Skip to content

Instantly share code, notes, and snippets.

@navin-mohan
Created February 25, 2018 08:57
Show Gist options
  • Save navin-mohan/0b113b519e2657adab119d4dd96181bd to your computer and use it in GitHub Desktop.
Save navin-mohan/0b113b519e2657adab119d4dd96181bd to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(1, 3)\n",
"(1, 3)\n",
"8\n",
"W:[[1]\n",
" [2]\n",
" [3]\n",
" [4]]\n",
"X: [[2]\n",
" [2]\n",
" [2]\n",
" [2]]\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"y = [[1,2,3],]\n",
"y_hat = [[3,2,1],]\n",
"y = np.array(y)\n",
"y_hat = np.array(y_hat)\n",
"print(y.shape)\n",
"print(y_hat.shape)\n",
"\n",
"#MSE\n",
"print(np.sum(np.power(y_hat-y,2)))\n",
"\n",
"\n",
"\n",
"W = np.array([[1,2,3,4],]).T\n",
"X = np.array([[2,2,2,2],]).T\n",
"print(\"W:{0}\\nX: {1}\".format(W,X))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import load_boston\n",
"from sklearn.linear_model import LinearRegression\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ -1.07170557e-01, 4.63952195e-02, 2.08602395e-02,\n",
" 2.68856140e+00, -1.77957587e+01, 3.80475246e+00,\n",
" 7.51061703e-04, -1.47575880e+00, 3.05655038e-01,\n",
" -1.23293463e-02, -9.53463555e-01, 9.39251272e-03,\n",
" -5.25466633e-01])"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lr = LinearRegression(normalize=False)\n",
"df = load_boston()\n",
"X = df.data\n",
"Y = df.target\n",
"\n",
"\n",
"lr.fit(X,Y)\n",
"X.shape\n",
"# df.keys()\n",
"lr.coef_"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "shapes (4,1) and (13,) not aligned: 1 (dim 1) != 13 (dim 0)",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-42-2b2876dfb61d>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mY\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/base.py\u001b[0m in \u001b[0;36mpredict\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 254\u001b[0m \u001b[0mReturns\u001b[0m \u001b[0mpredicted\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 255\u001b[0m \"\"\"\n\u001b[0;32m--> 256\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_decision_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 257\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 258\u001b[0m \u001b[0m_preprocess_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstaticmethod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_preprocess_data\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/base.py\u001b[0m in \u001b[0;36m_decision_function\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcheck_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maccept_sparse\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'csr'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'csc'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'coo'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 240\u001b[0m return safe_sparse_dot(X, self.coef_.T,\n\u001b[0;32m--> 241\u001b[0;31m dense_output=True) + self.intercept_\n\u001b[0m\u001b[1;32m 242\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 243\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/sklearn/utils/extmath.py\u001b[0m in \u001b[0;36msafe_sparse_dot\u001b[0;34m(a, b, dense_output)\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mret\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 140\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 141\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 142\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mValueError\u001b[0m: shapes (4,1) and (13,) not aligned: 1 (dim 1) != 13 (dim 0)"
]
}
],
"source": [
"np.sum((lr.predict(X) - Y)**2)/Y.shape"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [],
"source": [
"val = 0\n",
"l = np.array(range(10000))"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"14.1 µs ± 123 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"val = 0\n",
"np.sum(l)"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.35 ms ± 7.73 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"val = 0\n",
"for i in l:\n",
" val += i"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0, 1, 2, ..., 9997, 9998, 9999])"
]
},
"execution_count": 76,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"l"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment