Skip to content

Instantly share code, notes, and snippets.

@neuromusic
Last active June 7, 2019 06:43
Show Gist options
  • Save neuromusic/87267d7e20279585517c8cd46a0c5601 to your computer and use it in GitHub Desktop.
Save neuromusic/87267d7e20279585517c8cd46a0c5601 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Codebook (target: 2, c: 3, r: 2)>\n",
"array([[[0, 1],\n",
" [0, 0],\n",
" [1, 0]],\n",
"\n",
" [[0, 0],\n",
" [1, 1],\n",
" [0, 0]]], dtype=uint8)\n",
"Coordinates:\n",
" * target (target) object a3866318-c57d-4dce-ba4f-948b83daa665 41eb0d65-5312-437b-a740-bec1fdb4efb4\n",
" * c (c) int64 0 1 2\n",
" * r (r) int64 0 1"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from starfish import Codebook\n",
"codebook = Codebook.synthetic_one_hot_codebook(n_round=2, n_channel=3, n_codes=2)\n",
"codebook"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th>v</th>\n",
" </tr>\n",
" <tr>\n",
" <th>target</th>\n",
" <th>c</th>\n",
" <th>r</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th rowspan=\"5\" valign=\"top\">a3866318-c57d-4dce-ba4f-948b83daa665</th>\n",
" <th rowspan=\"2\" valign=\"top\">0</th>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">1</th>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" v\n",
"target c r \n",
"a3866318-c57d-4dce-ba4f-948b83daa665 0 0 0\n",
" 1 1\n",
" 1 0 0\n",
" 1 0\n",
" 2 0 1"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = codebook.to_dataframe(name='v')\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"df.to_csv('codebook.csv')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"target,c,r,v\n",
"a3866318-c57d-4dce-ba4f-948b83daa665,0,0,0\n",
"a3866318-c57d-4dce-ba4f-948b83daa665,0,1,1\n",
"a3866318-c57d-4dce-ba4f-948b83daa665,1,0,0\n",
"a3866318-c57d-4dce-ba4f-948b83daa665,1,1,0\n",
"a3866318-c57d-4dce-ba4f-948b83daa665,2,0,1\n",
"a3866318-c57d-4dce-ba4f-948b83daa665,2,1,0\n",
"41eb0d65-5312-437b-a740-bec1fdb4efb4,0,0,0\n",
"41eb0d65-5312-437b-a740-bec1fdb4efb4,0,1,0\n",
"41eb0d65-5312-437b-a740-bec1fdb4efb4,1,0,1\n",
"41eb0d65-5312-437b-a740-bec1fdb4efb4,1,1,1\n",
"41eb0d65-5312-437b-a740-bec1fdb4efb4,2,0,0\n",
"41eb0d65-5312-437b-a740-bec1fdb4efb4,2,1,0\n"
]
}
],
"source": [
"%%bash\n",
"less codebook.csv"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"codebook2 = pd.read_csv('codebook.csv',index_col=[0,1,2])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.DataArray 'v' (target: 2, c: 3, r: 2)>\n",
"array([[[0, 0],\n",
" [1, 1],\n",
" [0, 0]],\n",
"\n",
" [[0, 1],\n",
" [0, 0],\n",
" [1, 0]]])\n",
"Coordinates:\n",
" * target (target) object '41eb0d65-5312-437b-a740-bec1fdb4efb4' 'a3866318-c57d-4dce-ba4f-948b83daa665'\n",
" * c (c) int64 0 1 2\n",
" * r (r) int64 0 1"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"codebook2.to_xarray()['v']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "starfish",
"language": "python",
"name": "starfish"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment