYnFNa54sRsTYiHoiIxyLi9oj4\nUERsvhHt3CsivhQRayLi7xHx9wbuc2VE/E9xeW5EXBURvy6OB7+LiKsjYu/SfTaPiJMi4tpinYeL\nx3x7REQDjzmveB3PqHHbDsVjf3uAbWwRER+PiGuK13jAkykR8bqIeDIiti2ew9ci4rbi+PdwRKwr\nntcmpfu9pli3s3iv7oqIiyLieQM91wGM6u/FMGvotUkp3QYsAT4+vM0ZXzYZeBWNcguAXwF7RsTL\nUkq/bHWDWuyvwPFAAFsDhwEfAl4GHFu9YkRsS97pTAV+AHwLeBTYCTgaeBuwabH6QD+avgW8C5gP\nfKbOOkcBa1JKv+hnO03/4dxkLwQ+AqwHbmvSNi8F7qy6vjVwPvDfwJVVy3/fpMcbr14HvBT4SpO3\n+yby920s+WfyfuQT1QtTShsi99490ZJWtUgRfH8C+B2wFpg3wPqfBM4gf7e/CjwdeDnwj6VVpwM3\nAHeT993TgA8ArwReNcTm/jPwZuAW4JfkfX9/bX168VinFot2Ir+/FwD3AduQjx3LIuLAlNKPivV2\nBL4AXAecQz52zAMuBGaSjx91pZSWRMSlwAcj4jsppV9V3fwl4HHglAGe6/OADwL3AOuA/QZYH+Bg\n4GcppQci4tnF8/1BsY1uYBbwn8AM8ne74mxgC/J+eT2wA3AycEhETEkp/amBx9bwuRD4n4h4UUrp\nN61uzJiQUvJvjP6Rfwx1k4OE+4APtbAtE4Gntfj1uAR4uMbym4EngeeUlv+AfKB8bY37PA04q+r6\nR4ANwDb9PP7dwC11bptdvFfvGeA5/BfQ1erPVj/te0XxPBbUuG05sLYJj/G84jHOrHP7kB8H2HQY\nXpPji8/G7k3c5n8BnQ2st32996PGuj8AftTqz1A7/wGbF/8vBP7exO2+uviM7NPq57gRz+FFxf+B\nvp/7Fs/1hCE+zvuK+08b4v2fAzy9uPylgd5H4IDi8V7Q3+cC+CNwVdWyZwP/VGPdbxTb266Btj4P\neBC4pmrZG4rX9+0N3P9pwHOLy3s1si8Aflvvvata54LimLlt1bJZNdZ7ZfGYH96Iz9Vy4Nrh+tyO\n5r/BHOvIJykeBD7Y6naPlT9T+Ma2Y4Au4GrgsuJ6LxGxXdGt/96IeE9E3BMRf4mIGyJi19K6X4+I\nRyLipRGxpEi9+L9yKktpm6dExF3ks4c7F7c/JyK+WqR6PB4RHRFxXGkbH42IDRHxytLyL0fE3yLi\n5c14gQoryGfInzoTGRF7ks/EfSWl9D/lO6SUnkgpvW+Qj/NtYLeond62gHxQ/c4gt1lT5FS6rxev\n8V8j4ucR8cbSOpVxF68r0mJ+W7z3SyPipTW2+e6I+GWxzk8iYu+oyk+PiFeTg9EELCy2vaGcMhIR\nu0bEj4vt/DYi3tuM51yjvf0+TtXzPyIiPhURvwUejSI9KCKeFTmF6NfFa9gZEafVeJxjIqfmPBIR\nD0XELRFxYo0mbRYRX4g8xujRiLgsIibV2N7JkVOV/lp8v74YEVs18HwnRcQ3i1Sbroj4KjDg/Yr7\nbkb+oXhdaXllTM/nIuLIiLijeD1viohdinVOiJyu83hE/CgiXljaRq8xUNEzLuvdEfGOiLi7uO9P\nI2JqI+2t0f7qbZ4WEfcW7bw+InYurbtHRHyj+Cz/NSJ+HxEXl9+LiPhksc3JEfHdyKmzP46I/wLe\nDlRem+4o0sCizhioiHhh5PSm3xXP9e6IOC8i+j0GF9+xJcXn6rHi8/yK0jpbFZ+Re4rnc19xn2bu\nIweUGj+rfSrw25TSBQAR8cxBPtS9xf9nDfJ+AKSU7k8pDZi2V+Vg4NaU0v/1s82/AH+qblNK6U+p\ndjbBFcX/uqnaVdu4j9xTd0DklMdnkXuzbk4pfbmB+z+RUvrjQOtVFN+/fyD/ZujPvfRkcVQea0WN\nx/8x8BDFsb+Bx39X8d2oHGNqjgmMnFr/8WK/89fi+/7piHhaab3Niu/ZnyKnH34vIl5U6zvaYPs2\nen9YrNPU73U0cEwtPvPLyCfU1QSm8I1tC4DLU0pPRsQi4J0RMT2ltKbGum8kd7+fR05LOwX4UUS8\nPKV0f7FOIo+buwb4CXA6cCDwsYiYmFL6aGmbbwGeAVwE/A3oiohNgRvJwcq55LSAfwW+HhFbp5TO\nLe77SeBfgK8WbXgsIuYBbwU+kFL6+Ua9Mr1VgoXqsUWHFs93YRMf51vk9JMFwFM778jpL68HfpxS\n+sPGPkhEPB9YCfwd+CLwAPlHwCUR8czKD5cqHyT3tH2WnI7yPuCb5F6xyjZPJqej/Jh8AH8ZcBXw\nMLlnDXLK3keLvwvIwRTATVWP9Wzgh+TUne8ARwJnR8QtqSf1pRkG8zgfJafDnAVsBjwROYhaDjyX\n3NvwW3LqylkR8dxK8BwRB5F7g5YAXyb/qNgF2IecZlgR5NfkT8CHya/fe4rHfSp1NHJq05nk79j5\n5B8eJwDTI2J2SqnmWKKICOD75LPMFwD/S/5MXUJjKZ8zyb3E9QYkvxJ4LfmM/QTyj7rvR8QXyN/J\nc4FtgX8jpwAeWHXfemmnbySfub+A/Pr8G3B5ROxQ73k24Phim+eS38tTgOsjYreU0gPFOvOAF5FT\nx/4A7Aa8g/xazyq1G+B7wC+K9gHcSv6RORc4rmh73fZGxAuAVeT964Xk9+ZF5P3epsBf6txvf3Kv\n4M/InxnI+9QfR8Q+KaV1xbKLyfvKc4t2Prt4HjsDdfeTkcewbF3v9pKuVJzGboJXkY8t7yV/1reJ\niN8Dn0gpXVijnRPJgckzyGl+HwP+DKxuUnsGcjA5La3cri3JZ/WfTX5fdqKxE2D/UPxvNKXtIvLn\n7PPk49Ik8ud1OBwM/D6ldEv1wshpjFuSv1t7koPgu8nDA+oqXqNn0sBzjYh3kPd5y4DPkXvPv09+\nr++uWi/IAd6e5O9TJ7AH8P+K+xxZtdmF5P3W18nfwVeRj1sb+1ke8v5wGL7XgznWrQEOiojNi6Bf\nG6PVXWD+Dc8fOXe8G3hl1bJfA58rrbddsd6jwPOrls8slp9TtewSci/J50vb+D75h+A2pW0+SCml\njfyDZgNwdNWyieQf2Q8Bz6xaviu55+oi8oH+t8BPgQlDfE0uIf/g37b4exl5p7sB6Cite3mxfKsG\ntz1gCl+x3hrgl6VlhxSv1xsbeJwBU/jIB4tfA1uXll9KPpA9rbj+6uJxbwEmVq13avFcJhfXn04O\nwlZUv/bknX43VekV9JMmQg5INgBHVi17Ojm99NuDeB8bSeEb8HGqnv8vKKWXkoOqh4CXlJafRT4Z\n8Pzi+rnA/QO09/jica4uLf9PcpC7edXz+jtVaUDF8ncXz+eY0uegs+r664vHeHfVsgnFe7ah1vtR\neoy3V7/npe9mN/AY8I9Vy99VLP8NsFnV8s8W2/nHftpaSSv8A7BF1fLXFfc9oNHPQo1tPkyRslQs\nr6SUfqZq2TNq3P+Y4rH3qlr2ieK+X6+xfs3Ur6rX68yqZd8q3te6KZyUUvjIQdldNT4Lm5F/tP6g\natnDlPbrDb5mlc//QH+93s+N+X6Sf+x1A/eTfxifAhxB/gHYDby5xn32LbXndmDfwT7fOm3tN4WP\nPI6pG9i7xm1Lq9r0OHlf0G+aOnk/9AvgF4Ns58uLz9CG6s/yILcxYAof+Tj85Trfj+r34CfAzg08\n5keLNvf7fpFTDe8nBxXVx6J30PcY8ybyCb89S9s4oXisGcX1PSl994vl3yzW6zdNsU47N2p/2Ozv\nNYM8ppLTPzcAUzb2u+OfKXxj2THkHyg3VC37LnB0cQan7IpU1fuRUlpF3pkdXGPd80vXzyOfHXxN\nafllKaWu0rKDgD+klJ46U5dS2kDuKdmCfFa3svx2cmDyNvIZ/m3IQcbGVPTagryjvp+8Izub/CPz\ntaX1KqlPj2zEY9WyENiulJqwgBwofm9jN168t68jF1fYJHIlpW0jF8S4lnz2ckrpbl8t3oOK5fRO\nadyruN+XS6/9N8k7+cF4KKV0aeVKymkFqxhgIPcQDOZxLkkplQf9H0H+7jxSeg2vIx/sK71zfwa2\nKs4q9ieRTwRUW04+IL+4uL5/cf0LpfUuIh+wD+ln+weRA7un0nqK9+o8GivgsG3xv16FxyUppd9V\nXf9Z8f/S1LtiX2V5I+/nt1NKj1ZdL3/uhuLyVJWylFL6KfmkxcFVy/5WuVykAm1btDvIRQqqJfJZ\n7iEpek8OJe9fbx3EXaeTX4dvlz5/zyT3Au9Xte5DwCuKnufBWEPeZw/0tz95f9kMWxT/twHelFL6\nz5TSZeTP9v+SC/qU3Vq047Xk/fVjNJia2gSHkNPgf1rjttPIr83x5M/PM8j7hv58iVxcoVaKb38e\npqcwydJB3rchkSvI7kXuHSlbSn4PjiDvj56g572st71XkTMuvpVSuqm/dYvH3Rb4UulY9DX6HoOP\nIPfA3F36bvyY/B2upP0fSP7+fql0/3PZ+KI2Q90fDsf3ejDHusr+/dkDbFMNMIVvDIqcV38U+Qv5\nsqp4aSW5x+XVlMY6kIOJsk5ymkm1bnLlovJ6AC8pLb+nxja3I1foKbuTvFPbrrT8bHLFu5nkM0b/\nW+O+g/E4uQpTkCvGvY+cplUu21wJDLZk8EFCfxaRn9MC4ObIY08OBb6fUmpGsPZ8cptPoPZBOpGf\nb7Xy2IXKTrYyJmS74n53V6+UcmrovQxOrXESD5LP9DbTYB7nnhrLdiSnStT64Vj9Gp5P7v25JiL+\njxykXppSqjVvSSOvM/R8n/KDpfS3iLiHvt+NatsB/5dS+mtp+WC/L/V+WJTb/lDx/7c1lgc9z6k/\nA70eQ1FvP/YvlSvFD5aPklNdnlO1XqJ2Slu/aUoDeB75x9Htg7xf5XNaq0x1AlKRjvsYOZX6a8Bv\nI2I1sBj4Zkrpnv4eIKX0Z+D6QbZrY1X2s39LVWNLU0rd0VNx7vmlk3mPVLXzqog4tvi/e0qpujrn\ncDiYXMChT8pXqkpzi4hvAR3kdK2aZcIjlyN/E/D+NPh05QvIPVD3A5+LiKkbeSKxloPIgVH5twHF\nSYnKe/C9yOOelxbptn3S8yKPn/5vckpwI+mGlWNMr+9vSumJYt9XbUdyEDrQvvnFwJMppfIxqtY+\nYrCGuj8cju/1YI51lf17s9JxxzUDqLHpVeQ866PJZbOrJXLvVJ+d5DBoxlwy29OzI2jGoOgNKQ9s\nBSByAYRfkM+qVfdCVQb/vpzeY3g2SkrpDxFxPfCvEfHu4jE3J6f5NEOlV/kb1B+/dUvp+oaaaw1P\n6emReqzBPE6tz2mQxyH9R53t/C889X7uQR5Xc1Dx95aI+GpKqVymeCRf58GqjA+aRK4mVlav7Rvz\nnFr1elxOPhP8WXLvxmPknoPF1J4bsZlzYjWq0o73UH86gMcBUkrfiYgbyT3P+5N/eP1bRByWUqq7\nn4884L7mvHU1/LFWEDEEfyL/SK/147fyuZtEzp6o53JymvLR5AyFYRG5uMUccsnzfqWU/h4R3wdO\njYjjUkpPlrZ1PPDvwBdTSmcPsh1HkvcrJ5B/oF8FvJc8FrWZDgKWp8bGxlxGHov2L+TU+KdEnutw\nCfm9/ufU3DnlIH83Osg9gLX2Fb9u8uPVMtT94XB8rwezH60EcpaUbwIDqLHpDeQc2BPo+yV6PfC6\niHhndSoLtc9WTKbv2fkJ5K7h6rM4OxX/y+vWci+1A6Gdq24HnkpH+zr5LM7ngQ9ExGWpRlW8oSp+\nAH8e+HBE7JlSWlnc9H3ywNA30MQAqvAtci/gPHKA+2fyGIBm+AP5B+GElFKzzi5XKi7tQNVrUQxC\n3478WasYK2e2fkkejzfga1ik//2g+CMiLiYHUZ9IKQ3mYF757O9E1ZnMYgD3S6idWlN931kRsWmp\nF2rASl+FX5Df45cy+F6rdtLvfqzofZoDnJFS+mxlhehn8uo6Gv2c30f+PtaqvNmfSm/vww1+Bn9P\n7qW4ICKeQz5Jcib9nyibQ2PpYIlc9OJ3A63YQDs3RMQtwMsjYkKpF+UFxf+B0gU3pVQBbphUUmqX\nNLj+ZsX6W5D36QBExOHkNNDvpJTeM5gGFEUYPk+el+nCYtmV5OPVd1JK5R6PISmOtfMozWvWj82K\n/73eg8jzRl1Lfn8OSD0FqAZSOcbsSE6pr2zvaeR9X/Ux5m5gp+oTof1sc5OI2K7UC9XsbIfBGInv\ndX9eSg64amUBaZAcAzXGRK5y9zpyStgVKaXvVf+Rx0RsRU4bq/baiPjHqu3sSc5LXlzjYU6qcf3v\nQCNpCYuB50fEUVWPNZE84d4j5Ap9Ff+PPAj8beRqNTcDXypytauf804R8aIGHruec8lnfd5fWVCM\nnbgGeGtE9Cn7GRFPj4hBnUms8j3ymKeTyAet/64xBmdIivzxK4Ajo1S+GZ46wPW6SwObXUn+QfD2\n6F12+Y30HYvwWPF/SCWGW6De878UmF3k8fcSubz5hOJyrTP4lQpJzxhkW5aSD27vLi1/BzkNrL8A\nanHxeE+lyxTfq5No7D1eRZ7XZcYg2ltP04LoyKV8dyp+SDbi8OoxAxGxN7m3qbIfq5ytLR/7TmVw\n7X6MXMZ88/5WKr6PV5L3r3sMYvsryUHf6bUeo/I9jlxWuddrU/xo/T0Df/5aMQYK8ljcp9O7+uRm\n5JNJt1RSworv2cQa938b+b1a1cQ21XIQOXDpNY63+CFLadk25OPuL4vUyMryV5JPmP2IXElvsD5D\nTjOtToN7NznYOLfmPYZmb3JvZK/jfXHCoZbKe7C6at0tyMfM5wIH1kid68/PyGPN3ll6z99KTkmv\ndil5HHGfnsHIZcsrwd0S8ut0Qmm1kyl914v77VRnf76xqh9rJL7X/ZlOLslvBb4msAdq7DmMvMO5\nqs7tPyUfDI+hd2nWu4AVEfElesqY308er1Ptb8CBEfF1eopMHAT8e+opE9yfL5MPBl+PiBn0lDHf\nGzilyP2l+PH/cfIA/8XFsjeRu+6/RB7jVXEnecD/kGamTyl1RcQlwLsiYqeqcVbHkXfCl0fED8gH\nwcfIZ7COJo83Or1qUwH8v4go75y6U0qfrnq8R4p0jyPJO9da+dD92TQiPlBj+Z9SSheRx3XNAVYW\nvSF3kg+OM8jFD6oHpQ6YLlWMwfkYubTsjyLiMvKZrDeSe2qqDxDryYHwCRHxV/LrdXNq35nP6z3/\nz5LTU35YfDbWkc8s7w4cTj5b/jD5c7wFebzh/5F7Z08E1qSUqs/y1Xucp5anlO6LiM8CZ0bEYnLA\ntDPwTnLVq/5KJF9B/m6fExHb01PGvN8f+FWP/XhEXEf+wfzJRu7Tj2am4P0ruZzvG2jse/JL8n7s\nQvJzP4V89vocyON+IuJm4Izih9bvyIPNXzzIdlemgjiveN2eSCn1KXVdeD9537QiIi4ivzcvKJ7b\nzKofM9Wfhe6IeCv5M3Bbsb/9XXG/V5P3za8nn6j4VUT8Nzlwf4w8n9cU+gbivTR7DFTksUkvpucH\n735FzwbkSoaVeZQuIFfwvDDy3Dm/IY8NegG5IEPFq4H/KPY3d5F/OM4lH+N+StX3ofjR/QRwXUrp\ngAHauR358wS5aEhU7U9/lVKqfM4OLtpatjQifkX+MfxHcg/Jm8nj3V5f9TgvBf6naNcVwFHRu35T\nR8qFkuq1cy/ysfLz1QVIUkq/KfbHZ0XEoSmlesf6ynbeTX5PKicZXxs98/x9oTjmHgzclVIqjw96\nU0S8hXwS4FfkE2YHkj/P30u95376Dvn1vBjYPSJ2r7rtkf7aWYx1+hD5BO+PI+K75IyH4+g75vrr\nFPuFiHgN+cTqJuR95b+Si0jcmlJaWfTWnVYEvauK27avPGzVNvchn8D6IPCpeu0cohH9XtdtRO7N\nm0P9tHQNVmqDUoD+Ne+PvKN7FNi0n3W+Ru4BmURPyfH3kvNy7yHPS/JjYLfS/S4h/2h8CflM0yPk\nL/+HSuttRz7Te2qdx382ebDtfeSenw7g2KrbJ5CDs3uALUv3PbnY9hFVyzYAP2rgtbmEXLGm1m0v\nJfeifa20/Bnks9M/JacSPk4elH4usH3Veh8p2lHr7281Hu9fitvuGeT7+1/9PM4dVes9h3wwuqd4\nr/+PHAy+sWqdSunkQ0uPsT01Sl+Td9y/Kj4fPyH3Dq4Driytdyg5v/tv1dshV1lbU+c5/e8gXoPn\nFds9o87tDT1OvedfdfszyQfTzuJ9/wN5jpJTKMq5kytCXUM+M/g4+WB/HvCcqu0cXzzO7qXt9ypd\nXbX8JHLRgcr79p81vgd9XjPy9/mb5N7CB8jzHE2t9V7Web5HkH/sVU9nMLG4/3/U+YycXOc5HVqv\nrf3ct/JYZ1QtO76R9tNTxvzd5H3ZPcXn9EfALqV1X0AeR9NVvE7fIo8ZLT/2J6gzlQF5H3UueR/2\nJEUp7FrPoVj+IvK4xD8U7VpPrrY4ofS6lT8LU4q23l/c75fkQHJOcfvTycH+uuJ9f4gc3B0/mP1K\nM/7oKalc66/8vJ5D/iFceV4rqJpyo1hnh2Kd9eQfkI+RU5g+SOn4Rk4lq1lyvkY7K+Xba7Xz2mKd\nPYp19qhx/5PI+4H7yPu43xfv0SvqfBfq/dUto118jtYVn+PN69zeQd4fbzbA8/1NP22olNdeS2l6\nkmL5THKP4T3k/dvD5MDxJErTiQzwOJ39tbFqG+8ip7n9hRwY7V281ktqPP/3kYOLx8ljen5GTm+r\nngplM/L++E/Fd+NyclpzN1W/T6req5rHlBr7qCHvD5v5vWYQx1Ry8awngReP9L5hrP5F8cJqnCrO\nxv0KOC2l9LkB1r0EeH1KaaRKyKqNFWlsD5DLUQ+2LK/aTHEW/05gYUrp461uz2AUvW7rgfeklL7Y\n6vZoZEXEoeQfpLulja/UWqmYd0JKaWNSw0eFiPgH8pjLA1JzJzNvS0Xmy0rgqFS/13jMKbJoHk0p\nHd3qtowVLR8DFREfiYju0t8dpXU+HhG/i4i/RMTSiNihVe2VxqOIqJV3/RZySsdAg3k1CqQ8Xuej\nwElV4wik0WA/cuDfrAIod5N7MseDrcjf+2UtbkfTRR4TXnYKuVdo+Qg3p2Uil5U/gDyWXE3SLmOg\nbiN3dVZyRZ8qARoR/0buLj6O3I38SWBJROyc8oRhkobfrGJ8zuXkXqeZ5Lz/DnJ+v8aAlMd/DHZM\nntRSKaWmBjupamLSsa4IOhutvjfanFGMxbqBnLZ3CLkoyvmpaq6xsS7lsXZPb3U7xpp2CaCeTPXL\nXZ4CfCKlVCkRfBw59/i15Gos2niJxitQmfM5Pv2SPB7nZHJBii7yGJszU++Z46VWGcx+TNLYdzO5\n4MWHyWNafw18CPh0f3eSGtHyMVAR8RHyhGgPkwdN/4Q8kO83RaWYu4EpqaoKTUTcAKxLKZ3agiZL\nkiRJGqdaPgaKXN3sTeT5cN5Jroa2LPIs4M8nn1G8r3Sf++hdilmSJEmShl3LU/hSStWzfN8WESvJ\nM0gfCfxiKNssJn+bR08JZ0mSJEnj06bkaXiWpMbmLe1XywOospTSQxHRSZ4D4gZyYYnn0bsX6nnk\n+vj1zCPP7SFJkiRJAMfQhGJJbRdARcQW5ODpGymlX0XEH8gV+m4tbt8K2As4v5/N3AOwcOFCdt55\n5+Ft8Dhz6qmn8vnPf77VzRhzfF2Hj6/t8PB1HR6+rsPD13V4+LoOD1/X5rvzzjt5wxveAEWMsLFa\nHkBFxNnA98lpey8APgY8AXynWOULwAcj4i7yk/4EedK3K/vZ7F8Bdt55Z6ZNmzY8DR+ntt56a1/T\nYeDrOnx8bYeHr+vw8HUdHr6uw8PXdXj4ug6rpgztaXkABbyQ3JW2LXA/sAJ4RSU/MaV0VkRsDlwE\nPIs8+dlBzgElSZIkaaS1PIBKKc1vYJ2PkmfKliRJkqSWaYcy5pIkSZI0KhhAaVDmzx+ww1BD4Os6\nfHxth4ev6/DwdR0evq7Dw9d1ePi6tr9IKbW6DU0XEdOANWvWrHEQniRJkjSOrV27lunTpwNMTymt\n3djt2QMlSZIkSQ0ygJIkSZKkBhlASZIkSVKDDKAkSZIkqUEGUJIkSZLUIAMoSZIkSWqQAZQkSZIk\nNcgASpIkSZIaZAAlSZIkSQ0ygJIkSZKkBhlASZIkSVKDDKAkSZIkqUEGUJIkSZLUIAMoSZIkSWqQ\nAZQkSZIkNcgASpIkSZIaZAAlSZIkSQ0ygJIkSZKkBhlASZIkSVKDDKAkSZIkqUEGUJIkSZLUIAMo\nSZIkSWqQAZQkSZIkNcgASpIkSZIaZAAlSZIkSQ0ygJIkSZKkBhlASZIkSVKDDKAkSZIkqUEGUJIk\nSZLUIAPtrIo0AAAgAElEQVQoSZIkSWqQAZQkSZIkNcgASpIkSZIaZAAlSZIkSQ0ygJIkSZKkBhlA\nSZIkSVKDDKAkSZIkqUEGUJIkSZLUIAMoSZIkSWqQAZQkSZIkNcgASpIkSZIaZAAlSZIkSQ0ygJIk\nSZKkBhlASZIkSVKDDKAkSZIkqUEGUJIkSZLUIAMoSZIkSWqQAZQkSZIkNcgASpIkSZIaZAAlSZIk\nSQ0ygJIkSZKkBhlASZIkSVKDDKAkSZIkqUEGUJIkSZLUIAMoSZIkSWqQAZQkSZIkNcgASpIkSZIa\nZAAlSZIkSQ0ygJIkSZKkBhlASZIkSVKDDKAkSZIkqUEGUJIkSZLUIAMoSZIkSWqQAZQkSZIkNcgA\nSpIkSZIaZAAlSZIkSQ0ygJIkSZKkBhlASZIkSVKDDKAkSZIkqUEGUJIkSZLUIAMoSZIkSWqQAZQk\nSZIkNcgASpIkSZIaZAAlSZIkSQ0ygJIkSZKkBhlASZIkSVKDDKAkSZIkqUEGUJIkSZLUIAMoSZIk\nSWqQAZQkSZIkNcgASpIkSZIaZAAlSZIkSQ0ygJIkSZKkBhlASZIkSVKDDKAkSZIkqUEGUJIkSZLU\nIAMoSZIkSWqQAZQkSZIkNcgASpIkSZIaZAAlSZIkSQ0ygJIkSZKkBhlASZIkSVKDDKAkSZIkqUEG\nUJIkSZLUIAMoSZIkSWqQAZQkSZIkNcgASpIkSZIaZAAlSZIkSQ3apNUNKIuI9wOfAr6QUnpvsewS\n4I2lVa9JKR080u2TJKmezs5O7r77biZOnMiGDRuYOHEi9957LxHBi1/84qeWNfu2HXbYgR133LHV\nT1+SxoW2CqAiYibwduCWGjf/EHgTEMX1v41QsyRJekqtIOmOO+7gK1+5hNtvv5Wc3NFNPlxFcXlC\n6X8zb8umTZvBmWe+n66uLoMrSRpGbRNARcQWwELgrcCHaqzyt5TS/SPbKknSeFYdLPUfJAFsCUwB\nfg28GLgT2BzYrmpZs2/7FHApcD1r167hiCOOpJHgau7cuQZVkjREbRNAAecD308pXR8RtQKo/SLi\nPuBB4HrggymlrhFtoSRpTKsETI899hif/vRZrF27ioGDpGcADwMfBE4Hzi7+A3yytKyZty0Evg10\nFG1qNLjK9thjKh/60AfYfPPN7aWSpEFoiwAqIo4m7/1n1Fnlh8DlwK+A7YFPA4sjYu+UUhqZVkqS\nxpLq3qU///nPnHXWf7BmzUp66itVgqWBgqR3F9efW1yv/KfGsmbe9kJgMYMLrj5NJai65ZZbOOKI\nI57a6i677Mbb3/5WDj74YIMpSepHywOoiHgh8AXgNSmlJ2qtk1K6tOrq7RHxc+BuYD/gx/W2feqp\np7L11lv3WjZ//nzmz5+/sc2WJI1CnZ2dLF68uEYq3kRgC3Kw8SvgIXqCJeg/SDqkuO2PxfU/Vt1W\nXtbM266u0Zb+gquv0juoqvRSfQu4iTvuuI33vOc9vOc977F3StKotWjRIhYtWtRr2UMPPdTUx4hW\nd+BExGHA94AN9ORITARSsewZtXqZIuKPwAdSShfXuG0asGbNmjVMmzZt2NouSRodVq5cydve9k5u\nvbVSo2hL4KXkIOK5wC/oCTYqPUzfoKcA7A3kc3a1UuoqvT0/ZXjGOdW7rRLoVbdlMM+h0u4fUe6d\nKo+hsndK0mi2du1apk+fDjA9pbR2Y7fXDvNAXQe8nHw6bI/ibzV5z75HneDphcC2wO9HsJ2SpFGi\ns7OTH/7wh1x22WVMn74ne+21N7feege5l6mb3LvUAZxBDp6gp/fmkOJ/da/Pb4GDyUHGlKr/zwBO\nBg4trncAfy7+/50c4FQva+Ztj5AP45+sasunistfrvEcyj1WlV6qvwHnAlfR0zv1LOBCYDYw4ane\nqcmTJzNlyjQuv/xyfvjDH7J+/frab4AkjWEtT+FLKT0G3FG9LCIeAx5IKd0ZEc8EPkIeA/UHYAfg\ns0AnsGSEmytJalOdnZ10dHTUGMu0OTlo+hv9p+JVgo1ysHQnOUj6NPBXenpousiJE08A73xqK3vs\nsQcf/vAH2Wyzzdhkk0249957Adhuu+148skn2WSTTZ76v7G3bbPNNvz7v3+mqtjFE+QgaAK9g6s7\ngYtKz7MSUEHflL9K79RKYGv6Gzs1bdoMLrroS8yYUW8YsySNLS0PoOqo7nXaAOwOHEc+JfY7cuD0\n4XpjpiRJ48fKlSt517tOKoKIWmOZ3kUODKD+eKXqXqV3k3tyKsFS40FSK8qDH3744axfv5677rqr\ngeCqOqj6ctVW6vVOQf2xU5UKf6uZOXMm06fP5H3vO42pU6ea5idpTGv5GKjh4BgoSRr7egKnNeQx\nTf9A7bFMN5DH/kD98Ur3AC+hp/em9xxKH/jAGXR15ZkzRtscStXB1R133MHFF3+tqoAGwNPoqTJY\nfu2g/tipm+nvNbNXSlK7aPYYKAMoSdKo0TtNbzU5Pe9RehdSqBROuIH8w7+RYgm9A4Cx3ptSCaoe\nf/xxPvaxT9YorlHpvYO+BSluIL+u1fNh9e6VqrD4hKR20OwAql1T+CRJekrfNL3NyAFPJT2vv7FM\nlZS8R4Cb6C8V78knnxwXZbt33HHHp55jJQVw8eLFRe9U9Riqp1F/7FQHfXulOsjFJ2qXRv/KV75s\nr5SkUc8eKElS26qfpldOz6v8kLdXZGMNrndqML19mel9kkbaWCxjLklSL11dXcyevR977bU3a9fe\nSU/p8UrJ8Uqp8XLFvHvIwVOl9Pc7qfx4nzZtBqtWreL223/OKaecYvBUx4477shBBx3E4Ycfzi23\nrKWz8xd84QufY9ddt6OnfHpl2sZyr1S90ugXAq8C6FV0YvXq1SPzpCSpiQygJEltoXruppe+dAdW\nrFhDT5oe9E7Tq07Pq56D6eHiP0A306fP5Lvf/S6dnZ2sWbPKXo8h2HHHHTnllFO47bZb6OzsZPHi\nH3D55Zex1VaT6FvRr1Zp9C/SXyA1e/Z+PPjggyP1dCRpozkGSpLUUr3HN00gz2SR6EnTK5ceL5ca\n7xnTNG3aND7wgTPYbLPNxsVYppFWPXbqla98JYcd9jqWL7+RnjFTX6pau9wrVUnvW0tPwAsrVtzI\ndtu9jOuvX2qAK2lUMICSJLVEV1cXhx12OCtWLCePr6meuwl6AqdaaXovoTpw2nLLZ/kDfIRNmjSJ\nZctu6DVmKs87tYbexSfKgVRlnNqFVMZHPfLIn5k5cybTps3gzDPfz+abb24ALKltmcInSRpxK1eu\nLKXpfZDcI/H2qrUaSdODWbPmcu+9vzR4apHqMVNr1qxk1aqfsfvuu5DLy1f3SlVX76uX1reWI444\ngoMPPpjJkyeb3iepLRlASZJGzMqVK5k+fU/22usVPPzwg/Qd31QpDlFJ06sETtXFIKZx+eWXs3jx\nYjo7O1m+/AYmTZo0ck9C/ZoxY0ap+MTL6JveV2t81BRgq+J/Vknvs9iEpHZiACVJGnY9gVOlql5l\nCo1KwFSeu+kecjW9nsBpyy2fxapVq1izZhWHH344Bx10kClebay6+MSqVT9j2rSd6aneV07rO4Mc\nRL2EnvS+3CtVSe+zap+kdmEAJUkaNrXLkb+rao3y+KZKr9M0TNMbO2bMmFGk960sqveV0/oqPZD9\npfdZ/lxSezCAkiQNi77jnCqBU700vfpzN5mmNzbMmDGDe+65m9mzp9M7re+PVWtZ/lxSezOAkiQ1\nVf1xTuXJb++hb5reVr3GNzl309hTqd7Xk9Y3gTyf1D8Va5TT+yqBVKX8ebZixY3suOPOBlGSRpwB\nlCSpKQYe51Suqlc7Tc/xTeNDT1rfz5g2bTLwC2AifdP7KoHUS8jjoxYW/8/mgQce4YAD5o1swyWN\newZQkqSN0vg4p3pV9UzTG88qgVRnZyff/e63mTFjF/ovf34Q+fNzOvAXVq9exW67vdxxUZJGjAGU\nJGnIurq6mDx5l0GMc+obOJmmJ8hV+4488khWrfpZKb2vuvz5HOBY4KdUj4u6/fbbLDAhacQYQEmS\nhuyAAw7kgQfuY3DjnJ5l4KR+9U7vqy5//l0sMCGp1QygJEmDtnLlSnbddXfWrFlVLBncOCcDJzWi\nb/nzjxS3DFxgwgl4JQ0XAyhJUsOqC0XcccfdVbc4zknDp1L+fPr0XYsl9QpMOAGvpOFnACVJGlDt\nQhEfK251nJOG36RJk1i9eiWzZ88l4qJiabnARP20vgMPPMS0PklNYQAlSepX/Qlxj8JxThppV155\nBQccMIu+BSZqTcDbU/J86dJlHHro60a6uZLGIAMoSVJNXV1dHHjgIf1MiLuM/AN1H6rHOc2YMdNx\nTho2kyZN4pprrq5RYKLWBLw9Jc+7ux9lxYobmTlzT3uiJG0UAyhJUk2HHXY41167gv4nxL2anC51\nNhMmbMGsWXNZtWql45w07PoWmCjPG1UpeX4z1QUmVq9eZYEJSRvFAEqS1Eulwt6KFTeS0juqbqlV\nKOJYcvre6ey//xyuuuqKkW+wxrVKgYnZs6fTO62vUvL8JVhgQlIzGUBJkoDehSJ6Kuw1PiHuNddc\nbc+TWmLSpEksW3ZDaQLeSslzC0xIai4DKEkSXV1dTJ68S1WhiEqFPSfE1ehRPQHvLrtsX3WLBSYk\nNY8BlCSJAw44kAceuI++FfacEFejz4wZM7j99luZPn1mscQCE5KaxwBKksaxyninNWtWFUvKFfZe\nQXWv06677uaEuBo1li5dwrbbPg8LTEhqJgMoSRqHekqUV493goEq7N1228/tddKoMWnSJNavv3NI\nBSYcFyWpHgMoSRqHekqUV493KheKsMKeRr/BFZhwXJSkgRlASdI40tXVxYwZe5ZKlFfGO91DvUIR\nVtjTaNdYgYm+46J22+3lpvRJ6sUASpLGiZUrV/LSl+7AmjW3F0vK4532obpQxIwZMy0UoTGnfoGJ\nyrion1Kd0nf77beZ0iepFwMoSRrjesY7vYKHH36QviXKa493WrVqpb1OGrP6FpiojIsqp/TdAJzO\n0qU3MX/+G1rRVEltxgBKksa4nvFOqVhSLlHueCeNP30LTFTGRVVS+j4FfBvYDzib7u6HWLLkh3zv\ne99rSXsltQ8DKEkaoyolynuPd4KBSpQ73knjRXWBiZ5xUZWUvkspp/NB4vWvf73pfNI4ZwAlSWNM\n7RLllfFOlUp7PSl7sDkzZsy0RLnGrcq4qNmz5xJxUbH0eqzQJ6kWAyhJGmMWLDiWpUtvoneJ8sp4\np3vIqXo9KXvbbrsl1167pBVNldrKlVdewQEHzAKiWGKFPkl9GUBJ0hhy2WWXsWTJYrq7314sKY93\nmkZ1pb1Zs+ayfv2dpuxJ5JS+a665mssu++9iiRX6JPVlACVJY0Albe9f//XIYkm5RHnt8U7Ll99g\n8CSVvP71r2fevIOZMOHLxRIr9EnqYQAlSWNA30p7/Zcod7yT1L9Fixay//77YoU+SWUGUJI0inV1\ndTF79txSpb1XYYlyaeNU0vms0CepzABKkkaxww47nJtuWltcq6TtHUU5ZQ+Cyy+/3BLl0iBZoU9S\nmQGUJI1CXV1dzJixZ9HzVEkvqqTtnQHMB24ETmPChK2ZN+8gDj/88FY1Vxr1Bluhb86c/eyJksYo\nAyhJGmW6urqYPHkX1qy5vVhSrrRXSdubC5zD/vvvy6JFC1vTWGmMaKxCX09P1IoVa+yJksYoAyhJ\nGmUOOOBAHnjgPnrmeOq/0p5pe1Lz9F+hr6cnKqXcEzVz5p72REljjAGUJI0SlYIRa9asKpZU9zz1\nVNqLsNKeNJxqV+ir9ETdTO4FzlavXsWOO+5sECWNIQZQkjRK9C4YAb17nnoq7c2aNd1Ke9Iwql2h\nr9IT9RJyGl9POt8DDzzCAQfMa01jJTWdAZQktbmVK1ey6667lwpGTKHc8wSbM2PGTJYtc3JcaST0\nrtBXSantoJzOB39h9epVFpaQxggDKElqU11dXRx44CHstdfe3HHH3cXSStrePeQep56ep2233ZJr\nr13SmsZK49iVV17BvvtOq1piYQlpLDOAkqQ2tWDBsSxdehPQTd+CEfuQz3RnM2bMZP36O+15klpg\n0qRJLF9+I9OnzyyW9F9Ywp4oaXQzgJKkNrRy5UqWLFlMd/fbiyX9F4xYtWqlwZPUYkuXLmHbbZ9H\n38IS9kRJY4kBlCS1oTe/+fji0iHFfwtGSO1u0qRJrF9/J9On71osscS5NBYZQElSG6mUKr/jjtuK\nJb+lVs/ThAm558mCEVJ7mTRpEqtXrywVlrDEuTSWGEBJUhvpXar8VeTA6VDyj66enqf9959jz5PU\nxnoXlrDEuTSWGEBJUhuo9Dz1LlV+FDll753A9cWy4PLLL+eaa66250lqY5XCEpY4l8YeAyhJagO9\ne54qBSPOAOYDNwKnEbEV8+YdxOGHH96qZkoaJEucS2OPAZQktVBXVxczZuxZ6nkqF4yYC5zDrFlT\nWbRoYauaKmkILHEujT0GUJLUIl1dXUyevAtr1txeLOm/VLkFI6TRyxLn0thhACVJLXLAAQfywAP3\n0XeSXEuVS2PNYEuc2xMltS8DKEkaYZWCEWvWrCqW2PMkjQf9lziv9ETdAJzOihXrmD//DS1qqaT+\nGEBJ0gjrXTAC7HmSxpfaJc4/BXwb2A84m5QeZsmSa1i9enWLWimpHgMoSRohtUuVT6Hc8wSbM2PG\nTHuepDGqdonzSymPh4JNeeMb39KqZkqqwwBKkkZI7VLl95B7nHp6nrbddkuuvXZJaxopacT07om6\nnlpzRN1xx88dDyW1GQMoSRpmtXueKml7+5An18xmzJjJ+vV32vMkjQOVnqhdd92tWGJlPmk0MICS\npGG2YMGx3HxzueepdsGIVatWGjxJ48wll3ytuGRlPmk0MICSpGG0cuVKlixZTHd3vUlyLRghjXcz\nZ85k3ryDmTChXmU+e6KkdmIAJUnD6M1vPr64ZKlySfUtWrSQffYpV+azJ0pqRwZQkjQMKuOe7rjj\ntmKJPU+S6qtdmc85oqR2ZAAlScOgd8W9V1GrVPkuu7zcnidJvThHlNT+DKAkqYlqV9w7inLPE/yV\nb3zja/U2I2mcco4oqf0ZQElSE9We6+kMYD5wI3AaEVsxb96BzJgxo1XNlNTmnCNKal8GUJLUBP3P\n9VTpfZoLnMOsWVNZtGhhq5oqaRRwjiipfRlASVITDGauJ8c9SWqUc0RJ7ccASpI2knM9SRouzhEl\ntR8DKEnaSM71JGk4OUeU1F4MoCRpiJzrSdJIcI4oqb0YQEnSEDnXk6SR5BxRUnswgJKkQXKuJ0mt\n4BxRUnswgJKkQapdcc+5niSNDOeIklrLAEqSBqGzs3OAinvO9SRpeDlHlNRaBlCS1KCuri7mzz+m\nuGbFPUmt5RxRUmsYQElSgxYsOJaOjvXFNSvuSWot54iSWsMASpIa0DNZ7vnU6nmaMMGeJ0kjzzmi\npJFnACVJDeiZLHcOtXqepkzZ2Z4nSSOusTmifg0s5KabbnWOKKkJDKAkqR+1J8udRO596gROA+A7\n3/mWPU+SWqb2HFFfBI4BHge2obv7TJYsWcz69evrbUZSAwygJKkftSfLXQj8BvgZcDHTps1kxx13\nbFUTJalOT9TuwCHATuTU49OBCaxbt65VzZTGBAMoSaqhsclyjwUe4aKLLmhVMyWpl949UcdRa5Ld\ns88+p1XNk8YEAyhJqsHJciWNRpWeqOnTZwId1Jpkd/XqVRaUkDaCAZQklThZrqTR7n3vO624ZGlz\nqdkMoCSpipPlShoLpkyZUlyytLnUbAZQklTFyXIljQWTJ092kl1pmBhASVLByXIljSVOsisNDwMo\nSSo4Wa6kscRJdqXhYQAladxzslxJY5mT7ErNZQAladxzslxJY5mT7ErNZQAladxyslxJ44mT7ErN\nYQAladxyslxJ44mT7ErNYQAlaVxyslxJ45WT7EobxwBK0rjjZLmSxjMn2ZU2TtsFUBHx/ojojojP\nlZZ/PCJ+FxF/iYilEbFDq9ooaXRzslxJ41ljk+xa2lyqp60CqIiYCbwduKW0/N+Ak4rb9gQeA5ZE\nxNNHvJGSRjUny5Wk/ibZPQZ4ETCT7u7jLW0u1dA2AVREbEE+7fFW4M+lm08BPpFS+kFK6TZy6Zh/\nBF47sq2UNNq9610nFpecLFfS+FV/kt0uesqb54p8Rx99jKl8UpW2CaCA84Hvp5Sur14YES8Fng/8\nqLIspfQweXKWvUe0hZJGtc7OTtauXV1cc7JcSepd2nwZvVP5bgBOp6Oj01Q+qcomrW4AQEQcDUwB\natUJfj6QgPtKy+8rbpOkAfUuHFGZLDeRq+05Wa6k8anSEzVnzn6sWHEC+Rz1hcC3yWl90N0NS5Zc\nw+rVq53SQaINeqAi4oXAF4BjUkpPtLo9ksamww47nHXrOotrTpYrSdWuvPIKpk6dXFy7lHJBCdiS\nd7zjhFY1T2orkVJqbQMiDgO+B2wAolg8kXxqeAPwT8BdwJSU0q1V97sBWJdSOrXGNqcBa+bMmcPW\nW2/d67b58+czf/78YXgmktpRV1cXhx32OlasqFTb+zb5h8F/koOn7zNhwsXsv/++XHPN1a1sqiS1\nVGdnJzvttFNxbSG5oATkNOeLgXPo7Oy0p15tbdGiRSxatKjXsoceeohly5YBTE8prd3Yx2iHAOqZ\nwHalxV8H7gQ+k1K6MyJ+B5ydUvp8cZ+tyCl8x6WU/rvGNqcBa9asWcO0adPKN0saRw488BCWLl1G\nd/ej5DOpWwBvoJKaAjBt2kyuu26JY58kjXvTp88sxor+GngmuYfe/aVGt7Vr1zJ9+nRoUgDV8hS+\nlNJjKaU7qv/IZcofSCndWaz2BeCDEfEvEfFy4JvAb4ErW9RsSaNAZ2dnUbL8I8USC0dIUn8uvLCS\nylwuKPFr4Gw6Ou7k0ENf16rmSW2h5QFUHb26xVJKZwHnAheRR3tvBhyUUvp7C9omaRToXTTiKHrm\nfFoI/Ab4GRMmfJV58w42HUWSCjNnziwm2T2RnrmhDgLeCZxOd/ejrFiRi05Y2lzjVVsGUCmlV6WU\n3lta9tGU0j+mlDZPKc1LKd3VqvZJan8LFhxLR0dl8sfK+KfehSP23Xd3Fi1a2KomSlJbWrRoIVOm\nVE4szaFvT9RCbrrpVkuba9xqywBKkjbGypUri9S98+npebqaXJr3bCZM2IJZs+aybNkNpu5JUsmk\nSZNYtOhbxbXv0tMTdQzwImAm3d3Hs2TJYtavX19vM9KYZQAlacx517tOLC7NoW/P0+lMmbIzV111\nRauaJ0ltb/LkyUUq38eKJXOALuAQYCfgHACOPvoYU/k07hhASRpTOjs7iwpSYNEISRq6RYsWss8+\nlWrG5aISNwCn09HRaSqfxh0DKEljRu/CEa+iXDQCLmbatJkWjZCkBkyaNInly29k9uy5RJxATuX7\nFHk+vf2As+nufoglS65h9erV/W1KGlMMoCSNGYcddjjr1nUW146iXDQCHuGiiy6od3dJUg1XXnkF\nU6dOLq5dSrmgBGzJO95xQquaJ404AyhJo15XVxezZ89lxYobSekCcuGIM4D5wI3AaUyYsDXz5h3I\njBkzWtpWSRpteheVuJ5yQQl4G2vXrrKghMYNAyhJo96CBcdy882VicXLhSPmAucwZcpkS5ZL0hBN\nnjyZadMqJ6AsKKHxzQBK0qjW2dlZlCz/SLHEwhGSNBwuvLCSAl0uKJFT+W655W4LSmhcMICSNGr1\nLhpxFD1zPvUUjpgw4avMm3ewhSMkaSPNnDmzKG1+IrXmhtqw4S3ODaVxwQBK0qi1YMGxdHRUDtTL\n6Dvn07Hsu+/upu5JUpMsWrSQKVMqJ6RM5dP4ZAAlaVTqSd07n56ep6uBC4GzmTBhC2bNmsuyZTeY\nuidJTdK7oEStVL6z6ei4k0MPfV2rmigNOwMoSaNSR0dHcalcNOLFwOlMmbIzV111RauaJ0lj1uTJ\nk2uk8h0EvBM4ne7uR1mx4kbmzNnPniiNSQZQkkals846p7hk0QhJGml9U/n6FpW46aZbLSqhMckA\nStKoUpnzac2aVcAUykUj4GJmz55r0QhJGka9U/m+S++iEo8D29DdfaZFJTQmGUBJGlV6z/n0TcpF\nI+ARTjrphFY1T5LGjZ5Uvo8VS3anp6DEwcDpwATWrVvXqiZKw8IAStKo0XfOp1vpSd1bDJwNdDN1\n6tRWNVGSxpVFixayzz7TimvHUU7jgy0577wL6t1dGpUMoCSNCv3P+bQp8AATJnzKOZ8kaQRNmjSJ\n5ctvZPr0mUAH5bmh4G0sX36jaXwaUwygJI0KzvkkSe3rfe87rbjk3FAa+wygJLU953ySpPY2ZcqU\n4pJzQ2nsM4CS1NZ6p+4555MktSPnhtJ4YgAlqa31Td1zzidJakfODaXxwgBKUtuqnbrXM+fTxIlf\ns2iEJLWJ/ueGykUluruPd24ojXoGUJLaVkdHR3GpVureseyxx/YWjZCkNtJ3biiLSmjsMYCS1LbO\nOuuc4pKpe5I0WvSeG6pWUYmF3HLL3abyadQygJLUdrq6upg9ey5r1qwCplBO3YOLmT17rql7ktSG\nKnNDzZ49l4gT6J3K9ziwDRs2nGEqn0YtAyhJbWfBgmO5+ea1xbVvUk7dg0c46aQTWtU8SVIDrrzy\nCqZOnVxc252eNL6DgdOBCaxbt65VzZOGzABKUlvpKRzxkWLJrfSk7i0Gzga6mTp1aquaKElqQO+i\nEsdRTuODLTnvvAta1TxpyAygJLWN3nM+HUXvynubAg8wYcKnrLwnSaPE5MmTmTVrDtBBuSIfvI3l\ny280jU+jjgGUpLbRd86nvpX39t13dyvvSdIocvLJJxaXrMinscEASlJbqD3n09XAhcDZTJiwBbNm\nzWXZshusvCdJo8iUKVOKS1bk09hgACWp5Xqn7tWa8+l0pkzZmauuuqJVTZQkDVHP3FAnUmty3Q0b\n3u+Ww8UAACAASURBVGJFPo0qBlCSWq5v6p5zPknSWLJo0UKmTKmMXTWVT6ObAZSklqqdutcz59PE\niV+zaIQkjXK9K/KZyqfRzQBKUkt1dHQUl2ql7h3LHntsb9EISRoDTOXTWGEAJamlzj33/OKSqXuS\nNNaZyqexwABKUst0dnayYsUyYArl1D24mNmz55q6J0ljiKl8GgsMoCS1RO/Ke9+knLoHj3DSSSe0\nqnmSpGFSP5XvcWAbNmw4w1Q+tTUDKEkt0bvy3q30pO4tBs4Gupk6dWqrmidJGka9U/l2pyeN72Dg\ndGAC69ata1XzpH4ZQEkacfUr720KPMDEiZ+28p4kjWG9U/mOo5zGB1ty3nkXtKp5Ur8MoCSNqIEn\nzbXyniSNB5MnT2bWrDlAB+WKfPA2li+/0TQ+tSUDKEkjyklzJUkVJ598YnHJinwaPQygJI0YJ82V\nJFWbMmVKccmKfBo9DKAkjQhT9yRJZU6uq9HIAErSiDB1T5JUi5PrarQxgJI07EzdkyTV4+S6Gm02\naWSliDh4CNu+PqX01yHcT9IY09HRUVyaQw6g3kA+QGZ77DHT1D1JGscqqXxLl55Id/dD5OCpkvZd\nSeU7h/Xr13uyTS3XUAAF/GCQ203AjsAvB3k/SWPQueeeX1xaRj4gXg2sB74MnGPqniSJRYsW8prX\nHMDatavpSeU7ljw2Kjv66GO47rolHjPUUoNJ4XsB8LQG/p4O/KW5zZQ0WnV2drJixTJgCuXUPbiY\n2bPnejZRkmQqn0aNRgOobwGPppQ2NPD3JPAd4JHha7ak0aB35b1vUq66B49w0kkntKp5kqQ2U78q\n3+PANmzYcIZV+dRyDQVQKaVjU0oNB0QppbellO4ferMkjQW9K+/dSk/VvcXA2UA3U6dObVXzJElt\nqHdVvt3pqch3MHA6MIF169a1qnmSVfgkDY/6lfc2BR5g4sRPW3lPktRH71S+4yin8cGWnHfeBa1q\nntRwEYmnRMQzgBOAVwLPpRSEpZT2bE7TJI1WfSfNtfKeJKlxkydPZtasOcUY2t4V+eBtLF9uRT61\nzlB6oL4CfAC4D7gOWFL6kzTOOWmuJGljnXzyicUlJ9dVexl0DxRwKPDPKaXlzW6MpNGvkrqXzxh+\nm5y6l4C5VCbNfc1rTN2TJPVvypQpxaVl5ONJJZVvDrCMW255N/Pnv4Frrrm6VU3UODWUHqjfAX9u\ndkMkjX59U/cWUq68t8ce25u6J0kaUP2KfC+iZ3JdK/Jp5A0lgDod+ExEvKDZjZE0upm6J0lqpt4V\n+UzlU3sYSgD1E2Az4NcR8WBE/LH6r8ntkzRK1K+6lyfNnTjxa1bdkyQNipPrqh0NZQzUInIuzofJ\nhSRSU1skaVTq6OgoLll1T5LUPJVUvqVLT6S7+yHKVflyKp9V+TRyhhJAzQL2TSk5g5mkp5x77vnF\npWXkA9vVwHrgy8A5pu5JkoZs0aKFvOY1B7B27Wp6UvmOJY+Nyo4++hiuu26JxxoNu6Gk8HUCT2t2\nQySNXp2dncVcHVMop+7BxcyePdezgpKkITOVT+1kKAHUacB/RMSsiNg6Ijav/mt2AyW1v7vvvru4\n9E3KVffgEU466YRWNU2SNEbUr8r3OLANGzacYVU+jYihBFDXAvsCN5L7Tx8p/UkaR7q6uvjUpz5T\nXLuVnqp7i4GzgW6mTp3aquZJksaQ3lX5dqenIt/B5ELRE1i3zlEmGl5DGQN1ABaOkFRYsOBYfvKT\n2+hJ36tMmvsAEyd+2klzJUlNU0nl22mnnYDjqKTvVSbXhRM577wLOPLII1vZTI1xQwmgbkgpPVnr\nhojYdiPbI2kUqZQuzwevvpX39tlnrpX3JElNNXnyZGbNmlOMva2uyHcMkFi+/Fgr8mlYDSWF79sR\nEeWFEfEc4Mcb3yRJo0FXVxfz51cOWnPoPWnuNwA444x/sxqSJKnpTj75xOLSnKqlnUA3AHfddddI\nN0njyFACqO2Bi6oXRMTzgBuAXzahTZJGgQULjqWjozJQd1nVLTtS2bXssMMOI90sSdI4MGXKlOLS\nMvKQ/MpYqDcC8OlPf5YHH3ywNY3TmDeUAOogYG5EnAUQEf9ADp5+ARzRvKZJaleV1L3u7vPJqXvV\npcsXMnHiKcyb59gnSdLwqFTkmzjx3cCrKZc0v/nmn1vSXMNm0AFUSumP5EISRxdB1I+B24Aj642N\nkjR29E3dW0i5dPkee2zv2CdJ0rBatGghe++9G9BBT0nzFwEz2bDhLZY017AZSg8UKaV7yUHUm4F1\nwFEppQ3NbJik9tQ3da967NNpAHznO99y7JMkaVhNmjSJM898f3FtDr1T+c4B4OijjzGVT03XUAAV\nEfdHxB+r/8i/nJ5JDqT+ULVc0hjVf+rez5g48Wum7kmSRsz2229fXFpGzoToncp3yy13m8qnpmu0\njPn7B15F0ljX0dFRXJpDrbLle+wx09Q9SdKIqYyFWrr0RLq7H6J3WfNKKt85ljVXUzUUQKWUvjrc\nDZHU/s499/zi0jLyAepqYD3wZeAcU/ckSSNu0aKFvOY1B7B27Wp6UvmOBRY/tc7RRx/Dddct8Ril\npmg0hW/zwWw0IjYbWnMktavOzs5i0sIp/5+9e4+Tuyzv//+6d0rxgMASEL+tUC3JpvoAkiaxhnTJ\n1l9XloRK7bctdTcsqN9KD5iNKVAbGzkYviBKCyZISm218ltdDz2oNSFbF3TD/pLYNhxEW80GtOAJ\nEyaCR4TZ+/fHZ4ad2ewmM7MzO6fX8/GYB7szk831R4Bcc9/X+2Lq1T34AOee2+Wne5KkOdfe3s7Q\n0Eey33mVT9VXbIjED0IILy7h5z4eQvjlcgqSVJ8efvjh7Fd3MjV1D37AW9/6p7UqTZLU4nJX+dra\nLic5ecql8v0EOIlMZoOpfKqYYmegAvDGEMIPi3z/MWXWI6kOpdNpbrjh3dnvvsTk1b39wFeAq/jV\nX/3VWpUnSdKUq3xnkyTybc97Rxv333+/tyU0a8U2UN8G1pbwcw8C7oSSmkRfXz+7d3+Zyet7EegC\nniCVupHubpP3JEm1lbvKt3DhQuASctf3krmoncDl3Hbb7Vx00UW1LFNNoNgQiZdWuxBJ9SkXXZ78\nT+jw5L0VK7pM3pMk1YWOjg46O1dmZ3bzE/nWAJF77+03kU+zVtYiXUmtIZ1O09ub+5/PSgqX5n4Y\ngA0b3m6qkSSpbqxde3n2q5V5z+4DJgDYv3//XJekJlPUCVQI4T3F/sAY45+XX46ketLX188DD+QG\nbnPR5QALSNL3YP78+TWoTJKk6S1evDj71U5gFVMjzW+88SaWL1/uh38qW7EzUOdM+X5R9tfmWvj5\nwDPAgxWqS1KNFV7d+yiFs0+jpFLrnH2SJNWdXCLfyMgAmczpTJ2F2rVrgN7ei9mxY1ttC1XDKuoK\nX4zx3NwD+EfgXuC0GOPZMcazgdNI2vx/rl6pkubK4Vf3BpkaXb5o0RnOPkmS6tLQ0CDnnHMm8ACT\nkeanAa8ik3mzkeaalXJmoK4C3h5jfCL3RPbrd2Rfk9TgDr+6lz/7dCUAH/vYR7z+IEmqS+3t7bzj\nHX+R/W4lkCaJNV8I3AzAG96whkOHDtWmQDW0chqoE4F50zx/EnDC7MqRVGu5q3sTE+8nSd0bIDmB\negz4IqnUB+np8eqeJKm+nXHGGdmvdpLcoNhD8v+z5Erfgw8+TG/vxbUqTw2s2BmofJ8CPhhCWA/8\ne/a5V5O085+qVGGSauPhhx/OfrWS6WLLFy16lVf3JEl1LzcL9bnPXc7ExJNMjTXPZCLDw8aaq3Tl\nnED9EXA38EngW9nHJ4HPA39cudIk1cK8ebkDZq/uSZIa29DQIIsX55ojY81VGSU3UDHGH8UYLwNO\nAV6VfZwcY7wsxvjDShcoaW5dffV1wLHAWvKv7oXwd17dkyQ1lPb2doaGPpL9bieFs1CXAkmsubNQ\nKkXZi3RjjE/FGO/LPp6qZFGSamMyunwzyfaCydS9GJ/i+uuvq2l9kiSVKneVL5UaAH6TqbNQu3Y9\n5CyUSlLsIt1PFPsDY4wXlV+OpFopjC5fBVwGjJOse3sh0MWBAwdqVZ4kSWUbGhrkwgtfz9jYTiZn\nofYBJ5HJbGB4+CpnoVS0Yk+gni7hIakBHR5dDrCApJl6FID58+fXoDJJkmanMNb8bCav8a0m2cLT\nxv3331+r8tRgijqBijH2H/1dkhrV5NW9QeCjJNHlEegCRkml1tHd7fyTJKlxTcaaX0Lu+l4SLLET\nuJzbbrudiy7yIpWOrpwYcwBCCCcBHdlvvxZjdPpOalBGl0uSml1HRwednSunXOMj+8/Ivfcaaa7i\nlBwiEUJ4fgjhb4HvAruyj8dDCHeEEJ5X6QIlVVc6neaGG96d/c7ocklS81q79vLsV0aaq3zlpPD9\nNdAN/C5wcvbxe8Brgb+qXGmS5kJfXz+7d38ZWExydW8yujyV+qDR5ZKkprF48eLsV0aaq3zlNFC/\nB/xhjPFfY4zp7OMzwFsAL45KDSQ3+5TJbAbuAZaTH12+YsVZXt2TJDUNI81VCeU0UC8EvjPN89/J\nviapARTGlq+k8OrehwHYsOHtXt2TJDWVoaFBzjnnTOABkr2Ha4DTgFeRybyZ4eHtjI+PH/FnqLWV\n00DtAa4OIfx87okQwrHAO7OvSWoA08eWQxJdnvynwdhySVKzKYw0X0nhVb6bAXjDG9Z4lU8zKqeB\nehvwG8A3QwjDIYRhkoGJLmBdBWuTVCW5q3sTE+8nSd3Ln30aJJVa5+yTJKlpTUaa7yS5ul54le/B\nBx/2Kp9mVHKMeYzxSyGE+SQh+r+SffpfgP83xvijShYnqTqMLZcktbLcLNTnPnc5ExNPMjXWPJOJ\nDA8ba67plXMCRYzxRzHGrTHGddnH39g8SY1j3rx52a+MLZcktaahoUEWL841R8aaq3hlLdINIfwy\nyTW+FzOlCYsx3jD7siRV09VXXwccC6wFIskN3C8Swt9x3nle3ZMkNb/29naGhj7CwoULST5QXEVy\nG2P7c++58cabWL58uR8qqkA5i3TfDHwNuInk3k9v3uMNZfy8Pw4hPBhCeDL72BVCOD/v9Q+FECam\nPLYf6WdKmllu/ilJHjqH/NjyGJ/i+uuvq2l9kiTNFWPNVY5yrvBdDVwTYzwlxnhmjPGsvMfZZfy8\nx4C3A0uApSTLaD4dQnhF3nvuAk4FXpJ99Jbx+0gif/5pFZNX97YDo8AEBw4cqFVpkiTNueljzX8C\nnEQms8FYcx2mnAbqJOBjlSogxrgtxrgjxvhwjHF/jHEj8EOSjZ45T8cYD8QYv5d9PFmp319qJel0\nmhtueHf2u1x0+QKSZupRwOhySVJrKYw1P5vJSPPVwFVAG/fff3+tylMdKqeB+ieSM86KCyG0hRDe\nALwA2JX30m+EEB4PIXw1hHB7COGkavz+UrPr6+tn9+4vA4sxulySpMRkrPklTL3GBy/itttur1Vp\nqkNFhUiEEP4079v/Bv5vCOHVwEPAM/nvjTGW/CcshHAmsBt4HvAD4HdijF/LvnwXSdP2deAM4EZg\newjhnBhjLPX3klrV5OzTINNFl69Y0WV0uSSpJXV0dNDZuZKxsZ1MjTSHyL33GmmuScWm8G2Y8v3T\nQE/2kS8C5bToXwUWAScAvwfcGUJYGWP8aozxE3nv+0oI4SHgYZIUwM+X8XtJLSedTtPbm/ufwUom\no8vHST67uJQNG95uypAkqWWtXXt5toGaOdLcBkpQZAMVYzytmkXEGJ8FHsl+e38I4deAdcCfTPPe\nr4cQDgLzOUoDtX79ek444YSC53p7e+ntNYNCraWvr58HHsgNwO5k8pO1BcAXAWefJEmtbfHixdmv\njDRvZENDQwwNDRU89+STlY1PCLO9BRdCaANeCTwaY3yqIkWFcDfwPzHGN0/z2kuB/wF+O8b42Rl+\n/RJg7969e1myZEklSpIa1r59+7I7LgaBj5Lc7X4fye6nUVKpdXR3L2fHjm21LFOSpJo7//wLGBnZ\nQyZzOskM1GaSE6mdpFID/v+yQd13330sXboUYGmM8b7Z/rxy9kD9VQjhTdmv24AvAF8CvhVCWHmk\nXzvDz7shhHBuCOGXQghnhhBuJPmb3WAI4YUhhPeEEF6dff03gU+RnKcOl/p7Sa1oMrZ8JUkTtZz8\n3U+LFp3h7JMkScwUaX4asIZM5n1GmgsoL4XvIuDL2a9fR3IH6ExgC3BDGT/vxcCHSeagRkh2QZ0X\nY7wHyJDkSX6aZHnvB4D/AFbGGJ+Z/sdJyjk8tjw3+7QPuBKAj33sI15HkCSJqZHmM89CqbUVGyKR\n7xTgO9mvVwOfiDH+VwjhA8Dlpf6wGOMfHuG1nwLnl1GjJKaLLY8kB7xfJJX6IN3dxpZLkpRvMtLc\nWShNr5wTqMeBXwkhpEiam5Hs888n15pLqrlcbHkmsxm4h6lX91asOMure5IkTdHR0UFPz2pSqQGS\n1aeFe6F27XqI3t6La1qjaqucBupO4JPAg9lf/2/Z53+N5JqdpDpQOPuUf3XvwwDGlkuSNANnoXQk\nJTdQMcZ3ksSLfxj49Rjj09mXAvCeCtYmaRbmzZuX/Wpn3rMLyP1rb2y5JEnTcxZKR1LODBQxxo8B\nhBCOyXvuQ5UqStLsXX31dcCxwFomZ59GCWEt553n7JMkSUfiLJRmUk6MeSqEsCGE8D/Aj0MIv5x9\n/toQwhsrXaCk0uXmn5JrB+eQP/sU41Ncf/11Na1PkqR65yyUZlLODNQG4DLgaiA/SvyrwB9VoihJ\n5Uun0/T2rsl+t4rJ2aftwCgwwYEDB2pVniRJDWP6WaifACeRyWxwFqpFldNAXQq8Jcb4YZI9TTkP\nAr9Skaokla2vr58HHsj9xzw3/7SApJl6FHD+SZKkYhTOQp0NXAAsJNnkcxXQxv3331+r8lQj5TRQ\nLwVmarV/fha1SJql3NW9iYn3k/zHfYDkusFjwCCp1Dp6epx/kiSpWJOzUJcw9RofvIjbbru9VqWp\nRsppoP4b6Jzm+d8lOd+UVCOF0eWDTN39tGjRGe5+kiSpBB0dHXR2rmS6SHO4jXvvHfUaX4spp4G6\nHrgthHBF9tdfGELYCrwTeFcli5NUvHQ6zQ03vDv73U4Kdz9dCcDHPvYR04IkSSrR2rWXZ78y0lzl\n7YH6Z+B3gN8CfgrcBPwq8PoY43Bly5NUrL6+fnbv/jKwmMKre18klfqgV/ckSSrT4sWLs1/tBNJM\nzkJdCiSR5ocOHapNcZpzJTVQ2QjzFcD9McbXxBjnxRiPjTEujzHeVaUaJR1FbvYpk9kM3MPUq3sr\nVpzl1T1JkspkpLnyldRAxRgzwOeBk6pTjqRyFM4+5V/d+zAAGza83at7kiTNwvSR5sksVCbzPiPN\nW0g5M1BfBl5W4TokzcK8efOyX+3Me3YBuX/FjS2XJGl2CiPNnYVqZeU0UO8Abg4hnB9COCWE8IL8\nR6ULlHR0V199HXAssJb82PIQ1jr7JElShUxGmjsL1crKaaDuIgmN2A58F/jBlIekOZSbf0quE5xD\n/uxTjE9x/fXX1bQ+SZKahbNQAvi5Mn7NaytehaSyTc4/rQIuI9lzvR94IdDFgQMHalWaJElNZ2ho\nkAsvfD1jYztJmqc12VfWkMlEhof7GR8f9/ZHEyu5gYox3l2NQiSV7vDdT2tIZp8WkPxH3fknSZIq\nKTcLtXr1To40C2UD1bzKOYEihHA8sAx4MVOuAcYYP1qBuiQV4fDdTxHoAkZJpdbR3e38kyRJlVY4\nC7WK5Pr89udev/HGm1i+fLkJuE2q5AYqhLAa+ChwPPBjkr+x5cTsa5KqbHL2aRBYDVxM8h/wxIoV\nXe5+kiSpCnKzUCMjA2Qyp5ObgUpOpHaya9cAvb0Xs2PHttoWqqooJ0TiFpI/ISfEGI+LMb4o73F8\nheuTNAN3P0mSVDvuhWpd5TRQLwX+OsZo4p5UI4fPPuW4+0mSpLkw/V6ofSSB1acD7oVqVuXMQI0A\nS4BHKlyLpCI5+yRJUu1NzkJtBz5D/hwUtHHKKafMfVGquqIaqOzcU86nSBbp/grwEPBM/ntjjPl/\nciRVmLNPkiTVh9ws1PDwOuAF5M9BhfBWNm68xjmoJlTsCdRnp3nuXdM8F4FU+eVIOprpZ5/Ggd3A\npc4+SZI0hzZtujb7webfk78TKkZ3QjWrYmegjiny8fNVqFFSlrNPkiTVl4MHD2a/mnknlJpLUQ1U\njDFDMhF3XIwxc6RHdcuVWtvhs0+DwGPAIKnUOnp6nH2SJGkuFe6ESgMXAAuBS4FkJ9ShQ4dqU5yq\nopQUvm7g2GoVIunIcrNPmcxm4B5gOcns0+lAPytWnOXskyRJcyw3B5VKDQC/Cewh+YAz2Q21a9dD\n9PZeXNMaVVnlxJhLqgH3PkmSVJ/cCdVaSm2gOkIIrzzSoypVSmLevHnZr5x9kiSpnky/EwqchWpO\npe6BGgXCNM/H7POm8ElVcvXV15Hcol1L/t6nENZy3nnOPkmSVEuFs1CrSK7ZT273ufHGm1i+fLm3\nRZpAqQ3UCuDgUd8lqaImdz/dAXya/L1PMbZx/fXX1ao0SZLE5CzUyMgAmczp5Gagcnuhdu0aoLf3\nYvdCNYFSG6ivxxi/V5VKJM1ocv5pFXAZyd6n/cALgS4OHDhQq9IkSVLW0NAgF174esbGdpI0T5N7\noTIZ90I1C0MkpDo3/e6nBSTN1KOA80+SJNUDZ6FaQykN1P8H/KxahUianrufJElqHO6Fan5FN1Ax\nxnNjjN+vZjGSCrn7SZKkxuJeqObnFT6pjrn7SZKkxuNeqOZmAyXVqelnn8DdT5Ik1bfpZ6H2AXeR\n3CJxFqqRlZrCJ2mOHD77NLn7KZVaR3e3s0+SJNWryVmo7cBnyN8JBW2ccsopc1+UKqLsE6gQws+F\nEM4IIdiESRXm7JMkSY0tNwsF64Dd5M9BhXA8GzdeU9P6VL6SG6gQwvNDCHcAPwG+RvYcMoTwvhDC\nVRWuT2pJzj5JktT4Nm26Fnga2EL+HFSMW5yDamDlnED9X+BVwGuBn+Y9/3mgtxJFSa3M2SdJkprD\nwYMHs1+5E6qZlNNA/W/g8hjjF0iGMnK+DJwx7a+QVDT3PkmS1BzcCdWcymmgXgx8d5rnXwCE2ZUj\ntTZnnyRJah7uhGpO5TRQ9wGr877PnUL9H5IJOUllcvZJkqTm4k6o5lNOA/UO4N0hhC0kMeiXhxDu\nAt4CbKxkcVKrmTdvXvYrZ58kSWoG0++EAmehGlfJDVSMcSewFDgO+G/gQuBJ4JwY439UtjyptVx9\n9XXAscBa8mefQljr7JMkSQ3KWajmUtYeqBjjvhjjm2KMS2KMHTHGN8QYH6x0cVIryc0/Jcf755A/\n+xTjU1x//XU1rU+SJJXHWajmUlQDFUJ4QbGPahcsNavJ+adVTM4+bQdGgQkOHDhQq9IkSdIsOQvV\nPIo9gfoh8IMiH5LKUHi8D8ns0yqST6ecf5IkqZHNPAsF0AU4C9Uofq7I9722qlVILS6dTjMwsJ7k\nM43LScItu4BRUql1dHc7/yRJUqMr/LB0TfbrfcAHAD8sbRRFNVAxxrurXYjUyvr6+hkZ2QNsBT5O\nMv+U6O5e7e4nSZKaQG4WamRkgEzmB8AnSfY+JtaufRtDQ4OuLKlzZYVIAIQQjg0hzA8hvDL/Ucni\npFZQuDz3MuBukk+jrgRgy5Zb/Q+pJElNYmhokO7u5SQ3TvaSHyYxMrLHMIkGUHIDFUI4OYTwKeDH\nwNeAh6Y8JJWgcHluzgJgAPA+tCRJzaS9vZ3Nm28h2QH1fgyTaDzlnEDdArwY+HXgJ8BvAf8H2A/8\nduVKk5pfOp3mhhvenf1u55RXRwHvQ0uS1GwO//B0H3AXyfoSPzytd8WGSOTrBl4fY/xiCGEC2B9j\nvCuE8H3gz4HPVrRCqYn19fWze/eXgcUkJ06GR0iS1OwmwyS2A5/J/jOnjVNOOWXui1LRyjmBOg54\nPPv1IZLTKIAHgWWVKEpqBYWzT/cAy8lfnrtixVmGR0iS1IRyYRKwDthN/hxUCMezceM1Na1PR1ZO\nA/U1oCP79ZeAPwwhnAq8BfhupQqTml3h8X07k8tzPwzAhg1vNzxCkqQmtWnTtcDTwBby56Bi3OIc\nVJ0rp4HaDLw0+/W7gAuBbwN/BmysUF1SU5t59mkBuX8tnX2SJKl5HTx4MPtVfojUPpJwCeeg6lnJ\nM1Axxjvzvv6PEMLLgFcA/xNjfHymXydpkrNPkiS1tsKluqtIrvFPzkLdeONNLF++3NsodajsPVA5\nMcYfxBj/3eZJKo6zT5IkKTcHlUoNAL8J7CF/FmrXrofcCVWnytkD9fEQwpXTPH9VCGGoMmVJzcvZ\nJ0mSBMlS3XPOORN4gGRKxp1QjaCcE6jXADumeX5H9jVJR1B4ZJ/j7JMkSa2mvb2dd7zjL7LfrZzy\nahfgLFQ9KqeBehHwzDTP/ww4YXblSM3v5JNPZt68U4HLSY7qHwMGSaXW0dPj7JMkSa1k+g9W95Gc\nSPnBaj0qp4H6CvD70zx/EfDV2ZUjNb++vn4OHXoaeDn5s08nnniMs0+SJLWYwlmovyGZh1oI3AzA\n2rVv49ChQzWsUFOV00BdD1wTQvj7EMKa7OODwDuBTZUtT2ouuQCJiYnbgPtJPmHaDryXJ554PC/S\nVJIktYqhoUG6u5eT3E7ZS36YxMjIHsMk6kzJDVSM8VPA7wJnAh8EbgPmA6tijP9c2fKk5lIYIAHJ\n7NMq4A8A7zlLktSK2tvb2bz5FpIdUO/HMIn6VlaMeYzxMzHGV8cYj40xtscYV8YY7650cVIzmXl5\nLsAo4D1nSZJa1eEfsoKLdevTrPZAhRCOzV7he0sI4ZcrVZTUjA5fnmuAhCRJShSGSaSBC0hmoS4F\nksW6zkLVh6IbqBDCe0MI78v7/hhgN/APwF8DD4QQXl3xCqUm4PJcSZJ0JC7WbRylnECtIvmbzyM/\nVAAAIABJREFUX04fSYxYB0l8+adIgiQkTeHyXEmSdDQu1m0MpTRQp5NEmOf0AP8YY/x6jHECuAVY\nUsnipGYw8+yTy3MlSdKk6Rfr7gPuIvmruLNQ9eDnSnhvBELe98tJIs1z0iQfrUvKc/jsUyTZLj5K\nKrWO7m5nnyRJUmJyFmo78JnsP3PaOOWUU+a+KBUo5QTqv0mm2QghvAL4JeALea//EvC9ilUmNQFn\nnyRJUilys1CwjiRuYHIOKoTj2bjxmprWp9IaqPcCN4UQhoG7geEY4yN5r68C/qOSxUmNztknSZJU\nqk2brgWeBraQPwcV4xbnoOpA0Q1UjPGfgAtJ/vb3fuCiKW/5GXB75UqTGl9hJGmOs0+SJGlmBw8e\nzH61csorXYBzULVWygwUMcZhYHiG1zxPlPKk02kGBtaTNEuX4+yTJEkqRuEHsGuyX+8DPgD4AWyt\nzWqRrqSZ9fX1MzKyB9gKLCV/9qm7e7mzT5IkaVqFO6H+hmQv1ELgZgDWrn2bS3VryAZKqoLC8IjL\nSMYG9wFXArBly63OPkmSpBkNDQ3S3b2c5BbLXvLDJEZG9rhUt4ZsoKQqKAyPyFlAEmPu3WVJknRk\n7e3tbN58CzBBEj/gUt16YQMlVcG8efOyX+2c8soo4N1lSZJ0dNN/IAuGSdRWSSESkopz9dXXAccC\na8kPjwhhLeedZ3iEJEk6OsMk6lPJJ1AhhFNCCB8KITwaQvhpCOFn+Y9qFCk1ktz8E2wGziE/PCLG\np7j++utqWp8kSWoMhknUp3Ku8P0Dyd8K3wtcDPROeUgtbfK4fRWTi3O3k1zfm+DAgQO1Kk2SJDUY\nwyTqTzlX+FYCK2OM91e6GKkZHH7cviD7SGLLPW6XJEnFyoVJLFy4nckwCUjCJCLDw/2Mj487HjCH\nymmgvkky1CFpCpfnSpKkSjs8TGIf8DDJiEASJuHfL+ZOOQ3UeuDGEMJbYozfrHRBUiMrXJ77cZL5\np0R392qX50qSpJJN3m7ZDnwm+8+cNk455ZS5L6qFFTUDFUI4EEL4Xgjhe8CdwGuA/wkhHMo9n/e6\n1JJcnitJkqohFyYB64Dd5M9BhXA8GzdeU9P6Wk2xJ1B/UdUqpCZw5OW5N3u8LkmSyrZp07XZlN+/\nJ38OKkbnoOZaUQ1UjPHvq12I1Oim39UALs+VJEmzdfDgwexXMy/VtYGaG+XsgfpZCOGwi5YhhJPc\nA6VWdXh4xCDwGDBIKrWOnh7DIyRJUvkKP6jN2Ueyd9IPaudSOXugfg4I0zz/PGBiduVIjakwPGIp\n+ctzu7uXGx4hSZJmxaW69aPoFL4Qwp9mv4zAG0MIP8x7OUVyfvi1CtYmNYRceERy6rSGJEBiHPhb\n4GbDIyRJUkUMDQ3S23sxw8OXAy8i+bvHSmAnIyMD9PZezI4d22pbZAsoJcZ8Q/afgSQCJP+06WfA\nN4A/qUxZUuMwPEKSJM0Fl+rWh6IbqBjjaQAhhHuBC2OMnhGq5aXTaW644d3Z7wyPkCRJ1TX9B7f7\nyJ1t+MFt9ZU8AxVjPNfmSUr09fWze/eXgcUkJ06GR0iSpOopDJNIAxeQzEJdCsCNN97kLFSVlXKF\nD4AQwntmeCkCPwX2A5+JMT45m8Kkelc4+7QauJgkPCKxYkWX4RGSJKmicmESIyMDZDKnk1uom5uF\n2rXLWahqK7mBAs4BzgKOIWmWAOYDz2S/XwDcEkJYGWP8r4pUKdWhwiP0dmAbSXjEbuBSNmx4u+ER\nkiSp4oaGBrnwwtczNraTyRArcBZqbpQTYz4EfAH4xRjjohjjIuClwD3APwC/COwC/rpCNUp1afp9\nDAvI/Wvl7JMkSaqG9vZ23vGOv8h+N/NiXVVHOQ3UBuAvY4zfzz2RnYm6GviLGOMPgXeRLMORmtbJ\nJ5/MvHmn4uJcSZI011ysWzvlNFDtwLxpnp8HnJj9Og0cW8wPCyH8cQjhwRDCk9nHrhDC+VPe864Q\nwrdDCD8OIXwuhOCfCNVcX18/hw49Dbyc/MW5J554jLNPkiSpqlysWzvlNFD/CnwwhPC6EMJLso/X\nAX8HfDr7nleRDIMU4zHg7cASklOre4BPhxBeARBCeDvwVpLtpL8G/AgYDiH8fBm1SxWRC5CYmLgN\nuJ/kE5/twHt54onHOXjwYG0LlCRJTW9oaJDu7uUkt2H2ktyISUIlRkb20Nt7cU3ra1blNFCXAfcC\n/wR8K/v4p+xzf5R9z3j2fUcVY9wWY9wRY3w4xrg/xrgR+CGwPPuWdcCmGONnY4xfBi4BfgF4fRm1\nSxVx+A6GBcAq4A8A7x1LkqTqyy3WTXZA5RbrnkYSJvE+hoe3Mz5e7JmGilXOHqgfxBjfBJxCctL0\nKuCUGOObs/NPxBjvizHuLfVnhxDaQghvAF4A7AohvBx4CXB33u//FPBFkjRAqSamv3cMLs+VJElz\nafrFumCYRPWUE2MOQHbP032VKCKEcCZJ9vPzgB8AvxNj/FoI4RyS/VKPT/klj5M0VtKcS6fTDAys\nJ/n84XKSP6JdwCip1Dq6uw2QkCRJc6PwQ901JGMFDwNfAfxQtxrKWaT7AuAqkkm1FzPlFCvG2FFG\nHV8FFgEnAL8H3BlCmNpGl2z9+vWccMIJBc/19vbS29s72x+tFtbX18/IyB5gK/Bx8pfndnevNkBC\nkiTNmVyYxOc+91YmJm4GHnjutXnzTuXkk0+uXXE1MDQ0xNDQUMFzTz75ZEV/jxBjLO0XhDAIdAMf\nAb5D8vH7c2KMfzXrokL4HMlS3veQtNCLY4xfynv9C8D9Mcb1M/z6JcDevXv3smTJktmWIz1n3759\nLFy4kMKldePA3wI3s2/fPk+fJEnSnDp06BALFryCJ574Kcks1EpgJ6nUAN3dy9mxY1uNK6yt++67\nj6VLlwIsjTHO+gZdOVf4fgt4XYzx3tn+5kfQBhwbY/x6COG7JKddXwIIIRwPvJrkT4c0p6a/Z7wA\nGABuZv/+/TZQkiRpTh04cIAnnnicwg9415DJRIaH+xkfH/fvJxVUTgrf94EnKlVACOGGEMK5IYRf\nCiGcGUK4kWSgJHcP6lZgYzY2/SzgTuCbTEamS3PG8AhJklRvDJKYW+WcQF0NXB1CeGOM8acVqOHF\nwIeB/wU8SXLSdF6M8R6AGON7snNXd5As6r0XWBVj/FkFfm+paIZHSJKkenR4kAQkYRIfAPyAt9LK\naaDWkqw5fjyE8AjwTP6LMcZfK+WHxRj/sIj3XAtcW8rPlSrN8AhJklSPckESIyMDZDI/AD4J3PPc\n62vXvo2hoUHa29trVmMzKecK3w7gfcBm4LPA8JSH1HT27dvH8PB2MpnNJDui7yb5ZOdKALZsudX/\nKEmSpJoZGhqku3s5yS2ZvSTTMI8Cg4yM7KG39+Ka1tdMSj6BijG+sxqFSPXM8AhJklTP2tvb2bz5\nFhYu3E6StWaYRLWUcwJFCOH4EMIbQwibQgjt2ecWhRD+V2XLk+qD4RGSJKneGSYxN8pZpHsmMAL8\nGDgN+BBwCPgD4BeBSytZoFRrhkdIkqRGYJjE3CjnBOoW4KPAGUB+Ct82Dm93pYZXGB6xlCQ84nSg\nn+7u5YZHSJKkupALk0ilBoC/IVmluhC4GUjCJA4dOlTDCptDOQ3Uq4DbY4xxyvPfIokil5qG4RGS\nJKmRGCZRfeU0UM8Ax03z/Hzg4OzKkerLkcMjvEssSZLqSy5MAiaYDJM4jSRM4n0MD29nfHy8pjU2\nunIaqH8F3hlCyM1PxRDCLwLvBv65YpVJdcDwCEmS1GgMk6iuchqoK4CTgO8CzyfZ0vUIyTzUOypX\nmlR7J598MvPmnUpyDD4IPAYMkkqto6fH8AhJklR//AC4usrZA3UIeE0IoQtYRHKd7z5geJq5KKmh\n9fX1c+jQ08DLScIjEieeeKrhEZIkqS7lwiRGRgbIZEwPrrSy9kABxBhHY4ybY4w3xBh3AL8QQri9\ngrVJNZULkJiYuA24nyQ8YjvwXp544nEOHnTkT5Ik1afJMAnTgyut5BOoIzgZ+CPgTyv4M6WaOfz+\n8ILs40zgKvbv3+8nOJIkqS61t7ezY8c2xsfH2b9/P/Pnz/fvLRVSyQZKairTL6MD7w9LkqRGsWDB\nAhunCrOBkqaRTqcZGFhPcsv1csD7w5IkSbKBkqbV19fPyMgeYCvwcfIDJLq7V3t/WJIkqUUV3UCF\nED5xlLecOMtapLqQC49IYsvXAJcB48DfAjezZcuttLe317JESZIk1UgpKXxPH+XxOPDRShcozbXp\nl88tAAYAl89JkiS1sqJPoGKM/Ud/l9T4DI+QJEnSTJyBkvIYHiFJkqQjsYGS8hgeIUmSpCMpZQZK\namq58IhMZjNJcMTdwD7gSgDDIyRJkmQDJeUYHiFJkqSjKbqBCiGcH0II1SxGqqXC8Ih8hkdIkiQp\nUcoM1DbgWyGEDwEfijF+ozolSXPP8AhJkiQVo5QrfAuAfwAuBfaHEO4OIfSGEI6tSmXSHCoMj1hK\nEh5xOtBPd/dywyMkSZIElNBAxRgfiTFeDbwcWAV8F/h74DshhNtCCL9apRqlqjI8QpIkScUqOUQi\nJj4XY1wD/ALwl8CrgP8MIdxX6QKlajM8QpIkScWaVQpfjPH7JLNRdwHfB86uRFHSXDI8QpIkScUq\na5Fudu7pd4E3A78BPAZsBj5UscqkOXLyySczb96pPPGE4RGSJEk6spIaqBDCMpKm6Q3A84FPk8xD\njcQYY+XLk6qvr6+fQ4eeJhnv63/u+RNPPNXwCEmSJBUouoEKITwEvBJ4CLgGGIwxHqpWYdJcyAVI\nwCCwBhgH9gNf4YknruLgwYMGSEiSJOk5pcxA3Qv8WoxxcYxxi82TmsHhARILSA5V/wAwQEKSJEmF\nSokx/9MY496ZXg8hnB1C+FllypLmhgESkiRJKkVZIRIzCECqgj9Pqqp0Os3AwHqSzxEMkJAkSdLR\nVbKBkhpKX18/IyN7gK3Ax8kPkOjuXm2AhCRJkg4zqz1QUqPKhUdkMpuBy4C7gX3AlQBs2XKr4RGS\nJEk6TNENVAjh+CM9gBdVsU6pog4Pj4AkQGIAMDxCkiRJ0yvlCt/3SYZEZhKO8rpUNwrDI9bkvWJ4\nhCRJkmZWSgP1mqpVIc2xjo4OOju72LVrLRMThkdIkiSpOEU3UDHG0WoWIs2VdDpNX18/Y2OjJLdY\nDY+QJElScUqZgfqFEMLN2Xmnqa+dEEJ4bwjhFytbnlR5k+l7g8A3gJtpazuOzs4uduzYZniEJEmS\nZlRKCt+fAcfHGJ+a+kKM8UmSEIkNlSpMqobC9L01wGnAFUxMbGVsbJTx8fEaVyhJkqR6VkoDdT5w\n5xFevxPnpFTnpk/fg2QGyvQ9SZIkHVkpDdTLgUeP8Po3gZfNqhqpygrT9/KZvidJkqSjKyWF7yck\nDdJMTdTLsu+R6lI6nWZgYD3J5waXk6Tum74nSZKk4pXSQH2RJK5s6kf3OZcA/z7riqQqmQyP2Ap8\nHNP3JEmSVKpSrvDdDLwpm8R3au7JEMKpIYS/At6YfY9UdwrDIy4D7gb2AVcCsGXLrabvSZIk6aiK\nbqBijJ8nuff0VuDbIYRDIYQ08O3s82tjjPdUp0xpdqYPj1gADACGR0iSJKk4pVzhI8Z4Rwjhs8BF\nwHwgkHyM/48xxm9WoT6pIgrDI9bkvWJ4hCRJkopXUgMFEGP8FnDLdK+FEJ4fYzRIQnXn5JNPZt68\nU3niCcMjJEmSVL6SG6jphBCOJbnadxXwkkr8TKmS+vr6OXToaZI0/snwiBNPPNXwCEmSJBWt6Bmo\nEMKxIYQbQwj/GULYFUJ4ffb5NwFfB97GDCdTUi3lAiQmJm4D7ie5dbodeC9PPPE4Bw8erG2BkiRJ\nahilpPC9C/gTkmbpZcAnQwh/C6wH/gx4WYzxpopXKM3S4QESC4BVwB8ABkhIkiSpeKU0UL8PXBJj\n/H3gPCBFcgVwUYzxYzHGTDUKlGarMEAinwESkiRJKk0pDdRLgb0AMcYvA08Dt8QYYzUKkyqlo6OD\nzs4u2trWAoPAY8AgqdQ6enoMkJAkSVLxSgmRSAE/y/v+WeCHlS1Hqqx0Ok1fXz9jY6MknxdMBkh0\nd682QEKSJEklKaWBCsA/hBCezn7/POBvQgg/yn9TjPF/V6o4abb6+voZGdlDcvK0EvgEbW3XsmLF\nUnbs2Fbj6iRJktRoSmmgPjzlez+6V13Lpe8lf1Rzy3OvYGLiVMbG+hkfH/f6niRJkkpSdAMVY3xT\nNQuRKu3w9L2cLiBJ37OBkiRJUilKCZGQGorpe5IkSaq0Uq7wSQ0jnU4zMLCe5DOCy4FIcvI0Siq1\nju5u0/ckSZJUOhsoNaXJ8IitwMcxfU+SJEmV4BU+NZ1ceEQmsxm4DLgb2AdcCcCWLbfS3t5ewwol\nSZLUqGyg1HSmD49YAAwASXiEJEmSVA4bKDUdwyMkSZJULTZQajodHR10dnbR1raWZAfUY8AgqdQ6\nenoMj5AkSVL5DJFQU0mn0/T19TM2Nkry+YDhEZIkSaocT6DUVCbT9waBbwA309Z2HJ2dXezYsc3w\nCEmSJM2KDZSaRmH63hrgNOAKJia2MjY2yvj4eI0rlCRJUqOzgVLTmD59D5IFuqbvSZIkafZsoNQ0\nTN+TJElStdlAqWl0dHTQ07OaVGoA0/ckSZJUDabwqWmk02meeeYZMpnvk5++19X1WtP3JEmSVBGe\nQKlp9PX1Mzq6F7iT5NreVbS1ncAxxxxj+p4kSZIqwhMoNYVcAl9ydW9N9tmVTEyczfBwP+Pj417h\nkyRJ0qx5AqWmYAKfJEmS5oINlJqCCXySJEmaCzZQagodHR10dnbR1rYWE/gkSZJULc5AqeGl02n6\n+voZGxsl+UxgMoGvu3u1CXySJEmqGE+g1PD6+voZGdlDcvL0DeBm2tqOo7Ozix07tpnAJ0mSpIqx\ngVJDy6XvZTKbSdL3TgOuYGJiK2Njo4yPj9e4QkmSJDUTGyg1NNP3JEmSNJdsoNTQTN+TJEnSXDJE\nQg0rnU4zMLCe5HOAy4FIcvI0Siq1ju5u0/ckSZJUWTZQaliT4RFbgY9j+p4kSZKqzSt8akiF4RGX\nAXcD+4ArAdiy5VbT9yRJklRxNlBqSNOHRywABgDDIyRJklQdNlBqSIZHSJIkqRZsoNSQOjo66Ozs\noq1tLckC3ceAQVKpdfT0GB4hSZKk6jBEQg0nnU7T19fP2NgoyWcAhkdIkiRpbngCpYYzmb43CHwD\nuJm2tuPo7Oxix45thkdIkiSpamyg1FAK0/fWAKcBVzAxsZWxsVHGx8drXKEkSZKamQ2UGsr06XuQ\nLNA1fU+SJEnVZQOlhmL6niRJkmrJBkoNpaOjg56e1aRSA5i+J0mSpLlmCp8aSjqd5plnniGT+T75\n6XtdXa81fU+SJElV5wmUGkpfXz+jo3uBO0mu7V1FW9sJHHPMMabvSZIkqeo8gVLDyCXwJVf31mSf\nXcnExNkMD/czPj7uFT5JkiRVlSdQahgm8EmSJKnWbKDUMEzgkyRJUq3VvIEKIWwIIfx7COGpEMLj\nIYR/CSF0THnPh0IIE1Me22tVs2qjo6ODzs4u2trWYgKfJEmSaqEeZqDOBbYA/0lSz43Av4UQXhFj\n/Ene++4C3giE7PdPz2WRqq10Ok1fXz9jY6Mkff9kAl9392oT+CRJkjQnat5AxRhX538fQngj8D1g\nKTCW99LTMcYDc1ia6khfXz8jI3tITp5WAp+gre1aVqxYyo4d22pcnSRJklpFza/wTeNEIALpKc//\nRvaK31dDCLeHEE6qQW2qgVz6XiazmSR97zTgCiYmtjI2Nsr4+HiNK5QkSVKrqKsGKoQQgFuBsRjj\nf+W9dBdwCfD/AH9OEru2Pft+NTnT9yRJklQvan6Fb4rbgVcCv57/ZIzxE3nffiWE8BDwMPAbwOdn\n+mHr16/nhBNOKHiut7eX3t7eStWrOVCYvrcm7xXT9yRJkjRpaGiIoaGhgueefPLJiv4eIcZY0R9Y\nrhDCbcDrgHNjjI8W8f7vAX8ZY/zANK8tAfbu3buXJUuWVL5Yzbnzz7+AkZE9ZDLvIzl5GiWVWkd3\n93JnoCRJkjSj++67j6VLlwIsjTHeN9ufVxdX+LLN028DrymyeXopMA/4TrVrU33YtOlaFi06gyR9\n73Sgn+7u5abvSZIkaU7V/ApfCOF2oBe4EPhRCOHU7EtPxhh/GkJ4IXAN8E/Ad4H5wE3APmC4BiVr\nDuXiy4eHJ9d+LVmyjDvu2MqyZctqWJkkSZJaUT2cQP0xcDzwBeDbeY+Lsq9ngLOBTwNfAz4A/Aew\nMsb4zFwXq7lVGF/+KDDIgw8+wsaN19S4MkmSJLWimp9AxRiP2MTFGH8KnD9H5aiO5OLLk+YpFx6x\nhkwmMjzcz/j4OAsWLKhhhZIkSWo19XACJU3L+HJJkiTVGxso1a3C+PJ8xpdLkiSpNmygVLc6Ojro\n7OyirW0tyTW+x4BBUql19PSs9vqeJEmS5lzNZ6Ck6eTS98bGRkn6/P7nXuvuXm18uSRJkmrCEyjV\npcL0vW8AN9PWdhydnV3s2LGN9vb22hYoSZKklmQDpbqTS9/LZDaTpO+dBlzBxMRWxsZGGR8fr3GF\nkiRJalU2UKo7pu9JkiSpXtlAqe6YvidJkqR6ZQOlutPR0UFPz2pSqQFM35MkSVI9MYVPdSedTvPM\nM8+QyXyf/PS9rq7Xmr4nSZKkmvIESnWnr6+f0dG9wJ0k1/auoq3tBI455hjT9yRJklRTnkCpruQS\n+JKre2uyz65kYuJshof7GR8f9wqfJEmSasYTKNUVE/gkSZJUz2ygVFdM4JMkSVI9s4FSXTGBT5Ik\nSfXMBkp1Z9Oma1m06AySBL7TgX66u5ebwCdJkqSaM0RCdSOdTtPX158NkUgsWbKMO+7YyrJly2pY\nmSRJkpTwBEp1o6+vn5GRPSRX9x4FBnnwwUfYuPGaGlcmSZIkJTyBUl2YPr58DZlMNL5ckiRJdcMT\nKNUF48slSZLUCGygVBeML5ckSVIjsIFSXejo6KCzs4u2trUYXy5JkqR65QyUai6Xvjc2NkrS0/c/\n91p392rjyyVJklQ3PIFSzRWm730DuJm2tuPo7Oxix45ttLe317ZASZIkKcsGSjWVS9/LZDaTpO+d\nBlzBxMRWxsZGGR8fr3GFkiRJ0iQbKNWU6XuSJElqJDZQqinT9yRJktRIbKBUUx0dHfT0rCaVGsD0\nPUmSJNU7GyjV3KZN17Jo0Rkk6XunA/10dy83fU+SJEl1xxhz1Uwuvnx4ePtzzy1Zsow77tjKsmXL\naliZJEmSND1PoFQzhfHljwKDPPjgI2zceE2NK5MkSZKm5wmUaiIXX540T2uyz64hk4kMD/czPj7u\n/JMkSZLqjidQqgnjyyVJktSIbKBUE8aXS5IkqRHZQKkmjC+XJElSI7KBUs0MDQ1yzjlnYXy5JEmS\nGoUNlGoinU7T23sxY2Ojzz3X2dnF0NAg7e3tNaxMkiRJmpkNlGpiugjz3bsforf34hpXJkmSJM3M\nGHPNOSPMJUmS1Kg8gdKcM8JckiRJjcoGSnPOCHNJkiQ1KhsozbmOjg46O7toa1uLEeaSJElqJM5A\naU6l02n6+vqz6XttJBHmie7u1UaYS5Ikqa55AqU5VZi+9w3gZtrajqOzs4sdO7YZYS5JkqS6ZgOl\nOZNL38tkNpOk750GXMHExFbGxkYZHx+vcYWSJEnSkdlAac6YvidJkqRGZwOlOWP6niRJkhqdDZTm\nTEdHBz09q0mlBjB9T5IkSY3IBkpzatOma1m06AyS9L3TgX66u5ebvidJkqSGYIy55kQuvnx4ePtz\nzy1Zsow77tjKsmXLaliZJEmSVDxPoDQnCuPLHwUGefDBR9i48ZoaVyZJkiQVzxMoVV0uvjxpntZk\nn11DJhMZHu5nfHzc+SdJkiQ1BE+gVHXGl0uSJKlZ2ECp6owvlyRJUrOwgVLVGV8uSZKkZmEDpTlh\nfLkkSZKagSESqirjyyVJktRMPIFSVRlfLkmSpGbiCZSqxvhySZIkNRtPoFQ1xpdLkiSp2dhAqWqM\nL5ckSVKzsYFS1RhfLkmSpGZjA6WqGhoapLt7OcaXS5IkqRkYIqGqam9vZ/PmW9i583cA6Orq8uRJ\nkiRJDcsGSlUz3Q6onp7VDA0N0t7eXsPKJEmSpPJ4hU9VM90OqJGRPfT2XlzjyiRJkqTyeAKlqnAH\nlCRJkpqRJ1CqCndASZIkqRnZQKkq3AElSZKkZmQDpapwB5QkSZKakQ2UqmbTpmtZtOgM3AElSZKk\nZmGIhCpuuvjyJUuWcccdW1m2bFkNK5MkSZJmxxMoVdx08eUPPvgIGzdeU+PKJEmSpNnxBEoVZXy5\nJEmSmpknUKoo48slSZLUzGygVFHGl0uSJKmZ2UCpoowvlyRJUjOzgVLFGV8uSZKkZmWIhCrG+HJJ\nkiQ1O0+gVDHGl0uSJKnZeQKlijC+XJIkSa3AEyhVhPHlkiRJagU2UKoI48slSZLUCmygVBHGl0uS\nJKkV2ECpYoaGBunuXo7x5ZIkSWpWhkioYg4cOMC6dW/liivexrPPPsv8+fM9eZIkSVJTsYHSrE23\n/6mnZ7UnT5IkSWo6XuHTrE23/2lkZA+9vRfXuDJJkiSpsjyB0qy4/0mSJEmtxBMozYr7nyRJktRK\nbKA0K+5/kiRJUiuxgdKsuP9JkiRJrcQGSrM2NDTIOeechfufJEmS1OxsoDQr6XSa3t6LGRsbfe65\nzs4uhoYGaW9vr2FlkiRJUuXZQGlWposw3737ISPMJUmS1JSMMVfZjDCXJElSq/EESmUzwlySJEmt\nxgZKZTPCXJIkSa3GBkplM8JckiRJrabmDVQIYUMI4d9DCE+FEB4PIfxLCKFjmve9K4Tw7RDCj0MI\nnwsheLxRB4aGBunuXo4R5pIkSWoF9RAicS6wBfhPknpuBP4thPCKGONPAEIIbwfeClwF7dqJAAAT\nXklEQVQCfAO4HhjOvudnNalaABw4cIB1697KFVe8jWeffZb58+d78iRJkqSmVfMGKsa4Ov/7EMIb\nge8BS4Gx7NPrgE0xxs9m33MJ8DjweuATc1asnpNOp+nr68+m8CV6elZ78iRJkqSmVvMrfNM4EYhA\nGiCE8HLgJcDduTfEGJ8CvgicU4sCNf3+p5GRPe5/kiRJUlOr+QlUvhBCAG4FxmKM/5V9+iUkDdXj\nU97+ePY1zTH3P0mSJKlV1dsJ1O3AK4E31LoQzcz9T5IkSWpVdXMCFUK4DVgNnBtj/E7eS98FAnAq\nhadQpwL3H+lnrl+/nhNOOKHgud7eXnp7eytSc6sq3P+0Ju8V9z9JkiSpdoaGhhgaGip47sknn6zo\n7xFijBX9gWUVkTRPvw10xRgfmeb1bwPvjTHekv3+eJJm6pIY4yenef8SYO/evXtZsmRJdYtvUeef\nfwEjI3vIZN5HcvI0Siq1ju7u5ezYsa3W5UmSJEkA3HfffSxduhRgaYzxvtn+vJpf4Qsh3E5yjNEH\n/CiEcGr28by8t90KbAwhvC6EcBZwJ/BN4NNzX7HA/U+SJElqTfVwhe+PSUIivjDl+TeRNErEGN8T\nQngBcAdJSt+9wCp3QNWO+58kSZLUimreQMUYizoFizFeC1xb1WJ0VO5/kiRJUiur+RU+NRb3P0mS\nJKmV1fwESo3D/U+SJElqdZ5AqWjuf5IkSVKrs4FS0Qr3P+Vz/5MkSZJagw2UitbR0UFPz2pSqQGS\na3yPAYOkUuvo6Vnt9T1JkiQ1PRsolcT9T5IkSWplhkioJO5/kiRJUiuzgVJR3P8kSZIkeYVPRXL/\nkyRJkuQJlIrg/idJkiQp4QmUjsr9T5IkSVLCBkpH5f4nSZIkKWEDpaNy/5MkSZKUsIFSUdz/JEmS\nJBkioSK1t7ezY8c2xsfH2b9/v/ufJEmS1JJsoFS0ffv28fDDD9s8SZIkqWV5hU9HlU6nOf/8C1i4\ncCGrV