Created
October 8, 2022 20:11
-
-
Save ngupta23/f550e5f0530dce73ad3afb90a8fee8bb to your computer and use it in GitHub Desktop.
pycaret_issue_2986.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"provenance": [], | |
"authorship_tag": "ABX9TyOxvkP5aUhNrk53USuAD2SC", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
}, | |
"widgets": { | |
"application/vnd.jupyter.widget-state+json": { | |
"20004775690a43588c05afa3a4b080db": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_cfa863f1c9e8443b9aea96cbf04ec01f", | |
"IPY_MODEL_b7c7d02705754000954c67358326fac2", | |
"IPY_MODEL_5589f5ce702c43a2b24449a59a01b9a6" | |
], | |
"layout": "IPY_MODEL_67df935c4e084655a47eb1c7c81e5dbb" | |
} | |
}, | |
"cfa863f1c9e8443b9aea96cbf04ec01f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_2502e435585a4ab5b2a86f062db121e8", | |
"placeholder": "", | |
"style": "IPY_MODEL_36dbcb10395748d8b80eebf28820e1cd", | |
"value": "Processing: 97%" | |
} | |
}, | |
"b7c7d02705754000954c67358326fac2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "danger", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_550944064844401899e6aa212ad9aeed", | |
"max": 117, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_d47a9046279e4110b3b0f25411d33b32", | |
"value": 113 | |
} | |
}, | |
"5589f5ce702c43a2b24449a59a01b9a6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_5dc04c63e13a4bde8e100bbf021f6dea", | |
"placeholder": "", | |
"style": "IPY_MODEL_e3c2d0a1eb234f45a622ca72dfd66aeb", | |
"value": " 113/117 [01:47<00:00, 4.46it/s]" | |
} | |
}, | |
"67df935c4e084655a47eb1c7c81e5dbb": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"2502e435585a4ab5b2a86f062db121e8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"36dbcb10395748d8b80eebf28820e1cd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"550944064844401899e6aa212ad9aeed": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"d47a9046279e4110b3b0f25411d33b32": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"5dc04c63e13a4bde8e100bbf021f6dea": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"e3c2d0a1eb234f45a622ca72dfd66aeb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
} | |
} | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/ngupta23/f550e5f0530dce73ad3afb90a8fee8bb/pycaret_issue_2986.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "w4rqaHAVL1mP", | |
"outputId": "7220a2d6-4fca-4d55-b6ed-540f455464a1" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", | |
"Requirement already satisfied: pycaret==3.0.0rc3 in /usr/local/lib/python3.7/dist-packages (3.0.0rc3)\n", | |
"Requirement already satisfied: jinja2>=1.2 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (2.11.3)\n", | |
"Requirement already satisfied: kaleido>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (0.2.1)\n", | |
"Requirement already satisfied: tbats>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (1.1.1)\n", | |
"Requirement already satisfied: yellowbrick>=1.4 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (1.5)\n", | |
"Requirement already satisfied: category-encoders>=2.4.0 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (2.5.1.post0)\n", | |
"Requirement already satisfied: plotly-resampler>=0.7.2.2 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (0.8.1)\n", | |
"Requirement already satisfied: requests>=2.27.1 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (2.28.1)\n", | |
"Requirement already satisfied: joblib>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (1.2.0)\n", | |
"Requirement already satisfied: lightgbm>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (3.3.2)\n", | |
"Requirement already satisfied: plotly>=5.0.0 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (5.5.0)\n", | |
"Requirement already satisfied: numba~=0.55.0 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (0.55.2)\n", | |
"Requirement already satisfied: psutil>=5.9.0 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (5.9.2)\n", | |
"Requirement already satisfied: pyod>=0.9.8 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (1.0.5)\n", | |
"Requirement already satisfied: scikit-plot>=0.3.7 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (0.3.7)\n", | |
"Requirement already satisfied: scikit-learn>=1.0 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (1.0.2)\n", | |
"Requirement already satisfied: markupsafe>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (2.0.1)\n", | |
"Requirement already satisfied: pmdarima>=1.8.0 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (2.0.1)\n", | |
"Requirement already satisfied: scipy<1.9.0 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (1.7.3)\n", | |
"Requirement already satisfied: numpy~=1.21 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (1.21.6)\n", | |
"Requirement already satisfied: tqdm>=4.62.0 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (4.64.1)\n", | |
"Requirement already satisfied: ipywidgets>=7.6.5 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (7.7.1)\n", | |
"Requirement already satisfied: ipython>=5.5.0 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (7.9.0)\n", | |
"Requirement already satisfied: pandas<1.5.0,>=1.3.0 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (1.3.5)\n", | |
"Requirement already satisfied: schemdraw>=0.14 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (0.15)\n", | |
"Requirement already satisfied: matplotlib>=3.3.0 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (3.5.3)\n", | |
"Requirement already satisfied: imbalanced-learn>=0.8.1 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (0.8.1)\n", | |
"Requirement already satisfied: statsmodels>=0.12.1 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (0.13.2)\n", | |
"Requirement already satisfied: sktime~=0.11.4 in /usr/local/lib/python3.7/dist-packages (from pycaret==3.0.0rc3) (0.11.4)\n", | |
"Requirement already satisfied: patsy>=0.5.1 in /usr/local/lib/python3.7/dist-packages (from category-encoders>=2.4.0->pycaret==3.0.0rc3) (0.5.2)\n", | |
"Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from ipython>=5.5.0->pycaret==3.0.0rc3) (4.4.2)\n", | |
"Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.7/dist-packages (from ipython>=5.5.0->pycaret==3.0.0rc3) (57.4.0)\n", | |
"Requirement already satisfied: prompt-toolkit<2.1.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from ipython>=5.5.0->pycaret==3.0.0rc3) (2.0.10)\n", | |
"Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.7/dist-packages (from ipython>=5.5.0->pycaret==3.0.0rc3) (5.1.1)\n", | |
"Requirement already satisfied: pexpect in /usr/local/lib/python3.7/dist-packages (from ipython>=5.5.0->pycaret==3.0.0rc3) (4.8.0)\n", | |
"Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from ipython>=5.5.0->pycaret==3.0.0rc3) (2.6.1)\n", | |
"Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython>=5.5.0->pycaret==3.0.0rc3) (0.7.5)\n", | |
"Requirement already satisfied: backcall in /usr/local/lib/python3.7/dist-packages (from ipython>=5.5.0->pycaret==3.0.0rc3) (0.2.0)\n", | |
"Requirement already satisfied: jedi>=0.10 in /usr/local/lib/python3.7/dist-packages (from ipython>=5.5.0->pycaret==3.0.0rc3) (0.18.1)\n", | |
"Requirement already satisfied: ipython-genutils~=0.2.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets>=7.6.5->pycaret==3.0.0rc3) (0.2.0)\n", | |
"Requirement already satisfied: widgetsnbextension~=3.6.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets>=7.6.5->pycaret==3.0.0rc3) (3.6.1)\n", | |
"Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets>=7.6.5->pycaret==3.0.0rc3) (3.0.3)\n", | |
"Requirement already satisfied: ipykernel>=4.5.1 in /usr/local/lib/python3.7/dist-packages (from ipywidgets>=7.6.5->pycaret==3.0.0rc3) (5.3.4)\n", | |
"Requirement already satisfied: tornado>=4.2 in /usr/local/lib/python3.7/dist-packages (from ipykernel>=4.5.1->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (5.1.1)\n", | |
"Requirement already satisfied: jupyter-client in /usr/local/lib/python3.7/dist-packages (from ipykernel>=4.5.1->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (6.1.12)\n", | |
"Requirement already satisfied: parso<0.9.0,>=0.8.0 in /usr/local/lib/python3.7/dist-packages (from jedi>=0.10->ipython>=5.5.0->pycaret==3.0.0rc3) (0.8.3)\n", | |
"Requirement already satisfied: wheel in /usr/local/lib/python3.7/dist-packages (from lightgbm>=3.0.0->pycaret==3.0.0rc3) (0.37.1)\n", | |
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=3.3.0->pycaret==3.0.0rc3) (1.4.4)\n", | |
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=3.3.0->pycaret==3.0.0rc3) (21.3)\n", | |
"Requirement already satisfied: pyparsing>=2.2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=3.3.0->pycaret==3.0.0rc3) (3.0.9)\n", | |
"Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=3.3.0->pycaret==3.0.0rc3) (2.8.2)\n", | |
"Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=3.3.0->pycaret==3.0.0rc3) (7.1.2)\n", | |
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=3.3.0->pycaret==3.0.0rc3) (4.37.4)\n", | |
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=3.3.0->pycaret==3.0.0rc3) (0.11.0)\n", | |
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from kiwisolver>=1.0.1->matplotlib>=3.3.0->pycaret==3.0.0rc3) (4.1.1)\n", | |
"Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in /usr/local/lib/python3.7/dist-packages (from numba~=0.55.0->pycaret==3.0.0rc3) (0.38.1)\n", | |
"Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas<1.5.0,>=1.3.0->pycaret==3.0.0rc3) (2022.4)\n", | |
"Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from patsy>=0.5.1->category-encoders>=2.4.0->pycaret==3.0.0rc3) (1.15.0)\n", | |
"Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.7/dist-packages (from plotly>=5.0.0->pycaret==3.0.0rc3) (8.1.0)\n", | |
"Requirement already satisfied: dash<3.0.0,>=2.2.0 in /usr/local/lib/python3.7/dist-packages (from plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (2.6.2)\n", | |
"Requirement already satisfied: Flask-Cors<4.0.0,>=3.0.10 in /usr/local/lib/python3.7/dist-packages (from plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (3.0.10)\n", | |
"Requirement already satisfied: jupyter-dash>=0.4.2 in /usr/local/lib/python3.7/dist-packages (from plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (0.4.2)\n", | |
"Requirement already satisfied: trace-updater>=0.0.8 in /usr/local/lib/python3.7/dist-packages (from plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (0.0.8)\n", | |
"Requirement already satisfied: orjson<4.0.0,>=3.7.7 in /usr/local/lib/python3.7/dist-packages (from plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (3.8.0)\n", | |
"Requirement already satisfied: dash-table==5.0.0 in /usr/local/lib/python3.7/dist-packages (from dash<3.0.0,>=2.2.0->plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (5.0.0)\n", | |
"Requirement already satisfied: dash-core-components==2.0.0 in /usr/local/lib/python3.7/dist-packages (from dash<3.0.0,>=2.2.0->plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (2.0.0)\n", | |
"Requirement already satisfied: dash-html-components==2.0.0 in /usr/local/lib/python3.7/dist-packages (from dash<3.0.0,>=2.2.0->plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (2.0.0)\n", | |
"Requirement already satisfied: Flask>=1.0.4 in /usr/local/lib/python3.7/dist-packages (from dash<3.0.0,>=2.2.0->plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (1.1.4)\n", | |
"Requirement already satisfied: flask-compress in /usr/local/lib/python3.7/dist-packages (from dash<3.0.0,>=2.2.0->plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (1.13)\n", | |
"Requirement already satisfied: Werkzeug<2.0,>=0.15 in /usr/local/lib/python3.7/dist-packages (from Flask>=1.0.4->dash<3.0.0,>=2.2.0->plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (1.0.1)\n", | |
"Requirement already satisfied: click<8.0,>=5.1 in /usr/local/lib/python3.7/dist-packages (from Flask>=1.0.4->dash<3.0.0,>=2.2.0->plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (7.1.2)\n", | |
"Requirement already satisfied: itsdangerous<2.0,>=0.24 in /usr/local/lib/python3.7/dist-packages (from Flask>=1.0.4->dash<3.0.0,>=2.2.0->plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (1.1.0)\n", | |
"Requirement already satisfied: retrying in /usr/local/lib/python3.7/dist-packages (from jupyter-dash>=0.4.2->plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (1.3.3)\n", | |
"Requirement already satisfied: ansi2html in /usr/local/lib/python3.7/dist-packages (from jupyter-dash>=0.4.2->plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (1.8.0)\n", | |
"Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.7/dist-packages (from jupyter-dash>=0.4.2->plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (1.5.6)\n", | |
"Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in /usr/local/lib/python3.7/dist-packages (from pmdarima>=1.8.0->pycaret==3.0.0rc3) (0.29.32)\n", | |
"Requirement already satisfied: urllib3 in /usr/local/lib/python3.7/dist-packages (from pmdarima>=1.8.0->pycaret==3.0.0rc3) (1.24.3)\n", | |
"Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.1.0,>=2.0.0->ipython>=5.5.0->pycaret==3.0.0rc3) (0.2.5)\n", | |
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.27.1->pycaret==3.0.0rc3) (2022.9.24)\n", | |
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.27.1->pycaret==3.0.0rc3) (2.10)\n", | |
"Requirement already satisfied: charset-normalizer<3,>=2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.27.1->pycaret==3.0.0rc3) (2.1.1)\n", | |
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=1.0->pycaret==3.0.0rc3) (3.1.0)\n", | |
"Requirement already satisfied: deprecated>=1.2.13 in /usr/local/lib/python3.7/dist-packages (from sktime~=0.11.4->pycaret==3.0.0rc3) (1.2.13)\n", | |
"Requirement already satisfied: wrapt<2,>=1.10 in /usr/local/lib/python3.7/dist-packages (from deprecated>=1.2.13->sktime~=0.11.4->pycaret==3.0.0rc3) (1.14.1)\n", | |
"Requirement already satisfied: notebook>=4.4.1 in /usr/local/lib/python3.7/dist-packages (from widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (5.3.1)\n", | |
"Requirement already satisfied: jupyter-core>=4.4.0 in /usr/local/lib/python3.7/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (4.11.1)\n", | |
"Requirement already satisfied: nbformat in /usr/local/lib/python3.7/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (5.6.1)\n", | |
"Requirement already satisfied: nbconvert in /usr/local/lib/python3.7/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (5.6.1)\n", | |
"Requirement already satisfied: Send2Trash in /usr/local/lib/python3.7/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (1.8.0)\n", | |
"Requirement already satisfied: terminado>=0.8.1 in /usr/local/lib/python3.7/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (0.13.3)\n", | |
"Requirement already satisfied: pyzmq>=13 in /usr/local/lib/python3.7/dist-packages (from jupyter-client->ipykernel>=4.5.1->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (23.2.1)\n", | |
"Requirement already satisfied: ptyprocess in /usr/local/lib/python3.7/dist-packages (from terminado>=0.8.1->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (0.7.0)\n", | |
"Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from ansi2html->jupyter-dash>=0.4.2->plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (5.0.0)\n", | |
"Requirement already satisfied: brotli in /usr/local/lib/python3.7/dist-packages (from flask-compress->dash<3.0.0,>=2.2.0->plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (1.0.9)\n", | |
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->ansi2html->jupyter-dash>=0.4.2->plotly-resampler>=0.7.2.2->pycaret==3.0.0rc3) (3.8.1)\n", | |
"Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.7/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (0.8.4)\n", | |
"Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.7/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (0.4)\n", | |
"Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.7/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (1.5.0)\n", | |
"Requirement already satisfied: testpath in /usr/local/lib/python3.7/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (0.6.0)\n", | |
"Requirement already satisfied: bleach in /usr/local/lib/python3.7/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (5.0.1)\n", | |
"Requirement already satisfied: defusedxml in /usr/local/lib/python3.7/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (0.7.1)\n", | |
"Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.7/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (4.3.3)\n", | |
"Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.7/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (2.16.2)\n", | |
"Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (5.9.0)\n", | |
"Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.7/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (0.18.1)\n", | |
"Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.7/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (22.1.0)\n", | |
"Requirement already satisfied: webencodings in /usr/local/lib/python3.7/dist-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret==3.0.0rc3) (0.5.1)\n" | |
] | |
} | |
], | |
"source": [ | |
"!pip install pycaret==3.0.0rc3" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import os\n", | |
"os.environ[\"PYCARET_CUSTOM_LOGGING_LEVEL\"] = \"CRITICAL\"" | |
], | |
"metadata": { | |
"id": "b7dL66GUMhct" | |
}, | |
"execution_count": 2, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"from pycaret.datasets import get_data\n", | |
"from pycaret.time_series import *" | |
], | |
"metadata": { | |
"id": "w-PnvR1xL91_" | |
}, | |
"execution_count": 3, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df = get_data(\"airline\")" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 139 | |
}, | |
"id": "PQ6qsWnEMDPn", | |
"outputId": "65bc9ca5-a00d-4cc4-f011-b4f602a602bc" | |
}, | |
"execution_count": 4, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Period\n", | |
"1949-01 112.0\n", | |
"1949-02 118.0\n", | |
"1949-03 132.0\n", | |
"1949-04 129.0\n", | |
"1949-05 121.0\n", | |
"Freq: M, Name: Number of airline passengers, dtype: float64" | |
] | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"setup(df, fh=7, fold=3, session_id=123)" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 882 | |
}, | |
"id": "kokMONu2MEZ1", | |
"outputId": "f35e1213-688e-40e3-8839-30f233451cc1" | |
}, | |
"execution_count": 5, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<pandas.io.formats.style.Styler at 0x7f5dc0e89c50>" | |
], | |
"text/html": [ | |
"<style type=\"text/css\">\n", | |
"#T_20146_row13_col1 {\n", | |
" background-color: lightgreen;\n", | |
"}\n", | |
"</style>\n", | |
"<table id=\"T_20146_\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <th class=\"blank level0\" > </th>\n", | |
" <th class=\"col_heading level0 col0\" >Description</th>\n", | |
" <th class=\"col_heading level0 col1\" >Value</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row0\" class=\"row_heading level0 row0\" >0</th>\n", | |
" <td id=\"T_20146_row0_col0\" class=\"data row0 col0\" >session_id</td>\n", | |
" <td id=\"T_20146_row0_col1\" class=\"data row0 col1\" >123</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row1\" class=\"row_heading level0 row1\" >1</th>\n", | |
" <td id=\"T_20146_row1_col0\" class=\"data row1 col0\" >Target</td>\n", | |
" <td id=\"T_20146_row1_col1\" class=\"data row1 col1\" >Number of airline passengers</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row2\" class=\"row_heading level0 row2\" >2</th>\n", | |
" <td id=\"T_20146_row2_col0\" class=\"data row2 col0\" >Approach</td>\n", | |
" <td id=\"T_20146_row2_col1\" class=\"data row2 col1\" >Univariate</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row3\" class=\"row_heading level0 row3\" >3</th>\n", | |
" <td id=\"T_20146_row3_col0\" class=\"data row3 col0\" >Exogenous Variables</td>\n", | |
" <td id=\"T_20146_row3_col1\" class=\"data row3 col1\" >Not Present</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row4\" class=\"row_heading level0 row4\" >4</th>\n", | |
" <td id=\"T_20146_row4_col0\" class=\"data row4 col0\" >Original data shape</td>\n", | |
" <td id=\"T_20146_row4_col1\" class=\"data row4 col1\" >(144, 1)</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row5\" class=\"row_heading level0 row5\" >5</th>\n", | |
" <td id=\"T_20146_row5_col0\" class=\"data row5 col0\" >Transformed data shape</td>\n", | |
" <td id=\"T_20146_row5_col1\" class=\"data row5 col1\" >(144, 1)</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row6\" class=\"row_heading level0 row6\" >6</th>\n", | |
" <td id=\"T_20146_row6_col0\" class=\"data row6 col0\" >Transformed train set shape</td>\n", | |
" <td id=\"T_20146_row6_col1\" class=\"data row6 col1\" >(137, 1)</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row7\" class=\"row_heading level0 row7\" >7</th>\n", | |
" <td id=\"T_20146_row7_col0\" class=\"data row7 col0\" >Transformed test set shape</td>\n", | |
" <td id=\"T_20146_row7_col1\" class=\"data row7 col1\" >(7, 1)</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row8\" class=\"row_heading level0 row8\" >8</th>\n", | |
" <td id=\"T_20146_row8_col0\" class=\"data row8 col0\" >Rows with missing values</td>\n", | |
" <td id=\"T_20146_row8_col1\" class=\"data row8 col1\" >0.0%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row9\" class=\"row_heading level0 row9\" >9</th>\n", | |
" <td id=\"T_20146_row9_col0\" class=\"data row9 col0\" >Fold Generator</td>\n", | |
" <td id=\"T_20146_row9_col1\" class=\"data row9 col1\" >ExpandingWindowSplitter</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row10\" class=\"row_heading level0 row10\" >10</th>\n", | |
" <td id=\"T_20146_row10_col0\" class=\"data row10 col0\" >Fold Number</td>\n", | |
" <td id=\"T_20146_row10_col1\" class=\"data row10 col1\" >3</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row11\" class=\"row_heading level0 row11\" >11</th>\n", | |
" <td id=\"T_20146_row11_col0\" class=\"data row11 col0\" >Enforce Prediction Interval</td>\n", | |
" <td id=\"T_20146_row11_col1\" class=\"data row11 col1\" >False</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row12\" class=\"row_heading level0 row12\" >12</th>\n", | |
" <td id=\"T_20146_row12_col0\" class=\"data row12 col0\" >Seasonal Period(s) Tested</td>\n", | |
" <td id=\"T_20146_row12_col1\" class=\"data row12 col1\" >12</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row13\" class=\"row_heading level0 row13\" >13</th>\n", | |
" <td id=\"T_20146_row13_col0\" class=\"data row13 col0\" >Seasonality Present</td>\n", | |
" <td id=\"T_20146_row13_col1\" class=\"data row13 col1\" >True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row14\" class=\"row_heading level0 row14\" >14</th>\n", | |
" <td id=\"T_20146_row14_col0\" class=\"data row14 col0\" >Seasonalities Detected</td>\n", | |
" <td id=\"T_20146_row14_col1\" class=\"data row14 col1\" >[12]</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row15\" class=\"row_heading level0 row15\" >15</th>\n", | |
" <td id=\"T_20146_row15_col0\" class=\"data row15 col0\" >Primary Seasonality</td>\n", | |
" <td id=\"T_20146_row15_col1\" class=\"data row15 col1\" >12</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row16\" class=\"row_heading level0 row16\" >16</th>\n", | |
" <td id=\"T_20146_row16_col0\" class=\"data row16 col0\" >Target Strictly Positive</td>\n", | |
" <td id=\"T_20146_row16_col1\" class=\"data row16 col1\" >True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row17\" class=\"row_heading level0 row17\" >17</th>\n", | |
" <td id=\"T_20146_row17_col0\" class=\"data row17 col0\" >Target White Noise</td>\n", | |
" <td id=\"T_20146_row17_col1\" class=\"data row17 col1\" >No</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row18\" class=\"row_heading level0 row18\" >18</th>\n", | |
" <td id=\"T_20146_row18_col0\" class=\"data row18 col0\" >Recommended d</td>\n", | |
" <td id=\"T_20146_row18_col1\" class=\"data row18 col1\" >1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row19\" class=\"row_heading level0 row19\" >19</th>\n", | |
" <td id=\"T_20146_row19_col0\" class=\"data row19 col0\" >Recommended Seasonal D</td>\n", | |
" <td id=\"T_20146_row19_col1\" class=\"data row19 col1\" >1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row20\" class=\"row_heading level0 row20\" >20</th>\n", | |
" <td id=\"T_20146_row20_col0\" class=\"data row20 col0\" >Preprocess</td>\n", | |
" <td id=\"T_20146_row20_col1\" class=\"data row20 col1\" >False</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row21\" class=\"row_heading level0 row21\" >21</th>\n", | |
" <td id=\"T_20146_row21_col0\" class=\"data row21 col0\" >CPU Jobs</td>\n", | |
" <td id=\"T_20146_row21_col1\" class=\"data row21 col1\" >-1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row22\" class=\"row_heading level0 row22\" >22</th>\n", | |
" <td id=\"T_20146_row22_col0\" class=\"data row22 col0\" >Use GPU</td>\n", | |
" <td id=\"T_20146_row22_col1\" class=\"data row22 col1\" >False</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row23\" class=\"row_heading level0 row23\" >23</th>\n", | |
" <td id=\"T_20146_row23_col0\" class=\"data row23 col0\" >Log Experiment</td>\n", | |
" <td id=\"T_20146_row23_col1\" class=\"data row23 col1\" >False</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row24\" class=\"row_heading level0 row24\" >24</th>\n", | |
" <td id=\"T_20146_row24_col0\" class=\"data row24 col0\" >Experiment Name</td>\n", | |
" <td id=\"T_20146_row24_col1\" class=\"data row24 col1\" >ts-default-name</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_20146_level0_row25\" class=\"row_heading level0 row25\" >25</th>\n", | |
" <td id=\"T_20146_row25_col0\" class=\"data row25 col0\" >USI</td>\n", | |
" <td id=\"T_20146_row25_col1\" class=\"data row25 col1\" >d40e</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n" | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<pycaret.time_series.forecasting.oop.TSForecastingExperiment at 0x7f5dca743e50>" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 5 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"best = compare_models()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 896, | |
"referenced_widgets": [ | |
"20004775690a43588c05afa3a4b080db", | |
"cfa863f1c9e8443b9aea96cbf04ec01f", | |
"b7c7d02705754000954c67358326fac2", | |
"5589f5ce702c43a2b24449a59a01b9a6", | |
"67df935c4e084655a47eb1c7c81e5dbb", | |
"2502e435585a4ab5b2a86f062db121e8", | |
"36dbcb10395748d8b80eebf28820e1cd", | |
"550944064844401899e6aa212ad9aeed", | |
"d47a9046279e4110b3b0f25411d33b32", | |
"5dc04c63e13a4bde8e100bbf021f6dea", | |
"e3c2d0a1eb234f45a622ca72dfd66aeb" | |
] | |
}, | |
"id": "-hP3YEf9MGpO", | |
"outputId": "c50ae606-c321-4fb8-b706-485d5ceb8ab0" | |
}, | |
"execution_count": 6, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<pandas.io.formats.style.Styler at 0x7f5dc0f47390>" | |
], | |
"text/html": [ | |
"<style type=\"text/css\">\n", | |
"#T_04d29_ th {\n", | |
" text-align: left;\n", | |
"}\n", | |
"#T_04d29_row0_col0, #T_04d29_row1_col0, #T_04d29_row1_col1, #T_04d29_row1_col2, #T_04d29_row1_col3, #T_04d29_row1_col4, #T_04d29_row1_col5, #T_04d29_row1_col6, #T_04d29_row1_col7, #T_04d29_row2_col0, #T_04d29_row2_col1, #T_04d29_row2_col2, #T_04d29_row2_col3, #T_04d29_row2_col4, #T_04d29_row2_col5, #T_04d29_row2_col6, #T_04d29_row2_col7, #T_04d29_row3_col0, #T_04d29_row3_col1, #T_04d29_row3_col2, #T_04d29_row3_col3, #T_04d29_row3_col4, #T_04d29_row3_col5, #T_04d29_row3_col6, #T_04d29_row3_col7, #T_04d29_row4_col0, #T_04d29_row4_col1, #T_04d29_row4_col2, #T_04d29_row4_col3, #T_04d29_row4_col4, #T_04d29_row4_col5, #T_04d29_row4_col6, #T_04d29_row4_col7, #T_04d29_row5_col0, #T_04d29_row5_col1, #T_04d29_row5_col2, #T_04d29_row5_col3, #T_04d29_row5_col4, #T_04d29_row5_col5, #T_04d29_row5_col6, #T_04d29_row5_col7, #T_04d29_row6_col0, #T_04d29_row6_col1, #T_04d29_row6_col2, #T_04d29_row6_col3, #T_04d29_row6_col4, #T_04d29_row6_col5, #T_04d29_row6_col6, #T_04d29_row6_col7, #T_04d29_row7_col0, #T_04d29_row7_col1, #T_04d29_row7_col2, #T_04d29_row7_col3, #T_04d29_row7_col4, #T_04d29_row7_col5, #T_04d29_row7_col6, #T_04d29_row7_col7, #T_04d29_row8_col0, #T_04d29_row8_col1, #T_04d29_row8_col2, #T_04d29_row8_col3, #T_04d29_row8_col4, #T_04d29_row8_col5, #T_04d29_row8_col6, #T_04d29_row8_col7, #T_04d29_row9_col0, #T_04d29_row9_col1, #T_04d29_row9_col2, #T_04d29_row9_col3, #T_04d29_row9_col4, #T_04d29_row9_col5, #T_04d29_row9_col6, #T_04d29_row9_col7, #T_04d29_row10_col0, #T_04d29_row10_col1, #T_04d29_row10_col2, #T_04d29_row10_col3, #T_04d29_row10_col4, #T_04d29_row10_col5, #T_04d29_row10_col6, #T_04d29_row10_col7, #T_04d29_row11_col0, #T_04d29_row11_col1, #T_04d29_row11_col2, #T_04d29_row11_col3, #T_04d29_row11_col4, #T_04d29_row11_col5, #T_04d29_row11_col6, #T_04d29_row11_col7, #T_04d29_row12_col0, #T_04d29_row12_col1, #T_04d29_row12_col2, #T_04d29_row12_col3, #T_04d29_row12_col4, #T_04d29_row12_col5, #T_04d29_row12_col6, #T_04d29_row12_col7, #T_04d29_row13_col0, #T_04d29_row13_col1, #T_04d29_row13_col2, #T_04d29_row13_col3, #T_04d29_row13_col4, #T_04d29_row13_col5, #T_04d29_row13_col6, #T_04d29_row13_col7, #T_04d29_row14_col0, #T_04d29_row14_col1, #T_04d29_row14_col2, #T_04d29_row14_col3, #T_04d29_row14_col4, #T_04d29_row14_col5, #T_04d29_row14_col6, #T_04d29_row14_col7, #T_04d29_row15_col0, #T_04d29_row15_col1, #T_04d29_row15_col2, #T_04d29_row15_col3, #T_04d29_row15_col4, #T_04d29_row15_col5, #T_04d29_row15_col6, #T_04d29_row15_col7, #T_04d29_row16_col0, #T_04d29_row16_col1, #T_04d29_row16_col2, #T_04d29_row16_col3, #T_04d29_row16_col4, #T_04d29_row16_col5, #T_04d29_row16_col6, #T_04d29_row16_col7, #T_04d29_row17_col0, #T_04d29_row17_col1, #T_04d29_row17_col2, #T_04d29_row17_col3, #T_04d29_row17_col4, #T_04d29_row17_col5, #T_04d29_row17_col6, #T_04d29_row17_col7, #T_04d29_row18_col0, #T_04d29_row18_col1, #T_04d29_row18_col2, #T_04d29_row18_col3, #T_04d29_row18_col4, #T_04d29_row18_col5, #T_04d29_row18_col6, #T_04d29_row18_col7, #T_04d29_row19_col0, #T_04d29_row19_col1, #T_04d29_row19_col2, #T_04d29_row19_col3, #T_04d29_row19_col4, #T_04d29_row19_col5, #T_04d29_row19_col6, #T_04d29_row19_col7, #T_04d29_row20_col0, #T_04d29_row20_col1, #T_04d29_row20_col2, #T_04d29_row20_col3, #T_04d29_row20_col4, #T_04d29_row20_col5, #T_04d29_row20_col6, #T_04d29_row20_col7, #T_04d29_row21_col0, #T_04d29_row21_col1, #T_04d29_row21_col2, #T_04d29_row21_col3, #T_04d29_row21_col4, #T_04d29_row21_col5, #T_04d29_row21_col6, #T_04d29_row21_col7, #T_04d29_row22_col0, #T_04d29_row22_col1, #T_04d29_row22_col2, #T_04d29_row22_col3, #T_04d29_row22_col4, #T_04d29_row22_col5, #T_04d29_row22_col6, #T_04d29_row22_col7, #T_04d29_row23_col0, #T_04d29_row23_col1, #T_04d29_row23_col2, #T_04d29_row23_col3, #T_04d29_row23_col4, #T_04d29_row23_col5, #T_04d29_row23_col6, #T_04d29_row23_col7, #T_04d29_row24_col0, #T_04d29_row24_col1, #T_04d29_row24_col2, #T_04d29_row24_col3, #T_04d29_row24_col4, #T_04d29_row24_col5, #T_04d29_row24_col6, #T_04d29_row24_col7, #T_04d29_row25_col0, #T_04d29_row25_col1, #T_04d29_row25_col2, #T_04d29_row25_col3, #T_04d29_row25_col4, #T_04d29_row25_col5, #T_04d29_row25_col6, #T_04d29_row25_col7, #T_04d29_row26_col0, #T_04d29_row26_col1, #T_04d29_row26_col2, #T_04d29_row26_col3, #T_04d29_row26_col4, #T_04d29_row26_col5, #T_04d29_row26_col6, #T_04d29_row26_col7 {\n", | |
" text-align: left;\n", | |
"}\n", | |
"#T_04d29_row0_col1, #T_04d29_row0_col2, #T_04d29_row0_col3, #T_04d29_row0_col4, #T_04d29_row0_col5, #T_04d29_row0_col6, #T_04d29_row0_col7 {\n", | |
" text-align: left;\n", | |
" background-color: yellow;\n", | |
"}\n", | |
"#T_04d29_row0_col8, #T_04d29_row1_col8, #T_04d29_row2_col8, #T_04d29_row3_col8, #T_04d29_row4_col8, #T_04d29_row5_col8, #T_04d29_row6_col8, #T_04d29_row7_col8, #T_04d29_row8_col8, #T_04d29_row9_col8, #T_04d29_row10_col8, #T_04d29_row11_col8, #T_04d29_row12_col8, #T_04d29_row13_col8, #T_04d29_row14_col8, #T_04d29_row15_col8, #T_04d29_row16_col8, #T_04d29_row17_col8, #T_04d29_row18_col8, #T_04d29_row19_col8, #T_04d29_row20_col8, #T_04d29_row21_col8, #T_04d29_row22_col8, #T_04d29_row23_col8, #T_04d29_row25_col8, #T_04d29_row26_col8 {\n", | |
" text-align: left;\n", | |
" background-color: lightgrey;\n", | |
"}\n", | |
"#T_04d29_row24_col8 {\n", | |
" text-align: left;\n", | |
" background-color: yellow;\n", | |
" background-color: lightgrey;\n", | |
"}\n", | |
"</style>\n", | |
"<table id=\"T_04d29_\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <th class=\"blank level0\" > </th>\n", | |
" <th class=\"col_heading level0 col0\" >Model</th>\n", | |
" <th class=\"col_heading level0 col1\" >MASE</th>\n", | |
" <th class=\"col_heading level0 col2\" >RMSSE</th>\n", | |
" <th class=\"col_heading level0 col3\" >MAE</th>\n", | |
" <th class=\"col_heading level0 col4\" >RMSE</th>\n", | |
" <th class=\"col_heading level0 col5\" >MAPE</th>\n", | |
" <th class=\"col_heading level0 col6\" >SMAPE</th>\n", | |
" <th class=\"col_heading level0 col7\" >R2</th>\n", | |
" <th class=\"col_heading level0 col8\" >TT (Sec)</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row0\" class=\"row_heading level0 row0\" >exp_smooth</th>\n", | |
" <td id=\"T_04d29_row0_col0\" class=\"data row0 col0\" >Exponential Smoothing</td>\n", | |
" <td id=\"T_04d29_row0_col1\" class=\"data row0 col1\" >0.4141</td>\n", | |
" <td id=\"T_04d29_row0_col2\" class=\"data row0 col2\" >0.4116</td>\n", | |
" <td id=\"T_04d29_row0_col3\" class=\"data row0 col3\" >12.1893</td>\n", | |
" <td id=\"T_04d29_row0_col4\" class=\"data row0 col4\" >13.7030</td>\n", | |
" <td id=\"T_04d29_row0_col5\" class=\"data row0 col5\" >0.0290</td>\n", | |
" <td id=\"T_04d29_row0_col6\" class=\"data row0 col6\" >0.0292</td>\n", | |
" <td id=\"T_04d29_row0_col7\" class=\"data row0 col7\" >0.8587</td>\n", | |
" <td id=\"T_04d29_row0_col8\" class=\"data row0 col8\" >0.9600</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row1\" class=\"row_heading level0 row1\" >ets</th>\n", | |
" <td id=\"T_04d29_row1_col0\" class=\"data row1 col0\" >ETS</td>\n", | |
" <td id=\"T_04d29_row1_col1\" class=\"data row1 col1\" >0.4164</td>\n", | |
" <td id=\"T_04d29_row1_col2\" class=\"data row1 col2\" >0.4132</td>\n", | |
" <td id=\"T_04d29_row1_col3\" class=\"data row1 col3\" >12.2549</td>\n", | |
" <td id=\"T_04d29_row1_col4\" class=\"data row1 col4\" >13.7563</td>\n", | |
" <td id=\"T_04d29_row1_col5\" class=\"data row1 col5\" >0.0292</td>\n", | |
" <td id=\"T_04d29_row1_col6\" class=\"data row1 col6\" >0.0293</td>\n", | |
" <td id=\"T_04d29_row1_col7\" class=\"data row1 col7\" >0.8580</td>\n", | |
" <td id=\"T_04d29_row1_col8\" class=\"data row1 col8\" >0.1800</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row2\" class=\"row_heading level0 row2\" >arima</th>\n", | |
" <td id=\"T_04d29_row2_col0\" class=\"data row2 col0\" >ARIMA</td>\n", | |
" <td id=\"T_04d29_row2_col1\" class=\"data row2 col1\" >0.6574</td>\n", | |
" <td id=\"T_04d29_row2_col2\" class=\"data row2 col2\" >0.6391</td>\n", | |
" <td id=\"T_04d29_row2_col3\" class=\"data row2 col3\" >19.3161</td>\n", | |
" <td id=\"T_04d29_row2_col4\" class=\"data row2 col4\" >21.2072</td>\n", | |
" <td id=\"T_04d29_row2_col5\" class=\"data row2 col5\" >0.0475</td>\n", | |
" <td id=\"T_04d29_row2_col6\" class=\"data row2 col6\" >0.0474</td>\n", | |
" <td id=\"T_04d29_row2_col7\" class=\"data row2 col7\" >0.6719</td>\n", | |
" <td id=\"T_04d29_row2_col8\" class=\"data row2 col8\" >0.4433</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row3\" class=\"row_heading level0 row3\" >auto_arima</th>\n", | |
" <td id=\"T_04d29_row3_col0\" class=\"data row3 col0\" >Auto ARIMA</td>\n", | |
" <td id=\"T_04d29_row3_col1\" class=\"data row3 col1\" >0.6851</td>\n", | |
" <td id=\"T_04d29_row3_col2\" class=\"data row3 col2\" >0.6675</td>\n", | |
" <td id=\"T_04d29_row3_col3\" class=\"data row3 col3\" >20.1303</td>\n", | |
" <td id=\"T_04d29_row3_col4\" class=\"data row3 col4\" >22.1426</td>\n", | |
" <td id=\"T_04d29_row3_col5\" class=\"data row3 col5\" >0.0500</td>\n", | |
" <td id=\"T_04d29_row3_col6\" class=\"data row3 col6\" >0.0496</td>\n", | |
" <td id=\"T_04d29_row3_col7\" class=\"data row3 col7\" >0.6248</td>\n", | |
" <td id=\"T_04d29_row3_col8\" class=\"data row3 col8\" >24.6500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row4\" class=\"row_heading level0 row4\" >knn_cds_dt</th>\n", | |
" <td id=\"T_04d29_row4_col0\" class=\"data row4 col0\" >K Neighbors w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row4_col1\" class=\"data row4 col1\" >0.7001</td>\n", | |
" <td id=\"T_04d29_row4_col2\" class=\"data row4 col2\" >0.7479</td>\n", | |
" <td id=\"T_04d29_row4_col3\" class=\"data row4 col3\" >20.5441</td>\n", | |
" <td id=\"T_04d29_row4_col4\" class=\"data row4 col4\" >24.7756</td>\n", | |
" <td id=\"T_04d29_row4_col5\" class=\"data row4 col5\" >0.0495</td>\n", | |
" <td id=\"T_04d29_row4_col6\" class=\"data row4 col6\" >0.0493</td>\n", | |
" <td id=\"T_04d29_row4_col7\" class=\"data row4 col7\" >0.5784</td>\n", | |
" <td id=\"T_04d29_row4_col8\" class=\"data row4 col8\" >0.5600</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row5\" class=\"row_heading level0 row5\" >lightgbm_cds_dt</th>\n", | |
" <td id=\"T_04d29_row5_col0\" class=\"data row5 col0\" >Light Gradient Boosting w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row5_col1\" class=\"data row5 col1\" >0.7822</td>\n", | |
" <td id=\"T_04d29_row5_col2\" class=\"data row5 col2\" >0.8444</td>\n", | |
" <td id=\"T_04d29_row5_col3\" class=\"data row5 col3\" >22.8961</td>\n", | |
" <td id=\"T_04d29_row5_col4\" class=\"data row5 col4\" >27.9207</td>\n", | |
" <td id=\"T_04d29_row5_col5\" class=\"data row5 col5\" >0.0532</td>\n", | |
" <td id=\"T_04d29_row5_col6\" class=\"data row5 col6\" >0.0541</td>\n", | |
" <td id=\"T_04d29_row5_col7\" class=\"data row5 col7\" >0.5620</td>\n", | |
" <td id=\"T_04d29_row5_col8\" class=\"data row5 col8\" >0.3300</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row6\" class=\"row_heading level0 row6\" >rf_cds_dt</th>\n", | |
" <td id=\"T_04d29_row6_col0\" class=\"data row6 col0\" >Random Forest w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row6_col1\" class=\"data row6 col1\" >0.8082</td>\n", | |
" <td id=\"T_04d29_row6_col2\" class=\"data row6 col2\" >0.8441</td>\n", | |
" <td id=\"T_04d29_row6_col3\" class=\"data row6 col3\" >23.6825</td>\n", | |
" <td id=\"T_04d29_row6_col4\" class=\"data row6 col4\" >27.9070</td>\n", | |
" <td id=\"T_04d29_row6_col5\" class=\"data row6 col5\" >0.0577</td>\n", | |
" <td id=\"T_04d29_row6_col6\" class=\"data row6 col6\" >0.0570</td>\n", | |
" <td id=\"T_04d29_row6_col7\" class=\"data row6 col7\" >0.4485</td>\n", | |
" <td id=\"T_04d29_row6_col8\" class=\"data row6 col8\" >0.7300</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row7\" class=\"row_heading level0 row7\" >et_cds_dt</th>\n", | |
" <td id=\"T_04d29_row7_col0\" class=\"data row7 col0\" >Extra Trees w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row7_col1\" class=\"data row7 col1\" >0.8400</td>\n", | |
" <td id=\"T_04d29_row7_col2\" class=\"data row7 col2\" >0.8780</td>\n", | |
" <td id=\"T_04d29_row7_col3\" class=\"data row7 col3\" >24.6476</td>\n", | |
" <td id=\"T_04d29_row7_col4\" class=\"data row7 col4\" >29.0741</td>\n", | |
" <td id=\"T_04d29_row7_col5\" class=\"data row7 col5\" >0.0599</td>\n", | |
" <td id=\"T_04d29_row7_col6\" class=\"data row7 col6\" >0.0594</td>\n", | |
" <td id=\"T_04d29_row7_col7\" class=\"data row7 col7\" >0.3952</td>\n", | |
" <td id=\"T_04d29_row7_col8\" class=\"data row7 col8\" >0.6900</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row8\" class=\"row_heading level0 row8\" >ada_cds_dt</th>\n", | |
" <td id=\"T_04d29_row8_col0\" class=\"data row8 col0\" >AdaBoost w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row8_col1\" class=\"data row8 col1\" >0.8538</td>\n", | |
" <td id=\"T_04d29_row8_col2\" class=\"data row8 col2\" >0.9234</td>\n", | |
" <td id=\"T_04d29_row8_col3\" class=\"data row8 col3\" >24.9932</td>\n", | |
" <td id=\"T_04d29_row8_col4\" class=\"data row8 col4\" >30.5154</td>\n", | |
" <td id=\"T_04d29_row8_col5\" class=\"data row8 col5\" >0.0594</td>\n", | |
" <td id=\"T_04d29_row8_col6\" class=\"data row8 col6\" >0.0593</td>\n", | |
" <td id=\"T_04d29_row8_col7\" class=\"data row8 col7\" >0.4036</td>\n", | |
" <td id=\"T_04d29_row8_col8\" class=\"data row8 col8\" >0.1633</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row9\" class=\"row_heading level0 row9\" >llar_cds_dt</th>\n", | |
" <td id=\"T_04d29_row9_col0\" class=\"data row9 col0\" >Lasso Least Angular Regressor w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row9_col1\" class=\"data row9 col1\" >0.9052</td>\n", | |
" <td id=\"T_04d29_row9_col2\" class=\"data row9 col2\" >0.9693</td>\n", | |
" <td id=\"T_04d29_row9_col3\" class=\"data row9 col3\" >26.3753</td>\n", | |
" <td id=\"T_04d29_row9_col4\" class=\"data row9 col4\" >31.9235</td>\n", | |
" <td id=\"T_04d29_row9_col5\" class=\"data row9 col5\" >0.0609</td>\n", | |
" <td id=\"T_04d29_row9_col6\" class=\"data row9 col6\" >0.0618</td>\n", | |
" <td id=\"T_04d29_row9_col7\" class=\"data row9 col7\" >0.4619</td>\n", | |
" <td id=\"T_04d29_row9_col8\" class=\"data row9 col8\" >0.0833</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row10\" class=\"row_heading level0 row10\" >lar_cds_dt</th>\n", | |
" <td id=\"T_04d29_row10_col0\" class=\"data row10 col0\" >Least Angular Regressor w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row10_col1\" class=\"data row10 col1\" >0.9215</td>\n", | |
" <td id=\"T_04d29_row10_col2\" class=\"data row10 col2\" >0.9878</td>\n", | |
" <td id=\"T_04d29_row10_col3\" class=\"data row10 col3\" >27.0827</td>\n", | |
" <td id=\"T_04d29_row10_col4\" class=\"data row10 col4\" >32.7861</td>\n", | |
" <td id=\"T_04d29_row10_col5\" class=\"data row10 col5\" >0.0661</td>\n", | |
" <td id=\"T_04d29_row10_col6\" class=\"data row10 col6\" >0.0662</td>\n", | |
" <td id=\"T_04d29_row10_col7\" class=\"data row10 col7\" >0.2007</td>\n", | |
" <td id=\"T_04d29_row10_col8\" class=\"data row10 col8\" >0.0900</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row11\" class=\"row_heading level0 row11\" >gbr_cds_dt</th>\n", | |
" <td id=\"T_04d29_row11_col0\" class=\"data row11 col0\" >Gradient Boosting w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row11_col1\" class=\"data row11 col1\" >0.9428</td>\n", | |
" <td id=\"T_04d29_row11_col2\" class=\"data row11 col2\" >0.9709</td>\n", | |
" <td id=\"T_04d29_row11_col3\" class=\"data row11 col3\" >27.5958</td>\n", | |
" <td id=\"T_04d29_row11_col4\" class=\"data row11 col4\" >32.0926</td>\n", | |
" <td id=\"T_04d29_row11_col5\" class=\"data row11 col5\" >0.0660</td>\n", | |
" <td id=\"T_04d29_row11_col6\" class=\"data row11 col6\" >0.0660</td>\n", | |
" <td id=\"T_04d29_row11_col7\" class=\"data row11 col7\" >0.3364</td>\n", | |
" <td id=\"T_04d29_row11_col8\" class=\"data row11 col8\" >0.1433</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row12\" class=\"row_heading level0 row12\" >br_cds_dt</th>\n", | |
" <td id=\"T_04d29_row12_col0\" class=\"data row12 col0\" >Bayesian Ridge w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row12_col1\" class=\"data row12 col1\" >0.9484</td>\n", | |
" <td id=\"T_04d29_row12_col2\" class=\"data row12 col2\" >0.9787</td>\n", | |
" <td id=\"T_04d29_row12_col3\" class=\"data row12 col3\" >27.8760</td>\n", | |
" <td id=\"T_04d29_row12_col4\" class=\"data row12 col4\" >32.4719</td>\n", | |
" <td id=\"T_04d29_row12_col5\" class=\"data row12 col5\" >0.0678</td>\n", | |
" <td id=\"T_04d29_row12_col6\" class=\"data row12 col6\" >0.0678</td>\n", | |
" <td id=\"T_04d29_row12_col7\" class=\"data row12 col7\" >0.2303</td>\n", | |
" <td id=\"T_04d29_row12_col8\" class=\"data row12 col8\" >0.1100</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row13\" class=\"row_heading level0 row13\" >lasso_cds_dt</th>\n", | |
" <td id=\"T_04d29_row13_col0\" class=\"data row13 col0\" >Lasso w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row13_col1\" class=\"data row13 col1\" >0.9509</td>\n", | |
" <td id=\"T_04d29_row13_col2\" class=\"data row13 col2\" >0.9847</td>\n", | |
" <td id=\"T_04d29_row13_col3\" class=\"data row13 col3\" >27.9608</td>\n", | |
" <td id=\"T_04d29_row13_col4\" class=\"data row13 col4\" >32.6786</td>\n", | |
" <td id=\"T_04d29_row13_col5\" class=\"data row13 col5\" >0.0681</td>\n", | |
" <td id=\"T_04d29_row13_col6\" class=\"data row13 col6\" >0.0681</td>\n", | |
" <td id=\"T_04d29_row13_col7\" class=\"data row13 col7\" >0.2076</td>\n", | |
" <td id=\"T_04d29_row13_col8\" class=\"data row13 col8\" >0.0833</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row14\" class=\"row_heading level0 row14\" >en_cds_dt</th>\n", | |
" <td id=\"T_04d29_row14_col0\" class=\"data row14 col0\" >Elastic Net w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row14_col1\" class=\"data row14 col1\" >0.9510</td>\n", | |
" <td id=\"T_04d29_row14_col2\" class=\"data row14 col2\" >0.9834</td>\n", | |
" <td id=\"T_04d29_row14_col3\" class=\"data row14 col3\" >27.9639</td>\n", | |
" <td id=\"T_04d29_row14_col4\" class=\"data row14 col4\" >32.6362</td>\n", | |
" <td id=\"T_04d29_row14_col5\" class=\"data row14 col5\" >0.0681</td>\n", | |
" <td id=\"T_04d29_row14_col6\" class=\"data row14 col6\" >0.0681</td>\n", | |
" <td id=\"T_04d29_row14_col7\" class=\"data row14 col7\" >0.2096</td>\n", | |
" <td id=\"T_04d29_row14_col8\" class=\"data row14 col8\" >0.0833</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row15\" class=\"row_heading level0 row15\" >lr_cds_dt</th>\n", | |
" <td id=\"T_04d29_row15_col0\" class=\"data row15 col0\" >Linear w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row15_col1\" class=\"data row15 col1\" >0.9514</td>\n", | |
" <td id=\"T_04d29_row15_col2\" class=\"data row15 col2\" >0.9826</td>\n", | |
" <td id=\"T_04d29_row15_col3\" class=\"data row15 col3\" >27.9791</td>\n", | |
" <td id=\"T_04d29_row15_col4\" class=\"data row15 col4\" >32.6089</td>\n", | |
" <td id=\"T_04d29_row15_col5\" class=\"data row15 col5\" >0.0682</td>\n", | |
" <td id=\"T_04d29_row15_col6\" class=\"data row15 col6\" >0.0682</td>\n", | |
" <td id=\"T_04d29_row15_col7\" class=\"data row15 col7\" >0.2099</td>\n", | |
" <td id=\"T_04d29_row15_col8\" class=\"data row15 col8\" >0.1267</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row16\" class=\"row_heading level0 row16\" >ridge_cds_dt</th>\n", | |
" <td id=\"T_04d29_row16_col0\" class=\"data row16 col0\" >Ridge w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row16_col1\" class=\"data row16 col1\" >0.9514</td>\n", | |
" <td id=\"T_04d29_row16_col2\" class=\"data row16 col2\" >0.9826</td>\n", | |
" <td id=\"T_04d29_row16_col3\" class=\"data row16 col3\" >27.9790</td>\n", | |
" <td id=\"T_04d29_row16_col4\" class=\"data row16 col4\" >32.6088</td>\n", | |
" <td id=\"T_04d29_row16_col5\" class=\"data row16 col5\" >0.0682</td>\n", | |
" <td id=\"T_04d29_row16_col6\" class=\"data row16 col6\" >0.0682</td>\n", | |
" <td id=\"T_04d29_row16_col7\" class=\"data row16 col7\" >0.2099</td>\n", | |
" <td id=\"T_04d29_row16_col8\" class=\"data row16 col8\" >0.0867</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row17\" class=\"row_heading level0 row17\" >dt_cds_dt</th>\n", | |
" <td id=\"T_04d29_row17_col0\" class=\"data row17 col0\" >Decision Tree w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row17_col1\" class=\"data row17 col1\" >0.9550</td>\n", | |
" <td id=\"T_04d29_row17_col2\" class=\"data row17 col2\" >1.0006</td>\n", | |
" <td id=\"T_04d29_row17_col3\" class=\"data row17 col3\" >28.0011</td>\n", | |
" <td id=\"T_04d29_row17_col4\" class=\"data row17 col4\" >33.0749</td>\n", | |
" <td id=\"T_04d29_row17_col5\" class=\"data row17 col5\" >0.0692</td>\n", | |
" <td id=\"T_04d29_row17_col6\" class=\"data row17 col6\" >0.0683</td>\n", | |
" <td id=\"T_04d29_row17_col7\" class=\"data row17 col7\" >0.2554</td>\n", | |
" <td id=\"T_04d29_row17_col8\" class=\"data row17 col8\" >0.0900</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row18\" class=\"row_heading level0 row18\" >huber_cds_dt</th>\n", | |
" <td id=\"T_04d29_row18_col0\" class=\"data row18 col0\" >Huber w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row18_col1\" class=\"data row18 col1\" >0.9801</td>\n", | |
" <td id=\"T_04d29_row18_col2\" class=\"data row18 col2\" >1.0094</td>\n", | |
" <td id=\"T_04d29_row18_col3\" class=\"data row18 col3\" >28.8930</td>\n", | |
" <td id=\"T_04d29_row18_col4\" class=\"data row18 col4\" >33.5355</td>\n", | |
" <td id=\"T_04d29_row18_col5\" class=\"data row18 col5\" >0.0713</td>\n", | |
" <td id=\"T_04d29_row18_col6\" class=\"data row18 col6\" >0.0710</td>\n", | |
" <td id=\"T_04d29_row18_col7\" class=\"data row18 col7\" >0.0939</td>\n", | |
" <td id=\"T_04d29_row18_col8\" class=\"data row18 col8\" >0.2233</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row19\" class=\"row_heading level0 row19\" >theta</th>\n", | |
" <td id=\"T_04d29_row19_col0\" class=\"data row19 col0\" >Theta Forecaster</td>\n", | |
" <td id=\"T_04d29_row19_col1\" class=\"data row19 col1\" >1.0386</td>\n", | |
" <td id=\"T_04d29_row19_col2\" class=\"data row19 col2\" >1.0138</td>\n", | |
" <td id=\"T_04d29_row19_col3\" class=\"data row19 col3\" >30.3420</td>\n", | |
" <td id=\"T_04d29_row19_col4\" class=\"data row19 col4\" >33.4638</td>\n", | |
" <td id=\"T_04d29_row19_col5\" class=\"data row19 col5\" >0.0731</td>\n", | |
" <td id=\"T_04d29_row19_col6\" class=\"data row19 col6\" >0.0724</td>\n", | |
" <td id=\"T_04d29_row19_col7\" class=\"data row19 col7\" >0.2681</td>\n", | |
" <td id=\"T_04d29_row19_col8\" class=\"data row19 col8\" >0.0633</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row20\" class=\"row_heading level0 row20\" >par_cds_dt</th>\n", | |
" <td id=\"T_04d29_row20_col0\" class=\"data row20 col0\" >Passive Aggressive w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row20_col1\" class=\"data row20 col1\" >1.2794</td>\n", | |
" <td id=\"T_04d29_row20_col2\" class=\"data row20 col2\" >1.4033</td>\n", | |
" <td id=\"T_04d29_row20_col3\" class=\"data row20 col3\" >37.5005</td>\n", | |
" <td id=\"T_04d29_row20_col4\" class=\"data row20 col4\" >46.4667</td>\n", | |
" <td id=\"T_04d29_row20_col5\" class=\"data row20 col5\" >0.0890</td>\n", | |
" <td id=\"T_04d29_row20_col6\" class=\"data row20 col6\" >0.0892</td>\n", | |
" <td id=\"T_04d29_row20_col7\" class=\"data row20 col7\" >-0.4193</td>\n", | |
" <td id=\"T_04d29_row20_col8\" class=\"data row20 col8\" >0.2233</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row21\" class=\"row_heading level0 row21\" >omp_cds_dt</th>\n", | |
" <td id=\"T_04d29_row21_col0\" class=\"data row21 col0\" >Orthogonal Matching Pursuit w/ Cond. Deseasonalize & Detrending</td>\n", | |
" <td id=\"T_04d29_row21_col1\" class=\"data row21 col1\" >1.3051</td>\n", | |
" <td id=\"T_04d29_row21_col2\" class=\"data row21 col2\" >1.3288</td>\n", | |
" <td id=\"T_04d29_row21_col3\" class=\"data row21 col3\" >38.1796</td>\n", | |
" <td id=\"T_04d29_row21_col4\" class=\"data row21 col4\" >43.8287</td>\n", | |
" <td id=\"T_04d29_row21_col5\" class=\"data row21 col5\" >0.0944</td>\n", | |
" <td id=\"T_04d29_row21_col6\" class=\"data row21 col6\" >0.0914</td>\n", | |
" <td id=\"T_04d29_row21_col7\" class=\"data row21 col7\" >-0.5052</td>\n", | |
" <td id=\"T_04d29_row21_col8\" class=\"data row21 col8\" >0.0833</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row22\" class=\"row_heading level0 row22\" >snaive</th>\n", | |
" <td id=\"T_04d29_row22_col0\" class=\"data row22 col0\" >Seasonal Naive Forecaster</td>\n", | |
" <td id=\"T_04d29_row22_col1\" class=\"data row22 col1\" >1.3367</td>\n", | |
" <td id=\"T_04d29_row22_col2\" class=\"data row22 col2\" >1.2703</td>\n", | |
" <td id=\"T_04d29_row22_col3\" class=\"data row22 col3\" >39.1429</td>\n", | |
" <td id=\"T_04d29_row22_col4\" class=\"data row22 col4\" >42.1532</td>\n", | |
" <td id=\"T_04d29_row22_col5\" class=\"data row22 col5\" >0.0916</td>\n", | |
" <td id=\"T_04d29_row22_col6\" class=\"data row22 col6\" >0.0974</td>\n", | |
" <td id=\"T_04d29_row22_col7\" class=\"data row22 col7\" >-0.1419</td>\n", | |
" <td id=\"T_04d29_row22_col8\" class=\"data row22 col8\" >0.0867</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row23\" class=\"row_heading level0 row23\" >polytrend</th>\n", | |
" <td id=\"T_04d29_row23_col0\" class=\"data row23 col0\" >Polynomial Trend Forecaster</td>\n", | |
" <td id=\"T_04d29_row23_col1\" class=\"data row23 col1\" >1.5770</td>\n", | |
" <td id=\"T_04d29_row23_col2\" class=\"data row23 col2\" >1.7389</td>\n", | |
" <td id=\"T_04d29_row23_col3\" class=\"data row23 col3\" >46.0326</td>\n", | |
" <td id=\"T_04d29_row23_col4\" class=\"data row23 col4\" >57.3245</td>\n", | |
" <td id=\"T_04d29_row23_col5\" class=\"data row23 col5\" >0.1102</td>\n", | |
" <td id=\"T_04d29_row23_col6\" class=\"data row23 col6\" >0.1098</td>\n", | |
" <td id=\"T_04d29_row23_col7\" class=\"data row23 col7\" >-0.8335</td>\n", | |
" <td id=\"T_04d29_row23_col8\" class=\"data row23 col8\" >0.0600</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row24\" class=\"row_heading level0 row24\" >croston</th>\n", | |
" <td id=\"T_04d29_row24_col0\" class=\"data row24 col0\" >Croston</td>\n", | |
" <td id=\"T_04d29_row24_col1\" class=\"data row24 col1\" >1.8411</td>\n", | |
" <td id=\"T_04d29_row24_col2\" class=\"data row24 col2\" >1.9190</td>\n", | |
" <td id=\"T_04d29_row24_col3\" class=\"data row24 col3\" >53.4712</td>\n", | |
" <td id=\"T_04d29_row24_col4\" class=\"data row24 col4\" >63.0904</td>\n", | |
" <td id=\"T_04d29_row24_col5\" class=\"data row24 col5\" >0.1227</td>\n", | |
" <td id=\"T_04d29_row24_col6\" class=\"data row24 col6\" >0.1289</td>\n", | |
" <td id=\"T_04d29_row24_col7\" class=\"data row24 col7\" >-1.0132</td>\n", | |
" <td id=\"T_04d29_row24_col8\" class=\"data row24 col8\" >0.0333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row25\" class=\"row_heading level0 row25\" >naive</th>\n", | |
" <td id=\"T_04d29_row25_col0\" class=\"data row25 col0\" >Naive Forecaster</td>\n", | |
" <td id=\"T_04d29_row25_col1\" class=\"data row25 col1\" >2.7037</td>\n", | |
" <td id=\"T_04d29_row25_col2\" class=\"data row25 col2\" >2.7447</td>\n", | |
" <td id=\"T_04d29_row25_col3\" class=\"data row25 col3\" >79.2381</td>\n", | |
" <td id=\"T_04d29_row25_col4\" class=\"data row25 col4\" >90.6009</td>\n", | |
" <td id=\"T_04d29_row25_col5\" class=\"data row25 col5\" >0.2020</td>\n", | |
" <td id=\"T_04d29_row25_col6\" class=\"data row25 col6\" >0.1819</td>\n", | |
" <td id=\"T_04d29_row25_col7\" class=\"data row25 col7\" >-7.0125</td>\n", | |
" <td id=\"T_04d29_row25_col8\" class=\"data row25 col8\" >2.3567</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th id=\"T_04d29_level0_row26\" class=\"row_heading level0 row26\" >grand_means</th>\n", | |
" <td id=\"T_04d29_row26_col0\" class=\"data row26 col0\" >Grand Means Forecaster</td>\n", | |
" <td id=\"T_04d29_row26_col1\" class=\"data row26 col1\" >5.6161</td>\n", | |
" <td id=\"T_04d29_row26_col2\" class=\"data row26 col2\" >5.1320</td>\n", | |
" <td id=\"T_04d29_row26_col3\" class=\"data row26 col3\" >164.1678</td>\n", | |
" <td id=\"T_04d29_row26_col4\" class=\"data row26 col4\" >169.7381</td>\n", | |
" <td id=\"T_04d29_row26_col5\" class=\"data row26 col5\" >0.3836</td>\n", | |
" <td id=\"T_04d29_row26_col6\" class=\"data row26 col6\" >0.4813</td>\n", | |
" <td id=\"T_04d29_row26_col7\" class=\"data row26 col7\" >-15.1865</td>\n", | |
" <td id=\"T_04d29_row26_col8\" class=\"data row26 col8\" >0.0833</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n" | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Processing: 0%| | 0/117 [00:00<?, ?it/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "20004775690a43588c05afa3a4b080db" | |
} | |
}, | |
"metadata": { | |
"application/vnd.jupyter.widget-view+json": { | |
"colab": { | |
"custom_widget_manager": { | |
"url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/d2e234f7cc04bf79/manager.min.js" | |
} | |
} | |
} | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [] | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"prediction = predict_model(best, fh=90)\n", | |
"prediction" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 424 | |
}, | |
"id": "irSLIDOCMI2I", | |
"outputId": "539700b1-ad54-492c-96d5-021bb6c8c348" | |
}, | |
"execution_count": 8, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" y_pred\n", | |
"1960-06 534.5573\n", | |
"1960-07 616.6787\n", | |
"1960-08 624.4069\n", | |
"1960-09 510.8446\n", | |
"1960-10 446.2305\n", | |
"... ...\n", | |
"1967-07 907.1695\n", | |
"1967-08 916.8979\n", | |
"1967-09 748.8126\n", | |
"1967-10 652.9528\n", | |
"1967-11 571.4941\n", | |
"\n", | |
"[90 rows x 1 columns]" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-ed3eed91-c679-4ed4-8b68-3be25adbbee6\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>y_pred</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>1960-06</th>\n", | |
" <td>534.5573</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1960-07</th>\n", | |
" <td>616.6787</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1960-08</th>\n", | |
" <td>624.4069</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1960-09</th>\n", | |
" <td>510.8446</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1960-10</th>\n", | |
" <td>446.2305</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1967-07</th>\n", | |
" <td>907.1695</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1967-08</th>\n", | |
" <td>916.8979</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1967-09</th>\n", | |
" <td>748.8126</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1967-10</th>\n", | |
" <td>652.9528</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1967-11</th>\n", | |
" <td>571.4941</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>90 rows × 1 columns</p>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-ed3eed91-c679-4ed4-8b68-3be25adbbee6')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-ed3eed91-c679-4ed4-8b68-3be25adbbee6 button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-ed3eed91-c679-4ed4-8b68-3be25adbbee6');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 8 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [], | |
"metadata": { | |
"id": "ovP1rQojMKd9" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment