- 500g trockene pasta
- 2-3 zitronen
- olivenöl
- pecorino oder parmesan
- salz, pfeffer
optional:
- petersilie
für die soße:
| /* via https://github.com/piroor/treestyletab/issues/1349 | |
| save in .mozilla/firefox/<teh profile directory>/chrome/userChrome.css */ | |
| @namespace url("http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"); | |
| #TabsToolbar { | |
| visibility: collapse !important; | |
| } |
| #!/bin/sh | |
| context --nonstopmode "$@" | egrep "non-existent entry|Overfull|unknown library|no data definition file|tex error|modules.*is not found|references.*unknown reference" |
| #!/usr/bin/python | |
| from __future__ import print_function | |
| import os | |
| import random | |
| import subprocess | |
| import time | |
| if os.path.exists('/var/run/reboot-required'): | |
| sleep = random.randint(60, 1800) |
| @-moz-document domain(twitter.com) { | |
| .HeartAnimationContainer { | |
| visibility: hidden; | |
| } | |
| .HeartAnimationContainer:after { | |
| content: '🍔'; | |
| visibility: visible; | |
| display: block; | |
| position: absolute; |
| @-moz-document domain(twitter.com) { | |
| .HeartAnimationContainer { | |
| visibility: hidden; | |
| } | |
| .HeartAnimationContainer:after { | |
| content: '👍'; | |
| visibility: visible; | |
| display: block; | |
| position: absolute; |
| #!/usr/bin/env python | |
| """ | |
| find all git repositories (and git working directories) starting from the | |
| current directory and perform a 'git fsck' on them. | |
| """ | |
| from __future__ import division, print_function | |
| from colorama import Fore |
| from __future__ import division, print_function | |
| from functools import wraps | |
| import time | |
| def timed(f): | |
| """Return a timed version of function f. | |
| The returned function returns a tuple of (time, real return value) |
| \begin{equation} \label{eq:dft_1dconsymmetry} | |
| \begin{aligned} | |
| X_{-k} &\stackrel{\hphantom{x_n \in \mathbb{R}}}{=} \sum_{n=0}^{N-1}x_n\cdot e^{-i2\pi n -k/N} \\ | |
| &\stackrel{\hphantom{x_n \in \mathbb{R}}}{=} \sum_{n=0}^{N-1}x_n\cdot e^{+i2\pi n k/N} \\ | |
| &\stackrel{x_n \in \mathbb{R}}{=} X^*_k | |
| \end{aligned} | |
| \end{equation} |