6+mo6OD88+/gEOHDtW6NEmSJGlO2UDpqFyiK0mSJCW8wqcjcomuJEmSNMkTKB2RS3QlSZKk\nSTZQOiKX6EqSJEmTbKB0RC7RlSRJkibZQOmoXKIrSZIkJQyR0FEdOHCAdeveyhVXvI1nn33WPVCS\nJElqWTZQmlE6naavrz+bwpfo6VntyZMkSZJallf4NCP3P0mSJEmFPIHStNz/JEmSJB3OEyhNy/1P\nkiRJ0uFsoDQt9z9JkiRJh7OB0rTc/yRJkiQdzgZKM3L/kyRJklTIEAnNqL29nR07tjE+Ps7+/fvd\n/yRJkqSWZwOlGe3bt4+HH36Y+fPns2rVqlqXI0mSJNWcV/h0mHQ6zfnnX8DChQtZvXo1HR0dnH/+\nBRw6dKjWpUmSJEk1ZQOlw7hAV5IkSZqeV/hUwAW6kiRJ0sw8gVIBF+hKkiRJM7OBUgEX6Er6/9u7\n92g5q/qM49+HWylQoC0aSkWsiHdAUasWEQSlVZf2top4A7SttBZtVUBFxWuLIkVrC1pRUVxC1day\nQIlQC16KWCtRdClQlWCqXGMwKihisvvHfg+8TOaYPSdnMjPJ97PWu3Jmv/u82fOsOfPO773skSRJ\n87OA0t34BbqSJEnS/CygtA6/QFeSJEkazkkktA6/QFeSJEkazgJK89prr70snCRJkqQeL+GTJEmS\npEYWUJIkSZLUyAJKkiRJkhpZQEmSJElSIwsoSZIkSWpkASVJkiRJjSygJEmSJKmRBZQkSZIkNbKA\nkiRJkqRGFlCSJEmS1MgCSpIkSZIaWUBJkiRJUiMLKEmSJElqZAElSZIkSY0soCRJkiSpkQWUJEmS\nJDWygJIkSZKkRhZQkiRJktTIAkqSJEmSGllASZIkSVIjCyhJkiRJamQBJUmSJEmNLKAkSZIkqZEF\nlCRJkiQ1soCSJEmSpEYWUJIkSZLUyAJKkiRJkhpZQEmSJElSIwsoSZIkSWpkASVJkiRJjSygJEmS\nJKmRBZQkSZIkNbKAkiRJkqRGFlCSJEmS1MgCSpIkSZIaWUBJkiRJUiMLKEmSJElqZAElSZIkSY0s\noCRJkiSpkQWUJEmSJDWygJIkSZKkRhZQkiRJktTIAkqSJEmSGllASZIkSVIjCyhJkiRJamQBJUmS\nJEmNLKAkSZIkqZEFlCRJkiQ1soCSJEmSpEYWUJIkSZLUyAJKkiRJkhpZQEmSJElSIwsoSZIkSWpk\nASVJkiRJjSygJEmSJKmRBZQkSZIkNbKAkiRJkqRGFlCSJEmS1GgqCqgkByQ5L8n3kqxN8vSB9Wd2\n7f3lgkmNd3N2zjnnTHoImyRzHR+zHQ9zHQ9zHQ9zHQ9zHQ9znX5TUUAB2wNfAV4IlHn6LAWWALt2\nyzM3ztDU5x/1eJjr+JjteJjreJjreJjreJjreJjr9Ntq0gMAKKV8EvgkQJLM0+32UsrNG29UkiRJ\nknR303IGqsVBSW5MclWS05P82qQHJEmSJGnzMhVnoBosBf4NWA7sCZwEXJDksaWU+S75kyRJkqRF\nNRMFVCnlI72HX0/yNeDbwEHAJUN+ZVuAK6+8cvyD28ysXr2aZcuWTXoYmxxzHR+zHQ9zHQ9zHQ9z\nHQ9zHQ9zXXy9mmDbxdhepu0ETpK1wB+UUs5bT7+bgFeVUs4Ysu5ZwIfGNERJkiRJs+fZpZSzN3Qj\nM3EGalCSewG/Dlw/T5cLgWcD1wI/3UjDkiRJkjR9tgXuQ60RNthUnIFKsj1wPyDAMuCl1EvzVnXL\na6n3QN3Q9XsLderzfUopd0xizJIkSZI2P9NSQB1ILZgGB/MB6ndDnQs8DNgZuI5aPZ7otOaSJEmS\nNqapKKAkSZIkaRbM0vdASZIkSdJEWUBJkiRJUqOZL6CSnJDk0iS3Jlk1T5/dk3yi63NDkpOTbDHQ\nZ58kn03ykyTfSXLcxnkGsyHJXknOTXJzktVJPpfkoIE+681Z60ry1CRfSHJbklVJPjaw3lwXKMk2\nSb6SZG2SfQbWmesIkuyR5D1Jruleq99M8rokWw/0M9cFSPJXSZZ3+6AvJHnUpMc0S5K8MskXk/ww\nyY1J/j3J/Yf0e0OS67rX8H8kud8kxjurkryiez89daDdXEeUZLckH0yyssvtiiT7DfQx1xEk2SLJ\nG3v7qW8lefWQfhuc66awU9sa+AjwzmErux33BdQp2x8DHAkcBbyh1+dXqBNTLAf2A44DXpfkz8Y5\n8BnzCWBL6pcX7wdcAXw8yT2hLWetK8kfA2cB7wX2Bn4HOLu33lw3zMnAdxmYoMZcF+SB1JlS/xx4\nMPAS4C+Av53rYK4Lk+QZwN9TZ5x9OPX99cIku0x0YLPlAOAfgUcDT6R+NrgoyS/PdUjycuAY4AXA\nbwO3UnPeZuMPd/Z0Rf0LqK/Pfru5jijJzsClwO3A7wIPAl4G3NLrY66jewVwNHUCugcCxwPHJzlm\nrsOi5VpK2SQW6o561ZD2JwN3ALv02o6mvki36h7/JbBy7nHXdhLwjUk/r2lYqN+5tRbYv9e2Q9d2\ncGvOLuvkuiXwf8BRv6CPuS483ycDX+/eRNdSv/bAXBc342OBb5nrBuf4BeAfeo9DLfyPn/TYZnUB\ndun+7h/Xa7sOeEnv8Y7AT4DDJj3eaV+6ff7VwMHUWZNPNdcNyvPNwGfW08dcR8/1fOCMgbZ/Bc5a\n7Fw3hTNQ6/MY4GullJW9tguBnYCH9Pp8tpTy84E+D0iy08YZ5vQqpXwfuAo4Isl2SbaiFp03Apd3\n3Vpy1t3tB+wGkGRZdzr5giT9vMx1AZIsAd4NPIf6xjjIXBfHztTv6ptjriPqLoF8BPCfc22l7tU/\nBTx2UuPaBOxMPfO8CiDJbwG7cvecfwj8N+bc4jTg/FLKxf1Gc12wpwFfSvKR7pLTZf2rnsx1wT4P\nHJJkL4Ak+wL7U6+MWNRcN4cCalfqB/2+G3vrWvts7p5E/cD/I+oH0r8Gfq+Usrpbb4ajuy/1SPNr\nqZc4PZV6pP7T3el9MNeFOhM4vZTy5XnWm+sG6q4ZPwZ4V6/ZXEe3C/Vs9LDczGwBkgR4O/BfpZRv\ndM27Ugsqcx5RksOp38X5yiGrzXVh7ks9EH01cCj1NpR3JHlut95cF+bNwIeBq5L8jHqQ/+2llH/p\n1i9arlNZQCU5qbtJcb5lzbCbQzWaEXM+nfoC2x94FPXLjT/eHelXzwi5zv39vamUcm73Yf951D/u\nP5nYE5hSrbkmeTH1cpO3zP3qBIc99RbyfpvkN4GlwIdLKe+bzMileZ1OvU/v8EkPZNYluRe1GH12\nKeWOSY9nE7IFcHkp5TWllCtKKWcAZ1DvK9XCPQN4FvVv/+HU23uO6xWmi2arxd7gIjmFegT5F7mm\ncVs3UD/w9y3prZv7d7AQGOyzKWrKOckhwFOAnUspt3btxyQ5lPriPJm2nDcXra/f3bqfr5xrLKX8\nLMk1wL27JnO9S0uuy4EnUE/F314PRN/pS0k+VEp5HubaN9L7bZLdgIupR/ePHuhnrqNbCaxh+D7I\nzEaU5J+o+6sDSinX91bdQD2YsoS7H31eAsx3plr18tJ7AMty1xvqlsDjuxvz5yaXMdfRXE9v39+5\nEvij7mdfrwtzMnBSKeWj3eOvJ7kP9ezpB1nEXKeygOruufn+Im3uMuCEJLv0rss/FFgNfKPX501J\ntiylrOn1ubp3idompzXnbhajQr0ht28td51Facl5szBCrpdTZ+B5APW63bn7Ie4DfKfrZq6dEXJ9\nEfCqXtNu1PtwDgO+2LWZa2eU99vuzNPFwP8Azx/SxVxHVEq5o3svOAQ4D+68BO0Q4B2THNus6Yqn\n3wcOLKWs6K8rpSxPcgM11692/Xekztp32sYe6wz5FHWG2L73Uz/sv7mUco25Lsil1H1/3wPo9v2+\nXhdsO+oBqb47P6suaq6TnjFjEWbc2B3YFziRupPet1u279ZvQZ1ycymwD3W6yBuBNw7MwHEd8AHq\naf9nAD8G/nTSz28aFuosfDcBH+0y3At4K/BTYO/WnF2GZvs2YAX1HrP7A++hHpnayVwXLeM9WHcW\nPnMdPcfdgG8CF3U/L5lbzHWDsz0MuA04gnpE/5+pRe09Jj22WVmol+3dQp3OfElv2bbX5/gu16dR\ni4Jzu9f0NpMe/ywtrDsLn7mOnuEjqQdQXwnsSb3s7EfA4ea6Qbme2X2mekq37//D7vPr3y12rhN/\nsosU1pohy+N7fXYHPk4tim6k3huxxcB2Hgp8ptuJrQCOnfRzm6aFOoHEUuBm4AfUoyeHDvRZb84u\n6+S6JfWU8/VdrhcCDzLXRc14j+49YZ+BdnMdLccjh7zPrgXWmOui5PtC4FrqJD2XAY+c9JhmaZl7\nLQ5Zjhjo9zrqAdPbuvfb+0167LO2UM9CnzrQZq6j5/gU6lmQ26hfufH8IX3MdbRMtwdOpV7Of2tX\nGL2ega/RWIxc021IkiRJkrQeUzkLnyRJkiRNIwsoSZIkSWpkASVJkiRJjSygJEmSJKmRBZQkSZIk\nNbKAkiRJkqRGFlCSJEmS1MgCSpIkSZIaWUBJkmZekuVJXjymbV+S5NRxbFuSNHssoCRJG1WSM5N8\nbIG/e2SSW4aseiTw7l6/tUmevtAxSpI0n60mPQBJkkYQoAw2llK+P4GxSJI2Q56BkiRNjSQvSfLV\nJD9OsiLJaUm269YdCLwP2Kk7w7QmyYndujsv4UuynFpkndv1u6Zrf//gma8kb0tySe/xdknOSvKj\nJN9L8tIhY9wmySlJvtuN87JubJKkzYAFlCRpmqwBXgQ8GDgCeAJwcrfu88DfAD8ElgC/AZwyZBuP\nop6pOhLYtXsMQ85cDWk/BTgAeBpwKHAQsN9A/9OARwOHAXsDHwWWJtmz4flJkmacl/BJkqZGKeUd\nvYcrkrwGeCdwTCnljiSra7dy8y/YxsokAKtLKTe1/t9JtgeeDzyrlPLpru1I4Lu9PvcGjgJ2L6Xc\n0DWfmuTJwPOAV7f+f5Kk2WQBJUmaGkmeCLwCeCCwI3U/9UtJti2l/HTM//2ewNbAF+caSim3JLm6\n1+ehwJbA/6ar0jrbACvHPD5J0hSwgJIkTYUkewDnUy+ROwFYRb2c7j3UAmVDC6i11Ev7+rYecRs7\nAD+nXta3dmDdjxc4LknSDLGAkiRNi0cAKaUcO9eQ5PCBPj+jngFanzuG9LsZeMhA28O6bQJ8m1oc\nPZrusr0kvwrcH/h01+fL3XaXlFIubRiHJGkTYwElSZqEnZPsO9C2Eti6m03vfOBxwNEDfa4Fdkhy\nMHAFcFsp5SdDtn8tcEiSzwO3l1J+AFwMHJvkucBlwHOol+QtAyil3JrkvcBbk6yiFlxvok5sQdfn\nm0nOBs5Kciy1oLoncDBwRSll6YLSkCTNDGfhkyRNwoHUwqW/PAd4KfBy4GvAM6n3Q92plHIZ8C7g\nw8BNwHFzqwa2/zLgScAK7iqQLgLeCLyFep/TDsAHBn7vOOBzwHnARd3Plw/0OQo4izpj31XAx6hf\n5Lui9clLkmZXSplvVldJkiRJUp9noCRJkiSpkQWUJEmSJDWygJIkSZKkRhZQkiRJktTIAkqSJEmS\nGllASZIkSVIjCyhJkiRJamQBJUmSJEmNLKAkSZIkqZEFlCRJkiQ1soCSJEmSpEYWUJIkSZLU6P8B\nOtiD01OXkN8AAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x2b469adf17d0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig, ax = plt.subplots(figsize=(10,10))\n", | |
"plt.scatter(square_lats, length_scales)\n", | |
"plt.title(\"Approx. RCLV Length Threshold (min. particles = 163, 1/32 X 1/32 deg. mesh)\")\n", | |
"plt.xlabel('Latitude')\n", | |
"plt.ylabel('RCLV Length Scale Threshold[km]')" | |
] | |
} | |
], | |
"metadata": { | |
"anaconda-cloud": {}, | |
"kernelspec": { | |
"display_name": "Python [conda root]", | |
"language": "python", | |
"name": "conda-root-py" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.12" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment