Last active
December 4, 2020 23:48
-
-
Save niklasbuschmann/aae65e9f94385fd1f5d085fbe5732553 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"---\n", | |
"# Rechnernutzung in der Physik\n", | |
"**Institut für Experimentelle Teilchenphysik** <br>\n", | |
"**Institut für Theoretische Teilchenphysik** <br>\n", | |
"Priv. Doz. R. Wolf, Prof. Dr. M. Steinhauser <br>\n", | |
"Dr. A. Mildenberger, Dr. Th. Chwalek <br>\n", | |
"A. Heidelbach <br>\n", | |
"[Ilias Seite zum Kurs](https://ilias.studium.kit.edu/ilias.php?ref_id=1253214&cmd=frameset&cmdClass=ilrepositorygui&cmdNode=ug&baseClass=ilrepositorygui) <br>\n", | |
"WS 2020/21 – Blatt 04 <br>\n", | |
"Abgabe: Mi. 09.12.20 23:59 Uhr\n", | |
"\n", | |
"---" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Auf diesem Übungsblatt beschäftigen Sie sich weiter mit der Parameterschätzung. Sie betrachten dieses Mal jedoch den Fall von Messpunkten $\\{y_i\\}$ mit normalverteilter Wahrscheinlichkeitsdichte mit $\\{(\\mu_i,\\sigma_i)\\}$, die einer linearen Verteilung folgen. Einfach ausgedrückt, haben Sie eine simple Messung gemacht, wie Sie sie bereits im Praktikum durchgeführt haben, zum Beispiel die Messung von Strom und Spannung. Die $x$-Werte werden als exakt bekannt vorausgesetzt und auf die $y$-Werte nehmen sie eine von Messpunkt zu Messpunkt, konstante Unsicherheit $\\sigma_i$ an. Betrachten Sie zur Erinnerung die Likelihoodfunktion für $n$ normalverteilte Messpunkte:\n", | |
"\n", | |
"$$\n", | |
"\\begin{align*}\n", | |
"L\\left(\\left\\{y_i\\right\\},\\theta\\right)&=\\prod_{i=1}^n\\frac{1}{\\sqrt{2\\pi\\sigma_i^2}}\\exp\\left(-\\frac{\\left(y_i-\\mu_i(\\theta)\\right)^2}{2\\sigma_i^2}\\right), \\\\\n", | |
"-2\\ln\\left(L\\left(\\left\\{y_i\\right\\},\\theta\\right)\\right)&=\\underbrace{\\sum_{i=1}^n\\frac{\\left(y_i-\\mu_i(\\theta)\\right)^2}{\\sigma_i^2}}_{=\\chi^2}+\\sum_{i=1}^n\\ln\\left(2\\pi\\sigma_i^2\\right).\n", | |
"\\end{align*}\n", | |
"$$\n", | |
"\n", | |
"Ihre Aufgabe wird nun im Folgenden sein, die Parameter $\\theta$ zu bestimmen, die im Fall einer Geraden der Steigung $\\theta_0=m$ und dem $y$-Achsenabschnitt $\\theta_1=c$ entsprechen.\n", | |
"\n", | |
"$$\n", | |
"y(x)=mx+c\n", | |
"$$\n", | |
"\n", | |
"Dieses Mal betrachten Sie mehr Aspekte der Parameterschätzung, indem Sie einen Minimierungsalgorithmus anweden, um das Minimum der $\\chi^2$-Funktion zubestimmen, und einen Ensemble Test, zur Abschätzung der Unsicherheit der Anpassung, durchführen." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"---\n", | |
"# Aufgabe 1: Anpassung einer Geraden <a id=\"Aufgabe1\"></a>\n", | |
"---\n", | |
"\n", | |
"Die Datei *xy_data.dat* enthält Datenpunkte, organisiert in Spalten für den $x$- bzw. $y$-Wert. Nehmen Sie für die $y$-Werte eine voneinander unabhängige, normalverteilte Unsicherheit von $\\sigma=0.2$ an.\n", | |
"\n", | |
"In den folgenden Teilaufgaben führen Sie die Anpassung einer Geraden durch, machen jedoch immer wieder Abstecher in Themenbereiche, die in der Vorlesung besprochen wurden. Einige Aspekte der Aufgabenteile beinhalten programmiertechnische Freiheiten und Schwierigkeit. Scheuen Sie sich also bitte nicht, verwendete Methoden im Internet nachzuschlagen und deren Funktionsweise auszuprobieren. Manche Rechnungen können je nach verwendetem System oder Auslastung von [jupytermachine.etp.kit.edu](jupytermachine.etp.kit.edu) auch länger dauern als die gewohnte halbe Sekunde. Sollten Sie unterwegs auf Schwierigkeit stoßen, seien Sie versichert, dass die Teilaufgaben d,e,f) nur von der Teilaufgabe a) abhängen und unabhängig von b,c) bearbeitet werden können." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## a) Lineares $\\chi^2$ Modell\n", | |
"Bereiten Sie die Anpassung der Geraden vor, indem Sie hier bereits einige nützliche Funktionen definieren und die Daten einlesen.\n", | |
"\n", | |
"* Definieren Sie eine **lineare Funktion**, die als Eingabe die $x$-Werte, die Steigung und den Ordinatenabschnitt erhält.\n", | |
"* Definieren Sie die $\\chi^2$ **Funktion** für ein lineares Modell. Gehen Sie jedoch von zwei Fällen der Benutzung aus:\n", | |
" * Die Parameter ($m$ und $c$) werden als einzelne Zahlen übergeben. Die Ausgabe ist eine einzelne Zahl.\n", | |
" * Die Parameter werden als 2D Array übergeben. Die Ausgabe ist ebenfalls ein 2D Array. Sie können sich die $\\chi^2$ Werte als Matrix vorstellen. Eine Komponente (Zeile) beinhaltet die $m$ Werte für einen festgehaltenen Wert von $c$, die andere (Spalte) beinhaltet die $c$ Werte für einen festgehaltenen $m$ Wert.\n", | |
" $$\n", | |
" \\chi^2_{ij}=\\sum_{k=1}^{n}\\frac{\\left(y_k-(m_ix_k+c_j)\\right)^2}{\\sigma^2}\n", | |
" $$\n", | |
" * Die Methode *np.atleast_1d(Array)* kann hilfreich sein.\n", | |
"* Definieren Sie eine Funktion zur Ausgabe der **Normalverteilung**. (Hinweis: Sie haben diese bereits verwendet auf vergangenen Blättern.)\n", | |
"* Lesen Sie die Daten aus. (Hinweis: *np.loadtxt()* kann das Argument *unpack=True* bzw. *unpack=False* annehmen) \n", | |
"\n", | |
"> Tutorium: Diskutieren Sie in der Gruppe die Bedeutung der Unsicherheit $\\sigma$." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn as snb\n", | |
"import random\n", | |
"from matplotlib import ticker, cm\n", | |
"from scipy.stats import chi2, norm as scipy_norm, linregress\n", | |
"\n", | |
"snb.set()\n", | |
"\n", | |
"def chi_square(x, y, err, m, c):\n", | |
" if (np.isscalar(m) and np.isscalar(c)):\n", | |
" return np.sum(((y - (m * x + c)) / err)**2)\n", | |
" else:\n", | |
" return np.array([[chi_square(x, y, err, mi, cj) for cj in c] for mi in m])\n", | |
"\n", | |
"# Define linear function\n", | |
"def linear(x, m, c):\n", | |
" return m * x + c\n", | |
"\n", | |
"# Define normal distribution pdf\n", | |
"def norm(x, mu, sigma):\n", | |
" return scipy_norm.pdf(x, mu, sigma)\n", | |
"\n", | |
"# Load data\n", | |
"[x, y] = np.loadtxt(\"xy_datadat.sec\", unpack = True)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Berechnen Sie nun die $\\chi^2$ Werte für einen 2D Array. Übergeben Sie Ihrer $\\chi^2$-Funktion jeweils ein Array für die gesuchte Steigung und den $y$-Achsenabschnitt. Wählen Sie für die Arrays jeweils 1000 Werte im Bereich zwischen 0 und 2." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Gerate an interval for the parameters\n", | |
"err = 0.2\n", | |
"m = np.linspace(0, 2, 1000)\n", | |
"c = np.linspace(0, 2, 1000)\n", | |
"\n", | |
"# Compute chi^2 for m and c equal to the interval\n", | |
"chi = chi_square(x, y, err, m, c)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## b) Kontur des $\\chi^2$ Modells für ein 2D-Array an Parametern\n", | |
"Auf dem letzten Arbeitsblatt haben Sie die Likelihoodfunktionen in Abhängigkeit von einem Parameter betrachtet. Für $I$ Parameter wird die Likelihoodfunktion, bzw. die $\\chi^2$-Funktion in diesem Fall, zu einer $I$-dimensionalen Hyperfläche, deren Extremum Sie finden müssen. \n", | |
"\n", | |
"In dem betrachteten Fall erhalten Sie also eine 2D Fläche (in Abhängigkeit von $m$ und $c$) im 3D Raum ($\\chi^2$ Wert als dritte Dimension) für die $\\chi^2$-Funktion. Diese sollen Sie nun im Folgenden darstellen und deren Minimum auf einfachem Wege bestimmen.\n", | |
"\n", | |
"Bestimmen Sie zunächst das Minimum des 2D $\\chi^2$ Arrays und die dazugehörigen Parameterwerte. Die *numpy* Methode *np.argwhere(Bedingung)* ist dazu sehr geeignet. Die Ausgabe der Methode enthält dann die \"Indizes\" des Minimums. Diese können Sie verwenden, um die entsprechenden Parameter zu bestimmen." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Compute minimum of chi^2 in parameter space\n", | |
"[[m_index, c_index]] = np.argwhere(chi == np.min(chi))\n", | |
"[m_minimum, c_minimum] = [m[m_index], c[c_index]]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Plotten Sie zur Überprüfung die Werte des $\\chi^2$ Array und das Minimum. Gehen sie dabei wie folgt vor:\n", | |
"* Zunächst muss ein neues 2D Array (Gitter) aus $m$ und $c$ Werten aufgebaut werden. Dazu eignet sich die Methode *$x_{Git}$, $y_{Git}$ = np.meshgrid(Array1, Array2)*\n", | |
"* Danach initialisieren Sie den Plot mit *fig, ax = plt.subplots()*. Stellen Sie an dieser Stelle auch eine ordentliche Größe des Plottes ein.\n", | |
"* Anschließend zeichnen Sie die gefüllte Kontur. Zur besseren Interpretation eignet sich eine logarithmische Farbskala für die $\\chi^2$ Werte. Außerdem müssen Sie die neuen Arrays der $m$ und $c$ Werte transponieren (*array.T*). Hinweise:\n", | |
" * *cs = ax.contourf(Gitter_x.T, Gitter_y.T, $\\chi^2$-Werte, locator=ticker.LogLocator(), cmap=cm.PuBu_r)*\n", | |
" * *cbar = fig.colorbar(cs)* zur Erzeugung der Farbskala\n", | |
"* Zeichnen Sie das gefundene Minimum als Punkt ein und geben Sie im Plot die Werte der Parameter $m$ und $c$ an." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2AAAAHyCAYAAACNo63FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABIIUlEQVR4nO3dfVxUdf7//ycDqCkRYICjWajbzgdL14q1ttItkLSUxXRbXDQr0y5MzfptSq3rRboX+Nlsk8jaMstNy7VWDbQEpdasbV1bN028Wr+iiVwkaHiZCvP7w0+TxNUAM+ecmXncbzdvNzjnzJnXzI0mnpz363WCnE6nUwAAAAAAr7OZXQAAAAAABAoCGAAAAAAYhAAGAAAAAAYhgAEAAACAQQhgAAAAAGAQAhgAAAAAGIQABgAAAAAGIYABAAAAgEFCzC4AAAAAAFrr4MGDGjFihLp16ya73a65c+eaXVK9TA1gR44c0ZQpU3TgwAG1adNGV1xxhZ5++mlFRUXVOu7UqVN68skntX37dgUHB2vq1Km69dZbm9wHAAAAIHD89Kc/1W9/+1uzy2iUqUsQg4KCNHbsWK1du1Y5OTnq2rWr/vjHP9Y5buHChQoLC1N+fr5efPFFTZs2TSdOnGhyHwAAAIDAsXHjRqWnp+vdd981u5QGmRrAIiIidP3117u+79Onjw4dOlTnuPfee09paWmSpLi4OF199dXasGFDk/sAAAAAmK+qqkoHDx6s86+qqqre4zMzM5WYmCiHw6Hdu3e7tu/bt09paWkaOHCg0tLSVFRU5NoXExOj999/X6+++qqWLVumI0eOePtltYhlhnDU1NTozTffVGJiYp19hw4dUpcuXVzf2+12lZaWNrkPAAAAQPPU1Dg9fs42bdpo2LBhSkpKqvXv9ddfr/f4pKQkLVmypNbv+ZI0Y8YMpaena+3atUpPT9f06dNrPcdFF12kdu3aKSEhQV9++aXHX4cnWGYIx+zZs9W+fXuNGjXK8Ode99lBnfrmnOHPi/Ne2Ulgxnlj/6eT2SUAHnPzlZeaXQIAC7HZgnRJxw5ml+EWmy1IX1ecVE1NjYfOZ9MlHdtr1apVqq6urrUvPDy83sckJCTU2VZRUaHCwkItWrRIkjRkyBDNnj1blZWVioqK0okTJ9ShQwc5nU598cUXGjlypEfq9zRLBLDMzEzt379fL774omy2uhflOnfurOLiYtdwjpKSEtfSxcb2uevUN+d04jQBzCy/jLtU87YWm10GLID/DuFPaqo9/xdkADBKTU2NBz/Hzgc5u93eqrOUlJQoNjZWwcHBkqTg4GDFxMSopKREUVFR2rJli+bNm6fQ0FANHDhQMTExra7cG0xfgjhv3jx98cUXys7OVps2beo9ZtCgQVq2bJkkqaioSNu2bVO/fv2a3AcAgFnyC8vMLgEAAsrNN9+sv/3tb1q2bJnGjBljdjkNMjWA7dmzRy+99JLKy8s1YsQIpaam6pFHHpEkpaamqqzs/P+87r//flVVVSk5OVkPPvignn76aYWFhTW5D4Bv4UooAABoiN1uV1lZmWsZY3V1tcrLy1t9Zc1opi5BvPLKK7Vr1656961atcr1dfv27TV//vx6j2tsHwAAAABrSExMVHHx+T+2TpgwQRMnTmzW4zt27Kj4+Hjl5uYqNTVVubm5io+Pr3MPYasLcjqdAb9IPeeTInpPTMaVD3zr8d5dmj4I8BHJPWPNLgGARdiCgxQZ7TurtI58ddxjPWAtee1z5sxRXl6eDh8+rMjISEVERGj16tXau3evMjIyVFVVpfDwcGVmZqp79+4eqdMoBDARwKyAAIYLEcLgTwhhACQCmC+9dm+zxBRE4PHeXQhhAIA6Tp4+oWMnjqq6mj+UwrqCg0N0cYcItW/nG2PmYS4CGAAAsKSTp0+o6vgRRUREKzS0jYKCgswuCajD6XTq7NkzOnr0K0kihKFJpo+hB4Dv42ooAEk6duKoIiKi1aZNW8IXLCsoKEht2rRVRES0jp04anY58AEEMAAAvIj7gbVcdfU5hYbWf49QwGpCQ9uwVLYJiYmJcjgccjgcysrKMrsc07AEEQAAWBZXvuAr+FltWkFBgdklWAJXwAAAAADAIFwBA2BJ87YWM44eAJrp+PHjmj//GW346EM5nTW68cZ+mvzor3TJJRENPubfWzZr0qSH6t3X98c3aN685yVJBw9+qaVvLtb2L7ZpX9H/U+/effR81p+98Crc89VX5Zr37Fxt3rxJbdqEKinpNo1/+FG1a9fO7XM8+dSv9NFHH+qxyU9o+PC0eo/ZvXunxo4brYsvvlirc9d7pngENAIYLINR9AD8VX5hGfcDgyGmT8/QlwcPKGPqNAXZbFqwIEtPPvUrvZD9SoOPcfzwf/Tii4tqbSsrK9WMGU/qhhtudG3bt2+vPv30E/XsebXOmdzrdO7cOT3+/01QaEioZs38nY4fP6as55/V8WPHNX36bLfOsWnTp9q+fVujxzidTj377FxFRETS3wWPIYABAAD4gS++2KpN//pUz2f9WX36XCtJir40Wg88eK/+tfmf+nHC9fU+rkOHMF19Va9a27Z+vkU2m02JicmubTfd1F/9+t0iSZo2bYqOfn3UK6/DHR98uE779xfprTdXqHPn86slgkNCNHPmU7rvvnHq2vXyRh9/7tw5PTf/j3pg3MP6Q+acBo9bu3aNKo9UavAdP9O7OX/z6GtA4KIHDIBlcUUUgK/77W9n6v6xd+uTTzZq1Ki7lDTgJj3xxKOqqvpaBw9+qYmTHtSA5Jt1/9i79d//7mnVc3366SeKiuroCl+S1LPn1bLbu+jTTz9p1rnWrVurPn2u1aWXRru22Wwt/7WxtLREM2Y+pcFDkpQ04Cbdc88I5eW/3+LzffrpJ/qf/+npCl+S1L/fLQoNDdU//9n0a/3r8jfVtk1b3XHHzxo85uTJE1rwYpYeGT9ZIaFcs/AEpiCex08TAACAF5WVleqVhS9q3LiHdfr0aT37p//V3Lm/VUlpiVJShio9fbReeilbM2c+pb/85a+uaXrV1dVyOp2Nnttms7mC0f4DRbr88ivqHBN3RZwO7C9yu94DB/Zr955dmvLEr91/kY04cqRSDz50n9q1a6dHxk9WTEys/t++vSovL3Ud09zXeuBAkeKu6F5rf2hoqDp3vkz7D+xv9DwVFYf1+uuvKPMPzzYaKhctekVxV3RT//63aM9/dzX1MuEGpiCeRwADAMAA9IGZq+rTT3R4xTs6V1mhkKiOuvTO4Qq/oL/Jm44dq9JLLy5Sly6XSZL27t2jpW/+Rb/+9UzdPmjI+YOcTj0xZbL27y9SXFw3SdKjkx/Wf/7z70bPffugIfr1r2e6nufisIvrHHPxxeE6VOL+ioL16/MUEhKiW25JdPsxjVm2bKlOnDiuha+8oUsvvVSSlJDQt9YxaSOGqrS0pNHz3HffON0/5kFJ0rFjxxR2cX2v9WIdO1bV6HleWDBfffv+pNaVwu87cKBIf1vxV/35pdcbPRfQEgQwAJbGNEQArVX16Scq+8trcp45I0k6V1mhsr+8JkmGhLBOneyu8CVJXS7rKkm67toff7ety/ltXx0udwWwKU88pZMnTzZ67samG7bU+vV56vvjGxQefolHzvfZv/+l66//iSt81SfzD8/q7NkzjZ7nwuWQLfXFF1v14YfrteSNtxs97k/PPaPbb09Rjx4/aPVzAt9HAAMAAH7t8Ip3XOHrW84zZ3R4xTuGBLCw712VCg0JrbM9NPT8tjPffFdnly5d3VqW962LLw7X0aNH6hzT0JWx+uz5724V7d+n0aPHuHW8O6qqvlZ8fM9Gj4mL69bM13qxThw/XueYY8eO6Qc/+GGD53hu/jNK/dkwdegQpmPHjrm2f/PNNzp+/LjCwsL0j08/1rZtn+vxx6a4jjlz5oyczvPnb9u2rdq0adNorUBjCGCwFEbRAwA87VxlRbO2W0VzlyBecXmctn6+pc4x+w8UuaYXNmX9ujy1bdtWN9/80+aW26Dw8EtUUXG40WOauwTx8svjtP9AUa39Z8+e1aFDxRqaOqzBc3z55X7t2LFdf13+Zq3tLyyYr5f+nK2/f/hPfXlgv06dOqkRv7yzzuNvv+NWjR37kO69Z2yjtQKNIYABAGAQ+sDMERLVsd6wFRLV0YRq3NfcJYg33HCjXnv9FX2+9T/6Ue8+kqSdOwt16FBxrft5NWZ9QZ5uuqm/2rdv39Ky60i4rq/efuctVVZWKKqB97y5SxBvuOFGzZkzQ6WlJerUyS5J2rjx7zp79oyuv77h15qZ+ac69/OaNOkh/fznI/TT/rdKkm65JUk/uLL2VbT31uRqw0cf6Pe/f0ad7SyLR+sQwABYHn1gAFrj0juH1+oBk6SgNm106Z3DTayqaZdfHtes46++urf6/vgGzZkzQxMeeVRBQTYteHG+evfuU+seYL//w9P6z3/+rWVvraz1+C+2b1NJySFNnPB4vec/ffq0/vGPjZKkrw5/pRMnTuiDD9ZJkn7yk5vVrl27eh/3i1+k6/21qzX+kXG6Z/QYxcTEqmj/Pp0+dUojR94jSc3utbr1lgFavPhVPfXrJzRu7EM6fuK4srKeVfKAQbXuAfboow9Lkp57boEkuYLp93W9rKuuueY6SVJMTKxiYmr/oWTLls8UEhKia69JaFadQH0IYAAAwK992+dl1hREI82a9XtlZc3T7//wtGpqnLrxxps1+dEnah1TU12j6urqOo9dvz5PYWFhDV4tO3KkUr+ZnlFr27ffL//ru7LbO9f7uMjISC14YaFeWDBfz81/RmfPntFll12uu0fd24JXeF5ISIie+WOWnn12rqbPeFKhoW2UlHSbHhn/aK3jqmvqvk6YJzExUcXF51tNJkyYoIkTJ5pckTmCnE11PAaAnE+KdOL0uaYPhCHoAUN9uAIGf8ESRPcdKt+vTp3q3tcKsKrS0v3qHFP/z6wtOEiR0WEGV9RyR746rppqz8QEX3vt3tbyW5oDgIEI5vAX+YVlZpcAADARAQyWw5UOAAAA+CsCGAAAAAAYhAAGwGewDBEAAPg6AhgAAAajDwwAAhcBDAAAWBbDmuEr+FmFuwhgAADAkoKDQ3T27JmmDwQs4OzZMwoO5ha7jUlMTJTD4ZDD4VBWVpbZ5ZiG+4CJ+4BZFf0+aAiTMuEPuB9Y006ePqGq40cUERGt0NA2CgoKMrskoA6n06mzZ8/o6NGvFB4WqfbtOtR7nK/dC4v7gHkPMR0AABPkF5YRwprw7S+yX399WNXV/KEU1hUcHNJo+AIuRAADAACW1b5dB36pBeBX6AED4HNYngoAAHwVAQwAAAAADEIAAwDAJNwPDAACDwEMAAAAAAxCAINlMWocjaEPDAAA+CICGAAAAAAYhAAGAAAAAAYhgAHwWSxDhD9gEAeAQJGYmCiHwyGHw6GsrCyzyzENN2IGAAAA4HUFBQVml2AJXAEDAAAAAIMQwGBpTEJEU1iGCAAAfAkBDAAAk9EHBgCBgwAGAAAAAAYhgAEAAACAQUyfgpiZmam1a9equLhYOTk5+uEPf1jnmClTpmjXrl2u73ft2qXs7GwlJSUpKytLS5cuVUxMjCTp2muv1YwZMwyrH4D55m0tpl8QAAD4BNMDWFJSkkaPHq2RI0c2eMzcuXNdX+/cuVP33HOP+vXr59o2dOhQTZ061at1AgDgTfmFZUruGWt2GQAALzN9CWJCQoLsdrvbx7/99ttKSUlRmzZtvFgVrIQrGwAAAPAXpgew5jhz5oxycnI0fPjwWttXr16tlJQUjRkzRlu2bDGpOgBmYhw9AADwBaYvQWyOdevWqXPnzoqPj3dtGzFihB566CGFhobq448/1vjx47VmzRpFRkaaWCkAAAAA1OVTV8DeeeedOle/oqOjFRoaKkm66aabZLfbtWfPHjPKAwCgVbgfGAD4P58JYKWlpfrss8+UkpJSa3tZ2Xf/s9qxY4eKi4vVrVs3o8sDAAAA0IjExEQ5HA45HA5lZWWZXY5pTF+COGfOHOXl5enw4cO67777FBERodWrV2vcuHGaNGmSevXqJUlasWKFbr31Vl1yySW1Hj9v3jxt375dNptNoaGhmjt3rqKjo814KQBMxjh6AACsq6CgwOwSLCHI6XQ6zS7CbDmfFOnE6XNml4EmMGQB7iCAwdcxih7wT7bgIEVGh5ldhtuOfHVcNdWeiQm+9tq9zWeWIAIAEAjoAwMA/0YAA+BXuFIKAACsjAAGAAAAAAYhgAEAAACAQQhgAABYDH1gAOC/CGDwGUy3g7voAwMAAFZFAAMAAAAAgxDAAAAAAMAgBDAAfolliPB19IEBgH8igAEAAACAQQhgAAAAAGAQAhh8CpMQAQAA4MsIYAD8Fn1g8HX0gQGA/yGAAQAAAIBBCGAAAAAAYBACGAC/xjJEAABgJQQwAAAAAF6XmJgoh8Mhh8OhrKwss8sxTYjZBQDN9XjvLlzVABAw8gvLlNwz1uwyAKDVCgoKzC7BErgCBgAAAAAGIYAB8HtcMQUAAFZBAAMAAAAAgxDAAACwOG7IDAD+gwAGAAAAAAYhgMEnPd67i9klwMfQBwYAAKyAAAYAAAAABiGAAQDgA+gDAwD/QAADEDBYhggAAMxGAAMAAAAAgxDAAAAAAMAgBDD4LCYhAgg09IEBgO8jgAEIKPSBAQAAMxHAAAAAAMAgBDAAAAAAMAgBDEDAYRkifBl9YADg2whgAAAAAGAQAhh8GpMQAQAA4EsIYAAAAABgEAIYgIBEHxh8GX1gAOC7CGAAAAAAYBACGAAAAAAYhAAGAAAAAAYhgMHnMQkRLUUfGHwZfWAA4JsIYAAAAABgEAIYAAAAABiEAAYgoLEMEQAAGIkABgAAAMBvvPbaa7r33nvNLqNBpgewzMxMJSYmyuFwaPfu3fUek5WVpZ/85CdKTU1VamqqZs2a5dp36tQpTZ48WcnJyRo0aJA++OADo0qHhTCIA0AgYhAHANR29uxZ7dy50+wyGhVidgFJSUkaPXq0Ro4c2ehxQ4cO1dSpU+tsX7hwocLCwpSfn6+ioiKNHDlSeXl56tChg7dKBgAAAGBBq1at0uDBg7Vw4UKzS2mQ6VfAEhISZLfbW/z49957T2lpaZKkuLg4XX311dqwYYOnygMQAOgDAwDA+0pKSnTw4MFa/6qqquo9tqFVcvv27VNaWpoGDhyotLQ0FRUVufbV1NRo48aN6tevn7dfSquYHsDctXr1aqWkpGjMmDHasmWLa/uhQ4fUpct3y8/sdrtKS0vNKBEAAABAA0aOHKmkpKRa/15//fV6j01KStKSJUtq/Z4vSTNmzFB6errWrl2r9PR0TZ8+3bUvLy9PiYmJXn0NnmD6EkR3jBgxQg899JBCQ0P18ccfa/z48VqzZo0iIyPNLg0AAFPlF5YpuWes2WUA8DMb9xzWidPnPHKuDu1ClBIdpiVLlqi6urrWvvDw8Hofk5CQUGdbRUWFCgsLtWjRIknSkCFDNHv2bFVWVioqKkr79u3Tpk2btGrVKu3YsUPLly/XXXfd5ZHX4Ek+cQUsOjpaoaGhkqSbbrpJdrtde/bskSR17txZxcXfLR8qKSlRp06dTKkTgO9iGSIAAN5lt9t12WWX1frXUACrT0lJiWJjYxUcHCxJCg4OVkxMjEpKSiRJDz/8sBYtWqSFCxcqPj7ekuFL8pEAVlb23ZSnHTt2qLi4WN26dZMkDRo0SMuWLZMkFRUVadu2bZZf9wnvYBIiAAAApPOj6K3K9CWIc+bMUV5eng4fPqz77rtPERERWr16tcaNG6dJkyapV69emjdvnrZv3y6bzabQ0FDNnTtX0dHRkqT7779fGRkZSk5Ols1m09NPP62wsDCTXxUAAAAAT7Lb7SorK1N1dbWCg4NVXV2t8vLyVg30M4PpAWzatGmaNm1ane0vv/yy6+vMzMwGH9++fXvNnz/fK7UBAOAL6AMD4AsSExNdrUMTJkzQxIkTm/X4jh07Kj4+Xrm5uUpNTVVubq7i4+MVFRXljXK9JsjpdDrNLsJsOZ8UeazJEOaijwetxVJW+CoCGGBttuAgRUb7ziotT/5+3KFdiFJujGvWYy5cJRcZGelaJbd3715lZGSoqqpK4eHhyszMVPfu3T1Sp1FMvwIGAAAAABdqaJVcjx49tHz5chMq8hyfGMIBAAAAAP6AAAa/wvIxAIEqv7Cs6YMAAKYjgAHABegjBAAA3kQAAwAAAOB1iYmJcjgccjgcysrKMrsc0zCEAwAAAIDXFRQUmF2CJXAFDAC+h2WI8FX0gQGA9RHA4HcYxAEAAACrIoABAAAAgEEIYAAAAABgEAIYANSDPjAAADyLKYjnMQURAAA/kl9YpuSesWaXAQB1MAXxPK6AAQAAAIBBCGDwS0xCBAAAgBURwACgAfSBAQAATyOAAQDgZ7ghMwBYFwEMAAAAAAxCAAMAAADgdYyhP48x9PBbj/fuQg8PWm3e1mKGugAA4AGMoT+PK2AAAPgh+sAAwJoIYAAAAABgEAIYADSBpawAAMBTCGAAAAAAYBACGAAAfoo+MACwHgIY/BrT6wAAAGAlBDAAcAN9YAAAwBMIYAAAAAC8jhsxn8eNmAEA8GP5hWVK7hlrdhkAwI2Y/w9XwAAAAADAIAQw+D0GccBT6AMDAACtRQADAAAAAIMQwAAAAADAIAQwAAD8HDdkBgDrIIABQDPQBwYAAFqDAIaAwCAOAAAAWAEBDAAAAAAMQgADgGZiGSJ8EX1gAMyWmJgoh8Mhh8OhrKwss8sxTYjZBQAAAADwfwUFBWaXYAlcAQMAAAAAgxDAAAAAAMAgBDAEDCYhwpPoA4Mvog8MAMxHAAMAAAAAgxDAAAAAAMAgBDAAAAAAMIjpASwzM9N1T4Ddu3fXe0x2drYGDx6slJQUDRs2TB999JFrX0ZGhvr376/U1FSlpqZqwYIFRpUOIMDRBwZfRB8YAJjL9PuAJSUlafTo0Ro5cmSDx/Tu3VtjxozRRRddpJ07d2rUqFHauHGj2rVrJ0l64IEHNGrUKKNKhg97vHcXfmkGAACAaUwPYAkJCU0e069fP9fXDodDTqdTR48eVadOnbxZGgAAAAB4lOlLEJtr5cqVuvzyy2uFr0WLFiklJUXjx4/X3r17TawOAAAAABrmUwFs06ZNeu655/TMM8+4tj322GPKz89XTk6ObrvtNo0dO1bV1dUmVgkgkLCkFb6IPjAAMI/PBLAtW7boiSeeUHZ2trp37+7aHhsbK5vt/MsYOnSoTp48qdLSUrPKBAAAAIAG+UQA27p1qx577DHNnz9fV111Va19ZWXf/RXvo48+ks1mU2xsrNElwoc83ruL2SUAAAAEnG8nnzscDmVlZZldjmlMH8IxZ84c5eXl6fDhw7rvvvsUERGh1atXa9y4cZo0aZJ69eqlWbNm6fTp05o+fbrrcXPnzpXD4dDUqVNVUVGhoKAghYWFacGCBQoJMf1lAQAAALhAQUGB2SVYQpDT6XSaXYTZcj4p0onT58wuAwaib6dpWzZtliRd07fpSaXgyip8T3JPVosARrIFBykyOszsMtzmyd+PO7QLUcqNcR45lz/wiSWIAIz1bfj69usLvwfgHxjEAQDmIIABcAshDAAAoPUIYABqaSxoEcIaxrJWAADgDgIYAhL9OgAAADADAQyAiztXuLgKBvgP+sAAwHgEMADNRggDAABoGQIYgBYhhNVFHxgAAGgKAQwAAAAADEIAQ8BiEEfrcRUM8H30gQGAsQhgAAAAAHCBkydPqrCwUJs3e/6PzQQwAK3CVbDa6AMDAMB3lZaWauLEierbt6+GDx+u0aNHu/Zt3rxZd9xxh/75z3+26jkIYAAkEaQAAEBgKy8v11133aX169frlltuUZ8+feR0Ol37f/SjH6miokJr1qxp1fMQwAC0GuEN8G30gQGA9Pzzz6uyslKvvvqqnn/+ed1000219oeGhiohIUH//ve/W/U8BDAENAZxAAAAQJI2bNigxMRE3XDDDQ0eY7fbVV5e3qrnIYAB8Aiugn2HPjAAAHzP4cOHdcUVVzR6TGhoqE6dOtWq5yGAAQAAAAh4ERERKikpafSYffv26dJLL23V8xDAAHgMV8EAAEBDEhMT5XA45HA4lJWVZXY5dVx77bUqKCjQV199Ve/+oqIibdy4Uddff32rniekVY8GAAB+Ib+wTMk9Y80uA4AfKygoMLuERt1///1av369Ro0apaeeesq11PDkyZP617/+pd///vcKCgrSmDFjWvU8Qc4LZysGqJxPinTi9Dmzy4CJ6Nnx7NWra/omeOxcvowhL/A1BDDAe2zBQYqMDjO7DLd58vfjDu1ClHJjnEfO5W1vv/22Zs6cqerq6jr7goOD9bvf/U4/+9nPWvUcXAEDAAAAAEk///nPlZCQoKVLl+rzzz/X0aNHFRYWpj59+mjkyJHq3r17q5+DAAbA47Zs2sxVMAAA4JPi4uL01FNPee38DOEAAACSuCEzABiBK2AAvIKrYOd7C+kDAwDANyQlJbl1XFBQkNatW9fi5+EKGCCGJQAAAAQ6p9NZ77+qqioVFxeruLhYZ8+eVU1NTauehytgALyGq2AAAMBXNDYmf//+/ZozZ45OnTqlhQsXtup5uAIGAABc6AMDgLquuOIKPf/88yorK9Pzzz/fqnMRwADAi7jHHAAA/qFt27a68cYbtXr16ladhwAGwKs8eYNnAAAAM4WEhOirr75q1TkIYMD/YRAHAAAAGlJZWan8/HzZ7fZWnYchHAC8jmEcAADA6hrq7aqurlZpaanWr1+vY8eO6fHHH2/V8xDAAMDLuB8YfE1+YZmSe8aaXQYAGKqp4RphYWF6+OGHNW7cuFY9DwEMgCTpmr4J9GsBAICAtXjx4nq322w2hYeHq3v37goJaX18IoABMATLEAEAgJX17dvXkOdhCAcAAAAAGIQABlyAPh3vCuQljtwPDL6GGzIDgHewBBEAAABAwHnyySdb9LigoCD97ne/a/HzEsAAAAAABJwVK1a06HEEMAA+hWEcAADACtavX2/K8xLAAMAg3A8Mvob7gQHwZ126mPP/ZIZwAN/DL8gAAADwFq6AATAcyxABAIBVlZeX6x//+IfKysp05syZOvuDgoL0yCOPtPj8BDAAAAAAkDR//nz9+c9/VnV1tWub0+lUUFBQra9bE8BYggjAFIF6TzDuBwZfw/3AAASKd999Vy+88IISEhI0f/58OZ1ODR06VM8884zuuusu2Ww2DR48WK+//nqrnocrYAAAAAAC3ptvvqlOnTrplVdeUUjI+ZjUpUsXDR48WIMHD1ZycrIefPBBDR48uFXPwxUwoB6BOoiDviwAAOCrtm7dqhEjRmjEiBF69tlnm/343bt3q3///q7wJUk1NTWur/v166ebb75ZCxcubFWdpgawzMxMJSYmyuFwaPfu3fUeU11drVmzZmnAgAFKTk7W8uXL3doHwPoCdRkiAADwvPj4eL311lt666239J///EfHjx9v1uPPnTunyMhI1/ft2rXTsWPHah1z5ZVXaufOna2q09QAlpSUpCVLljQ6gz8nJ0cHDhxQXl6eli1bpqysLB08eLDJfQBgVfSBAQDgeaGhoZLOX6SJiYlRu3btmvX46OholZeXu7632+3atWtXrWPKy8trXSFriWYFsPfee0+jR49WWVn9DbllZWW65557lJeX59b5EhISZLfbGz1mzZo1rqa3qKgoDRgwQO+//36T+wAAgGcwiAOA0RpaKbdv3z6lpaVp4MCBSktLU1FRUa3H5eTk6I477lB4eHizg1LPnj21Z88e1/c33HCDPvvsM61cuVInT57Uhx9+qLVr1yo+Pr5Vr61ZAeztt9/WsWPHFBsbW+/+2NhYHTt2zKNLAUtKStS5c2fX93a7XaWlpU3uA+AbWIYIAEBgKCkp0cGDB2v9q6qqqvfYhlbKzZgxQ+np6Vq7dq3S09M1ffr0WvtTUlL03nvvqby8vM7Vq6bccsst2rNnj7788ktJ0gMPPKCwsDA9+eSTuu666/Twww/L6XRq8uTJzTrv9zUrFu7atUu33npro8f06tVLH3zwQauKAqzg8d5dWCoGAAAC0is7S1VS9Y1HzmUPb6uUG+M0cuRIFRfX/t1qwoQJmjhxYp3HJCTUHQxWUVGhwsJCLVq0SJI0ZMgQzZ49W5WVlYqKitKZM2fUpk0b2Ww2dejQQW3btm1WncOGDdOwYcO+q9tu19tvv61FixbpwIED6tKli9LT0+VwOJp13u9rVgD7+uuvFRUV1egxEREROnLkSKuKupDdbtehQ4fUu3dvSbWvejW2DwCsbN7W4oCdtgkACExLliypdYNjSQoPD3f78SUlJYqNjVVwcLAkKTg4WDExMSopKVFUVJTWr1+vpUuXqqamRgkJCYqLi2t1zV27dq1zla21mhXAIiMjtX///kaP2b9/f7PeyKYMGjRIy5cv12233aajR49q3bp1WrJkSZP7APiOLZs2MwIfsLj8wjIl96y/BQEA3NHU7IfWuv3223X77be3+PFVVVUezTENaVYP2LXXXquCggLt3bu33v179+7V+vXrdd1117l1vjlz5qh///4qLS3Vfffd57qp2bhx47Rt2zZJUmpqqi677DLddttt+sUvfqFHHnlEXbt2bXIfAAAAAP9ht9tVVlbmuopWXV2t8vJyjwW7m2++WZMnT9bf//73Wvf/8rRmXQEbM2aM8vPzlZ6erkceeUT9+vVTbGysysrKtGHDBr3wwguqqanR/fff79b5pk2bpmnTptXZ/vLLL7u+Dg4O1qxZs+p9fGP7AAAAAPiPjh07Kj4+Xrm5uUpNTVVubq7i4+ObbJFyV5cuXfT+++9r7dq16tixo1JSUjR06NBW93x9X5DT6XQ25wF//etf9fTTT9dZvymdD0QzZszQXXfd5bECjZDzSZFOnD5ndhmwqEAcxGHWZMJAXIZIHxh8CUsQgZazBQcpMjrM7DLclvrqpx4dwrFqzA1KTEx0DeFoaPjGt+bMmaO8vDwdPnxYkZGRioiI0OrVq7V3715lZGS4lgtmZmaqe/fuHqlTkrZu3aoVK1ZozZo1+vrrrxUUFKT4+HgNHTpUQ4YM8UjYa3YAk84vNVy6dKk+//xzHTt2TBdffLH69OmjX/7yl+rRo0erizIaAQyNIYAZhwAGWB8hDGgZAtgNHjmXUc6ePauCggKtWLFCGzdu1Llz5xQSEqL+/ftr2LBhGjBgQIvP3aLbOPfo0UO/+c1vWvykAAAAAGBVoaGhGjhwoAYOHKjKykq9++67evfdd1VQUKAPP/xQhYWFLT53s4ZwAIA3cVNmAABgNZGRkbryyivVvXt3hYSEqAULCGtp0RUwIJBwQ2Z4E/cDAwDAmvbu3auVK1fq3XffVXl5uZxOp6644goNHTq0VeclgAEAAADwuuYM4TDL119/rdzcXK1cuVJffPGFnE6nwsLC9POf/1x33nmnrr322lY/BwEMgKVwU2bA2rghM4CWKigoMLuERk2cOFF///vfdfbsWQUFBenGG2/UnXfeqeTkZLVt29Zjz0MAAwAAABDw8vPz1a1bN915551KTU1VbKx3/thEAANQxzV9ExiIYSD6wAAAMN+yZcv0ox/9yOvPwxREwA38cmwswh8AADCaEeFLIoABAIBmyi8sM7sEAPBZBDAAAAAAMAgBDIAlBdoyRO41BwDwd4mJiXI4HHI4HMrKyjK7HNMwhAMAAACA11l9DL1RuAIGuIlBHADwHfrAAKBlCGAALCvQliECAAD/RwADUK9r+iaYXULAoQ8MAAD/RwADAAAAEFCqqqr04Ycf6t///recTmetfSdPntTzzz/vtecmgAGwNJYhAtZFHxgAX7Rnzx7dcccdGj9+vNLT0zV8+HAVF3+3CuXkyZPKzs722vMTwIBmYBAHAABAy1hlDP0zzzyjPn36aPPmzdqwYYO6du2qX/7ylyoqKjLk+RlDDwAWMm9rMUEfAOCXrDKG/vPPP9fixYvVvn17tW/fXs8995x+//vf6+6779bixYt18cUXe/X5uQIGwPJYhggAADzlzJkzCgoKqrXtySef1O233667775be/fu9erzcwUMAAAAQMDo1q2bvvjiC/3gBz+otf2pp55STU2Nxo8f79Xn5woYgAYxih5AUxjEAcDXJCcnKzc3t95906ZN089+9rM6kxE9iQAGNBP9OfA27gcGAID3PPjgg3rllVca3D9jxgzt3LnTa89PAAPgE+gDAwAA3nThKHpvIoABAAAACHjDhg3TunXrvP48BDAAANAq9IEB8BcTJ07U7373O507d85rz0EAA+AzAmkZIn1gAAB/Y5UbMTdkxYoV6t27txYvXqxf/vKXOnjwYJOPeeeddzRt2rRmPQ8BDGgBBnEAAAA0T0FBgXbt2qVdu3Zp4sSJZpdTR+fOnbVkyRLde++92rZtm+68807l5eU1+pgNGzYoJyenWc9DAAPQKEbRAwCAQBESEqKMjAxlZ2crKChIjz76qGbPnq2zZ89Kkk6cOKHNmzfr9ddf14QJE5SXl6cePXo07zm8UTgAeMuWTZsJhYAF5ReWKblnrNllAIBHJCUl6ZVXXtEDDzygpUuXauPGjZKkL7/8Uk6n03WfsKioKP3qV79q1rkJYABgUfO2FrPcFQAAg5w+fVpvvPGGNm/erMLCQn311VeuoLV//35JUmRkpIYOHaqePXuqZ8+e6tatm2y25i0qJIABAAAACHizZs3SypUr5XQ6ZbfblZiYqJ49e+qqq67SqVOnNHPmTB09elQnT57UwIED1aZNmxY9DwEMaKHHe3dhUh0AAICf+OCDD9S1a1ctXLhQXbt2rbO/T58+evzxx7Vs2TJt3bpVf/rTn3TFFVc0+3kYwgHA5wTSOHoAAGCMqqoqDRw4sN7wJUl2u11vvPGGxo4dq507d2rYsGFavXp1s5+HAAagSQy9MA9XWeFLuCEzAF+2adMmjR49utFjgoOD9atf/UovvfSSQkND9atf/UrTp09v1vMQwAAAAAAEvLCwMEVHR7t1bP/+/bVq1Spdd911Wr58ebOehwAGtAIT6szDMkQAAHxLYmKiHA6HHA6HsrKyzC6n1WJjY7V48WI9+OCDzXocQzgAAAAAeF1BQYHZJXiczWbT5MmTm/cY75QCAPAU+sDgS+gDA4DGEcAAAAAAwCAEMABuseIkRPrAAACAryGAAa3EIA4AAAC4iwAGAAAAAAYhgAHwaYGyDJFBHPAlDOIAgIaZPoZ+3759ysjI0NGjRxUREaHMzEzFxcXVOmbKlCnatWuX6/tdu3YpOztbSUlJysrK0tKlSxUTEyNJuvbaazVjxgwjXwIAAAAAuMX0ADZjxgylp6crNTVVq1at0vTp07V48eJax8ydO9f19c6dO3XPPfeoX79+rm1Dhw7V1KlTDasZAAAAAFrC1CWIFRUVKiws1JAhQyRJQ4YMUWFhoSorKxt8zNtvv62UlBS1adPGqDKBJgXKIA4rTkIEAADwJaYGsJKSEsXGxio4OFiSFBwcrJiYGJWUlNR7/JkzZ5STk6Phw4fX2r569WqlpKRozJgx2rJli9frBmAt9IEB1kMfGADUz/QliM2xbt06de7cWfHx8a5tI0aM0EMPPaTQ0FB9/PHHGj9+vNasWaPIyEgTKwUAAACAuky9Ama321VWVqbq6mpJUnV1tcrLy2W32+s9/p133qlz9Ss6OlqhoaGSpJtuukl2u1179uzxbuEAAAAA0AKmBrCOHTsqPj5eubm5kqTc3FzFx8crKiqqzrGlpaX67LPPlJKSUmt7Wdl3Sxx27Nih4uJidevWzbuFA7CcQFmGCACAr0pMTJTD4ZDD4VBWVpbZ5ZjG9CWIM2fOVEZGhl544QWFh4crMzNTkjRu3DhNmjRJvXr1kiStWLFCt956qy655JJaj583b562b98um82m0NBQzZ07V9HR0Ya/DuDx3l3o0YHXzdtaHDBDX+D78gvLlNwz1uwyAFhEQUGB2SVYQpDT6XSaXYTZcj4p0onT58wuA34gUAKYVa82BcqURgIYfAkBDDjPFhykyOgws8twW+qrn6qk6huPnMse3larxtzgkXP5A1OXIAIAAABAICGAAfAbVr0yBwAA8C0CGOBBLA2DEQJlqSsAAP6IAAYAALyGGzIDQG0EMADNFijDLgAAADyNAAbAr9AHBgAArIwABgA+iD4wAAB8EwEM8DAGcQBAbfSBAcB3CGAA/A7LEAEAgFURwAAAAADAIAQwAC3CJEQAAIDmI4ABgI9iEAd8CX1gAHAeAQzwAgZxmI8+MAAAYEUEMAAAAAAwCAEMAAAAAAxCAAPQYgziMB99YAAA+BYCGOAl9IGZjz4wwFoYxAEEtsTERDkcDjkcDmVlZZldjmlCzC4AAAAAgP8rKCgwuwRL4AoYAAAAABiEAAYAPo4+MAAAfAcBDECrWH0QB31ggLXQBwYg0BHAAC9iEAcAAAAuRAADAAAAAIMQwAAAAADAIAQwAH4vEPrAGMQBX0IfGIBARgADvCwQ+sCsPogDAADAKghgAAAAAGAQAhgAAAAAGIQABiAg0AcGAACsgAAGAAAMxyAOAIGKAAYYgEEcAAAAkAhgAAAAAGAYAhiAgEEfGAAAMBsBDAAAmII+MACBiAAGGCQQ+sAAAADQOAIYAI9hEAcAAEDjCGAAAgp9YAAAwEwEMAAAAAAwCAEMAACYhkEcAAINAQwwEIM4AAAAAhsBDIBH+cIgjkDoAwMAANZEAAMAP8QgDgAArIkABgAATEUfGIBAQgADAAAAAIMQwACDMYjDGugDAwDAv2zevFm/+MUvNGLECL366qtml9Mg0wPYvn37lJaWpoEDByotLU1FRUV1jsnKytJPfvITpaamKjU1VbNmzXLtO3XqlCZPnqzk5GQNGjRIH3zwgYHVA6iPLwziCAT0gQEAAknXrl31xhtv6K233tIHH3ygU6dOmV1SvULMLmDGjBlKT09XamqqVq1apenTp2vx4sV1jhs6dKimTp1aZ/vChQsVFham/Px8FRUVaeTIkcrLy1OHDh2MKB8AAACABcTGxrq+Dg4Ols1m+rWmeplaVUVFhQoLCzVkyBBJ0pAhQ1RYWKjKykq3z/Hee+8pLS1NkhQXF6err75aGzZs8Eq9AADAOxjEAeBCmZmZSkxMlMPh0O7du13b3Vk99/HHH+vyyy9X27ZtDazYfaYGsJKSEsXGxio4OFjS+aQaExOjkpKSOseuXr1aKSkpGjNmjLZs2eLafujQIXXp8l1Pjd1uV2lpqfeLB1qBPjBroA8MAADjlJSU6ODBg7X+VVVV1XtsUlKSlixZUuv3fOm71XNr165Venq6pk+fXmt/aWmpXnrppXpXzlmF6UsQ3TFixAg99NBDCg0N1ccff6zx48drzZo1ioyMNLs0AA24pm8CAQcAAB+1/T/btP9w/eGouSovDZd0g0aOHKni4tr9yRMmTNDEiRPrPCYhoW4/+ber5xYtWiTp/Oq52bNnq7KyUlFRUTpz5owyMjI0c+ZMS7cjmRrA7Ha7ysrKVF1dreDgYFVXV6u8vFx2u73WcdHR0a6vb7rpJtntdu3Zs0d9+/ZV586dVVxcrKioKEnnk/X1119v6OsAAKuat7WYK64AAEtYsmSJqqura20LDw93+/GNrZ6LiopSTk6O/vvf/2rGjBmSpD/+8Y+1+sKswtQA1rFjR8XHxys3N1epqanKzc1VfHy8K0x9q6yszPXm7dixQ8XFxerWrZskadCgQVq2bJl69eqloqIibdu2Tc8884zhrwUAALROfmGZknta75clAJ7x/YssnjZ8+HANHz7cq8/hCaYvQZw5c6YyMjL0wgsvKDw8XJmZmZKkcePGadKkSerVq5fmzZun7du3y2azKTQ0VHPnznVdFbv//vuVkZGh5ORk2Ww2Pf300woLCzPzJQEAAADwMHdXz1md6QGsR48eWr58eZ3tL7/8suvrb0NZfdq3b6/58+d7pTbAmx7v3YX7NFnAlk2buW8ZAAA+wN3Vc1ZnzeH4APwCwcYaCPoAACv4dqy8w+FQVlZWo8fOmTNH/fv3V2lpqe677z4NHjxY0vnVc2+88YYGDhyoN954Q7NmzTKidI8y/QoYAADAt+gDA/xXQUGB28dOmzZN06ZNq7O9odVzvoQrYAAAAABgEAIYYCLGg1sD9ysDAABGIYAB8CpP94Elnf1Kb538TAUnPtFbJz9T0tmvPHp+f0UfGAAA1kAAA+Azks5+pSfO7FUn5zeySerk/EZPnNlLCAMAwAc0ZwiHP2MIBwCfMe7sAbVTTa1t7VSjcWcPaH1otElVAfA0BnEA/qk5Qzj8GVfAAJPRB+a+GOc3zdreHPSBAQAAIxDAAPiM8qC2zdoOAABgNQQwAF7nqUEcL4dertPf+9g6LZteDr3cI+f3dwziAADAfAQwAD5jfWi0/rdND5UGtVWNpNKgtvrfNj3o/wL8UH5hmdklAIBXMIQDgE9ZHxpN4AIAwAclJiaquPj8aowJEyZo4sSJJldkDgIYYAGP9+7C8jAL2LJps8fvWwYAAM5jCuJ5LEEEYAiCjTUQ9AEAMBcBDAAAAAAMQgADAACWxCAOAP6IAAZYBDdktgZuyAwAALyJAAYAAAAABiGAATAMgzisgUEcAACYhwAGAAAsiz4wwH8kJibK4XDI4XAoKyvL7HJMw33AAAAAAHgd9wE7jytggIUwiMMaGMQBAAC8hQAGwFD0gVkDfWAAAJiDAAYAAAAABiGAAQAAS2MQBwB/QgADLIY+MAAAAP9FAANgOF/oA2MQBwAA8AYCGAAEKAZxAACMxH3AzuM+YAAAwPLyC8uU3DPW7DIAtAL3ATuPK2CABdEHBgAA4J8IYABMQR8YAAAIRAQwAAhg9IEBAGAsAhgAAPAJ3A8MgD8ggAEAAACAQQhggEUFwiAOX+gDAwAA8CQCGAA0gkEcAADAkwhgABDgGMQBAIBxCGAAAMBnMIgDgK8jgAEWRh8YAADwF4mJiXI4HHI4HMrKyjK7HNOEmF0AAAAAAP9XUFBgdgmWwBUwAGhCIAzioA8MAABjEMAAAIBPoQ8MgC8jgAEWRx8YAACA/yCAAQAAAIBBCGAAAAAAYBDTA9i+ffuUlpamgQMHKi0tTUVFRXWOyc7O1uDBg5WSkqJhw4bpo48+cu3LyMhQ//79lZqaqtTUVC1YsMDA6gEECgZxAAAATzB9DP2MGTOUnp6u1NRUrVq1StOnT9fixYtrHdO7d2+NGTNGF110kXbu3KlRo0Zp48aNateunSTpgQce0KhRo8woH4CHXNM3ISBCDgDPyC8sU3LPWLPLAIBmM/UKWEVFhQoLCzVkyBBJ0pAhQ1RYWKjKyspax/Xr108XXXSRJMnhcMjpdOro0aNGlwuYJhAGcQAAAAQCUwNYSUmJYmNjFRwcLEkKDg5WTEyMSkpKGnzMypUrdfnll6tTp06ubYsWLVJKSorGjx+vvXv3er1uAAAAAGgJ03vAmmPTpk167rnn9Mwzz7i2PfbYY8rPz1dOTo5uu+02jR07VtXV1SZWCQC+iz4wAAC8y9QAZrfbVVZW5gpM1dXVKi8vl91ur3Psli1b9MQTTyg7O1vdu3d3bY+NjZXNdv5lDB06VCdPnlRpaakxLwCAR1n9fmD0qAHWwg2ZAfgiUwNYx44dFR8fr9zcXElSbm6u4uPjFRUVVeu4rVu36rHHHtP8+fN11VVX1dpXVvbdh+9HH30km82m2FiacuF/6AMDAAC+LDExUQ6HQw6HQ1lZWWaXYxrTpyDOnDlTGRkZeuGFFxQeHq7MzExJ0rhx4zRp0iT16tVLs2bN0unTpzV9+nTX4+bOnSuHw6GpU6eqoqJCQUFBCgsL04IFCxQSYvrLAgAAAHCBgoICs0uwBNOTSo8ePbR8+fI6219++WXX1++8806Dj3/ttde8URYAAAAAeJxPDeEA4P+s3gcWCBjEAQCA9xDAAB9CH5j5GMQBWAuDOAD4GgIYAAAAABiEAAYAAAAABiGAAbAc+sAAAIC/IoBJuvnKS80uAXAbfWAwAoM44EvoAwPgSwhgAAAAAGAQAhgANBOTEAEAQEsRwABYEn1gAADAHxHA/k9yz1izSwAAS6EPDAAAzyOAAT6IQRwAUBuDOAD4CgIYAMtiGSIAAPA3BDAAaAEGcQAAgJYggAEAAACAQQhgF2AQB3wJfWAwAoM44EvoAwPgCwhgACyNPjAAAOBPCGAAAAAAYBACGAAAAACvS0xMlMPhkMPhUFZWltnlmCbE7AKsJrlnLGvI4TMe792FHh0Tbdm0mSWSAAC4qaCgwOwSLIErYAAsj5BjLkI+fAl/RAVgdQQwAAAAADAIAQwAAAAADEIAqwf3A4MvCZT7gbEMEQAA+AMCGACgSfSBwZfQBwbAyghgANAKWzZtNrsEAADgQwhgAAAAAGAQAhgAn0EfGAAA8HUEsAYwiAO+JFAGcQAAAPg6AhgAwC0M4oAvYRAHAKsigAHwKVZchsggDgAA4C4CGAAAAAAYhADWCPrA4EvoAwMAALA+AhgAAAAAGIQABsDnWLEPLFAwiAO+hEEcAKyIAAYAAAAABiGANYE+MPgS+sAAAACsjQAGwCdZbRkio+gBAIA7CGAAAMBv0QcGwGoIYACAZmEQBwAALUcAA/wMfWAAAADWRQBzA4M4AGuyWh8YAABAUwhgAAAAAGAQAhgAeAiTEAFrYhAHACshgAF+KJD6wFiGaA4GcQAA0DIEMDfRBwYAAACgtQhgAAAAAHze0aNHNWzYMF1zzTVml9Io0wPYvn37lJaWpoEDByotLU1FRUV1jqmurtasWbM0YMAAJScna/ny5W7tAxAYWIYIoCn0gQH+r0OHDnr11Vf1ox/9yOxSGmV6AJsxY4bS09O1du1apaena/r06XWOycnJ0YEDB5SXl6dly5YpKytLBw8ebHIfEMgCqQ8M5qAPDABgJaGhoYqIiDC7jCaFmPnkFRUVKiws1KJFiyRJQ4YM0ezZs1VZWamoqCjXcWvWrNFdd90lm82mqKgoDRgwQO+//77Gjh3b6D532WxBbh03sFcnbdxzuHkvEjCRPbyt2SUYpvLScLNLkBRY77kkdWhn6v9GgGaxBbv3/3vAG9z9fdMqLut4scfPVVJSourq6lr7wsPDFR5e9//hmZmZWrt2rYqLi5WTk6Mf/vCHks6vnsvIyNDRo0cVERGhzMxMxcXFeaxWI5j6f86SkhLFxsYqODhYkhQcHKyYmBiVlJTUCmAlJSXq3Lmz63u73a7S0tIm97nrko4d3D42JTqsWecGzJRyY5zZJRjoBrMLAADAb3w4Y4RHz3f69Gmlpqbq66+/rrV9woQJmjhxYp3jk5KSNHr0aI0cObLW9m9Xz6WmpmrVqlWaPn26Fi9e7NFavY0/XQIAAADwqjNnzuhvf/tbne31Xf2SpISEuv3d7q6eszpTe8DsdrvKyspclyKrq6tVXl4uu91e57hDhw65vi8pKVGnTp2a3AcAAADAfOHh4brsssvq/GsogNWnsdVz37r33nu1Y8cO3Xvvvdq9e7fHX4cnmBrAOnbsqPj4eOXm5kqScnNzFR8fXyfBDho0SMuXL1dNTY0qKyu1bt06DRw4sMl9AAAAAALHa6+9pn/+85967bXXXH1jVmP6EsSZM2cqIyNDL7zwgsLDw5WZmSlJGjdunCZNmqRevXopNTVVn3/+uW677TZJ0iOPPKKuXbtKUqP7AAAAAPiHC1fPBQcHN7h6zuqCnE6n0+wiAAAAAOD7EhMT9eKLL7quZt199936+c9/7hrC8fbbb+svf/mLyVU2DwEMAAAAgKXMmTNHeXl5Onz4sCIjIxUREaHVq1dr7969ysjIUFVVlWv1XPfu3c0ut1kIYAAAAABgEFOHcAAAAABAICGAAQAAAIBBTJ+C6C379u1TRkaGjh49qoiICGVmZiouLq7WMdXV1ZozZ44++ugjBQUF6YEHHtBdd93V5L5A4857mZ2drTVr1shmsyk0NFSPPfaY+vXrJ0nKyMjQJ598osjISEnnbx3w8MMPG/0yLMOd9zMrK0tLly5VTEyMJOnaa6/VjBkzJEmnTp3Sk08+qe3btys4OFhTp07VrbfeavTLsAx33s8pU6Zo165dru937dql7OxsJSUlNfpeB5rMzEytXbtWxcXFysnJqXd8L5+b7nPn/eSz0z3uvJd8brrPnfeTz033HDlyRFOmTNGBAwfUpk0bXXHFFXr66afr3FKpsZ9Bfj4DkNNP3X333c6VK1c6nU6nc+XKlc677767zjErVqxwjhkzxlldXe2sqKhw9uvXz/nll182uS/QuPNebtiwwXny5Emn0+l07tixw3ndddc5T5065XQ6nc6pU6c6//KXvxhXsMW5837Onz/f+Yc//KHex2dlZTl//etfO51Op3Pfvn3OG2+80Xn8+HHvFWxx7ryfF9qxY4ezb9++zm+++cbpdDb+Xgeaf/3rX85Dhw45b731VueuXbvqPYbPTfe5837y2eked95LPjfd5877eSE+Nxt25MgR56effur6/g9/+IPzySefrHNcYz+D/HwGHr9cglhRUaHCwkINGTJEkjRkyBAVFhaqsrKy1nFr1qzRXXfdJZvNpqioKA0YMEDvv/9+k/sCibvvZb9+/XTRRRdJkhwOh5xOp44ePWp0uZbn7vvZmPfee09paWmSpLi4OF199dXasGGDV+q1upa8n2+//bZSUlLUpk0bo8r0GQkJCU3eS4XPTfe5837y2eked97LxvC5WVtz308+NxsWERGh66+/3vV9nz59dOjQoTrHNfYzyM9n4PHLAFZSUqLY2FgFBwdLkoKDgxUTE6OSkpI6x3Xu3Nn1vd1uV2lpaZP7Aom77+WFVq5cqcsvv1ydOnVybVu0aJFSUlI0fvx47d271+t1W1Vz3s/Vq1crJSVFY8aM0ZYtW1zbDx06pC5duri+D9SfTan5P59nzpxRTk6Ohg8fXmt7Q+816uJz03v47Gw9Pjc9j89N99XU1OjNN99UYmJinX2N/Qzy8xl4/LYHDObYtGmTnnvuOb366quubY899piio6Nls9m0cuVKjR07VuvWrXP90oy6RowYoYceekihoaH6+OOPNX78eK1Zs8bVC4KWWbdunTp37qz4+HjXNt5rWAGfna3Hf8veweem+2bPnq327dtr1KhRZpcCi/PLK2B2u11lZWWqrq6WdL4xvLy8vM7ldrvdXusycUlJiesvj43tCyTuvpeStGXLFj3xxBPKzs6udUO82NhY2Wznf9SGDh2qkydPBuxfdtx9P6OjoxUaGipJuummm2S327Vnzx5JUufOnVVcXOw6NlB/NqXm/XxK0jvvvFPnr7iNvdeoi89Nz+Oz0zP43PQOPjfdk5mZqf379+tPf/qT67/bCzX2M8jPZ+DxywDWsWNHxcfHKzc3V5KUm5ur+Pj4OhNpBg0apOXLl6umpkaVlZVat26dBg4c2OS+QOLue7l161Y99thjmj9/vq666qpa+8rKylxff/TRR7LZbIqNjfV+8Rbk7vt54Xu2Y8cOFRcXq1u3bpLO/2wuW7ZMklRUVKRt27a5pqYFGnffT0kqLS3VZ599ppSUlFrbG3uvURefm57FZ6fn8LnpeXxuumfevHn64osvlJ2d3WCfXGM/g/x8Bp4gp9PpNLsIb9i7d68yMjJUVVWl8PBwZWZmqnv37ho3bpwmTZqkXr16qbq6Wk8//bQ+/vhjSdK4ceNcTZCN7Qs07ryXw4cPV3Fxca1fDubOnSuHw6F7771XFRUVCgoKUlhYmKZMmaI+ffqY94JM5s77OXXqVG3fvt01mnrSpEn66U9/Kkk6efKkMjIytGPHDtlsNj3xxBMaMGCAya/KPO68n5K0YMEC7d69W88++2ytxzf2XgeaOXPmKC8vT4cPH1ZkZKQiIiK0evVqPjdbyJ33k89O97jzXvK56T533k+Jz0137NmzR0OGDFFcXJzatWsnSbrsssuUnZ2t1NRU/fnPf1ZsbGyjP4P8fAYevw1gAAAAAGA1frkEEQAAAACsiAAGAAAAAAYhgAEAAACAQQhgAAAAAGAQAhgAAAAAGIQABgAAAAAGIYABAAAAgEEIYAAAAABgEAIYAAAAABiEAAYAqOPgwYNyOBzKyMjQgQMHNGnSJF1//fW65pprNGbMGO3evVuSVFlZqd/85je6+eab1atXLw0fPlyffvqpydUDAGBdQU6n02l2EQAAazl48KCSkpLUt29f7d69Wz169FDv3r1VXFys/Px8XXLJJVq2bJnGjh2rsLAw/fjHP9bXX3+tNWvWKCgoSGvXrlXnzp3NfhkAAFgOAQwAUMe3AUySJk+erIcffti1Lzs7W/Pnz9cll1yiQYMGaebMmbLZzi+oWLlypaZOnap77rlHTz31lCm1AwBgZSxBBAA0qEuXLnrggQdqbbvzzjslSWfOnNGUKVNc4UuSUlJSFBISoh07dhhaJwAAvoIABgBoUHx8vIKDg2tti4mJkSTFxcUpLCys1r7g4GB17NhRZWVlhtUIAIAvIYABABp08cUX19kWEhLS4L5v9587d86rdQEA4KsIYAAAAABgEAIYAAAAABiEAAYAAAAABiGAAQAAAIBBCGAAAAAAYBBuxAwAAAAABuEKGAAAAAAYhAAGAAAAAAYhgAEAAACAQQhgAAAAAGAQAhgAAAAAGIQABgAAAAAGIYABAAAAgEEIYAAAAABgEAIYAAAAABiEAAYAAAAABvn/AQZ6Sr9rfF9DAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 1080x576 with 2 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Make grid for contour plot\n", | |
"# Use np.meshgrid() here\n", | |
"xgrid, ygrid = np.meshgrid(m, c)\n", | |
"\n", | |
"# Plot \"3D\" chi^2 as contour as function of paramter space\n", | |
"# Don't forget to transpose x and y grids\n", | |
"fig, ax = plt.subplots(figsize=(15, 8))\n", | |
"cs = ax.contourf(xgrid.T, ygrid.T, chi, locator=ticker.LogLocator(), cmap=cm.PuBu_r)\n", | |
"cbar = fig.colorbar(cs)\n", | |
"\n", | |
"# Plot minimum of chi^2\n", | |
"plt.scatter(m_minimum, c_minimum, label = \"m={:.2f} c={:.2f}\".format(m_minimum, c_minimum), color = 'r')\n", | |
"\n", | |
"# Make plot nicer\n", | |
"cbar.ax.set_ylabel('$\\chi^2$ value', fontsize=20)\n", | |
"ax.set_xlabel('m', fontsize=20)\n", | |
"ax.set_ylabel('c', fontsize=20)\n", | |
"ax.legend(fontsize=15)\n", | |
"\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## c) Minimierung des $\\chi^2$ Modells im Parameterbereich\n", | |
"Sie haben in der vorherigen Teilaufgabe das Minimum des berechneten $\\chi^2$ 2D Arrays bestimmt. Das Minimum ist jedoch stark abhängig von der Anzahl an betrachteten Parametern und deren numerischer Auslegung. Können Sie sich sicher sein, dass die berechneten Werte auch dem tatsächlichen Minimum entsprechen? Oder gibt es Parameterwerte, die einen noch kleineren $\\chi^2$ Wert annehmen?\n", | |
"\n", | |
"Im Folgenden versuchen Sie die Frage zu beantworten, indem Sie selbst ein Optimierungsverfahren implementieren. Schreiben Sie eine Funktion, die das Simulierte Abkühlen durchführt, um ein Minimum der $\\chi^2$ Funktion zu finden. Folgen Sie dabei den Schritten der Vorlesung:\n", | |
"1. Legen Sie eine Anfangs- und eine Endtemperatur fest. Bestimmen Sie außerdem einen Abkühlungswert.\n", | |
"2. Definieren Sie sich die aktuelle Temperatur als Anfangstemperatur\n", | |
"3. Initialisieren Sie den Anfangszustand durch Startparameter. Es bietet sich beispielsweise an, zwei Werte für $m$ bzw $c$ der Minimierungsfunktion zu übergeben.\n", | |
"4. Initalisieren Sie den Speicherzustand, der am Ende die Parameter aller Schritte beinhalten soll.\n", | |
"5. Bestimmen Sie die zufälligen Schritte. (Hier bieten sich bspw. zwei normalverteilte Zahlen mit dem Mittelwert 0 und der Standardabweichung 0.2 an.)\n", | |
"6. Generieren Sie den nächsten Zustand aus dem letzten Speicherzustand und den zufälligen Schritten.\n", | |
"7. Überprüfen Sie die $\\chi^2$ Werte des letzten Speicherzustandes und des nächsten Zustandes aus Schritt 6.<br>\n", | |
" 7.1. Ist der $\\chi^2$ Wert des letzten Zustandes größer als der des nächsten Zustandes, übernehmen Sie den nächsten Zustand in den Speicherzustand.<br>\n", | |
" 7.2. Ist der $\\chi^2$ Wert des letzten Zustandes kleiner als der des nächsten Zustandes, übernehmen Sie den nächsten Zustand in den Speicherzustand mit der Wahrscheinlichkeit $\\exp(\\text{Differenz}/\\text{Aktuelle Temperatur})$ (Schauen Sie nocheinmal in die vierte Vorlesung Folie 41, um die Differenz richtig zu bilden)\n", | |
"8. Reduzieren Sie die Temperatur\n", | |
"9. Wiederholen Sie die Schritte 5.-8. bis die Endtemperatur gefunden ist.\n", | |
"10. Geben Sie alle Speicherzustände aus." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Define minimazation function according to simulated annealing\n", | |
"def simulated_annealing(func, x_data, y_data, y_unc, m_start, c_start):\n", | |
" # Define temperatur setting\n", | |
" T = 100\n", | |
" Tdiff = 0.001\n", | |
"\n", | |
" # Initialize starting point with the starting points as current state\n", | |
" m = [m_start]\n", | |
" c = [c_start]\n", | |
" \n", | |
" while (T > 0):\n", | |
" # Compute normally distributed steps for each parameter\n", | |
" [step_m, step_c] = np.random.normal(0, 0.2, 2)\n", | |
"\n", | |
" # Compute costfunction difference\n", | |
" f0 = func(x_data, y_data, y_unc, m[-1], c[-1])\n", | |
" f1 = func(x_data, y_data, y_unc, m[-1] + step_m, c[-1] + step_c)\n", | |
"\n", | |
" if (f1 < f0 or random.random() < np.exp(-(f1 - f0) / T)):\n", | |
" m.append(m[-1] + step_m)\n", | |
" c.append(c[-1] + step_c)\n", | |
"\n", | |
" T = T - Tdiff\n", | |
" \n", | |
" return [m, c]\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Berechnen Sie mithilfe der Simulierten Abkühlung nun das Minimum. Testen Sie verschiedene Werte für alle einstellbaren Größen, wie der Anfangs- und Endtemperatur und der Temperaturschritt, um ein gutes Ergebnis zu erhalten.\n", | |
"\n", | |
"Damit Sie das Ergebnis und dessen Erzeugung überprüfen können, plotten Sie zwei Graphen:\n", | |
"* Der erste Graph beinhaltet die Messwerte und zwei Geraden. Die erste Gerade erzeugen Sie mithilfe derjenigen Parameter $m$ und $c$, die Sie aus Aufgabenteil b) erhalten. Die zweite Gerade erzeugen Sie mithilfe der Parameter, die Sie durch das Simulierte Abkühlen erhalten. Verwenden Sie die letzten Parameter aus dem Speicherzustand.\n", | |
"* Der zweite Graph ist erneut der Konturenplot aus Aufgabenteil b). Diesmal tragen Sie jedoch alle Werte des Optimierungsalgorithmus ein. Markieren Sie das letzte Parameterpaar besonders. Damit können Sie die Konvergenz des Optimierungsalgorithmuses überprüfen." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAANoCAYAAACYyCTCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd2DU9f3H8dftbDIh7BF22IQRCIQlqEVFnMW6ra2jaqu1rtZqHUWt2qqtsxat86eIdaAISFiRFWYgjLASSEISErLvcnff3x9INLIhyV1yz8c/ku99x/t79wXvle/n+3mbDMMwBAAAAAAIOGZfFwAAAAAA8A0CIQAAAAAEKAIhAAAAAAQoAiEAAAAABCgCIQAAAAAEKAIhAAAAAAQoAiEAAAAABCirrwtoCiUllfJ6abeIphMTE6bi4gpfl4EAxfUHX+MahC9x/cGX/PH6M5tNiooKPe7rAREIvV6DQIgmxzUHX+L6g69xDcKXuP7gS83t+mPIKAAAAAAEKAIhAAAAAAQoAiEAAAAABCgCIQAAAAAEqICYVOZEqqsrVVFRKo/H7etS0IIcOGCW1+v1dRmNwmKxKiwsUsHBx5+tCgAAAM1DQAfC6upKlZeXKDIyTjabXSaTydcloYWwWs1yu1teIDQMQ7W1LpWWFkoSoRAAAKCZC+ghoxUVpYqMjJPd7iAMAqfAZDLJbncoMjJOFRWlvi4HAAAAZymgA6HH45bNZvd1GUCzY7PZGWYNAADQAgR0IJTEnUHgDPD3BgAAoGUI+EAIAAAAAIGKQAgAAAAAAYpAiAZz6aUX6MUXnz/hOhkZq5WSkqSdO3c0TVE/8eWXnyklJUlVVVWntd0bb7yin/1sYiNVBQAAAPhGQLedQNPr1au3Xn75TbVv38Enx09OTtHLL7+poKCg09ruggumafTosY1UFQAAAOAbBMIA5XTWyOE4vVDUEEJDw9SvX/8mP+4RUVFRioqKOu3tWrduo9at2zRCRQAAAGjOyqpcWrxuv5ZuyNPPUrppTL/m9Z2RIaMtwMcff6Dp03+mSZNSdP/9d2v16pVKSUlSRsbqunVSUpL0/vv/1d///jdNnTpJ11xzpSRp+fKluuuuWzV16jmaPDlVN998nVau/K7e/o8Ml9ywYZ1uuOEqTZgwStddN0Pr1687Zj0ffPCOLr74fJ177ng9/PD9Ki8vr3vtWENGPR6P3n77TV155XSNH5+siy8+X48//ucTnnNKSpI++OAdvfDCczr//In62c8m6t1335YkzZ37uS677CKde+44PfHEI3I6nXXb/XTIaF7efqWkJGnBgm/01FOPa8qUVF188fl6441X5PX+0Fj+p0NGj5zH6tUrdd99v9OkSSm68sqLtXLld/J4PHrhhef0s59N1LRp5+n99/9br/bbb79ZDz10b71lP31fjtQ1f/7XeuKJRzR58uG6vv76S0nSO+/M0kUXnaupUyfpn//8R71aAQAA0Ph25ZXp9c83656Xlmnh0o2aFLRBQ6IP+bqs08YdwmYuLe1bPffc07r44ss0ZkyqNmxYp7/+9S/HXPe9997WwIFD9NBDj8owDgeIvLx9Gj16rH7+86tlNpv03XfLdc89d+jFF1/VgAGD6ratqanRX/7yJ/3iF9cpJiZW77//X91zzx16//3ZiomJrVtv4cJv1L17D9177wM6cOCAXnzxOb3yyku65577jnsOTz/9hL766gvNmHGNBg8eorKyMi1atPCk5/7+++8oOXm0/vznx7V8+RL9859/V2npQW3Zsll33XWPCgry9cILz6pjx866+urrTrivf/3rH0pNnaDHHpup1atX6c03X1OXLt00ceI5J9zu6aef0EUXTdf06ZfrnXfe0kMP/UGTJ58rk0l6+OHHtXz5Ur344vPq33+QEhP7nfScjq7rBU2efJ4ef3ymPv/8f3r88T9r27atKijI0/33/0lbt27Ra6/9Sz179tKkSVNOe/8AAAA4dbVur1ZvPaAFa3K1c/8h9Q0q1N1td6lt9XaZag1FewfKefLd+BUC4U8s25inpRvyfHLslAFtNbp/29Pa5u2331Ry8mjdffcfJEnDh49UaWmp5sz56Kh1Y2Ji9eijT9ZbdsklV9T92ev1avDgJO3atVOff/5pvUDodDr1y1/eqsmTz5UkDRmSpEsumaoPP3xPt9zym7r1rFarnnjiGVmthy+t3bt3acGCeccNhHv27Nbnn3+qO++8R5dddmXd8okTJ5/03Dt06Kh7731QkpSUNFzffjtf//vfHH388WcKDQ2TJK1du0aLF3970kA4cOBg/eY3v5UkDRs2UitWpGvx4oUnDYRTppyvGTOukSTFxbXW1Vdfrr179+if/3xVbrdXSUnDtXDhN0pLW3hGgXDo0GH61a9ukyT17dtPixYt0LJli/XOOx/JYrFo5MhRWro0TYsXLyIQAgAANJKScqcWrd2ntHX75Kyq0oSoHP2y3VaF1BTK5AmTbeB5svUZr4huXVVYWH7yHfoRAmEz5na7tX37Vv32t/WHH6akjD1mIBw5cvRRyw4cKNCrr/5Tq1evVHFxkQzDkCT17z/wqHVTU8fV/TkkJETDho3Qli2Z9dYZMiSpLgxKUpcuXVVSclBut7ve8iOODGs9//ypJzjTYxs6dFjdn81ms9q2bS+HI6guDEqHQ+OmTRtOuq/hw0fW+7lLl64qKMg/hRqG1zuWdPg9+HFd7dq1V1FR4Un3dez9/3COoaFhioyM0qBBQ2SxWOqWt2/f8ZRqBQAAwKkzDEPbcw9pwZpcZWwrVKxKdWWbPeoTukVmj1PmsC6yj7xI1m7DZbLafV3uGSMQ/sTo/qd/l85XDh0qlcfjOWqSlMjIY0+aEh0dXe9nr9er++77naqqqnTTTb9S+/YdFRwcrNdff1klJSX11g0ODjlqEpqoqChlZ2+vtywsLLzezzabTYZhyOVyHTMQHjpUquDg4Hoh7lSFh9c/ltVqVXh42FHLXK6T37g/Vt0ul+sUavjheDab7bh1nUoNp1rXmdYKAACAk3PWerRic4EWrMlV7oEyDQnJ1/1tsxVXvUuqtcrabZjs/SbJHNdNJpPJ1+WeNQJhM9aqVaQsFstR4a20tOSY6//0gs3NzdG2bVv1zDP/0MiRo+qW/3gSliOqq6uOmpm0pKSk3vODZ6JVq0hVV1ersrLijEJhc2S3O1RbW1tv2Y8n3gEAAEDTKyyt1rdr92nJ+v2Ss0KTo/fqN/FZcrhKZTJHyzbsEtl6p8ocHOHrUhsUs4w2Y1arVT169NLSpWn1li9duviUtj8S/Oz2H25x5+fnaePG9cdcPy1tUd2fq6qqtGrVCvXpk3iaVdc3dOjh4ZVfffXFWe2nOWndurX27NlTb9mqVd8dZ20AAAA0FsMwlLnroP7x0Qbd93K6Nq9ZpxuiVujxmNkaZ3ynkNi2CjrndoX+/Gk5Bl/Q4sKgxB3CZu/qq6/Tgw/eq2efnamUlFRt3Lhe6elLJR1+fu1EOnfuotat2+jFF5/TTTfdoqqqSr3xxiuKi2t91LoOh0OvvfZPVVdXKTY2Tu+997bc7lpddtnPz6r+Tp266MILL9aLLz6vkpISDRw4WBUV5Vq0aIEeeeTJk++gGRo7drw+//xT/eMff1NycooyMlZrxYp0X5cFAAAQMKqdbi3flK+FGbk6UFyu5LBc/bndDkXW7JM8Dtl6j5Wt70RZotv7utRGRyBs5lJTJ+iuu+7RO++8pS+++J8GDx6q2267S3/6030KDQ094bZ2u12PP/6Unn12ph566A9q3bq1rrnmBq1du0Y7d2bXWzcoKEgPPfSInnvuae3Zs0udOnXR00//XbGxZzdkVJLuvvs+xce31Weffar//vc/ioqK1rBhI856v/5q1KgU/epXt+mTTz7SZ599qjFjUnXnnXfrvvvu9nVpAAAALVpecaUWZuzTso15CnKX6fzo3RraOktWd6VMjnjZh1wlW8/RMtlDfF1qkzEZR6aVbMGKiyvk9R59mvn5exQf39kHFTWu//zndb311puaO3fBURPBnIk33nhFs2d/qC++WNAA1QUGq9Ust7tlN4tvqX9/WoK4uPBmN+U1WhauQfgS1x9+yus1tCG7WAsycpW5q1i97AW6IHa3Ojh3yGQYsnYeJFviRFna95XJdHZP1Pnj9Wc2mxQTc/y5OrhD2MyVlJTov/99U4MHJykoKEjr16/VO++8palTL2yQMAgAAAA0RxXVtVq6IU8LM3JVdqhcqRF7dFXb7Qp1FkpGqOwDzpWt73iZw+N8XapPEQibOZvNpj17duurr75QRUWFYmJiddllV+qXv7zF16UBAAAATS7nQIUWrMnRd5kFivSW6MLY3eoXlyWLxylzeGfZR94oa8KIZt07sCExZJQhb2gEDBmFL/njcBUEFq5B+BLXX2Bye7xau71IC9bkanvOQQ0M2q/zo3eqTc1uyWyRtdtw2RMnytw6oVF7B/rj9ceQUQAAAAAtUlmlS2nr9mnRuv1yVhzSxFa7dWObbQqqLZXJEiVb0vTDvQNDWvm6VL9FIAQAAADQrOzcX6YFa3K0KuuA4lWkn8fuUg/HNpm9bllie8uWeJWsXYbIZLb4ulS/RyAEAAAA4Pdq3V6tyirQgjX7tDevRMNCcvRg62xFO/dJhkO2XmMOzxYa3cHXpTYrBEIAAAAAfutgWY0WrduntHX7Za4u1ZSoXbqt9VbZ3JUyBbWRfajvewemZ+Zrdlq2DpY5FR3h0PTUBCUnxvusntNBIAQAAADgVwzD0LacUi1Yk6uMbYVKsOTrxphd6hKcLZNhyNJuoOz9JjVI78CzlZ6Zr1lzs+T6fkLB4jKnZs3NkqRmEQoJhAAAAAD8grPWo+8y87VgzT4dKCzR6LA9erTNdoW7CiVzqGz9p8jed4LMEf7TO3B2WnZdGDzC5fZqdlp2swiEvo3TaHS3336zHnro3iY73pdffqaUlCRVVVWd1nbvvDNLGRmrG6yOZcuWKCUlSXl5+xtsn/7kp+9zXt5+paQkadmyJT6uDAAA4PQdKK3WBwu36+4Xl2nuvJWa4F2iv8bN1jT7crUKD1FQ6o0Ku+o5BY28wq/CoHT4juDpLPc33CFs4e6++z5Zrf7/Mb/77luaPv1yDRmS5OtSmqWYmFi9/PKb6ty5i69LAQAAOCVew9Dm3Qe1cM0+bdhxQIn2/fpN9E61c+2WTBZZuw6TPXFSo/cOPFsxEY5jhr+YCIcPqjl9/p8UcFa6du3m6xLQBOx2u/r16+/rMgAAAE6q2unWso15WpixT2UlB5UatktXttmu4NpSmWxRsg1oXr0Dp6cm1HuGUJLsVrOmpyb4sKpTRyBs5nbuzNaLLz6vLVsyVVvrUps28Zo+/XJdcsnlkg4PGY2MjNRjjz0lSXrjjVc0e/aHeuqpv+vZZ2dq166d6tWrt/74x0cVHBysp556XKtXr1Tr1m30u9/9QUOHDqs7VkpKkn7729/rkkuuqFt2ZH9ffLHguDX+618vKD19qfLy9issLFyDBg3R7bffpZiYWEnSpZdeoEOHDunNN1/Tm2++Jkn6xz9e1pAhSfJ6vXrnnbf0+edzdOBAgdq0aatrr71B5503tW7/hmHo3/9+VZ988pGcTqfGjh2nESNGnfS9Kyoq0quvvqS1azNUXFyk1q3baMKESbr++l/KZrNJOjwU87LLLtQjjzypNWtWasGCeQoJCdXUqRfp+ut/KbPZXO99eO65l/TMM39VdvYOderUSXfd9XsNHDi43nE/+2yOPvjgXe3bl6Po6BhNn36Zrrrq2rrXN23aoLffflNZWZtVWVmpDh06acaMqzV58nnHPZcjdc6c+ZxGjx5T976OGzdRcXFxev/9d1RdXa0RI0bqnnseUHh4eN22O3Zs1zPPPKlt27LUrl0H3XbbHXr99VfUrVuCHnzwzyd9HwEAAE5FXnGlFqzJ1bJN+YrzHNCFUTvVJ2b7970De33fO3CwTObmFVGOPCfILKONJDc3V7fddlvdz+Xl5aqoqNDKlSt9WJX/+MMffqcuXbroT396VDabXXv37lFlZeUJt6mpqdFTTz2uq666RkFBwXr++af1l7/8SXa7XSNGjNLFF1+md955S3/8432aPfsLBQUFnVWNJSUHdfXV1ys2Nk6lpSV6//13dOedt+ittz6Q2WzWE088rTvu+LXGjZuoqVOnSZK6du0qSXruuaf11Vef67rrblLPnr21atUKPfnko4qIaFUXfP7v/97Xf/7zuq6++noNHDhYaWkL9a9//eOkdR06VKqIiFb6zW9+q/DwcOXk7NW///2qSktLdO+9D9Zb91//+odSUyfoscdmavXqVXrzzdfUpUs3TZx4Tr339fHH/6zLL5+huLg4vf76K3rwwd/ro48+r3sP3333Lb3yykuaMeMaDRkyVFlZWXr99ZcVFBRUF7Tz8/PUv/9ATZt2iex2hzZuXK8nnnhEJpNJ55xz7mm99wsXfqPu3Xvo3nsf0IEDB/Tii8/plVde0j333FdX8913367o6Bg9/PDjcrmc+sc/nlV5ebm6dWsev9UCAAD+y+s1tD67SAvX5Cprd5GGBO3VvVHZiq3dL5ntsvVoGb0DkxPjlZwYr7i4cBUWlvu6nNPi94GwQ4cO+vTTT+t+fvzxx+XxeHxYkf8oLS1VXt4+/fWvf1NCQndJUlLS8JNu53Q6dddd92jw4KGSpKKiQj377EzdeOOvNGPG1ZKkuLjWuvrqy7V27RolJ48+qzofeODhuj97PB716zdAF198vjZsWKdBg4aoZ8/eslgsiotrXW/YY25ujubM+UgPPPBw3R3BYcNGqLi4SG+++ZpGjx4jj8ejd96ZpYsumq6bb75VkjRiRLLuuutWFRYeOGFdCQnddfvtd9X93L//QAUFBeuvf31Uv/3tvXV3CSVp4MDB+s1vfvt9DSO1YkW6Fi9eWC8QOp1O3XHH3Ro6dJisVrOioqJ1/fVXad26DI0cOUqVlRV6883XdO21N+qGG26u25fTWaNZs/6tadMulcVi0aRJU+r2aRiGBg4crAMHCvTZZ3NOOxBarVY98cQzdc+R7t69SwsWzKsLhF988T8dOnRIr7/+tuLiWkuS2rfvoJtvvu60jgMAAPBjFdW1WrJhv77N2KfasmJNjNip61pvk91dKVNIG9n7zjjcO9AR6utSA57fB8Ifc7lc+uyzz/TGG2802jFqty1T7dbFjbb/E7H1Gitbz1MPXxEREWrduo2eeeYJXXrplRoyJElRUdEnP47NVm8YY4cOHSVJQ4YMO2pZUVHhKddzPOnpyzRr1hvatSu73t3LnJy9GjRoyHG3W716pcxms8aOHSe32123PClpuObP/1oej0cHDhSouLhIKSmp9bZNTZ2g1atPfBfZMAz93/+9p//97xPt379fLtcPDwMXFOTXvQeSNHz4yHrbdunSVQUF+fWW2Wy2upB9eJ3Dz28eCaabNm1UdXW1xo+fVO98hgxJ0n/+87oKCw8oPr6tysrK9O9/v6IlS9JUVFRY9wuQI4HtdAwZklRvUqEuXbqqpOSg3G63rFarsrI2q1evPvX23bdvP0VHx5z2sQAAAPYWlGthRq6+y8xXR+Xp51E7lRC1UyYZsrQbIHviJFk6JPq8dyB+0KwC4cKFC9WmTRslJib6uhS/YDab9dxzL+nVV1/Sk08+KqfTqf79B+quu+5Rz569j7tdSEhI3bNvkuoCQ3h4WN2yI3fHfhySzsSWLZm6777faezY8frFL65VZGS0TCaTfvWr606670OHSuXxeDRlyrhjvl5cXKTi4mJJOioIR0VFnbS2Dz98V//85z80Y8Y1Gjx4qMLDw7Vly2Y9++zMo2oLCwuv97PNZpPL5aq37Kfv60/fw0OHSiVJV199+THrKSgoUHx8Wz3xxJ+VmblJ1113o7p06abQ0FB98slHWro07aTn9FPHqtswDLlcLlmtVhUXFysyMvKo7Y61DAAA4FjcHq8ythVq4Zpc7c4t0sjg3XooZoda1RZK1lDZEv2vdyB+0KwC4ccff6xLLrnktLeLiQk75vIDB8yyWuv/dsLad4yC+445o/p8ISGhm2bO/Jvc7lqtW7dWL730D91771363/++ktlslslkkslkqjtPs9kkyVTvvC0Wc91/f/p+mM0/rGu32+XxeOqtU1lZUW9/h/cvWa2H97V06SJFRUXpiSdm1k0XfKQ34I/3LZl+8vPhUGKxWPXqq/+uF7SOiIuLlWRIksrKSupteyR8Heucjli0aIHGj5+o2277Td2yvXt319vuh/emfm2H31ed8H398WtWq7kuZP3tb38/5h24Tp06y+Op1fLlS3XPPfdp+vRL61775JP/04ne5+PV+dP39KfbxcbGau/e3Ue9R6WlpfWum2Mxm82Kiws/7uvwLT4b+BrXIHyJ669plJTX6Ovv9mju8t2yVBzQ5Mhs/Tpumywep+zRXRWRdJnCElNktjWP9gsNpbldf80mEBYUFGjVqlV66qmnTnvb4uIKeb3GUcu9Xq/cP5oetnmzaNCgJF1++Qw98shDKi09pIiIVjIMQ4Zh1J3n4ffBqHfeHo+37r8/fT+83h/WjYtrrV27dv5oX16tWrWi3v6OvM9u9+F9VVfXyGKxyuM5fFxJmjv3y6P2bbVaVVPjrHf8wYOHyuv1qKysTMOG1R+yeURMTJxiYmKUlrZIw4Yl1y3/9tsFxz2nI2pqamS12uq9/tVXX9bb7of3pv57dvh91XHfV6vVXO81t9urPn36yeFwqKDggEaMOPbQ4IqKCnm9Xlks1rrtq6oqtWTJYplMPz3eD+/z8er88Xt8rO169eqjefPmKi8vv27Y6ObNm3TwYHG96+ZYvF5vs3toOlA0xwfa0bJwDcKXuP4aX/b+Q1qwJlert+Srl2WfbojKVkfrHslcv3eg02SSs9QlyXXSfbYU/nj9mc2m494gk5pRIPzkk0+Umpp6SkMBA8WOHdv10kvPa+LEc9SuXQeVl5fpnXfeUvfuPRUR0fB9W8aOHa/Zsz9Ujx691K5de33++ZyTzmg6bNgIffjhe/r73/+m0aPHaNOmDfr66y+PWq9z5y5KT1+qESOSFRISok6dOqtTpy666KJL9PDDD2rGjKvVu3dfuVwu7dqVrZycvbrvvj/KYrFoxoxr9NJLf1erVpEaOHCwFi1aoD17dp/0fIYNG6GPPvpAffv2U/v2HTRv3lzl5uae6dtzUuHh4brhhpv1978/o/z8PA0aNERer1c5OXuVkbFaTz75jMLCwtSnT1/95z+vKzQ0VCaTWf/9738UGhqmqqqKBq/pZz+7UG+99YbuvfcuXX/9zXI6a/TGG68qMjLKrxvAAgCAplXr9mjllgNamJGrgvxCpYTs1KOx2xXqPiSTPVK2QRd/3zsw0tel4jQ1q0D44IMPnnzFABITE6Po6GjNmvWmiosLFRYWrsGDh+qWW+5olONdf/0vVVJyUK+99i/ZbDZNn36ZunZN0OzZHx53m+TkFN1yy2/08ccf6rPPPlFi4gA99dTz+vnPp9db79Zb79Szz87UvffepZqamro+hHff/Qd16tRJ//vfHL3xxisKDQ1Vly7d9LOfXVi37eWXz1BZWZk+/fRjffjhe0pJGatbbrlDjz760AnP57rrfqnS0lK99tq/JEmpqeN111336A9/+O1ZvEsndtVV1yo2Nk4ffPCu3n//HdntdnXs2KnebKUPP/y4nn76CT322MOKiGilSy65XDU1NSd8n89UUFCQnnnmBf3tb3/Vww/fr/j4trr11jv0z3/+Q6Ghx/9NEgAACAwHy2r07dp9Wrx+v1o58zW5Vbb6R++Q2XDLEnekd+CQRu8dmJ6Zr9lp2SoucyqmmfX583cmwzCOHkvZwhxvyGh+/h7Fx3f2QUVo6X48ZLS52b9/n37+8+m6994H6wXvn+Lvj//yx+EqCCxcg/Alrr+zZxiGtuWUav6aXG3YVqABtt2aErlTbdz7Jatdth6jvu8d2PHkO2sA6Zn5mjU3S64ffbeyW8269rzefhcK/fH6azFDRgE0jrffflOxsXFq0yZeBQX5+u9//6PIyCiNGzfB16UBAIAmkp6Zr48X7dDBcpcsZpPCjEqNC9uhK2K3y+GplCm0jex9fy5bz5Qm7x04Oy27XhiUJJfbq9lp2X4XCJsjAiEQ8Ez6979fU3FxYV2Pyttuu4showAABIivV+7V/327Q17DUIL1gMY4sjTAvldmk2Rt7/vegcVlx25VdrzlOD0EQiDAXX31dbr66ut8XQYAAGhCXsPQ5l0HNX9NrrKy8zXSsUtjHFlqZy1VpdeuRTV9lGnrrwfPPc/XpSomwnHM8BcTEVjtLBoLgRAAAAAIENVOt5ZuzNPCjH3yluZrQth2/Txym0LMtcp1R+m9imStcXVVraxSta+rPWx6asIxnyGcnprgw6paDgIhAAAA0MLtL6rUgoxcpW/arwQjRzNa7VCXyL2SyaKNni6aX9ZDu91xkn5oO+Uvd+COPCfILKONI+ADoWEY9FsDTlMATE4MAECz5/UaWr+jSPPX5GrP3nyNCtqhP7baoTDPIZmCImXrc7FsfVJl2lWj/XOzJPnvHbjkxHgCYCMJ6EBosVhVW+uS3e4fv/0AmovaWpcsloD+5wMAAL9VUV2rJev3a2HGPgVV7tOk8B36ZXS2LIZbltZH9w5MTjy8HXfgAlNAf6MLC4tUaWmhIiPjZLPZuVMInIRhGKqtdam0tFDh4VG+LgcAAPzI3oJyzV+Tq9Wb96uvebd+GbFDba153/cOTDlh70DuwAWugA6EwcGHe6gcOlQkj8ft42rQkpjNZnm9zbMx/clYLFaFh0fV/f0BAAC+4/Z4lbGtUAvW5OrAvjyNCdmuRyJ3KMhbKVNYG9kTfdM7EM1HQAdC6XAo5IstGlpcXLgKC8t9XQYAAGihDlU4lbZuv75dl6vYmlxNCt+uPlG7ZZIhS4cBsidOlKVDP5/1DkTzEfCBEAAAAGgODMPQzv1lWpCRq/Vb9mmQbafuDN+hGHuR5AiVrddk2ftOkDmita9LRTNCIAQAAAD8WK3bo5VbDmjBmlxVHtin1JBtujQ6WzavU+aoTrIlXi9b95EyWZkoEaePQAgAAAD4oYNlNfp27T4tXperTu49ujB8uxIicySTRdauww5PEtOmOxMj4qwQCAEAAAA/YRiGtu4t1YKMXG3dvk/D7dv1h7AdCvcekinkh96B5pBIX5eKFoJACAAAAPiY0+VRema+FmTkSgf3anzodl0VtfNw78A2vWTre5WsXX/oHQg0FK4oAAAAwEcOlFRpYcY+pW/IVQ9jp64K2672rfIP9w7s/n3vwJhj9w4EGgKBEAAAAGhCXsNQ5q6DWrAmV3t25mh08HY9GL5dwd4qmSJay97357L1oncgmgaBEAAAAGgCVTVuLduYp4UZOQor36Pxodt0fdQemWTISu9A+AiBEAAAAGhE+4oqtXBNrlZtylF/8w7dHLZdsRHFkj1Ett70DoRvEQgBAACABub1Glq3o0gL1uSqMGePxgZv08MR2bIbTpmjO8qWeCG9A+EXCIQAAABAA6mortXi9fv1bUau2lRna2LoNvWIzJVhMsvW7UjvwB70DoTfIBACAAAAZ2lPfrkWrMnVhi17NdS6TXeGblcra5lMIa3oHQi/RiAEAAAAzoDb49WarYVasCZX1fm7lBq8VRe32iWr4ZalTU/ZEn9B70D4Pa5OAAAA4DQcqnBq0br9WrJurzq7dmha6HZ1bJUvWeyy9aB3IJoXAiEAAABwEoZhKHt/mRasydW2rbs10r5Vvw/ZoRD7qfUOTM/M1+y0bBWXORUT4dD01AQlJ8Y38VkARyMQAgAAAMdR6/ZoxeYDWrA6R5aD2RoXslVXttr7fe/A/rInTpKl44l7B6Zn5mvW3Cy53F5JUnGZU7PmZkkSoRA+RyAEAAAAfqL4UI2+XbtP6ev3qLd3m34Rul2tz7B34Oy07LoweITL7dXstGwCIXyOQAgAAADo8LDQrL2lWrAmVznZ2UpxbNX9ITvlONI7sN+Z9Q4sLnOe1nKgKREIAQAAENBqXG6lZxZo4eoctSrbpnEh23Rtqx/3DpwkS5vuZ9w7MCbCcczwFxNBU3r4HoEQAAAAAamgpEoL1+zTmo27NdCUpZtDtisyvEwKbiV732my9RnXIL0Dp6cm1HuGUJLsVrOmpyac9b6Bs0UgBAAAQMDwGoY27TyoBWtyVbxnu1KDturB0F2yyi1zmx6y97tK1i5DZbI03NfkI88JMsso/BGBEAAAAM3ekbYOB8ucij5G4KqqcWvpxjwtytijtpVbdU7INnVuVSDDYpO9x+jvewd2arT6khPjCYDwSwRCAAAANGsnauvQqXWYFmTsU2bmTg21bNEdwTsUGlYlU3ic7IlXytZrzHF7BwKBgEAIAACAZu14bR3e/HKzOpkKNDZoqy4K2yuzvLJ0HHBKvQOBQEEgBAAAQLP20xk87arVUMcujXFsVXtryeHegb3OOdw7sFUbH1UJ+CcCIQAAAJq1VqE2HaqsVYy5XGMcWzXCsUMhZpfyjWg5xlwnW/dkmWy0eACOhUAIAACAZsft8Wr11gNasDpH7Vy7dUVYlvrY9smQSetdnZXu7qPUc8aqR5+2vi4V8GsEQgAAADQbpRVOLVq7TyvW7VIfzxb9InibosPLVGsL0xLnEC041E3W8ChNn0BbB+BUEAgBAADg1wzDUPa+Ms1fk6O87Vs1yp6le4Pq9w4M6zJUUy1WXR8XrsLCcl+XDDQbzSIQOp1OPfHEE0pPT5fD4dCgQYP0l7/8xddlAQAAoBG5aj1asaVAi1bvVWRpplKDt6lrxJHegaNk6ztRltjOvi4TaNaaRSB8+umn5XA49PXXX8tkMqmoqMjXJQEAAKCRFB2q1rdr92nd+mwNNDbrppDtCgurksLj5Ei8QraeY2QKCvN1mUCL4PeBsLKyUnPmzFFaWppMJpMkKTY21sdVAQAAoCEZhqGsPSWavzpHh3Zv1pigrbo3+EjvwP7f9w7sT+9AoIH5fSDMyclRZGSkXnzxRa1YsUKhoaG68847lZSU5OvSAAAAcJZqXG6lb8pX2prdaleRqSnBW9U24qAMW4jsvekdCDQ2k2EYhq+LOJHMzExNnz5dzzzzjC644AKtX79ev/71r/XNN98oLIyhAgAAAM3R/sIKfbFslzJWb9JQbdao4GwFySlbXCe1Gna+whLHyGwP8nWZQIvn93cI27ZtK6vVqqlTp0qSBg4cqKioKO3atUv9+/c/pX0UF1fI6/Xr3IsWJo4ZzuBDXH/wNa5BHI/XMLRpZ7Hmr86RJ3eTxgZl6Z7gfZLJLFvXobIlTpIlvqecJpOch2ol1Z72Mbj+4Ev+eP2ZzSbFxBz/RprfB8Lo6GiNGDFCy5YtU0pKinbt2qXi4mJ17syMUgAAAM1BVU2tlm7M1/KMbHWr2qTpIdsUE14mIyhCjr4XydZnnMyhUb4uEwhIfh8IJemRRx7RAw88oJkzZ8pqteqpp55SRESEr8sCAADACewrrNCCjH3atXmzRlo2646gXbKFumVu0132xBmydk2SydIsvo4CLVaz+BvYsWNHvf32274uAwAAACfh8Xq1bnuRvl29R/aCjUoN2qqLQ+kdCPirZhEIAQAA4N/Kq1xavH6/Vq3drj6uTZoRvF3hYVVSWKwc/egdCPgrAiEAAADO2O78Mi1YnaOCbZs0yrZFdzn2ymL1ytKhv+z9JsrSYYBMZnoHAv6KQAgAAIDT4vZ4tTrrgNLW7FJU8QaNDdqq9mEHZdiCv+8dOF7mVvG+LhPAKSAQAgAA4KTSM/P10bc7VFLhUqylXKPtW3V9ULaCQ51SZHs5+l8nW/dkmWwOX5cK4DQQCAEAAPxAema+Zqdlq7jMqZgIh6anJig50fd32QzD0Jylu/Tl8l3qYd2vy8Ky1Me2T4ZMKo/tp+hRU2WJ7ymTyeTrUgGcAQIhAACAj6Vn5mvW3Cy53F5JUnGZU7PmZkmSz0Khq9ajFZsLtHRNttofWq/7I7YqzlKuMm+Q5tUM0PKanrJ6ovR0214+qQ9AwyAQAgAA+NjstOy6MHiEy+3V7LTsJg+ERYeq9e3afdq2IVNDtUk3B+2SPdStnbVxmls9UOtcneWR5fDKZc4mrQ1AwyMQAgAA+FjxcYLV8ZY3NMMwtGVPiRau3iPv3rUa49iqc4MKZJhtsvVI1j8zY5VZHn7UdjERPC8INHcEQgAAAB+LiXAcM/w1duCqcbm1fFO+vlu9TQlV63Vx8HZFhFXJCP2+d2Cvw70DR8Xma/uPhrRKkt1q1vTUhEatD0DjIxACAAD42PTUhHrPEEqNG7jyD1Zp4Zoc5WxerxHmzbrVsVeWEK/M7fvJ0X/SUb0Djwxb9cdJbwCcHQIhAACAjzVF4PIahjZmF2vRmt0K2rdGY4O26oLgg/Jag+XoPUn2vhNkjjz+8ZIT4wmAQAtEIAQAAPADjRW4qmpqtWRDnjIyNquPc4OuDMpWSJhTRqt2cvS/VrYeyTLZghr8uACaBwIhAABAC5R7oEIL1+SoaGuGkq1bdJs9Vwo2y9p1iOz9zqF3IABJBEIAAIAWw+P1au22Ii1dk62oAxkaE7RVcSFl8trD5eh3oWy9x8kcFu3rMgH4EQIhAABAM1dW5dLidfuVuXajBno26mrHTtlD3VJcgoL6/1zWrkkyWWy+LhOAHyIQAgAANFO78sq0cPUeVe9YrVH2LKXaCuR1WGXvnix7v4myxHbxdYkA/ByBEAAAoBmpdXu1eusBpa/eqnYlazU5aJsiQ6vkDYmRo//lsvUaK1NQmK/LBNBMEAgBAACagZJypxZl5GrnxnUaYmzSDY49soR4ZWqXqKD+k2TpOLBe70AAOBUEQgAAAD9lGIa25x7SotW7pD2rlGLP0iT7QXmtQbL3nihH34kn7B0IACdDIAQAAPAzzlqPVmwu0OrVm9WtYq0uCtqhkBCnvBFt5RhwjWw9RtE7EECDIBACAAD4iaLSai3MyFXeptUaZs7UTd/3DjR3Hnx4WGjb3vQOBNCgCIQAAAA+ZBiGNu8p0eKV2QrZt1IpQVvVOqhMHnuY7IkXyN5nPL0DATQaAiEAAIAPVDvdWr4pXxvWbFDvmnW6zLFTjlC3vDFdFTTgSlm7DaN3IIBGRyAEAAABIT0zX7PTslVc5lRMhEPTUxOUnNj0E7LkFVfq2zU5Kt2yQiOtm3WTrUDeYKts3UfI0W+SLHFdm7wmAIGLQAgAAFq89Mx8zZqbJZfbK0kqLnNq1twsSWqSUOj1Gtqws1jLV21VdMEqjQnapsjgKnmCo2Xvf7lsvcfIHBTe6HUAwE8RCAEAQIs3Oy27Lgwe4XJ7NTstu1EDYWVNrZas269t6zLUv3aDfm7fI2uIV0Z8HwUPmCxLJ3oHAvAtAiEAAGjxisucp7X8bOUcqNC3q3bJteM7JduyNNpaLE+IQ/ZeExTUb6LMkW0b5bgAcLoIhAAAoMWLiXAcM/zFRDga7Bhuj1frthdpxarNandwlSY7dig02ClPeLwcA6+RrXuyTPbgBjseADQEAiEAAGjxpqcm1HuGUJLsVrOmpyac9b7LKl1KW5ernPWrNMi7UVfbDvcONHUapOAB59A7EIBfIxACAIAW78hzgg05y+jO/WVavCpb5t3pGmXP0jhrmTy2UNkTp8red7zMYTENVT4ANBoCIQAACAjJifFnPYFMrdurVVkFWrtqg7qVr9FUx045gt3yRHdV0EB6BwJofgiEAAAAJ3GwrEZpa3N0YGO6kkybdY0tX95gqyzdhh8eFkrvQADNFIEQAADgGAzD0LacUi1bvU0hOd9plH2rouxVcgdFyT7gMtl6j6V3IIBmj0AIAADwI85aj77blKfNazLUu3qtLrbvkTXYK0+bPgoeSO9AAC0LgRAAAEDSgdJqpa3epfIt6Rph2axfWIvlCXbI1mu8gvpPlCWyna9LBIAGRyAEAAABy2sY2rz7oFau3Kzo/O+U4tihMIdTtWHxcgy8WrYeo+gdCKBFIxACAICAU+10a9mGfdq5dqX6udbrEluuFGySOgxS8KDJCqN3IIAAQSAEAAABI6+4UmmrslW7fZmSrVs0wlImd0iobIlTFZRI70AAgYdACAAAWjSv19D67CJlrFyvdsUrNdGxU0EOt2ojOytoML0DAQS2ZhEIJ0yYILvdLofDIUm65557NGbMGB9XBQAA/FlFda2WrM9R3tp0DfRu1OW2fHmDLTJ1HaGQgfQOBACpmQRCSfrHP/6hnj17+roMAADg5/YWlGvpyq2y7lqmkbatSrFUqTYkUtb+l8rRN5XegQDwI80mEAIAAByP2+NVxtYDyly1Rp3L1ug8+25Zg7yqjeuloMFTFNZpEL0DAeAYTIZhGL4u4mQmTJigsLAwGYahoUOH6ne/+50iIiJ8XRYAAPCxkvIazVu+Q/tWLNQQY5M6WYvlsTgU1n+cYkacL3tsB1+XCAB+rVkEwry8PLVt21Yul0uPP/64Kisr9cwzz5zy9sXFFfJ6/f400YLExYWrsLDc12UgQHH9wdea4hrM3n9I6SsyFZazXCPs2xVmdsoV0lphg6bI3pPegYGMfwPhS/54/ZnNJsXEhB339WYxZLRt27aSJLvdrhkzZuiWW27xcUUAAKCp1bo9Wrm5QNvXfKcelWt1gS1XpiDJ026ggodMoXcgAJwBvw+EVVVV8ng8Cg8Pl2EY+vLLL9WnTx9flwUAAH4iPTNfs9OydbDMqegIh6anJig5Mf6s93uwrEaLV+9U9ZbFGmberAGWMtWGhMjS5zyF9J9I70AAOAt+HwiLi4v1m9/8Rh6PR16vVwkJCXr44Yd9XRYAAPiR9Mx8zZqbJZfbK0kqLnNq1twsSTqjUGgYhrbllGrVivWKyUvXaEe2gmxuOVt1kmPwFQrrNkwmq71BzwEAApHfB8KOHTtqzpw5vi4DAACcwOy07LoweITL7dXstOzTCoROl0fpmfuUs2aZ+jrX6yJbvjzBFqnzMIUMmqzw1t0aunQACGh+HwgBAID/Ky5zntbynzpQWq2lK7bKu32Jhlu2aKilSq7QSFn6X6LQvqkyBzO7OAA0BgIhAAA4azERjmOGv5gIx3G38RqGNu86qHUrVqtd0QqNt++W1e6VM6angoZMUVjnwfQOBIBGRiAEAABnbXpqQr1nCCXJbjVremrCUetWO91atn6vDqxbooHuDbrIWix3sF3mhLGHh4VGtWvK0gEgoBEIAQDAWTvynOCJZhndX1Sp5SszZdu5RMOt2zTC7FRNeGtZB16lsN4p9A4EAB8gEAIA0AwcaelQXOZUTAO2dGhIyYnxSk6Mr9eY2es1tH57obasTFfnQ6t1ji1Xsku18f0VPPRchbXrQ+9AAPAhAiEAAH6uoVs6NIWK6lotz9ip0g1pGqxMXWA5JFdwiEy9z1XYwEn0DgQAP0EgBADAzzVUS4emsLegXJ999Z1sOxZpqG2HgixuVYd3lH3IZQpLGE7vQADwMwRCAAD83Nm2dGhsbo9XGVvztXPlUvWozNA4W748dos8HZMUMnQKvQMBwI8RCAEA8HNn0tKhKRyqcGr56u2q3rxISabN6mOpkjOklUKHXyl1G0XvQABoBgiEAAD4udNp6dDYDMPQzv1lWpu+StH5yzXStltWq1dVUT3kSDpXYZ0HqXWbyLpJZQAA/o1ACACAn/txSwdfzTJa6/ZoVeY+5a5OU1/nOk2xFsvtsMvoNkYhQ6bQOxAAmikCIQAAzcCRlg5N7WBZjdJXbpZ3a5qSLFnqb3aqOixO5oEzFNlnDL0DAaCZIxACAIB6DMPQ1j0lyvxuueKLVijFlivZpJrW/RSUdK7C2veldyAAtBAEQgAAIElyujxasWG3itZ+q/7ujZr8fe9Ab4/JajVkslrROxAAWhwCIQAAAa6gpEqrvlsv287FGmLdriCTW5URHWQdcqnCeoygdyAAtGAEQgAAApDXMJSZXagdK5aoY+kqpdry5bFZ5Go/RMFJ5yq8TdPPYAoAaHoEQgAAAkhVjVsrMnaofONCDfRmapKlUjXBEfL0naaIgRPoHQgAAYZACABAANhXVKmM5SsVlrNUg6y7ZDV5VRHdXfakcxXWdbBMZouvSwQA+ACBEACAFsrj9WrD1nztXbVI3SoyNM5apFq7Te7OoxUx7FyFR7X3dYkAAB8jEAIA0MKUV7m0cvUWuTZ/q0Haou5mp6pCY2QMuFJRian0DgQA1CEQAgDQQuzJK9PG5csUlZ+uJGuOZJaqYvrKMfw8hXVIpHcgAOAoBEIAAJoxt8ertZm5yl+zQL1r1inVckhOR7Bc3ScpZugUtQqP9XWJAAA/RiAEAKAZKq1watWKDdK2bzXIvF29TbWqCG8v0+DpiumVTO9AAMApIRACANBMGIah7JwSbf1useILV2ikLU8ei0VV8YMUOeJ8egcCAE4bgRAAAD/nqvVo9YZsla5dqMTajRprqVR1ULhcvS9U1JBJiqR3IADgDBEIAQDwU0WHqrUmfZWCdi5Wf8tO2UxelUV2lSXpPMUlDKV3IADgrBEIAQDwI4ZhKGtXoXZ99606la7SKGuRam02OTskq9WI8xQe3cHXJQIAWhACIQAAktIz8zU7LVvFZU7FRDg0PTVByYnxTXb8GpdbqzOyVLlhofp7N2uMuUYVwTGq7X+FogaMo3cgAKBREAgBAAEvPTNfs+ZmyeX2SpKKy5yaNTdLkho9FBYUV2r98uUKz1mq/pa9kkkqj+kj2/DzFN+pH70DAQCNikAIAAh4s9Oy68LgES63V7PTshslEHoNQ5nb9mnfyoVKqFijZMsh1diCVd11guKGn6tWEXENfkwAAI6FQAgACHjFZc7TWn6mqmpqtXrlBrm3LFR/bVMXU63KQtvKO+hixfYdRe9AAECTIxACAAJeTITjmOEvJsLRIPvPPVCmLUsXKTo/XYOtefKYzCqPG6hWI89Xu/juDAsFAPgMgRAAEPCmpybUe4ZQkuxWs6annnmjd4/Xqw2b96hw9TfqWb1eIy2VqnKEq6rHVMUNm0zvQACAXyAQAgAC3pHnBBtiltHyKpcy0lfJvH2REk3Z6m7yqjSiqzR0ilr3HEbvQACAXyEQAgCgw6HwbCaQ2b2vWNuXLVTbohUaYi1SrdmmynYjFJ98vjrGdGzASgEAaDgNHgiLiooUGxvb0LsFAMDvuD1erVu/TWXrvlFvV6ZGmmtUHhSt6r6XKm7IBEXbQ3xdIgAAJ9TggXDcuHGaNGmSrrjiCiUnJzf07gEA8LmSshptWL5Mjl1L1Me8R5JUGtVL5mHnqW3X/jKZzD6uEACAU9PggbBr16766quv9PXXX6tTp0664oordPHFFysqKqqhDwUAQJMxDEPZewq0J32+OpWu0hDLIdVYg1TeaZzik8+ndyAAoFkyGYZhNPROMzIy9OGHH+qrr75STU2N7Ha7zjnnHF155ZUaNmzYGe/3xRdf1AsvvKDPPvtMPXv2POXtiosr5PU2+GkCxxUXF67CwnJfl4EAxfXXsFy1Hq1bs0nVm+arrydLQaZalTriFTzgHMX0H0PvwGPgGoQvcf3Bl/zx+jObTYqJCTvu640yqcyQIUM0ZMgQPfjgg5ozZ44+/PBDffHFF/ryyy/VtWtXXXHFFZo2bZpatWp1yvvMzMzUunXr1L59+8YoGQCAeopKKrVpaZoicpeqj2W/PDKrNHaAQkeerw7tetA7EADQIjTKHcJjycjI0P/93/9p7ty5cjqdcjgcOvfcc3XVVVepf//+J9zW5XLp6quv1t/+9jddc801evnll7lDCL/mj78dQuDg+jtzhmFo6/Yc5a2cp27laxVtqVSlOUzubmPVdsRkWUIjfV1is8A1CF/i+oMv+eP155M7hMcSFRWliIgIORwO1dTUyOVyac6cOfr00081fvx4PfHEE4qMjDzmtn//+9914YUXqkOHDk1VLgAggNS43Fq3Yo08Wxaqj7Fd7U1eHQzvotpBV6lN3xH0DgQAtFiNGghra2s1b948vf/++1q9erUMw1CXLl10yy23aPr06dqyZYtef/11LVy4UI8++qieffbZo/axdu1abdq0Sffcc88Z13GiRAw0lri4cF+XgADmj9ffojU5emvuFhWVVCs2KljXnNdH44b6tj9fbn6J1n71hcL3LlWipVAu2VTdcaQ6TL5E3dp28WltzZ0/XoMIHFx/8KXmdv01ypDRPXv26IMPPtAnn3yi0tJSmc1mTZgwQTNmzDhmK4o77rhD6enpWrVq1VGvvfrqq3rrrbdktx9+aD8/P18xMTF68sknlZKSckr1MGQUTc0fhwsgcPjj9Zeema9Zc7PkcnvrltmtZl17Xu+zagZ/JryGoc2Z2Tq4Zp66V29QuLlGZZYoqdd4tR02UWZHaJPW0xL54zWIwMH1B1/yx+uvyYeMXnvttVq5cqUMw1BcXJxuvfVWXX755WrTps1xt0lMTNQ333xzzNduvvlm3XzzzXU/T5gw4bSfIQQA+NbstOx6YVCSXG6vZqdlN1kgrKx2acPy5bLsSFNP7VZHGSqO6KXQYeeqXfeB9A4EAASkBg+EK1as0IgRIzRjxgxNmjRJFsvJn7sYP368Wrdu3dClAAD8RHGZ87SWN6Tc/cXatexrxRetVD9LqapNQSrpMFbtR52vbpHH/2UlAACBoMED4Zdffqlu3bqd1jY9e/Y85Tt+CxcuPJOyAAA+FBPhOGb4i4lwNMrxPF6vNq3brIr136iHc7MGmWtVEtRGFYlXKX5IqlrTOxAAAEmNEAhPNwwCAFq+6akJx3yGcHpqQoMep6yiRplLFylo9xJ1N++TxzCrOLqfgkeer44de9E7EACAn2iythMAgMB15DnB2WnZKi5zKibCoempCQ32/ODuPXnKXf6VOh5arX7mSlVYwlTceYo6jjpPkWGRDXIMAABaIgIhAKBJJCfGN+gEMm6PVxtXr5Vz03z1cG/TQJNHhSGdVDXw54rvP1ImM/+LAwDgZPi/JQCgWSkprVDWkgWK2LdM3c0H5DKsKokborbJU9WtbWdflwcAQLNCIAQA+D3DMJS9fY8OrPxKXSrWqZ+5RoeskTrYfZo6JJ+jGHoHAgBwRgiEAAC/5XS5lbniO3mzvlV3707FyVBhWA/Zh05R+95D6B0IAMBZIhACAPxOUWGJti+dp7iCdPUwl6paDhW2TVHH0T9T95imaWQPAEAgIBACAPyCYRjatnmrSlZ/rW7Vm9TPXKtie2uV9L5SHYaNV2tb4/QsBAAgkBEIAQA+VVXt0pbli2XNXqRuylVrw6zCVn1lG3G+OnftQ+9AAAAaEYEQAOATefsLtGfZ12pbvFI9zRWqUKjyO05S59HnKyoi2tflAQAQEAiEAIAm4/Uaylq/QZXr5qmbK0uJJo8KgjrqUL/L1G7wKLW12HxdIgAAAYVACABodBWV1cpaskAhe5aoo6lALsOqwuhBapv8M3Xv0M3X5QEAELAIhADQQqRn5mt2WrYOljkVHeHQ9NQEJSf6dkbOfXtytS/9S3UozVAvc41KzZHK7zpVXUadq5iQMJ/WBgAACIQA0CKkZ+Zr1twsudxeSVJxmVOz5mZJUpOHQrfHo62rVsqVuUBd3dnqJUP5IQnS4Cnq0C+J3oEAAPgRAiEAtACz07LrwuARLrdXs9OymywQlpWWadvSeYrct0ydTCWqNhzKa52sDqOnqlfrdk1SAwAAOD0EQgBoAYrLnKe1vCHt2b5DhSvnqlPFBvUy1arIEqeCnpep68iJam0PavTjAwCAM0cgBIAWICbCcczwFxPROM3cXS63tn23RMa2b9XFu1etDJPywvooKuk8denZj96BAAA0EwRCAGgBpqcm1HuGUJLsVrOmpyY06HFKig5q55IvFVuwQp3N5SpXiHLbTlDnlPPVJyq2QY8FAAAaH4EQAFqAI88JNsYso4ZhaFdmpg5lfKVO1VvU0+RRnr29CvterM7DxqgdvQMBAGi2CIQA0EIkJ8YrOTFecXHhKiwsP+v91dQ4tX3ZQtmy09Re+WplWJXfaoBajzxfPbv0aICKAQCArxEIAQD1FO7PU86yLxV/cLW6mKpVolbK6XS+uo0+T4nh4b4uDwAANCACIQBAXq9XO9etUdWGb9TJuV0JMrTf0U2u/pPUafAImc0WX5cIAAAaAYEQAAJYVUWldiydp9C9S9RGB1Vl2JUTM1LtR52vPu06+ro8AADQyAiEABCA8nfvUv53X6rdofXqanLpgClWud2mK2H0OWoTFOzr8gAAQBMhEAJAgPC4PcpetUy1mxeok2ePuhgm5Qb3VsSQKeqWOJDegQAABCACIQC0cOWlpdq15Eu12p+utqZylRkh2tV6nDqPOV/9Ylv7ujwAAOBDBEIAaKH2b9uiolVz1aEiU11NHu23tNO+XhcqYWSq2tvsvi4PAAD4AQIhALQgtS6XVn/5P9Wsn6d23jw5DKtywvopdth56tWzt6/LAwAAfoZACAAtQFnhAe1Z+rliD6xStKlaB40I7Wp/rrqmnKuBkZG+Lg8AAPgpAiEANFOGYSh30zqVrf1K7au3qZMM5di6yJN0njokJqmzhd6BAADgxAiEANDMuKqrlb1snhy7FivOKJbdsGtXq+Fqm3ye+nXuori4cBUWlvu6TAAA0AwQCAGgmTi4b6/2L/9CrQ+uVQeTSwWK0c7O09Qj5RwNDg31dXkAAKAZIhACgB/zej3am5Gumk0L1N61Sx0Mk/Y4eipk4GQlDBwss9ns6xIBAEAzRiAEAD9UU35Iu5Z+pbCcZYpRmcq8wdoeO1YdR5+vgW3jfV0eAABoIQiEAOBHCndt04EVXyr+0EZ1MHmUo7Yq6X6+eo4er/YOh6/LAwAALQyBEAB8zOOu1Z5VafJuXqg2nv2KNyzaE5yoyKFT1KdvX5lMJl+XCAAAWigCIQD4SFVJkfYs+UKR+SsUpyoVe8O1NX6yEsacqyEx0b4uDwAABAACIQA0IcMwdGDbBpWs+krxlVlqJ0N7LJ1V1GuCeo0crS42/lkGAABNh28eANAEPM4a7f5uvizbFynGWyQZdm0PG6rWI87TgO4Jvi4PAAAEqGYRCG+99Vbl5ubKbDYrJCREf/zjH9WnTx9flwUAJ1VesE/7ln+u6ANr1NrkUr4Rra3tL1DPMZM1rFW4r8sDAAABrlkEwpkzZyo8/PAXp/nz5+uBBx7QJ5984uOqAODYDMOrvI0rVbFuntpU71S8TNpp7S5Hv0nqlZQkq8Xi6xIBAAAkNZNAeCQMSlJFRQUz7gHwS7VV5dqz7Cs5di9VpHFIhjdYWZEpaj/qPA3p1N7X5QEAABylWQRCSXrwwQe1bNkyGYah119/3dflAECdQzk7lJ/+hWJLNqiNyaO9RrwKOk9W7zET1D402NflAQAAHJfJMAzD10Wcjjlz5uiLL77Qa6+95utSAAQwr9ulHcu+VemqLxXrzJXLsGh3cF/FJf9Mg0YmyWJmJAMAAPB/zS4QStKAAQOUlpamqKioU1q/uLhCXm+zO000Y3Fx4SosLPd1GWgErrJi7Vn6pcJy0xX2fe/A/Njh6jz6XLVtG+fr8iRx/cH3uAbhS1x/8CV/vP7MZpNiYsKO+7rfDxmtrKxUWVmZ2rZtK0lauHChWrVqpcjISN8WBiBgGIah0p2ZKlz5pVqXbVG8yVC2Ompf90vUd9QYdQmy+7pEAACAM+L3gbC6ulp33nmnqqurZTab1apVK7388stMLAOg0Xlra5S78lsZWQsV7SlUK69dW0KGKDppsgb26cm/QwAAoNnz+0AYGxurDz/80NdlAAggNUV5yl3+uVrlr1KUXMrzRmlT/PnqkTJZybGRvi4PAACgwfh9IASApmAYXhVvWaNDGV8ptjJbsTJpuzlB5t7jlThihHra+ecSAAC0PHzDARDQPDUVyk2fJ2t2miK8hxTkDdam8GS1GX6ukrp3YlgoAABo0QiEAAJS5f5dykv/QtFF6xRtcmu3t432dpio3ikTNToy9JjbpGfma3ZatorLnIqJcGh6aoKSE+ObuHIAAICGQyAEEDAMr1sHNixX1fpvFOvMUZRh0VZrLwX3m6TEoYNks5qPu216Zr5mzc2Sy+2VJBWXOTVrbpYkEQoBAECzRSAE0OK5K0qUu/xLBe1ZrlCjUlWeMK2LGqeOyVOU3LntKe1jdlp2XRg8wuX2anZaNoEQAAA0WwRCAC2SYRiq2LtFB777UjGlmYoxGdru7Shn14uUOHqsuoYFndb+isucp7UcAACgOSAQAmhRDLdTBWsWqXbzAkXWHlCY16ZNjoGKGHSOBg7sI4v5+MNCTyQmwnHM8BcT4TjbkgEAAHyGQAigRXCV5Gv/8i8Uum+lQuVUnidKu+LOVbdR5yilXcxZ7396akK9ZwglyW41a3pqwlnvGwAAwFcIhACaLcPwqmz7Wh1c/ZWiy7crUiZtVVd5e4xT/+SR6hlsb7BjHXlOkFlGAQBAS0IgBNDseGsqlL9qvrRtkcI9pbJ7g7Q2eIRikyZrWN9uMjdS78DkxHgCIAAAaFEIhACaDeeB3cpb/qUiDmQoXG7t9rTWtrYXqXfKRI2LjfB1eQAAAM0OgRCA3zhW4/eRfWJVmvmdytbNU3T1XoUbFm029ZC17wQNHDZE/R38MwYAAHCm+CYFwC/8tPG7q7xUufPfV/6ybQpTlbyeMK0KH6t2I87R6O4dZGqkYaEAAACBhEAIwC8cbvzuUVdrocY4sjTQvldWk1dbatupqvMF6jdqrCZEh/q6TAAAgBaFQAjA5wy3Uz1qNumGiCx1sJaoymvTEmcvLavppUJvhP49dYKvSwQAAGiRCIQAfMZ9qED56V8qKOc7/TzMqf3uSL1fOVJrnF3lkk0Sjd8BAAAaE4EQQJMyDK+qdm5Q8aovFXlom8Jk0hZvF+VGD9P8vUGq9fywLo3fAQAAGheBEECTMJyVKspYIPeWbxXmLpHFG6SV9mGKHDxJwwb0ULLFrA7HmGWUvn8AAACNh0AIoFHVFu5R/ndfKjRvjYLk1i53a22Mm6qeoydoUrvoeuvS+B0AAKBpEQgBNDjD61bF1pUqzfhakZV7FGJYtNHoLqPnOA0ZOVQDQuy+LhEAAAAiEAJoQN6qUhWumifT9sUK9lbI7QnT8uAUtU46Ryl9O8piNvu6RAAAAPwIgRDAWTEMQ6687Tqw4guFF25UiLzKcrfXwbbnKXH0GE1pHeHrEgEAAHAcBEIAZ8RwO1WWuVSV679ReE2+7F6bVpsSZe87UUnDEhUSZPN1iQAAADgJAiGA0+I5VKDClV/Lunu5HEaNyt2RWh8+UR2GT9SEnm1lNpl8XSIAAABOEYEQwEkZhlfO3RtUtGquIkq3KsgwKdPTWRUdx2jQqJE6LybU1yUCAADgDBAIgQCSfpp9/gxnpUrXfytn5gKF1pbI5A1SunmoQgdNVNLgngqy808IAABAc8a3OSBApGfma9bcLLncXklScZlTs+ZmSdJRodBdvFeFK+bKkbtKNrm11x2n3Kjz1W3keE3uEisTw0IBAABaBAIhECBmp2XXhcEjXG6vZqdlKzkxXobXreodq1W6+iuFV+yW3bBovSdBrm5jlZScpIGtgnxUOQAAABoLgRAIEMVlzmMud5WXqnjpR/JsXaRgT4WcnjBl2EYpZvAEjR7QVXabpYkrBQAAQFMhEAIBIibC8aNQaKiLtVBjHVkaaN8r62avsmrbKT9usvokj9HPOkQyLBQAACAAEAiBADE9NUHvzN2k/uZsjQnaqo7Wg6r22vSdu7csvSdo+Ij+Ghbm8HWZAAAAaEIEQiAAeMsK1ePAfD0csVRBqtF+d6T+r3qkgnuN1mXnJMpqMfu6RAAAAPgAgRBooQzDq9qcTSpeOVehB7fIapi0yd1JB9uO0sDkZN3QNsLXJQIAAMDHCIRAC2M4K1WRuVhVG75RiOugDG+QlmiwHH3Ha0RSb4WH2H1dIgAAAPwEgRBoITwHc3Rw1Vey7F0pm1Grgto4ZYdPUZfh43RuzzaymBkWCgAAgPoIhEAzZnjdcu3MUMnquQot2yWzYdHa2m6q7JSioaOSNCA21NclAgAAwI8RCIFmyFt1SGXrF6h2y7cKcperxhOm78wj1GrABCUPTlBIEH+1AQAAcHJ8awSaCcMw5CnYoYOrv5J9/1pZ5NU2VzvlRI1Xz5FjdGG3WJnpHQgAAIDT4PeBsKSkRPfee6/27t0ru92uzp0769FHH1V0dLSvSwOahOF2qWZbusoyvlZI1X7Ja1O6p7fc3cZq+MgBGh4V4usSAQAA0Ez5fSA0mUy66aabNGLECEnSzJkz9cwzz+iJJ57wcWVA4/KWF+rQ2m/k3bZEdm+1St2RWmobq7ikcRo/oJOC7H7/1xcAAAB+zu+/UUZGRtaFQUkaNGiQ3nvvPR9WBDQew/DKnZupktVfKagwUybDpM21nVQQN0L9RozU9M5RMjEsFAAAAA3E7wPhj3m9Xr333nuaMGGCr0sBGpThqlLV5sWqXD9fwc4iub1BWuQZJHOvVCUP66MxrYJ8XSIAAABaIJNhGIavizhVjzzyiAoKCvTiiy/KTE81tACuwr3av/QzubKWyOqt1a7aOG0LHayeY8/RmCGdZbdZfF0iAAAAWrBmEwhnzpyprVu36uWXX5bdbj+tbYuLK+T1NovTRAsRFxeuwsLyY75meD2q3Z2h0tVfKbg0W7WGWRmubippl6whI5PUrV0Ew0JxVk50/QFNgWsQvsT1B1/yx+vPbDYpJibsuK83iyGjzz77rDZt2qRXX331tMMg4C+81WWq2rhQNZkL5agtU5UnTEuMYQruO06jk7qrVZjD1yUCAAAgwPh9INy+fbteeeUVdenSRVdeeaUkqUOHDnrppZd8XBlwcoZhyHsgW6VrvpYlN0MWebSztq12hI5V9+GjdVGvNrJaGP4MAAAA3/D7QNijRw9t3brV12UAp8Vb65Qza7HKMr5WUMU+ebw2rajtqYpOozVixEANjw/3dYkAAACA/wdCoDnxlheqYsMCHdy6WDZ3lUrckcowpShqwFiNHdJVYcE2X5cIAAAA1CEQAmfJMAx59mWqdM1XshVkyjCkzbUdtafVMPUdPkKX94iT2cwkMQAAAPA/BELgDBmuatVkLVHl+m/kqC6UyxukJbUD5E5I0dQpSUqxEAIBAADg3wiEwGnyHNyninXz5N2ZLqvXpf3uWG2wTFD8kDGaMqCjQoKsfjnlMAAAAPBTBELgFBhej9y7M3QoY54cB7fLY5iV4eqq/NjhGjQiSTO6RstM70AAAAA0MwRC4AS81WWqyVyk6k0LZHcdUoUnVAs9SbL0HKMxw3poUlSIr0sEAAAAzhiBEPgJwzDkLdyp8rVfy7R3jczG4d6Bmx3J6jxstC5KbCeH3eLrMgEAAICzRiAEvme4XarNXqGytfPkKMtRrWHTSmcPlbQdqWEjBuqajpEyMSwUAAAALQiBEAHPW16kqo3z5dqyWDZPlQ66W2mld5TCElM0dmg3RUcEnfK+0jPzNTstWwfLnIqOcGh6aoKSE+MbsXoAAADgzBEIEZAO9w7crPK1X8uSt7Gud+C2kMHqNXKErujbRjbr6Q0LTc/M16y5WXK5vZKk4jKnZs3NkiRCIQAAAPwSgRABxXBVy7V1qSrWz5O9qlDV3iB95+qn6k6jNHJ4X6W0a3XG+56dll0XBo9wub2anZZNIAQAAIBfIhAiIHhK9qlqwzfybF8uy/e9A9coVTH9UzRxSGe1CrWf9TGKy5yntRwAAADwNQIhWizD65F7zzqVr/1atqJtqv2+d+DeiKHqN2aoftEzTlaLucGOFxPhOGb4i4lwNNgxAAAAgIZEIESL460uk2vLIlVtXCibs1TlnlB9VztEnm6jlTKspya1CW+U405PTaj3DKEk2a1mTU9NaJTjAQAAAGeLQIgWw3NgpyrXz5Oxe1Vd78B15uHqMHiUfjawvcKCbY16/CPPCTLLKAAAAJoLAiGaNcPtknvnSpWvnSfbob1yGlatdHZXXsxwDR0+QDckxMpsbrregcmJ8UpOjFdcXLgKC8ub7LgAAADAmSAQolnylhepJnOhnJvTZHVXqtjTSunukXL0GK2xw7qpbUyor0sEAAAA/B6BEM3Gkd6BlRu+kSl3vQxDyqztqE32CeqeNEyXDWinYAeXNAAAAHCq+PYMv2e4quXatlRV67+RtfKAqrwOfedM1MH4kRoxvI9u7hIts6nphoUCAAAALQWBEH7LU7JfNRvnq3bbUlm8LuW6Y7XKM0YRfUZrbFJntY4M9nWJAAAAQLNGIIRfOdI7sHL9PFkObJXbMCvD1UVbgwer3+ih6iHpf8t26cvV+xXDLJ4AAADAWSEQwi94q8tUm5Wmqo0LZK0pVZknRMucQ1TVaaRSknpoQsdIfbe5oF6fv+Iyp2bNzZIkQiEAAABwBgiE8CnPgZ2q3viNPDtXymx4lF0br9XGRLXpn6wpgzsoOiKobt3Zadn1mr5Lksvt1ey0bAIhAAAAcAYIhGhyh3sHrjo8LLRkj5yGVSuc3bUrfKiGjOqvG3u3kc1qPmq74jLnMfd3vOUAAAAAToxAiCbjrSiWK3OhajYvkqW2UoWeVlruGiFvl5FKHZagn7WLOOH2MRGOY4a/mAhHY5UMAAAAtGgEQjQqwzDk2b9F1Rvmycg50juwg9aaU9V54DBdPKi9IkLtp7Sv6akJ9Z4hlCS71azpqQmNVT4AAADQohEI0SgMV7Vqty9T1fr5slTkq8LrULozUfujh2nEsD76dY9YWS1HDws9kSPPCc5Oy1ZxmZNZRgEAAICzRCBEg/KU7Jdz03y5ti2TxeNUrjtG6bUpcvQYqXFDO6tTm/Cz2n9yYjwBEAAAAGggBEKcNcPrkXvvOlVv+Eam/Ky63oEbrQPUe+gQ/XxAW4UF23xdJgAAAICfIBDijB3uHbhY1ZsWyFJdolJvqJbWDFZJm2EaPayn7ugWI7PZ5OsyAQAAABwHgRCnzXNgp2o2zZc7e0Vd78Dv3BMU1We4xg/tqLYxob4uEQAAAMApIBDilBzpHVi14RuZD+6W07BphbO7tgYN1MCRA3RDv3gFO7icAAAAgOaEb/A4IW9FsVybF6pmc5osrgoVeiK0pGa4ajoM09ikBJ3fJUomE8NCAQAAgOaIQIijHOkdWLNxvrx718qQlOnqoFXeFLXrN1RTh3RQXGSwr8sEAAAAcJYIhKhzpHdg9cb5Mpflq9JwaHlNonaFDdawMX10S982ctgsvi4TAAAAQAMhEEKe0v1ybVog19alMn/fO3Cpc7TUZZjGJ3XRxR1aMSwUAAAAaIEIhAHK8Hrl3rtOzo3fyMjbIrfMynB2UYb6qfvAQbp8cHtFhTt8XSYAAACARkQgDDDemnLVZqWpZuMCmatLVOoN0dKawdofNVijRvXUXb1by2Y1+7pMAAAAAE2AQBggPIW75No0X64dK2Q23NpRG69lrnEK7Z6kCUmd1LVthK9LBAAAANDEmkUgnDlzpr7++mvt27dPn332mXr27OnrkpoFw1Mrd/ZK1WycLxXvktOwaaUzQRss/dVvcD9dN7CdIkLtvi4TAAAAgI80i0A4ceJEXXPNNbrqqqt8XUqz4K0oVu3mb1WzeZHMrgod8ERocc1wlcQN1tjUBP2+Z6wsZoaFAgAAAIGuWQTCpKQkX5fg9470DnRumi/PnsO9Aze5Oui72lGK7T1Yk4Z2VMfWYb4uEwAAAIAfaRaBEMd3uHfgctVsnC9TWZ4qDYfSa/pqi2OAhg7vo18PaKvQIJuvywQAAADghwIiEMbEtLw7Y66iXJWt/kplG76VqbZGue4YpdWMltFlmM4b00M39m4ji5negb4UFxfu6xIQwLj+4Gtcg/Alrj/4UnO7/gIiEBYXV8jrNXxdxlk70jvQtWm+vPs3yy2z1jq7aIWnrzr37a9pQzuobUyoJOlgcYWPqw1scXHhKiws93UZCFBcf/A1rkH4EtcffMkfrz+z2XTCG2QBEQibu8O9AxfLuWmBTFUHVeoN1dKawdoZMkDJo3vorsR4BTsa5qNMz8zX7LRsFZc5FRPh0PTUBCUnxjfIvgEAAAD4l2YRCB977DHNmzdPRUVFuv766xUZGakvvvjC12U1uiO9A2uzV8jkPdw7cIkzVZZOgzU+qZOu7Bwlk6nhhoWmZ+Zr1twsudxeSVJxmVOz5mZJEqEQAAAAaIGaRSB86KGH9NBDD/m6jCZheGrl3rlKzo3zZRTtlEtWrahJ0Bqjr3oPSNRVg9srNjK4UY49Oy27Lgwe4XJ7NTstm0AIAAAAtEDNIhAGgiO9A51bFsnkrFChN0Jp1cOUFzFAY1IT9Ie+bWS3WRq1huIy52ktBwAAANC8EQh9yDAMefKy5No0X+7dGTIkZbo6aJkrWeHdBmjC0I7q0aFVgw4LPZGYCMcxw19MhKNJjg8AAACgaREIfcCorVHttmVyblogHdqvKiNIy2v6ar25nwYN6qWbBrVXVHjTh7DpqQn1niGUJLvVrOmpCU1eCwAAAIDGRyD0gUNp/5Vl51LlemKUVj1KpTEDNC6li6b2ai2b1eyzuo48J8gsowAAAEBgIBD6wFeV/bS1PEodevbWlKSO6to2wtcl1UlOjCcAAgAAAAGCQOgD088fJrcnSSFBvP0AAAAAfIdE4gN2m0V2m6+rAAAAABDofPfAGgAAAADApwiEAAAAABCgCIQAAAAAEKAIhAAAAAAQoAiEAAAAABCgCIQAAAAAEKAIhAAAAAAQoAiEAAAAABCgCIQAAAAAEKCsvi4g0KRn5mt2WraKy5yKiXBoemqCkhPjfV0WAAAAgABEIGxC6Zn5mjU3Sy63V5JUXObUrLlZkkQoBAAAANDkGDLahGanZdeFwSNcbq9mp2X7qCIAAAAAgYxA2ISKy5yntRwAAAAAGhOBsAnFRDhOazkAAAAANCYCYROanpogu7X+W263mjU9NcFHFQEAAAAIZEwq04SOTBzDLKMAAAAA/AGBsIklJ8YTAAEAAAD4BYaMAgAAAECAIhACAAAAQIAiEAIAAABAgCIQAgAAAECAIhACAAAAQIAiEAIAAABAgCIQAgAAAECAIhACAAAAQIAiEAIAAABAgCIQAgAAAECAIhACAAAAQICy+rqApmA2m3xdAgIQ1x18iesPvsY1CF/i+oMv+dv1d7J6TIZhGE1UCwAAAADAjzBkFAAAAAACFIEQAAAAAAIUgRAAAAAAAhSBEAAAAAACFIEQAAAAAAIUgRAAAAAAAhSBEAAAAAACFIEQAAAAAAIUgRBoQCUlJfrlL3+pKVOm6IILLtDtt9+ugwcP+rosBJgXX3xRvXr10rZt23xdCgKM0+nUww8/rMmTJ+uCCy7QH//4R1+XhADy7bffatq0abrooot04YUXat68eb4uCS3YzJkzNWHChKP+f7tr1y5dccUVmjJliq644grt3r3bd0WeIgIh0IBMJpNuuukmff311/rss8/UsWNHPfPMM74uCwEkMzNT69atU/v27X1dCgLQ008/LYfDUfdv4J133unrkhAgDMPQvffeq6eeekqffvqpnnrqKf3hD3+Q1+v1dWlooSZOnKh33nnnqP/fPvzww5oxY4a+/vprzZgxQ3/60598VOGpIxACDSgyMlIjRoyo+3nQoEHav3+/DytCIHG5XHr00Uf15z//2delIABVVlZqzpw5uvPOO2UymSRJsbGxPq4KgcRsNqu8vFySVF5ertatW8ts5qsuGkdSUpLatm1bb1lxcbE2b96sqVOnSpKmTp2qzZs3+/1oMauvCwBaKq/Xq/fee08TJkzwdSkIEH//+9914YUXqkOHDr4uBQEoJydHkZGRevHFF7VixQqFhobqzjvvVFJSkq9LQwAwmUx6/vnndeuttyokJESVlZV69dVXfV0WAkxeXp7atGkji8UiSbJYLGrdurXy8vIUHR3t4+qOj1+bAI3kL3/5i0JCQvSLX/zC16UgAKxdu1abNm3SjBkzfF0KApTH41FOTo769u2r2bNn65577tFvfvMbVVRU+Lo0BAC3261XXnlF//znP/Xtt9/qX//6l+666y5VVlb6ujTA7xEIgUYwc+ZM7dmzR88//zzDVdAkVq1apezsbE2cOFETJkxQfn6+brzxRi1dutTXpSFAtG3bVlartW6o1MCBAxUVFaVdu3b5uDIEgi1btujAgQMaOnSoJGno0KEKDg5Wdna2jytDIGnbtq0KCgrk8XgkHf5F2YEDB44aWupv+KYKNLBnn31WmzZt0ksvvSS73e7rchAgbr75Zi1dulQLFy7UwoULFR8frzfeeEMpKSm+Lg0BIjo6WiNGjNCyZcskHZ5pr7i4WJ07d/ZxZQgE8fHxys/P186dOyVJ2dnZKi4uVqdOnXxcGQJJTEyM+vTpo88//1yS9Pnnn6tPnz5+PVxUkkyGYRi+LgJoKbZv366pU6eqS5cuCgoKkiR16NBBL730ko8rQ6CZMGGCXn75ZfXs2dPXpSCA5OTk6IEHHlBpaamsVqvuuusupaam+rosBIj//e9/eu211+omNbrjjjs0adIkH1eFluqxxx7TvHnzVFRUpKioKEVGRuqLL75Qdna27rvvPpWVlSkiIkIzZ85Ut27dfF3uCREIAQAAACBAMWQUAAAAAAIUgRAAAAAAAhSBEAAAAAACFIEQAAAAAAIUgRAAAAAAAhSBEAAAAAACFIEQAAAAAAIUgRAAAAAAAhSBEAAAAAACFIEQAIAGdOutt6pXr1566623jnrt+eefV69evfTAAw/4oDIAAI5mMgzD8HURAAC0FKWlpbr44otVVFSkDz74QH379pUkpaen64YbblC3bt300UcfKTg42MeVAgBAIAQAoMFlZGTo6quvVocOHTR79mxVV1dr2rRpKi8v10cffaQePXr4ukQAACQRCAEAaBSvvvqq/va3v2nq1KkqKSnRsmXL9Nhjj+myyy7zdWkAANQhEAIA0AgMw9BNN92kpUuXSpKmTp2qv/3tbz6uCgCA+phUBgCARmAymXTOOefU/Xzttdf6sBoAAI6NO4QAADSC3bt36+KLL5bNZlN5ebm6d++ujz76SA6Hw9elAQBQhzuEAAA0MJfLpd/+9reqrq7Wc889p5tvvlnbtm3T448/7uvSAACoh0AIAEADmzlzpjZv3qybbrpJo0eP1h133KEhQ4bogw8+0Ny5c31dHgAAdRgyCgBAA/rmm290++23a+DAgXr33XdltVolSXl5eZo2bZrcbrfmzJmjjh07+rhSAAAIhAAANJj9+/dr2rRp8nq9mjNnjjp06FDv9fnz5+u2225T//799e6778put/uoUgAADiMQAgAAAECA4hlCAAAAAAhQBEIAAAAACFAEQgAAAAAIUARCAAAAAAhQBEIAAAAACFAEQgAAAAAIUARCAAAAAAhQBEIAAAAACFAEQgAAAAAIUARCAAAAAAhQBEIAAAAACFAEQgAAAAAIUARCAAAAAAhQBEIAAAAACFAEQgAAAAAIUARCAAAAAAhQBEIAAAAACFAEQgAAAAAIUARCAAAAAAhQBEIAAAAACFAEQgAAAAAIUARCAAAAAAhQBEIAAAAACFAEQgAAAAAIUARCAAAAAAhQBEIAAAAACFAEQgAAAAAIUARCAAAAAAhQBEIAAAAACFAEQgAAAAAIUARCAAAAAAhQBEIAAAAACFAEQgAAAAAIUARCAAAAAAhQBEIAAAAACFAEQgAAAAAIUFZfF9AUSkoq5fUavi4jIMXEhKm4uMLXZUB8Fv6Ez8J/8Fn4Bz4H/8Fn4T/4LPxHc/8szGaToqJCj/t6QARCr9cgEPoQ773/4LPwH3wW/oPPwj/wOfgPPgv/wWfhP1ryZ8GQUQAAAAAIUARCAAAAAAhQBEIAAAAACFAEQgAAAAAIUAExqQwAAABwNqqrK1VRUSqPx90kxztwwCyv19skx8KJ+fNnYbFYFRYWqeDg488iejIEQgAAAOAEqqsrVV5eosjIONlsdplMpkY/ptVqltvtnyEk0PjrZ2EYhmprXSotLZSkMw6FDBkFAAAATqCiolSRkXGy2x1NEgaBU2EymWS3OxQZGaeKitIz3g+BEAAAADgBj8ctm83u6zKAY7LZ7Gc1lJlACAAAAJwEdwbhr8722iQQAgAAAECAYlIZnJHqiip9+tx7yvj6O3ndHvUeNUCX3Hu1ouJjfF0aAAAAgFPEHUKcNsMw9M9fz9TqL5ertsYlj9ujzUvX69lr/qyaympflwcAAIBjMAxD1103Q3Pnfu7rUuq8++7buvPOW5rseJ9+OluLFy86avmll16gF1983ud1+AKBEKdt57ptOrAnT57aHx5eNbxeuaqdWjN3uQ8rAwAAwPEsXPiNysoO6ZxzzvV1KXWmTZuurVuzlJGxukmO97//faIlSxYdtfyJJ57WpZde2SQ1nKgOXyAQ4rQV7Nwv4xjNOV3VTu3butcHFQEAAOBkPvrofU2Zcr6sVv95aiwkJFTjxk3Qxx9/4NM6evbsrfj4eJ/W4CsEQpy21l3aymw++tKxBdnVrmcnH1QEAACAE8nNzdHGjRs0fvzEesuPDJV8++3/6KKLpmjKlFS98MJzMgxD6elL9YtfXK5zzhmr+++/W2VlZWd07LS0b/XLX16jCRNG6/zzJ+qee+5Qfn5e3eupqRO0fPlSlZUdOum+Pvtsjn7xi8s1fnyyLrlkqt55Z1a913fuzNbvfvcbnXfeBE2alKKrrrpUH3/8oSTp9ttv1tatWzR37udKSUlSSkqSvvzys3rvwxGPP/5n3Xjj1Vq+fKmuvPISTZw4Wr///Z0qKzuk3Nwc/eY3v9KkSSm68cartWPH9no1vPfef3XTTddoypRUXXDBZN1772+Vm5tT9/qJ6jiVc2xo/vPrATQbCUN6KaZDaxXs/mHYqMlskj3IoaTzRvm4OgAAAP+Vnpmv2WnZKi5zKibCoempCUpObPw7U6tXr1RwcLC6d+951GsLFsxTnz6Juv/+h7V16xa99tq/ZBherVu3Vr/85a/ldDr17LNP6ZVXXtTvf//AaR33q6++0GOPPayJEyfr2mtvkmRozZrVKi0tUXx8W0lSv34D5Ha7tX79Wo0ZM+64+3r33bf0yisvacaMazRkyFBlZWXp9ddfVlBQkC655ApJ0h/+8Dt16dJFf/rTo7LZ7Nq7d48qKyslSXfffZ8eeuhetWvX/vtapPbtOxz3eAUF+Xr99Zf1q1/dqqqqaj333NN66qnHlZeXpwsumKYZM67RK6+8pD//+QG9/faHde0fCgsLdMkll6tNm3hVVVVqzpyP9etf36D33/9EYWFhJ6zjVM6xoREIcdpMJpNuf/V+zX7mHa2bt0Jej1c9RyTq0vuuVVBYsK/LAwAA8EvpmfmaNTdLLvfhR2+Ky5yaNTdLkho9FG7dmqXOnbsec5SX3W7XX/7yV1ksFo0cOUpLl6bp448/1HvvzVa7du0lSTt2bNPcuV+cViD0er16+eUXNXbseD3yyBN1y1NSUuutFx4erjZt4rV5c+ZxA2FlZYXefPM1XXvtjbrhhpslScOGjZTTWaNZs/6tadMuVXl5ufLy9umvf/2bEhK6S5KSkobX7aNr124KCgpWZGSU+vXrf9L6y8vL9Morb6pz505yu73Kzt6ud999Ww8++Gedd97U79cy9Pvf36U9e3arS5eukqQ77ri7bh8ej0fDho3Q1KmTtWTJIp133tTj1nEq52ixWE5a9+kiEOKMBIeH6qpHbtaMP/9SEs1aAQAATmZ2WnZdGDzC5fZqdlp2owfCgweL1KpV5DFfGzx4aL2g0b59R5WVldWFwSPLSktLVFtbK5vNdkrH3Lt3j4qKCnX++RecdN1WrSJ18GDxcV/ftGmjqqurNX78JLndP0xsOGRIkv7zn9dVWHhArVu3UevWbfTMM0/o0kuv1JAhSYqKij6lWo8lPr5tvTuI7dt3lCQNHTrsqGWFhQfqAuGmTRv1+uv/0rZtW+sNg83JOfFcG6dyjkfuqjYkAiHOCkEQAADg1BSXOU9reUNyuVwKCgo65mthYeH1frbZbMdcZhjGaQXCQ4cOh6HY2NiTrmu32+RyuU6wr1JJ0tVXX37M1wsKChQf31bPPfeSXn31JT355KNyOp3q33+g7rrrHvXs2fuUav6xY70HP11+ZNmR2vPz8/W7392uPn0S9fvf36/Y2DjZbDb9/vd3nfD8TuccGxqBEAAAAGgCMRGOY4a/mAhHox87IiJCxcXHvwPXGFq1aiVJKioqOum65eUV6tkz4rivh4cffu2pp55XdPTRd/06deosSercuYsef/zpumcS//WvF/T739+lTz758pjDZRvaihXL5XTW6K9//ZuCgw8/SuV2u09pwpxTPceGRiAEAAAAmsD01IR6zxBKkt1q1vTUhEY/dqdOXbRp08ZGP079Y3ZWXFxrffXV50pJGXvc9bxerwoK8tWx4/Fnq+/Xb4AcDoeKigo1alTKSY9ttVo1dOgwXXHFDD3yyEOqqChXREQr2Ww2uVyNd0fW6XTKZDLVG4K7cOF8eTyeeusdq47TPceGQiAEAAAAmsCR5wR9Mcto//4D9eabr6mkpERRUVENss9LL71AgwcP1YMP/vmYr5vNZt1yyx169NGH9MgjD2nSpCkymUxas2aVzjlninr37ivp8LOG1dVV6t9/0HGPFR4erhtuuFl///szys/P06BBQ+T1epWTs1cZGav15JPPaMeO7Xrppec1ceI5ateug8rLy/TOO2+pe/eeiog4fLeyU6fOWrnyO61Yka5WrVqpbdt2x3228kwMHTpMXq9XTzzxiKZOvUi7du3Ue++9fdTw0+PVcbJzbAwEQqCFy8zcovfe+1hOZ7XGj0/VlCkTG2WGKgAAcHLJifFNEgB/avDgoYqIaKUVK5br3HN/1iD7rKmpOWm4nDz5XDkcds2a9W/98Y9/UFBQsBIT+yky8oftVqxYrnbt2qtnz14n3NdVV12r2Ng4ffDBu3r//Xdkt9vVsWMnTZx4jiQpJiZG0dHRmjXrTRUXFyosLFyDBw/VLbfcUbePa6+9UQUFBfrTn+5TZWWlHnjg4VOa9OZUJSR01wMPPKx///tVLV68SN2799Bf/jJTDz98f731jlfHyc6xMZgMwzAabe9+ori4Ql5viz9NvxQXF67CwnJflxGw3nrrPf3lL8+ottYlj8erkJBgDRkyUG+//YqsVn4f5Cv8vfAffBb+gc/Bf/BZHFt+/h7FxzfO81vHY7Wa5f7JjKRn6/nnn9G+fTl6+um/n/W+9u/fpyuvvFjvvTf7hL38TsWvfnW9kpNH67rrbjrruhpDY3wWDe1E16jZbFJMTNhxt238JysB+ERp6SE9+ujTqqmpkcdz+B+xqqpqZWRs0Ny5831cHQAAaGozZlytjIzV2rt3z1nva9OmDRozJvWsw2Bm5ibt2bO70Zqu4+S4ReADRx4qbaphe3l5Bfr44/+psLBIKSkjNWHC2GYxZDBvR462pW+SIzRI/ScMU2jk8X+zgaOlp6+SzWaV01n/geWqqip9/vlXuuCCc31UGQAA8IXWrdvo/vv/pOLiorOesXLy5PM0efJ5Z11TWdkhPfTQnxUeHn7yldEoCIRNKC8vX/ff/4jS0pZLksaNS9GTTz6s+PjWjXbMJUvSdeONt8vj8crlcun992erX7/eevfdN+Rw2BvtuGfDMAx9MvNtrfl8ibwer8xWiz577j1d89Rv1Cu5v6/LazZCQoKPudxkMiksjHANAEAgmjRpiq9LqCc5ebSvSwh4DBltIk6nS9OmXaW0tGXyeDzyeDxatGippk2bIZertlGO6Xa7ddtt96i6uqauEWZVVZU2btysDz74uFGO2RC2fbdJGV8uU62zVh63R7U1LtXWuPTf+15Sbc2JG3r6G6/Xq/T0lfrss6+Ul1dQ7zWP26O9mTu1b+seNcajvKNGDT9m49igIIdmzLi0wY8HAACA5oc7hE3k66/nq6ysvO5ZLunw0NFDh8o0b95CTZ3a8L+t2bRpi2prjw6b1dU1+uij/+maa35+Svtxu90ym81N0sxTklZ/vlSu6mP0hzGZtGPNFvUZPbBJ6jhbu3fv1RVX3KBDh8pkMkm1tbW67roZevDBe7R91WbNuv+f8tS6ZRiGQsJDdcOzd6pj7y5ndCzDMGQymeots9lseuutl/WLX9wsj8cjk0lyuWp11123aujQQWd/ggAAAGj2CIRNZOfOPaqqqj5qeXV1tXbt2t0ox7TZrMedXdVuP/lw0S1btuq++x7RunUbZbVaNW3a+XrkkQcUFhba0KXWYxx3RljjBK/5F8MwdP31tykvL7/e3b+33/5A/Xr2Uvo/PpPrR3c7XdVO/euWmfrz3OdlD3Kc8nHyNu3St0+9pwNZe2QPCdKAy8Yp+VcXymI9/IzooEH9lZGRpiVL0mU2e9W//wDFxsY03IkCAACgWWPIaBPp1au7QkJCjloeHBysXr16NMox+/btraioVkctDwkJ1lVXXXbCbfPzD2j69GuUkbFeXu/h5w//7/8+1Zgx52nLlm2NUu+BPflaN3+lOvVPkD346FBkeA11H9anUY7d0LZvz9a+fXlHDQWtqqrW/16ffcyg7vV4tSlt7Skf4+CuPH18y7M6sGWPZEiuyhqte2+BFjz+dr317Ha7Jk5M1eWXX0gYBAAAQD3cIWwikyaNU1xcjFwup2pr3ZIO38Fr06a1JkwY2yjHNJlMeuONF3TFFTfI7fbI7XbLZDLpvPMm6aKLzj/htm+//cFRs1MahqGiomJdcMGVeuONF5Sa2jAPAXvcbr11/z+1ZfkGWaxWeTweBQU5ZDMMuZ21stisMplMuvLRm0/r7pkvVVZWyWI59u9bPDUuuV1HB0KP26OKklPv/bRq1lfyuNz1lrmdtdo6b5VG3z5doTERp1c0AAAAAg6BsInYbDbNmfOOHnvsGX355TyZTCadf/45euih3zdqg/DExD5atepbzZ+/SMXFBzVy5DD17t1DXq9XXq/3uM8FZmb+8PzhkWfTjtztcjqduvfeh/Xdd98c9dzamZj/5ufasnyDap21qnUePqbX7VG3QT3VfUgvBYWFaOA5w9UqLuqsj9VUEhN7H/O9CQpyqP+YwSpcvP2o5yRNZpO6D+11ysco3JYrw3t0k1SL3aZDuYUEQgAAAJwUQ0abUHR0lJ599nFlZa3Sli0r9be/Pa6oqMhGP25wcJAuuOBcXXfdDEVGttKNN96uhITBSkgYrOuvv035+QeO2iYoyC6TyVQv1Pz4z8XFxTpwoKhB6lv+8bd1QfAIj9ujneu2acJ1UzV2xpRmFQalw8M0n3nmLwoKCqrr+RgSEqzOnTvpV/f9Wh37dpU96IfnOO3BDg0YP1TtenQ65WO07t1JpmPchfS4ahXZMe7sTwIAALQYjz/+Z91449VNcqx33pmljIzVTXIsnD3uEAYQl6tW06ZdpYKCA/J4PJJU1/pi8eK5stt/aFEQFnbi5qCGYSg09OhnIk/E43Zr46K12rd1t2I7ttGgc0bIEeyQq+YYM4p+fwx3rVtW+9GtExpLUW6BNi9dL6vNpgEThios6szvsp1//mT16JGgt9/+QHl5BZo4MVXTpv1MQUEO/frF32vF/xZr1edLZbVZlXzxOA2eMvKY+/F6vNq/ba9MZpPa9uhYd1c36Zop2j5/jWp/dKfR6rCr55QkhURzdxAAAPjGu+++penTL9eQIUm+LgWngEAYQObNW6hDhw7VhUHph9YXX3+9QBdccG7d8t69e8jhsMvpPLrvn9Vq0aRJ409rttHKQxX6+/WPqqyoVM4qp+zBDn3+woe6880/qs+oAVo3f9VRwx/bdGuvoNBjN1dvDF+9+okWzPpCMiSz2aQ5z76jqx79lQZOHHbG++zRI0GPPvrAUcutNqtGXzJBoy+ZcMLtd63dqre/779oyFBQaLCuefoOdUrspugu8brkX7/TomfeV8Hm3bKHBWvQZeM14qafnXG9AAAACCwEwgCyc+fuY7a+qKqqVnb2rnrLLrnkQj333D+PCoQmk0lJSUP0zDN/OenxPB6PPvjgU7399scKy3PJVuKW8X0fRle1U7U1Lr3/yBu66i+/0vZVm+WsqlHt95PIWG0WXfnQDad1fqWlhzRz5vP68stvZDabNX36Bfrd7247pTuZezfv0sK3vpT7J0NX3/nTK+o5vK+Cwxu31caxVJaW6407n633rKGryqnXbntKD37xnIJCgxWf2EVXvnlfk9cGAACap8WLF+nll19Qfn6eevXqo3vvfVBdu3are93r9eqdd97S55/P0YEDBWrTpq2uvfYGnXfe1Lp11q9fp1deeVE7dmyXJLVr117XXHODJkyYpEsvvUCHDh3Sm2++pjfffE2S9I9/vHzcu4U7dmzXM888qW3bstSuXQfddtsdev31V9StW4IefPDPkqTbb79ZkZGReuyxp+q2y8hYrTvu+LXeeut9devWXdLheS7eeONlzZ8/TyUlB9WpUxf9+te3KTk5pW67pUvT9O9/v6a9e3fLarWpY8dOuvXWOzR48FBJ0uefz9H777+j/fv3Kzg4SF27Jujee+9Xp05dG+Dd908EwgByuPVFsCorq+otDwkJVq9e3esti4qK1Icf/kd33XW/du3aLa/XUPfuXfWXvzyoESNOfvvf6/Xqhhtu18qVa1RZWaULYgfKMNe/3AzD0K4N2xUaGa77PvqrvpuTpt0btqt1l3ZqN7S7ipzlauN0yeE4ec9El6tWF174c+3bl1c3Gc6sWe9p1aoMffrpuyed/GbN3OVHhUFJMlss2rx0vYaeN+qkNTSUQ4fKtGPHTh3I2HXMSWMMr6FNC1cr6YIxdcuqK6qUtyNXEbGRiu3QuslqBQAAzUdBQZ5eeOE5/fKXv5bD4dAbb7yiu+/+jd57b7YcjsMzuT/33NP66qvPdd11N6lnz95atWqFnnzyUUVEtNLo0WNUWVmhP/zhLqWkpOr662+SYUjZ2TtUUXF4pvQnnnhad9zxa40bN1FTp06TJHXteuwwVVNTo7vvvl3R0TF6+OHH5XI59Y9/PKvy8nJ165Zw2uf3xz/+QZs3Z+rGG3+l9u07aOHCb3TffXfr9dffUo8evbRvX64eeugPuuyyn+u22+6Uy+XU1q1ZKisrkyStW5ehp59+Ujfd9GslJvZXVVWlNm3aqIqKijN4t5sPAmEAmTgxVXFxsXK59te1vrBarYqNjdGkSeOOWj8xsbe++eYTFRcflNVqVatWp/5c2uLFy7VixRpVVR0OnydqJ28ySaGtwjTx2p9pz54cXX/9rcp9Ie/7yVgM/fWvfz5pm4y5c+cposStYWG9ZDOZlVVTqA1VBdq+PVvp6as0atTwE27v9XhlHKNKwzDk9RwdyhqDYRiaOfN5vf7627LbbUowR6l3cLx+GmXdtW5VlP7QnuLr1+Zo/n8+l9VqlcftVqfEbrrhmTsVEtH0dzUBAMCJpWfma3ZatorLnIqJcGh6aoKSE+Ob5NilpaV68sm/qX//gZKkXr366Iorpmnu3M80bdqlys3N0Zw5H+mBBx6uuyM4bNgIFRcX6c03X9Po0WOUk7NXFRUV+t3v7lVIyOHvGsOH/zAPQs+evWWxWBQX11r9+vU/YT1ffPE/HTp0SK+//rbi4g7/Qrt9+w66+ebrTvvcVq9eqeXLl+qFF16pu9s3fPhI5eTs1axZ/9Zjj83Utm1ZCgkJ1W233Vm33Y/vHm7enKmEhB66+urr65alpKTKajXL7W6a74O+wCyjAcRqtWrOnHd04YXnKTg4uG720U8/fVc22/EnbomJiT6tMChJCxcurguDkpRTUyyPUf8vkslsVvekPrJ9fwfQ6/Xq5z+/SdnZu1VdXa2KigrVVFTr/Yf+qVd+dq/enPagvnv1M9XWHP1c49a3F2msvZM62lsp3hau0aGddXl0P3lq3dq8Oeuk9Q6ePEL2Y9yJ9Hq86jN6wGmd+5n68MNP9O9/vyOn06ny8grlVZfKbXiOWs/6/+ydZ5gUVdqG71Oh0+QcgBlyRoIgYgBBXQOuOee45jV96pqzrquia84RI6KIiphFxACScxzSwAyTQ6fqqjrfjx56pqcbQUVFt+7r8pI+3XXqVJ3qnnrqfc/z6hpdh/QGYN5ns/jipQ8xwxFC/iCRcIS1C1fz8vWP/y5jdnBwcHBwcNhxvltcwUsfLaOmMbocpKYxzEsfLeO7xRW/y/6zsrJjYhCgsLCInj17s2TJYiAqqhRFYeTI/TBNM/bf0KF7sHLlcizLori4I16vj1tvvZHp07+iqWnHayi3Z9myJfTq1ScmBgH69u1PdnbOz+7rxx9nkpOTw4ABA+PGvvvuw1i+fCkA3bp1x+9v5s47b2HmzO8JBuOXUvXo0ZOVK5fz8MMPMG/enFjW2V8dJ0L4P0Z2dhYPPngPDz54z2+6n8zMDHRdi0UiF/s3kaunkaq50VUNl8eNN83HSTefG9tm9ux51NbWYbdJkzw2uz/5egrBLQ0EgVkvf0zZt4s48flrES1um/UbtuDa2AyKGttOV1Sy8dHLm0dJScftjrfLwB7scfi+/DB5OmY4glAVVFXh6KtP+1VOoz+HJ598Ie6HqdJootpoJs+Viiaix6Z73PTcsz+d+kZTL758ZQpGO4FsRUxWz1lGU20jaY7b6A5hGAY1NXXk5GThcm0/RdnBwcHBweGX8M601RjtIk2GafPOtNW/S5QwKyuxjFdWVjY1NTUANDTUY1kWBx20X9Lta2qqyc8v4MEHH+P555/m5puvw7Zt9thjTy6//Go6dNj+PVd8fzVkZmYmtCdr2x4NDfXU1NSw336Jru1bS4CVlHTmnnseYPz4F7n66stQVY2RI/fjssv+j6ysLIYNG87119/ChAlvMGHCG3i9Pg466FD++c/L0XX3zx7TnwVHEDr8JhxzzOE8+eTzMUFoSpvP65ZSmp7HjVdcRlGXjvQbOQhVa70Eq6trUZTWBMkSVwZ5mg9dtAo9Kxyhtmwz675fQue9+gNQPm8Vmq5hWvHCyKWodPFkM2bMyO2OVwjBMdeczrDD9mXRtDnobheD/7YHuR0LftV5+DnU1dUltE2rW0nPtALG7r4PbreLPY4YyZBD946tiWybOtoWRVUJNvodQbgdpJQ88sjTPPLIUxhG9Cng6NH78sQT4/B6PX/w6BwcHBwc/mpsjQzuaPvOJtm9Rl1dbcxUJj09A1VVeeKJ52JlrtqSlZUNQP/+Axg37hHC4RCzZs3k0Ucf5LbbbuTpp1/8WePJyclh/fp1Ce319fVxr10ud0K0rn1kMi0tnby8fO655/6f3Odee+3DXnvtQ3NzM99++w0PP/wADz30H267LRosOeSQwzjkkMOoq6tj2rQveOSRcaSmpnD++Zf8rGP7M+EIQoffhNLSTowbdzdXX30TQiiARNd1Hnr+QXbffVDcZwO1jQRqmxi8Wz8Mo1XUFelpschYWyKBMBWL18YEoS87LWmBdhvJ2OPGomk7fpmX9O1CSd8/xkVqzz334KOPPo2LkEok9T6Ly166JekPc58RA/ju3WnYVnxqqapr5DjmMtvlxRdf48EHH8c0zVjb559PY999D2H69I8cUejg4ODgsFPJSXcnFX856b9P9KmurpaFC+fH0kYrKipYsWIZY8f+HYDddx+Kbdv4/c0MG5a8PnJb3G4P++wzkrKy1bzyyouxdk3T4+7ptkXv3n359NOpVFVtiaWNLlmyiNramrjP5efnM2/e3Li2WbO+j3s9dOgevPnmq3i9PkpLO29336mpqfztbwczb95sFi9emPB+VlYWRx55DF9//SVlZWu229+fGUcQOvxmHHbYQZxwwlimTJmGruvssceQOHFmBEJMvfl51n23GEXTQEouGP13np42hWAwSJNlYGLjIl4Uam6dlZ/NZsHEaWR0zGOPs8eiu11EAqE49xqXx82epxzMn4Vrr72Mr7+eQSgUIhIxEULg8bi5555EMdjc7Ke2to79Tj+UeZ/NIuwPYkZMEKC7XRxz7WmoWqKYdojn4YefjBODW6ms3MLEiZM59dTj/4BROTg4ODj8VTl6VDde+mhZXNqoS1M4etTPd9T8JWRmZnL77Tdz3nkX4na7ef75p8jKyuaQQ6KCsKSkM0cccQy33HIDJ598Gr1798UwDMrKVrNhw3r+9a+b+Pbbb/jww/fYd9/9KCgopKqqivfee4fdd291oS8t7cx3333D8OEj8Pl8lJSUxgxo2jJ27OG8/PJzXHPN5Zx11j8Ih0M899zTZGZmxTnEjxw5mg8+eI+HH36AESP2Yc6cH/nhh+/i+ho2bDh77LEnV1xxMaeccjpdunTD729m5coVGIbBBRdcwqRJE1m8eCHDh48gNzePjRvX8+WXn3PwwdEazs899xSNjQ0MHrw7GRmZrFy5nHnz5nDRRZf+FtOxyyCklD9lAPmXoKamGdv+yx/mTicUCvHEE88zYcJ7SGlz5JGHcckl5+HzekCI7ZZyAMjLS6OqKnla4/tXP8HabxdhGa035JrHRfFxw5n4wzSa6hsZ05ALhvmTNqWaW2fvS45i3ptfEqhpAKGgaAoH3XYWaT2LSUn1kaJY6Ku/R61Zi+3LItJtBHZWh599Tn5ryss38cQTLzBz5my6dCnhwgvPYdCgVoeucNjguutuY/LkKSiKiq5rXH3ZxeSE3aycuZjs4lz2O/UQOg/ontD3T83F/yolJf3Z1k/gvvuO4LXXnv1N9uvMxa6DMxe7Bs487Do4c5Gciop1FBaW7pS+dtRldGc7W951162sWbOa008/iyeeeJTKys307t2Hq6++PlbHD6LLKSZMeJ3JkydRXr6BlJQUOnfuytixh3PIIYexfv1ann76cZYsWUxdXS2ZmVnstdc+nH/+xaSnZwCwbNlSxo27lzVrVhEKhX6yDuHKlSt44IF/s3z5UgoLi7jwwn/y+OMPM2LE3lx22VWxz73yygu8++7bNDU1se++oxgz5gD+9a+r4uoQGobBK6+8wCeffERlZQXp6Rl0796TY489gb322odFixbw0kvPsWLFcpqaGsnJyWX06AM499wLcLlczJgxnbfeeo3Vq1cSCAQoKCjk0EMP58wzz8Kydm0t8VPXqKIIcnJSt7mtIwgdkiKl5JhjTmfhwiWEw9HUhoGeLC5K6U6RqaL4POSeNJqii49A6NsONG/rD0uwvplnD70WK5IYnSnarRsnPHcNALVlm5ly/TPUra8Eos6kZhKX0dSCLM6efDd1ZRWYYYPFm9Zx0413UltbT3Gmh8//dSApbg0hrai2VHVCA4/AKu7zC87Or2fxtLlMeeRNqjdsISM/iwPPP5Jhh+273e2uuupGJk+eQijUmm7i9Xp4/PEHkpYOaYvzRz6Rvfb6Gxs2lCd974gjDuXRR+/7TfbrzMWugzMXuwbOPOw6OHORnJ0pCHeUv3qpg22xaVM5J510NNdccwNjxx7+Rw8H+HPMxa8RhE7KqENSvvtuFkuWLI+Jwc6Kjxv07ngi0TRE2x+iavxnmDVNlNxx5s/uP1jfjKKpSQWhv7o+9u/sLkWc+vrNNFdF2148+qak/fmrG5j9/RwefPRJFi9air/Zj2x5CHD5gbvhUSWipYSDALAiuBdNIVDUC8TvW31l6TfzeO3GJ2LlM+oraph07ytYhsmeR4+mvr6BsrJ1FBcXUVCQF9uuudnPe+99SDgcL4iDwRAPP/wUeXm53H77vcyfv4iMjAz+8Y8zOO+8M5KuPfw9qaysYtq0b/B4POy//0hSUnad+oh3330zp512fkK7y+XijDNO+gNG5ODg4ODg8L/FK6+8QG5uHgUFhVRWVjB+/ItkZmax335j/uih/c/gCEKHpMybtzBuMfCx7mL0diXSZShC3Yc/UHzlMWhZaT+r/4wOuUmNYISq0HH3XgntqXmZAKTkZtCwsSpxO03l1DMvIBgKoQqBoDWldVTvfLRk+7IiiGAj0pf5s8b+a/no0bcTailGQgafPPkunyyaxcsvv47L5cIwDPbffxT//e+9eDxuampqY7bJ7Vm/fiPHH39WrGxFVVU148Y9RkXFFm655VogGvVd/sNiFk+fizfVy9Cx+5DX6bd1UX3qqRe5776HUVUFIRSktHn22UfYd98Rv+l+d5T99tuH//73Xq6++iYMw0BRFFRV5frrr2TYsCF/9PAcHBwcHBz+BxA8//wz1NRUoes6AwcO5uKLLyclZdsRLYediyMIHZLSoUMRbrcrZrhRqvhQk0TShEvFKK/52YJQ1TVGXnYsXz3wZiwFVKgKLp+b4eeO3eZ25VkW7g1WXCmKiLRYI5sIhkJbRxW3vrGm2aA4y5fYmbSR2u9fU6ZmY2XS9ub6Jt4f/xbhsBGLAn7++dfccsvd3HvvbRQXFyZ1TFUUBY/HTX19Q1x7MBhi/Pi3uPzyC0lLS+W/5/+HBV/PwwiGUTWVL1+ZyvE3nMnQQ/fe+QcJLFy4hPvvfyQWZd7Keef9kzlzpuHzJZmTP4Cjjz6MI488lLlzF9DY2MTuuw8iPf3nXc8ODg4ODg4Ov4zTTjuT0047848exv80f2wumcMuy0EH7Y/H44kJqzWWH0sm5k7LiIWrU25iu22z9ttFfPHwOyz58LuEiBhA/yP34e/3X0inob3I7JRPv8P34pRXbyKjOLE/gKamZl78eiozmtYRtk0itkVEWswPVPDRxla7YImMMwp5/PPl+MPxqalSqFh53cHl3bETshPJKs5L2h6RJs1tCtMDhMNhJk6cjGEY6LrO9ddfidfbOmZFUfB6PaiqGleuYisul8769RtZNG0OC6fPxwhGxZllWkTCBm/d9QIhfzBhu53B22+/h2EkWmsLIfjyy+m/yT5/KYqisPvugxg9el9HDDo4ODg4ODj8T+FECP/E1Nc38OSTzzN16mekpqZy9tmnctRRh23T/XPz5koaGhrp1q0zuq7/ZN8ej5t33nmFSy65muXLVzFJVrGXkovaxptHeFxkH7kXWkZ8SD8SDDPh/AeoW1dBJGige1x8/dDbHP/M1WR3jnfRKh3el9LhfXfoeDdtqkDXdWY3b2JuYDMpiougHcHEjkbOWmrx2VKiCIGUEiEE7/y4gW75qVz6tz64PF6wLazsToQGHbFD+93ZHHLxsbx2w5NE2qwF1D0uFjYkFmYFsG2bYDCEy+XilFOOJz8/j0ceeZpNmyoYOnQQV111Cfff/wgbN25KcMw0DIOOHYuZ/OqrhAOhhL5VTWXVj0vpP2rnp0cGg6GkZk5SyoR1kLsKDZuqCdQ0ktOtGJfPqUHo4ODg4ODg8NfHEYR/Uvx+P4ceehyVlVWxtX7XXXcb8+Yt5Pbbr4/7bHV1DRdccAXz5i1C01Q0TeOuu27iiCMO/cl9dOlSyocfvkV1dQ22LUmtbGLjvW8QXLQWNd1H7mkHUHD2IQnbzXzhI2pWl8fKSUSCYSIhg6k3PcfJr9zwi4+5Q4eiWAqrjaTJjkafhBD06tWdsrL1sTV0prRREChEK1bc//EKeh5+Fgfs0RfpSfvd1w22pd+oIRx/y7lMeeRN6jbXkJaTzgHnHkn5+xNY/GV5gqgrLCyIi1odeOBoDjxwdNxnLr30fL766huCwVbR5/F4OOKIQ8nKykTdphOs+In3kjNhwiQefPBxKiq20LVrZ2688f/Yb799Ej536KEH8t57HxIIxEcgTdNk5Mi9ftY+f2tCDX7ev/oJKpesRdE0bMtixAWHs/spB/7RQ3NwcHBw2EXY+qDZwWFX49cWjXAE4Z+UN998l+rqmjjjl0AgyGuvTeDCC8+hqKjVLOTMMy9i8eJlmKbJ1uVcV199E6WlneJq3G2L3Nyc6D/yc+k5/rrtfn7ZlO/jagsCICXVqzcRqGvC9zPXG24lNTWF008/iVdeeSNO+Oi6zv/936UsX76KRx99mlAojGVZWNLGktGyDP369WHUgQdgb8OUZUeY+/H3fPLkOzRsqSWvpJBD/3kCvUZs//wlY+CBezDwwD2wbTvmApo7sJQfZs4mGAxhWVasMP3dd9+83T9A/fv34YUXHuemm+5i1ao1eL0eTj/9JE4++Rg++GAqGT0LcH/lJhxsl8IpoMfQHS+98dJLr3P33eNiwnvFilX84x+X8+yzD8eJvHXrNpCdlcno/fbly6+mEwgEUVUFXXdx3XVXkJuRggg2ID3psAv8cf3gX0+xeeEabNOCcASA756cTHZpIV32+WVz7ODg4ODw10FVNSIRA5fr9/cecHDYHpGIgar+clnnCMI/KdOnfxsnirbicrmYN29hTBCuWLGKFStWxSJrWwmFwjz77Mu/WZ21HWXj0rVUrN5IXkkhJQO6bVf43HDDVeTkZPH00y9RW1sHgKapXHDBlQwZMpDp0z8iGAzxzTff8dZbkzAMg2OOOZxTTjl+mw6dO8LM977mvfvHx9ZCbl61kZevfoQz7v8nPffs/4v7bVsSokePbkydOpHHH3+WuXMX0rVrZy6++FwGDNixlNq99tqDzz9/j0gkEnXKvOEO9j/gCHRdR0rJkKzOdNAzUFSlZb+Scx64HM310+nDW7Ftm3HjHouJwa2EQiH+85+HGDlyLyort3D+eZezcsUqNE1DSjjzjJNpam7G6/Vy/NGHsltwCdqn4wCB1NyEBxyKVdR7R0/ZTqd5Sx2bF6yOisE2mCGD2eM/cQShg4ODgwOpqZnU11eRmZmHrrucSKHDLoGUkkjEoL6+irS0rF/cjyMI/6R06FCMqqpYVvxNrG3bFBbmx15XVVUndaaUUlJevvk3GVvvQ/dkzqufYRmR1kYhyO1WHIsOGqEwz182jg1LymI/qnklhfzjiWvwprXWqWv+cQXVE6ZhNwfJPGgYWYcM46KLzqW0tBNXXHEDwWAwlpI4e/ZcrrzyBl5++UlOOulYTjrp2J1yPFJKpj6epFRE2GDKI2/9KkHYntLSTtx7722/qg9d15kwYRITJ06Ocyz9NrScwX36cc255+NO8dB/5GDcP2OdXHOzn+bm5qTvrV69FiklZ51xEWtXltEHL0pEsMhqYvwrb/Lqa88waPBueL5/FbVmXWtNSMPEM/ddgt4zsDOLf9Vx/1KC9c2ompYY1Qb8NY1/wIgcHBwcHHY1vN7ovUlDQzWWlfj34rdAUZSkhnEOvz+78lyoqkZaWlbsGv0lOILwT8oZZ5zEW2+9SzDYKghVVaWwsCAuDbRv394YbYVZC263m1GjfptyA3ucdQjrvl9C3doKIqGoqYzq1jn4jnNin5n6+ETWL1qD2WZsFWvKeffeVzj5zgsAqHxmChVPfYAMGyCheeZyat6ZTvdnr+LJJ19IiFQZRoQZM36gpqaWnJzsnXY8kZBBoCG5EKpaX7HT9rMzeeHFVxPOj2VZLFy5nM4jelNcXPSz+0xNTcHr9RKJNCW8V1LSkeXLVpKxrpYXPf1i7QqCB8JrufOO+8hL1Xj26M5oWjtzY9tEX/0t4d13joD/uWR1LiRZ5r2iqZTuuWPRWQcHBweHvz5eb8qvuun+ueTlpVFVlfg31+H3568+F07ZiT8pPXp04/HHHyA7Owufz4fb7Wa33frx+uvPxaUxZGVlctFFZ8eVKtB1nczMDM4446TfZGy6181JL/6Lsf/+B/tfcQyjrz2Jc96/J85hdPYH38SJQQArYjL3k+955JGn2LJyHRVPTEaGomIQwA6GCS5eR8Pnc6mpqU26b03TaGjYuVEdza3jTkleniKrMOdX9d24YiM/XPgIH+99BV+MvYklT39I2bwVv7oURHOzP2l7xIgwdernv6hPRVG45JLz4q4liK7R/L//+ye16zfxf2oJKUKL/ecVKle7u7Bu3jKq1q0hlCQKJwDFX/eLxrQz0Fw6o648Hs3jirUpuoYn3cewMw7+w8bl4ODg4ODg4PB74EQI/8QccMB+zJkzjdWry0hNTdlm1OfKKy+hT59ePP30i9TW1nPAAaO46KJzycrK/M3GJhSFznv1J++IEUmfqJhJhAEAtuSRh59i3pMTudTXPfHtYJj6z+YwcuTevPnmOwlrI10unZKSjjvlGLaiKApjzvo7nzz1TlzaqO52cdCFxyTfyDLRNs5Hq1iG1L1ESodi55TEfaR5XSXfnnk/ViBq9GL6Q6x6/H0qnhes0ywOOO8IRp8x9heN+dBDDuTpZ16KmQ4Jog8JpJTcc8+D5OfncdhhB/3sfs8//yx0Xefhh5+ivr6B4uJCbrjhKg48cD/KX/mYCimh3bIKAeytZPDp5mpc7aODtNSEzClNur9IyKB6YyVpORmkZqX/7PHuKP2P2JvMTnnMHv8pTZW1dN6zH0NOOQBf9m+3TwcHBwcHBweHXQFHEP7JUVWVnj0ThVN7DjnkQA455Lex0F+7dj0//DCbrKwM9ttvH1wu13a36TmiP0u+notsU6fOlpLqSDPBUJgaK0BIDeNpry4UBTUjhcvOuYApUz7B7/djGJGYI+cdd9yQdM3kr2XkKQchFMEXz79PsNFPWm4Gh156PAPGDE38sGXi/fZFlOZqhBVBAlrlCoyeo4h0GxH72KpnPsIOxUdJVQSFIUmZZvDZs++R37mYfqMG/+zxXnjhObz/wVTWr99I+3zIUCjEPfeM+0WCUAjBOeecxjnnnIZpmnHn2m1JXKoG7WoPagi8KDQGIzz2+XIuHNOLFHd0O4kATY87L1uZNv4jPn16EkIILNOk996DOPH283B5fhuHt45DetJxSM/fpG8HBwcHBwcHh10VRxA6/GKklNx001288cY7qC3OlS6XizfeeJ4+fZLfWEspCZdVcNDfR7Fu3grCIYNIyMC0LWwksxrWAjAvUk/YNPEo8Q6YQlcp75mNsXI1H3zwJq+88gbffPM9nTp14Pzzz2L33Qf95HhnzpzDpk2bGTCgL927d93hYxVCMPLkg9j3pL9hRUxUXdumw5hWvigmBqElYGZFcC3/kkinQeCKplzWL1qLTLJAWQIeBP6QwdevfvSLBGFGRjqffvIuvXoNS/r+hg3lP7vP9rQX3qkj+qG6JkXTfNtgYDPbbADgrskLWVXRxKV/601JQRaezgMweo5CeuJLkSz84kc+eerduIjsshnzmXDH85xy14U7NL7NmyuYN28RhYX5DBo0wHGEc3BwcHBwcHBIwi4vCOvq6rjmmmtYv349LpeL0tJSbr/9drKzd55piMMvY+rUz5gwYRLhcNvadn7OOusivvvu04Qb8PD6StZc8ijGphqEqnCkImg+eASPvvseVcEm1gSrMWQ0BdRCcmdkJQ8WDccOR0CAFY7wfHgdn916KyCQ0uahh+7hhhv+b7tj3bKlihNOOIvNmyuj/VsW+++/H48++p+fFVEUQmy3TINWsTQmBuNQNNS6DVgFUbGcUlqAf11lQgRPAOGWxubaX74e0ufzUVRUEDvmthQWFiTZ4tfh6dUJ3+jBNE6didpSINUEyhSTpVarKc+EmWupXRzkpjGH4MuqJP2oCrxDM+P6+vLFDxJcXU0jwuKvZhNsDuBN9W1zHK0PKibicrmwbZuiokJef/25OAdeBwcHBwcHBweHP4GpjBCCc889l48//pj333+fTp06cf/99//Rw3IAxo9/K1byoS11dQ0sWrQ0rk1aNqvOup9wWQUyZGD7Q9hNQVLen8XA/QZRZtXGxCBE1wIOPGIM/b64ny6PXELBradxTmgBkxrXx8of+P0BLr302h0qn/HPf/6LsrL1+P0B/P4AoVCYL76YxvPPj//1J6IdUvclda1ESqTWWuah+7kHgxZfG9FCUiUszBYt3WVwr181lquuugSvN760RNQE5pJf1W8ypJR8vW4TC1wqlYqgUhEscqlsTs9kz4498fm8pKakcG9WH65L64I9YxHNH85g88UPUPPYO3F9NdU0JN2HoqgEG5Ib5mxl4sTJvPXWJMJhg6am6HVSVraOCy64Yqcdq4ODg4ODg4PDX4VdXhBmZmYyfPjw2OtBgwaxadOmP3BEDlsJBkNJ2xVFtIsaQvOs5VjNQZDxUkmaJifm92Dw4N3wej2kpPjw+bz079+HW2+9DqGppO3RmxmBLQSJr7kI0Ujfu+9+8JPjrK9vYObM2Qk1G4PBEK+88uaOHOoOUVNVy5Pjnub2Z78g0m6oEpC6Gzu7U6wta0AX3vVWUWOFsKXEQlIhTFaoEaSUSKC+uj6uH9M0WbhwCatWrUFKyfr1G5kzez5+fyDpmE444WhuvfVf5OXlIoQgLy+X2267juOPP2qnHfdW6tZW0Li5lmpFsMCtscCtUaUqWIbJSUNGMnnyG7x9/Y3s4ctG2WoqJEGGDBpenIJZURPrq0PfzgnmNACqSyOj4KezA55/fnzSkhuLFi1NGi11cHBwcHBwcPhfZpdPGW2Lbdu8/vrrjBkz5o8eigNw5JGHsmjRkgRhKIRgt936xbWZtY0JYjD6ho2saWLChJdYtGgpK1asolu3Luy2W7+4lNPGxiZMM1EQRiIR6uuTR5O2Eg4bKEry9WPJIpw7im3ZLP12AatnL0W4dZ575TUaA37MiElKuAOXj+2KqrvQVBWpewgOPxnapdF+Wb6CTyIRjssdDEKJvS2Jmuws/35R7LNffPE1l19+HZFIBMuy0ISClNFoqmmaXH7FRZx3/pkJ4zz55OM46aRjycz0UF8fQlgGasUyQGDldQX1p1NgIRr9294avLA/hKImf8YUagrSq1d3trz1DU3BcOIHFEH9m1+Sde5Y5i9axjtffkYPslAQsf3qHheHX3kyaruoanuampLXjFRVBb//p6OLuxL1tfVMeGUiP347m/zCfE448zj6D+63/Q0dHBwcHBwcHH4GQspkd+m7JrfddhuVlZU8+uijKMouH9z8yxMOhznooBNZuHApfn8AXdfRNI1XXnmEww77W9xngxuq+HbvK6LrAdug+Nz0uedsik/c7yf3tXz5KkaMGJsgPlNSfEyY8AyjR++zzW2llPTvP4rVq9cC4FNc9EwpJM+VRm6nfG588ka6Deqx4wcOGCGDe066hQ3L1xHyhxCKwLQsVhrV+O3o2rdUj8reAzpw37P/QSvsjBCJ12y/fiNZs2YdR+YNRk3yvu7WeWHFm5SVrWfo0L/FBKwqFATEiTSfz8uLrzzCwQdv+4GJWbaAyPQ3Yev3R0pc+52C2qlPwmelZbPmwXdY//QUzAY/qX060euus8jeO7koMcMR7t79AsLN8SJbc+uMufwYRl14OOvveoVNT02GduJeApbLgy0FH4lGJge3UKCm0knPiAYKBeT16MA9H47b7hrO66+/m0cffT5WcmMr+fm5lJXNQlV/WlD+GsLhMIsWLSMzM4Nu3Tr/4n6qt9Rw9JhTaWxoItLiouv2uLn5P9dyxPGH7rwBOzg4ODg4OPzP86cRhPfeey/Lly/nySef3KGyBm2pqWnGtv8Uh/mLsRoD1L09Df/MZegdc8k5+QDcXZPXJdyZmKbJxx9/zldffUNubi4nnng0paWtaZF5eWmxOoQb73md2nemYwdbauO5ddwl+fR840YUd/Qm37+phtVvf03z+i3kDe1J57+PQE+JroG78cY7efvt92KiyOfzstdee/Dcc49uN3r1449zOeWUf+C2Bfum9UATCopQQETrCZ5+14X0HzVkh4/7y/Ef8dET7xAJt3PUtC0WhlvXNHq8Hl589xmKOxXH2so3buKDDz4mFAyhaCqPPvo0A/Qiit2ZcaJQ0VQGH7gHp95xAffe+xBPP/0ikYhJniuNTu4sBFBvBqg0mgi3rL8cvudQXnvjubgxhUNhNF2jIA2Cb/8HYcfXbpSqjn//f4Ir3qhl492vUfPON3GuocLjosdL1+Dr1znpeVk29Qc+u2s8lmEibRvN4yKtMJuTXrwOV4oHo2wTG0+4GdnuwYCUELYVQBDG5i3RSMSdGnc+pIDhR4zi2BvOSrrvrdTV1XPoocdRU1NLMBhCVVVcLp0nn3yQMWNG/uS2v4ZJkz7kuutuBySmadG9exeef/5RiooKEz7b9nuRjEfvfYJJb7yHGYmfq5TUFCZNfxtd335U12HH2N5cOPw+OPOw6+DMxa6DMxe7Dn/2uVAUQU5O6jbf/1OkjI4bN45Fixbx9NNP/2wx+L+AWdPI6uNuw2pojt5oqwr1k2ZQ8t9LSN27/2+6b03TGDv2IMaO3X5Nuw7/OpHUIT2oev0LbH+IzIOHkXvSmJgYrJqzkumXPoptWsiIRcW3S1j+0qcc+Np1uLPSuOOOGxg9el/efPMdDCPC0UcfxtixB+1QOYGhQwfz5ZeTeeTiewluqGtdniajxc/fvOM5UjPT6NSv63ZTEgF+nDIjQQwCqELgERqhrW6plkVqWusX8J2Jk7nphjuxLBvLMnG73QwdMoiVy1aRZafgUXQ0RcXtdZOel8lRV56C0rCZ9FAVupAMSCul2J2BR9FQtxabBzaE65jdtI7q6tZ1eHNnzuPBO/7LxnXlaLrG3Rfvz6iCxAcj0rJwL5yCWTo0WiBeCKzmIDUTpycKt7BBxVMf0PXh5KY0vQ8eTk7XYua//RXNWxross8A+h42At0T/d6uDTQzUfg5Eh0JuGT0GIwWMQjgRmEMaXzWbl6FhDlTvuWwy0/Ek+Ld5txkZWXy6aeTePPNd5g+/Ts6duzAmWeeROfSEtatXEtKeiq5Bbnb3P6XsHDhEq655ua4CPbSpSs4+eTz+OKLyT+75MUP039IEIMQTZvfULaBrj13vGSKg4ODg4ODg8NPscsLwpUrV/LUU0/RuXNnTjzxRAA6duzIY4899gePbNeh6qn3o2v0tqbhWTbSMii/8Xl6fn4/YhdJrxVCkHnQUDIPSizmLqVk5s0vYQVbRZYVMgiZFkuemcLga05ACMH++49i//1H/eR+wqEw0z6bTvn6TXTv3Y0RI/dE01SKi4tQm804rxIBqECowc+z/7wfTdc45e6L6bFH35/ch/ITaYdbJZemawzba3fSM9OBaOTqxuvvjDPcCQZDzJ+3kOdeeIz+/ftQNns5lWs3U9i1A30HdiJl9suIUBOXDfFxyYCjeO2jSr6f60dts7ZOAB3cmRhYDN0vmjq7ZmUZ1110A6FQdF9G2GDV4uWMzOvUfhkjQloo5UtwV65CpuURHHEaxuZahKYmCEIkhFb+dA3DvJ6dOOD60xLaI5EI119wIzIUIqRl0d0WDIpAS/Jr3GezpMAnIdBurIqq4K9r+klBCJCamsI555zGOedEx/H1R19z21k3RYW4adK9X3eufuBaMrMzf7KfHeWFF8YTbveAwLIsGjfXMmXcqxQVFdJt1EA+/XYGzz79Mo1NTey11x5cceXFdOhYnNBfZnYmG9ZuTGi3TDN2PTk4ODg4ODg47Ax2eUHYo0cPli9f/kcPY5em6at5CWuyAKymAJFNNbg65v3+g/qZBLfUE6pJrLknTYvyL+Yx+JoT4trDG6uwGvx4uneIRRgBNpdXcOHJlxIMBAkGgnh9XvIL83h8/MOkZaSRmpmGv6415K/Sug7PCIQxCPPiVQ/xr0n3kZaTsc3xjjhqP94rew2jfa08bGxdgAGWkHToVUIoFMbjcfP1tBlomko7A1ZCoTAfvD+V4XsOpf+oIfQfBUiJ74tHEcEGBBKXAFwqpx5SSNWWctaXG6Tb0S9wnQBNKHRx5zBy1N78+ONcprw5BcNoFXNuFMLLLKy9bRRX/AMCIQSqAOwIsqkS1/KvsDqPRCa5phACb89oSnA4FOaDiVP4cuo0UlJ9HHXSEew5cnjiNi3M/X4udsSkj54DQmGNkPSPQLKYvxvBUSGYr0kWtcmOFIqyXZfR9qxctJLHb3sMI9R64lcsWMFdl9zBfa898LP62habN1di23Zc2yBvEaNSu7Dq7RmsURSm/fdtvgtsZGXTBgDemzSFL774mqmfvEN+fvx39IQzj2Pl0lWE2kQcNU2j36B+5Obv3Oimg4ODg4ODw/82u0boyOFXoWwrWmLZKD737zuYX4jmccE21nlq3tZjiFQ3sOKUu1l2xM2sOvt+Fu17OTXvfhN7/9833kd9bT3BlnWGwUCQ8vWbuPem+1m/Zj2jTzsklr64rSQ+aUvmffx9QvumDZt45N+PcdW517B041q6DOmF7nGhuTTcPg++9BSaO3uoCNSyoamKNdXlPPzI05x88jnYto0QgjThptCVjkdpfRYjhEhw51TqyxFGANGuoqGmCQ4YmsERYcFhYcFBYcEJIUEnK5quet55/+T00y/g4ymfxQSKAI7SOuLdpFO2MEgkHG1PtnxY2Bb6xgWoKR5yjh+F8MTLNamrLOmVzvz5C7nktMt4+sFnWTR3ET9Mn8mtV93Bsw8/n3g+LZuGiV+R+u83uSqUQn/LRpUSWwjm6NHi9Xa7bVQEGoKBpqCXJRkTkRxqwZF7D+TnWsJ88OrkWHqvgiBdcZElXdSt3MyCGfN+Zm/JGT16Xzye1nqP6aqbkemdo06wpo1lmAhbsoe7iHQlej3btk3AH+T5515J6G+fMXtz6j9OxuV2kZKagtvjpnf/Xtw67qadMl4HBwcHBwcHh63s8hFCh+2TfeoBVPz7NWSbdEs0Be/g7mjZf470MldGCjmDulI9ZxXSapUHqsdFt+NbjUDWXPQwwRUbouUqWtIZN971Gp7OhWh9OrFg9sK4SI2CQLVg5pc/MP+7eRR3LMSVqSA229F00STOnqYRwV8fv3B48fwl/N951xAxTEzTZMGchXg8bm696waaK+pIz8nASFM5/cwL4kpZhEIhlixZzpPjnmbt+z+yp6cE2y1RhGBtqIaIbdHJm40+t5rpr3/MXscdgKqpCCOYvA6fIuji04jIramWUUYa8KOwSLULWRppZLVioLk8CCEoET7ShYYQghnvNVC2OETvYT5KensSdwBEQiHOOvRsNq4v52BvHqN86Wghk3ItwlOBlax4eA7uh1Wy9dQ4URkKhnjzxQkcddIR5OTlxNorr32cwPT5uEMGhSjkSugiLaZqKus1gV9IBkYgRyYeskvY7GtF2xVLIj6fQ/mGe+jw3HUIfcd+vqo2VyGlREVQoKYAoAiBlJIXr36YS5+8ji67/TyX2facfPJxvPTSG1RWVhIOG/Rw5yKSTKAAurmzmRuMGg9FIhF++H520j5PPe9kjjrpCFavWEN2bjYdSzr8qjE6ODg4ODg4OCTDiRD+Bcg6ah8yD98L4dJQUjwIrxt3tw50uu+CP3pocTQ3NvPBWx/y/H9f5Lsvv08oFL/nXWeTVlqA5nOj+dwobp0OowfS/fj9AAit3kRozWYw4+NJMmyw5eVPE2r8CQS6UGMpoeFQmHVrNrCwbDWTq+Yxv2kDNolRshSPi67dS2j6ah6BhdEC8A/c+iDBQAjTjBp9RIwIzc1+3p30AaNO+huD/zacufMXEolEEvpzmQoLXp+G7Y+gCgVdUVGFQldPLj19+WQJnW4ba9DufY3pe57H++f/m/WVJtjt42ZgRGzqlvjjxCBEI2oDpc5B7iLO93bnar0LWzMtc4Qbtc1XfdOqMA01FkkOHSklDcubOXO9JBuNj0JV3CI3cm/nMJfWz2Wuvxq/349uK0gpSVXcFGlp5KkpaCjousbCOa21E8PL1hGYPj/OqVQDMiV0bBGTNapgjU9HuNs7Z0p0EU3r3Tp6GQwTWrCa8ofeAqIut59/Po1XXnmTRYuWJh4QMHiPgWTrLrKFOyosY2svBaYR4Y27E6OaP5fU1BSmTHmLiy8+jz59etG5cyc0LblgbTtziqLEufK2JyU1hd2GDHDEoIODg4ODg8NvhhMh/AsgFIXim04n77zDCC5dh16QjadPyc92NvwtWb1sNVeffS2maRIOhfH6vHQo7cADL9yHxxeNVHlyM/jbhJuoWbCGQEUt2X1KSS3Jj/Vh1jZFjU7ady4hUlmH2+1i0LCBzJ05D9u2k0b/bNtGEyo9fQX0TilCSpBEi66XYHOAYpJphOHGB6kVbgLSg5qbSePGRCMVaUtmf9ca3SkoyMPlchFp4w6pCZUcVxqpwhUTIlsRQuCWcEwEfES/jDJiYX6/lK/mrsB9+0GUijKwIgggYJhU14Qon92Ip92zHAFoCEzAK1QKFTeDDTdLCtz4AxJLyjgRmZ6tIpQk14eE+iVB0lA4nRwepJJwKEzlmk1xYteSNl30LHyKC1Uo2FJSoKWyxQ7SOLuMt9/5EV9OOv2zU5FJUoF1oMCWbFBA97pw9+2KmLUqbm639bRKSElo/Me89tpHPCUq2RJswLIshIARI/bgmWf+i67rSMtm04MT6fn613Q20pAS5mgmS7R4oV1ZtolwMITbmzxiuqNkZKRzxRUXccUVF1G/sYpXTrwNy2r38AJYHa4FIFv1sltqESNEIau+mEPXUYMSUocdHBwcHBwcHH5rnLuPvxB6YTbpowfj7Vv6h4nBUCjE2xPe44brbueZp1+ipjp683vPtf/G3+wn3GLsEQwEWb9mPW+9OAEAw4gQDhsIIcgd2I2Sg4bFiUEAb58SZBIrfuHSSNs3Wl7jX3f8H1k5WXhTvChCJD0PHqHSO6UIVShIIbCAHGlxpIiQhWwp+A5uGSbFaiKysZp/2DkJ/USPNxxLmzz44P1jUaFOaioHeTqxv7cjqUJHJgvHAf2sVjEIUWGnA7uHLZ6872sCQ44jkt+DmWW13PHeAv7+ny8QiUFIJNDWP9UlVPZ25XLeVefyxPdvkF4QP/6KtQYRIzECaVuShjVhFAT5aGTKrSv2RJzATlfcMTEI0aibKhSGyhzWT/mRjXNWsOKzH5n59rSkR24BQcCXmcrfLjmOEx+7isJrTkS4dWyiIt1EJqwt3IoAhtoKB1pZnC4LuIwO7Gum8uO3s3j++fEAbH7sParf+BIZjqBLgQvB7qZGN7Pdek1VQdvB9NMdJbNjHiPOPxzVraNoKoqmorp06jq6Cag2u6UVc0L2AAa489n87VI+vvVF3r3kIexkRj4ODg4ODg4ODr8hf5rC9L+G/4XC9LsCtbV1HHX4KdTW1hIIBPF43LhcOo8/No67r7wbI0ndvryiPNTCFKZP/xYpo/UC77vvdjp3Lkm6j8rnPqLiyfdj6yWFS0PLSqPXO7egZUTr/RmGwfTPZ/D5+58z//t5cRE7gEItlSzFFxex+7uI0EeRCU9IpITaoIewhLvlJqpE6w27LW2CMsLLbz9Ln769AFiyZBnvnHEn/QwfKgK7ZReLlDCNavu+JUeaUJjk0gwDn/t0TnzjTrY013PccWfQ3OwH4Hx3CYe68nG1iDFJ1JQlgBqXNlupmxzy/VO4XDrBLfXM//frbJi2EKRE9SgcfnEOKSkquhbtxzJsahYFWPFWtJahgc04KqkWJgjBivqNMfG7T1YP8lxpcWPOQCNL6HGRSEVKDjQNXMi4FFUpodFW+MKnIvIzuXzSv1E1jdDqclY//h4rvprNBmEzOmLjJbkBkJQQkWBIBQ1BUFrU2AbjcpuY+tVkFo64FDsQTtiuAZt33RF6WIJuUiMrI4XSI0eSc9qB6HmZSfb0y6lbX8mqL+YipaTHmCFklRZQU1HN68feitmupIfmdXHA9afR++A9duoYHH6aP3ux4b8KzjzsOjhzsevgzMWuw599Lv4Shekd/hw8+MBjVFZWxgRYKBQmFApz5533Ibbx3KGyYgurVmyOrSecNWsORx55CjNmfExKii/h8wXnHIK3Rwe2vPwpZm0T6aN2I/+Mv8XEIIDL5WL/Q0YzYuRwLjr+Eqorq2Ni1O1107N7D2pWbIrrN1ckikGIahhV2NhCQTNsbFVGU0wRBE2DiC6pqqqmD1FBmFtnMVTLwYpE97dVA/a33MwQQWiJWlrSRkEQbNlHe8GjAmY4QvnK9WT1KIqtXcxU3HT35KNKJW47BfBiIaUggiCiawy5/ESobqDm8zlICQfcdSaNmovP35zKxMfeZPqTDRwzKpe9+6SjhCUV3zWx+fvm2Bj82NRgoiDo3KMLm5bWtURywzHhqUrIkWo0ZVWoCWmxthD8kOJjaCCAp81DGcNW0BEMD9p83RTk89emsMUOkJObzf43HUevEztTt3olm9aGkG8tASvxHAkBioymykI0VTZfcTPab1BfWY0ZDLeZU4lCdI6zgLPCemxuRK2fmpc+pu7taXR782ZcnfL5OZgRky2rNuJO8aKkuVmwYDG5udn07dubrJIChp15cNznG1ZuQtW1mCD02ZIUKfH7w6z4ZJYjCB0cHBwcHBx+VxxB6LDTmDr1s4RoHMDqNWWMGjCMdavXx7lSarpGVagxzlzGtm1CoRCTJ0/hpJOOjbaFI1S98im1k2aAhKzDR9D10UtRPMkq2LXiS/Hx2JuPMPn195nx+QzSMzM46tQjSdPcvHD1IxjB1ujRJqmQK+yEkgYCsOxoSuEG0YwWsqnGxrBNLGnjki76D2gtYl/+wfdYwcRIqBQQJExACHRbUG00UezKZL6i0tGCtnYqssVtc4yhUHPl40zumkUPbyEhl8HhSjE9bSVunIKoqNSIplpqSFI65uATsOrvN0Q7BKr+O5G8K49j+uSvMI0ITQa8+FElr06p5JiIl/SWtEpD2kgBr1EbS7ndvH4TV194EY12kOXLV9I5LR/rq5X0DUd/QiRREVshJf52J9EOhVEtm62SzmwJFipAhgQCQZ558FlWGzWM6JHHWGMQHpdOZqpN54E6oZ79WPHvJRCOf6ggJdgyXsa7hMIhZiZnHn0Wl9k5ZAsXtJyTrecqadkKy8ZuClD50EQ6PXBh69htm6+//paVK1fTrXsXRo3cG1Vt7WHRZ7OYfNdLICXhUJjasJ9vjQ00myE6derI+PFPU1gYLzC3lj1RpGSgYZFlR1NjFcCYvxo7HImrrflb0djQyMpVayguLqKoqOA335+Dg4ODg4PDrokjCB12Grqe/CZWAlfecSU3XXwzRsggYhhouk5adjrLVyaatQQCQVavXhvdVkpWn/8ggUVlyFA0olL59Ic0TltAj/H/Qig/vQw2JTWFk847kZPOO7F1PFLSf+RgFn09FyMYRlEVZqsedlMiYEZiqY1SQsjUEB6dgu6ZvFFWiiUlftvm342bmKNanH3uqWRnZ7XpO/k4vCk+Th+7F5oq6Lznbnw8cy7fvfUF66TNNxL2sQUSgd4iliJ2NA0y14Z9V9exVk8jIIMUKW40O8k6ynb/lxu3UPng20ij9bMS2DJuAq58F6qEbrZGkdRowuZDLUS+reA2AoRUhR8J0CxaV/CFQ2GmTpzKm1+9DkCwuoHPP7kuoU5ioS1Yq9hYLQNJs232Nk20NpFDDRDYmC3rE21bUh1qImJG+PexffG5VLZWJhRWBJciST+oA/WTN0bXdxItWSlJrF8IoNqSq5qyeC60nos8XfDFXEW3gwT/90tiL+vrGzj6mNMoL48a6ui6i8LCfN59ZzzZ2VlUrNzApFufj9U4BMhUPezrKmFi43xWrVrDOedcwocfvhW3mw6De6C6NDpHomJQpVWkemubqXzobYquPWl7o/3FSCm5796HefGFV3G5dAzDYK+99+ThR+/F50uMyjs4ODg4ODj8tXEEocNO4/jjj+Lpp16MphS2oGkqw4cPpVe/noz/+GW+/fI7qiur6dW/F/WBJmb/4zIMIz6ilpLio3//PgA0z1pOcMm6mBgEkOEIwRUbWXjd88iiLDruP4ScAV12eJxCCE698wJWzFzCwi9/xOV1M3Ts3uQr0PTwqxjzloGqEUnPRu/Xi9SylVhrN6Ij0IXAoyrclV1C2flHsu+ZxwNgNgdZ/8DbBKfOJMuSRAC/EjWtEVKS19yM993vQELlxO/p41JZIBQ0yybDUqiUkCIFHkC0SXRUEWRJGGRpDLSzyLLN7Qub6FHG1XOMnTvbptRvMiziw4dCqtcmLcdiP0Pn1VqDd5RqspWUpEXrmxpbc+fnXP9CUvWrKIIMRaXZpyNtSdfm5mi6cBtBKFpKSUSkpEkIttgh6qwgF3cspsDnTuhT1QQ53TW+VVxI2yANyLaVFmGZWO1PAF5UItjcG1rFrZ7uCams20JJ88b+fett/6asbF3MXdUwIqxfv4Ebb7qTxx97gJkTvsBsFxFXhIJPcZGnp1IVaWbFilVsXrGI4qICZGouCIGiqZzx4rUsP/DaxGhlxKT+nekxQRipaaTm7a8JLtuAr28pOcfui5aV1n6rn8WEtybx8kuvEQ6HY9/VGTO+54br7uDB/97zq/p2cHBwcHBw+PPhCEKHncaFF5/Ljz/OZd7chdFC4KpCfn4u9z1wBwAut4v9Dh4V+7xt23TpUsqKFatjolDTNLKzszjkkAMBCCxYgx1KTMG0Qwa1H8+iVlVY/dbXdDlyLwZfc8IOj1UIQa/h/eg1vF9ce9ZD/4p7ba4tp+b0r6Gd+6NLCAauq0G0FDhfctb9BFaVo1pRkeQCNNtmi4Bc28KjKTEjHAnoIcHhUiVFRisERtM+ZdJi5gCjLD22Vm5rHz8lcYRIWmYQgNQ6Pym46NXPT1FpOKrrJNxlC2p+zMBMLSBQXodH0bGRNFthGu0QvfpH10kajX6qZq8g3bbwSRsbaFZUIkIBWzLs9IPxDeuBNzOV8nPuQm1K7pxpIXmLBuYFazjOV8Df1dRtHpRlSJAq81VBqQU5qFhtUkHboyEoUNxMjmxhiwxTJHagpIRLI+fUv8VefvDBxwl1JSMRk48++ixar7GiDpmkVqRE4lV0+nfM5JXz96XTyskoqxWk7iW0+7HYWR3oMKALqxQRDXW2Y+v1HlqzmZWn3INtRJDhCI1fL2DLix/T8/XrcZf88hTPZ55+kWAwFNdmhA2mfvQZd91zkxMldHBwcHBw+B/DKTvhsNNwu12Mf+0ZXnvjWW68+Woee+IB5sz/nIKC5CYdiqLw1lsvcvLJx5KZmUFaWipHH30Ykye/jtsdXWel52UmXSsoia5FQ4IVMiib9C21i9bu9GOyquoQyUoS2BJz3Saqq2tY+PZnhNZtAbNVHETTGm2WGdUoRBIEJbYkTRITg9FtkqshDeLE4Nb+JdHyDckkkTSt5BFCIFVqFBSaFJWEUVXQNNB0cLkk/x6s4WqI4FV1FCHQhEK66iHflcaF114AQGNZBcVWhDzbJE3apEubIitCqhV1I9V7FVNeVU1VXT21mW6sJJFEG8m5jfOpxWa/1K6c7Pbi8keIVIcTRJZp2Kz6wY8CpKMQEJJIiyROdvy+Di7yhqWS1tWDEPCuUUlIbqecgxBkHbkP2SePaR1jErHXtr3H3gNi6wHbogiFJhHk/cvHUJLtQ5UWwoqghBrxfj+e+ne/YPOrX+DtnySqLSBlaFR4b7hjPFZzANliPiPDEaymABvvfv2nj2U71Nc1JG0XgpiTrcMvIxAIsGnT5pgJlIODg4ODw58BJ0LosNPZbWB/dhsYrQvY1oAjGampKdx++/Xcfvv1AAQWrGbzxY9RsWQtSqqXrONHIzS1VQG1/E8CTW0Kq1thgw2fzSa7f+edeix6jxKkkVj4z5ZQOX8Dd+19HFmqm+OVDrEyELFthUJYmslNTFpIWk6hTXsE+RNfUslHqkGWbTNCelEUAYqCNC1MOyo2t45ICIHi1qkZ1YfgJ/MoLg2htutYCMhwKXTymqwOtikdIQSpuoec7Mxow6pNeEyrte+W/7KlRQWCh258iMGKoMiyaLAsOgg3apsjNZAsEBbd0ztR4spkf80gTZEIAdXvrqfglC4oHnXrztm0NETZ7EBL7UJJuWoz1Nx6BrbGVkHRBL3OKCC11I0UgjusHK5u7M9Djy9msSbZ3dBQXDq2EUHvXkxIRIV2zqiBZB23H652JSf2338Un3zyRZzpkaoq7LffPgghGPz3vfnhzc9orKzDbLlGItJiib+CgwcVoakiOidtsIMhzE8/ZNXsALZhIdw62BIZMREuDeHSKbz+ZKSU+GevSFS7tqT5h6XbvCJ2hBF77cFHUz5NELyZWZnk5eX+qr7/VwmHDW666U4mvjMZIRQ8Hjc33Xg1J5xw9B89NAcHBwcHh+3iCEKHXYbQ6nLWnnNfLLXSbgxQO/5TMkbuRmB1BeGNVUjLJmLbbFZUZNt1aYqCug1Tm1+DkpmO77iDCLz9CbSYh0gZFSLNEZ1/6F14NLACy7fVJ7LN8UiLjXaAmbbK/q7cuCjhVlGbXBBK6oGwAks0yZ6GIFkSXyM2QdvgbzIl2psN2G0cW1GwW0otoCgMfudWloWCTPnkaw7YhlC3AcU2E45Fd+uUr9pATlEewe8XJxW5Eqiz/fxT2ngscAswVAWpmmw2VLKlQhiYJSy+VWy66DlkC+ijmLElhmZDhPInVuAuTUVJ1WnaEOLHTR5swMRmMwZCKHzkijDa0PAiEC4Xmluj434ppHX2oOjRzjRdw6up/OvEfqx8vZbsE0eTdtAwPvr4a96dOBVN11CkzT5flXFiQSPu3v2QfQaDorB82Uo2rduEW2igaRSgcqyvkG5aCv277I5ZWYu7IJvzX76J79/4jBWfzCQnaGH4BFuCMGavTvg8LtorOkUXaG4Zq48oFY3Mo/bB3FSDp28p2SeNQc/LREqJ0LVYdLAt4lde51ddfSnTv/6WQCCIaZoIIXC73dx5140xV1mHn8cNN9zOpPc+JNzyGxEKhbjxpjvJy89lzOiRf/DoHBwcHBwcfhpHEDrsdCo2VTL9s+lYls3hxx6ILy1r+xsB1c9MQYbjU61kyKD5q/n0/OIB7KCB0dDMJ2fdj9XuRlnRVEoOGfaLx2yZFmUry/D6vHQo7RD3XuqlJ9O4oQbrqx9QkQQsjXrThY2CxCJVaNTaBgWKgtYSJbSkjYHNXLWZw675B/qrMzHr/chgGHQNO2JSJxSypR0nvSJIVqo2s1ytN+Y+TbK7CXob+RjG5kPqOVJm4UqS+a0gsVtidzageN3Mn7uYK+96CAuDeeUZ7JsRTReNQ9PI75RBSp5k4ZpmtgbHrIhFfqfCaN8+T8sixXixYyHpp9ukAmrLUF1CICXousV/bTCwYs6gKoJCxcSi3Q+RBLMqhLeDl5QuBfRYb7K6wsWL6xbjFoJ+hVnUN5k82ljP6P334OzLz8HdMQ/fpw+ihJvjxqRogoweXrBMal79jI219UyeNo2IEaHItrhlgIFXa0b7bALKNx9ATj4151zPycefTVNTtK/eqo+7fV3QRdT51Xr/WzZ88iMdxt+Mp0sx/TsW4VtTBy3rSbuSQo+s/gi1DKz469Q2JM3rwm0aJHp+Jh1uPj3uc0IIsg7bk7r3v4tzihUujewj90qY759DaWknPpz6Ns889SKzZs2hc+cS/nHBWey2W7/tb+yQQHOzn3cnfRATg1sJBkM8/N8nHUHo4ODg4LDL4whCh53K5Lc+4NF7H0dKiZSSFx57idPOP5VTz9u+jX5o+XpIsm5LuDSMDVvwDeiKqyibPe48kx9ufDFackJKpG3T/5IjSO9a9IvG/P1X33PfjQ9gmRZ5psJBajadVC+Wz01kn970O/cw7JJSNhmLE0xAonXtFG7xL+ICXw8Ga5kIBEvsJp7xryalJI/8nqV0n3wEDVN+ILBgDa7SAhZ8Mpv6sgqUYIhM245FC+dYjXxMmA4yOyYul2sANgNNgS4FIWw+FA2swUi6CFgQje+1PZN22OT6Ox4iGAoigLvWN/B4Jx+laQpuDSK2ROmQj69TEeeY0WO0bMldL69nY41F14E9KexcDEDW0fvS8OH3yHZmPzbQSWkVg7HxCCgkGjEUUiWMhWFb1BGkWbgQ7cKNer6HwlO7YCug6SrpPU1KDRvfxr7s392HaUt0VaGsSaXg6EvQfanR/djbXieoqGCGbcQHs/i7cLNa0TinW5AMlyRWuSQcRG4pp/LJ/8SZyVzq6YC37SAjFrYZpPq+18m7+3xW3/hiQiSv7ImvKPxXV3Q1wtZMYsuw8ZeHaVgVbHPSbGQkOm4ZMTFrm1CzUlFcOh2uOYHAyo00LSwjYluoQrAyVEe9u46LpfxV0bzi4kJuue1f2/+gw3apqandZmr8xvJNv/NoHBwcHBwcfj6OIHTYaVRVVvPovY9jtHlSbkZMXnlqPPuM2YvO3Up/cntPz06EV29KEF3SMHF1zIu97rj/EPJ278mmaQuwIxbFIwfgzc/8RWPeULaRu6/5N+FQmEKpcxr56EgkQZSmIPrE75jw/gx6nTCaVJee4HgqgGUEKEzLZxINTKYJKSV1ZjOVdhDWrufMMy/i7bdfZrdjRpJ59L4IIRh10hiWPD2FdR9+T2PEouPQHszQG3n63XexwiaqolHkSm8p4C74Gj8vy1qsSARF11FQyECNW5sXd87a/TuCxGrzOmjbnP9NgJFFGnvmq+iZqYzuUIiuKbT10LnutBJeXlLASdeeHWvzDexG3kVHUPXoJCLSIhIxkVLyitLIP3GzLavQrQJVFyop3XLZbeQQNr75PUEZRpOSrcvtcg4tRriUWO1Cn1vH64ZD+7jjRFCvXAVr6VRCux8LgFnQE618IUK2SmFpS4KbDayWovYKUIhOBi4KMutpX8ZSmCZdq9YSCkWjeDqCUiWJQ6mE0Oxl1E9bgFCUuPPtcZsM6LUZ48PN0DkbtUsBKAqbvg2w+euG+MlRVVJH7UbV8x9R/dT7USMgIcg57UDyLzmScSlbWBdeRonqxlWgMb++ntpnyujcqzuHHXZQ0vPs8PtSVFSAoiQKQkVRGDJk0O8/IAcHBwcHh5+JIwgddhozvpyRNGphRky++ngaZ150epKtWsk9byyNn8+JizwJj4uMQ4cn1F5zZ6bS5YhflzoH8OGED2O15A4kA71dZTsFwUBDYeK7X3DOQfvQ/PEc7LCBBAzb4u3QBjzeNJQ2hjJCCDJdKTRFggTMMKFQmFtuvht/s5/Vq8rIzMzgnPPO4IJLz2K3y46KbZe1bgPPvz8Z0zRZGNzE8lAlKYoLS0gCZgS/GSJoGrjCGkWp2fhdGmWmQTfpjlvTJ4G21QojCAwpGGB4mEE0OmUjCUmLzzdLvq/XuebvObi0xHijL8XNnvuW8tLjL5Obn8v+h40hMzuTvLMPIfPwvdg09Xvuu+8x5hmNSBtm2QXsq4De5jowJZRJQZGtR8VoTgq3vv0IM96fxmz5FeMNnWP1CNlIpCZwFXhbr6OtReWTXFfCtlC3rOK7SZ+ycd0WuvcsZm9XCkRCCDuCZdhRQVgToe+FRfjLw6z5phm9zo7WWdxGgE0TAp/PSyAQxEJiIZMKb+HztDiixj/A6Na5Hk2VCNvEXLMFc80WpFAwg2mYtjsW1ZVAg6JQe/nj5DT64677mlc+ISxtpn01g3+M7MLVY/tiWtHI6Kw11fzn+Zd2WBDKXxlNdPhpXC4X1/3rcu686wGCwej3SwiBx+Ph/6665A8enYODg4ODw/ZxBKHDTiNJdYFoOzJpofP2eLp3oPOz/8fmu18ltHQ9SqqX7JPGkH/RETt5pK1UVVbHXCQ74U5a+kEAnQzJ2pJMRj5/FTWfzEaoChuKPJS/PB6xvjbJNoIM3UfADIOULJi/KKYbAo1+XnnsZaa+OYVDDv8bx59xLDl5OZSUduLf4+7gxmtvj6bc2jZ1wSCNoQB2m/Nn2CaFfUp47tmHkY1B/Lc8SkpoLYoGdRs1aupdhMz441AsSSclsei77tbZ+4C9SXGXJzhiAoRDBu+88RZfzq/A7Xbx4mMvc/djdxCu87P4h4XMnDuXH0I1dHLnkK56mGpalLh1Smm9HoJS0BhJpTfRSJpSbVP+8Y+8NW48obDBemCcIcgS4LUE99oSve1YfkLMRIwIgXdexl8ZZPw7KUzKyeTCy8aQumENcskm8ndPJbt/CooqSOnoJnf3NH58upKqTSY1DS5y0o24KKFtQ1ONi+KMLNZGIpgRk+/sICMUb5yLbBjJps45jNx3N+Sdr5OWblBYEEDVbDLSjfh8XUBIm2xXI9PUInLt6OrORkUlJAU9quoTvh8yaND02hccMrCY/zu0Lz5X60/18G65XKv9tLGMlJJnn32Zxx9/lpqaOrp27cwtt1zL6NH7/uR2Dr+MM844mfz8fB555Ck2V1QwZMggrrn6n/Ts2f2PHpqDg4ODg8N2EXJH7tT/5NTUNGMnKQDtsHPZUlHFqWPPiEsZBXC73Tz55mN06d55h/v6vaIaU9/5mCfufZJQMMT/yWLSkvhnSiQLVIuOF4xl7AXHxL03/dNveOCmcQT8gfhtpKTB8LM5WIemqCgtx+JVXWR70qN2L0Kg6Rq+FB+PjX+Yr6bP4MMpH5OWlsbIfUYwbOgQ5i1YyM033x1XSNzr8XD2madQXFzIkbkWuT9OATMSXU+p6lSu11k2x0vbEJhwaczJtpm4ZTV2S31Cj9fDyAP25YwLT2PSjTdw2RGleNzxxx+KWIy9ayb+cFQ0C6CjNxuv7sIIGVjSRtsq9FqO0a0odFE0cm2LkBQUml7UdqsdFZfGVK0JfzhMey49rpihvdJw62pUDP7EdWCHIwQ+mY20owL0sWVeZvgtmnSTJ0/vRZ+StIRtateG+PTpKvLcJsMGVqMoElUDywQzorBqWQEp5x/JUyvm8OlHn5NtuviHyKIXLkwkGoK5hPi40MNLn7xM83/+Tdrqb1FaSmdIGXV8le0MQkOWYNLCDgkPHXob4eQFYYVAvyCDIaWJpkwRW2IcdBXSnZL0vDz00OM88cQLsYgVgMfj4eWXn8AXUpjy1ERqN9dQ3L0jh19yAl0H9dzmOf6rk5eXRlVV0x89jP95nHnYdXDmYtfBmYtdhz/7XCiKICcndZvvOxFCh51GfmEeF119AY/f9yS2HU3L0zSNU8496WeJQUieIvhbMPrQ/Zj48kQqyitZGgowjLTkMUJVYdD+iS6mnbp0jDMg2YpE0hCJikSlzbFkedLiXpsRE3+TnzNPOI/1dVtiN/BffTWdy/55IZdcch6ZmZk8+OBjFJc3c25aJ1LDAv/rC/ne/TVpByiINi4uwoqQX2SyOc9NQ1WruAsYYeZsKqfQlGzSJZrXzTV3/B+jDxrFY1c9wPylQVYPC9Gt2IPHrWJZEtOy+fCLNXTSbJa16LY0xYMwJYYVFf1bjW8UBOmodMCNz1YJ2jYrhKDYUins5qFTXx9WxGbt3AANlSZCVciPCMqSzMlHSzS6dYDcFBvVnXyVpJQSLBtz8Vq0qLMPAJf0CGHPTuHdcAM9Oyb/4csscbNQ+NnXTGPJzByy8sK4vSbBZo3GGjdSsdHDFgeMGkkabr788EtWWmb02FBYR4TPCYKWAvU1ZGyciVBbHzgJIZAKoMhYpNC0YWldsuIhEEbgTSg4CHpxDj1KcoFE0axoOhgBSCIIDSPCk0++GCcGIVoK4dFbHqbA7yLSkp66Zt4KHrv4Xi567Bq6DeqVdHwODg4ODg4Of20cQeiwUznyxMMZvs8wpn06Hdu2OfzYv5Gakf1HD2ubuD1u/vvqQ0x69T3K3p6G3By9g98qQiTRe/qOXTvRoUdJbLuG+gZuvvx2li5citLyaVVVkUQjm0ErgoHFoEED0BWV+fMXoQolaUqqZVmYzUbcDXwwGOLBhx7n5JOP5eCD92df2yR9ywzcmdGvbP2qEF2+tVFlc0J/iiLpOCSVxs8NkJJqGSbVEpwqikGPHtuLgU0sWrKUHt26sOSHhWQoEuvbJVjdMgkXZ0HExCirYmSTn1G9VMpDkvtWanQgC4SgCoMAW8+VIBuN3tJHhi3QiWqhvlJn6Ik5FPfxoerR8hPd90xl/tQG1syL0Ll3FzauXkWkjUOnqmus2bCFhfdKijp6KD0il5RiN4oeFZ5SSmwJ/spG3GUbkbXxT+sUVXKET/Bpo0LQsEj1JP7EWWGbUXYKuktFWip1lfGmMcKl8eQHHzGnajOhQIhj7HSG4SUjzaZDbz8DM00OjmgszilELJsPqhaN0LbtQ4ClCCKmREhBdUjjm4p00gE3Mu46qNA0SsxIXGxaeFwUXnMi7rwK7PVzUNoJRkVRkSnZ2BGTptkrQUrSdu+B4tKpra1FsaGnr4B8VzpBy2B1cAv1ZpDUaouIiI/g66EI8/7vSUIdivD16kjRaQfg6ZSfcN7+bNiBEM2fzsKqqsc9oBvePfo4aykdHBwcHByS4AhCh51OUcciTjzreGD7IfYtlVVsXF9OaZcScnL/GOHoS/Fx8j9OoqJ7Hxbc8ALu5iCulvcMwK+qlAzqEbfNzZffzuL5izEjJtlCoURx41fceHKy2O+YAzjinGPQWuw6581dwCknnYcRCm/LxwQzSckEXdeYOXM2h4wcSm7oB9Tc1nVjmd09+HI7IhcvS9hOStjY6Md77YmkdysgfPZDeER8UuJ5WgfWfPYJnmXzuVYPUNQlhMstUSpqsSuiayJVCSkt0ccuXsH1XXQ+W+tBAkW4WUuQSgwkkm7SS44dlTkZmGQIk9RuKRT38aG5o/sWgKIKBh2SScXSSgYU5bLbyg3U2jDbrbBCWOhGhAOaBelo+DcarHi5gi5H55HRzQcKNKwMcNcnmzmzsI4eaYklSgBsAf2Fm4k/bOL4ER3wulqllmXYbPzBjwDMoIGlRNMolJaUcltXaeyQxY8bl2AYBj4p2AMfqSk2PYY3orb8YrpUyUD/cvioEhkOJYzBkjC3XmVRnUog7CEQ9KGgUC9s8m2BFAKFaO3GGgUW6SZDTIVsKQh4NAY/cilpI/oRqd+CvnoWUgGhKrHIaDi7Jw0/LGfFVU9FXXlbLqwe95+Pq3sh+6R2RUdFVRRsKSnyZDC/cQN6uxof6bbgbxE3amUzTZWraFqwhqpJ39H3uStJHdAl6fn9MxBeuYFNZ9+DNE1kyEB4XLh7lVL01NUobtf2O3BwcHBwcPgfwhGEDn8IhmFw89W3881X3+Jy6RjhCAf//UCuu/2abdb0+q3JG9EXWwiaVbXVEUUIbEXw1Y8LWPeozt7H789nX37NonmLcJmSy10Z7Ka4MIl+mX6sa+azl6ewdv4qrnjsOhRFYdDg3XjuhUe58477qC6rwK3q8ZFCAf5ICEE7v0oJGRkZaOt+pJ2eQ9EEepoLM90Hwfj1i5YNc1fY1C+dRJ8enVDbOWpmZBn0G1LPKABRgRgCdhBIzHxl66A0BTqlhdEViSmjg+kivdQQQUhItUGTNj31ZnxKVKjlD85G1RMlsG1L+vdQqf9sFj7Lxoego6UxXZUMCHvI7eqjaO90vPk67mwdaUmEsEGCqPXzj+Yg/hoN02egtbtUpC0INClYwBOfrKU428vo/vkIVQPDoGppkDWfNcTmNmhH03uriSCBBUqIhZvrMYxoFC0XDRNJQZdg4hxgI5tr2s9abA7e2+RiY1AFbIqJsIel0smUqICd4qG8Yw6r1m3EZZloAj50WUgBbp9GB49GGiC/+Yrgl4vRu+Si5qVjBw3MFZuxgstY/kMOdih+0lZc/gQVxwzDo7li5VsUIVBQGZDWEUVTkGarkN7d1NEgFuXGtLHNMGvueJXd3roxyQXx56Dy6sexG/2x1zIQJrykjIZXPyHr7MP+wJE5ODg4ODjsejiC0OEP4eH/PMaMr77FCBsxE5pPPvycDp06cNYFP12e4rdC9brYfdz5/HDJo1jmVhMVSZk0WLthM2vHf8SUFyaxIryFXq58jvBAHyS6gK2xu6ESZCjCtAWrWPzdAgbsPQiAPUcM44Mpb9Hc1MzNl9/GormLMSIGUkqCkTBSSNLdKQSMEIpQMKVFaloKe+wxBHXORBQtUVhJCRWb0shPiyZvRo1qYPqKFKr9GmCwZe4qOrVJk1MUSb8hDWjtvvmKT8FutqBNoDJqkBL/uUxbIsxoFK5BQBoKPS3oZ0fIcBu4FRshouYqepaetLSDoilIw4qqpq0YEfaSkozh6XQem4uiCcRWp9E2ayQzh2fjldU0LjcwmgUiVaKoINwqii6wGlUyciQLq0IYpsXNE1cx6dzryAhspubFCQgpyenpoXpZKKrjhAAUyhSVDsJNd8vGsALMRmAiqcFCQ+DLsBJqFrYeELG1gi0BPOaVZVATsEFET2C/iE1HW6BtTS/2B+m6agNdsZGIaDkO4G1NEgHqK6NRWjFrOjQHiCxcH6fXperC5zFoDsWfYCkldZ/MSajlGR2mYF2gmmI9M7b2M08qrWKwDYFlG7AjJkpLlNsor6bpizkApI0ZgqtD7jZOBtiWTdk3C1j/w1JS8jLpO3ZPUvMTjXF+KyKbazA3VSW0y3CEpve+cQShg4ODg4NDOxxB6PCb09TYzFPjnuHLqV9h2zb7HrAPH334CeF2bqShUIg3X5nwhwlCgCrT4FtPhPSAiQrUCJtwy029bVpoKPRzF6ILQV+ikZ226AL2ENC1ATa88XlMEG4lNS2Vcc/dx2033MMHk6YQNsJRXYIgXfdS7MlGIlGFwojheyKlxMopQalYiSLiUySFCuVLbL4I5lCUH0FRJBuqXfgNhWg4DWqFpGN0BwBk5cSf87j+XAoy2KaouyQu+BUIa+hmi8mLhFwJIyyFrqioSNyqiapGxaCiSzwdvUnXbCmKxPJH6HZuB9y5OqEtBhWf1eLfFKbzobmorm0pL0BR0EpySGtYR6BOYclaF7sNtBAKCAV82ZKSYSGOXaDzw1rBqpAfY90C3FvmUDzYi1AE+QN81JeFmfdyNUiwEXTBjYKCB4UhpJKlaEy1t+AXNnNlkK7NCp4UKyFKCMSVmLBswbdLcqlpcjEIk+9UP+lSpbetxsQggCokajsnXRXJwZZgkmlRWpCG8fQL6JXVSXxvAWlhGja0e1caJl6XN+mpE0KwpHETAU+Y7ikFeNwuLEOgJTFgFi4N0RJ+rXn1MyrHTYg9Hah8aCL5Vx5H7ikHJGxnhiNMvHAcNavKiQTDqC6NWc9P4e/3X0TJ8D5Jx7XT+Snj7L++qbaDg4ODg8PP5ifuvBwcfj2WZfHPMy7n4/c+wd/sJxgI8vmULxBm8huz5mZ/0vbfi+/e/ZJgKEylYrFJsWJicCtbjWE0tlnXHEWAC0Gn6cuIbE6sUQgw/esZhFrEIECK6sGnelCFQoGeTkc9kw3fLeOfo8/l4x+raY7YWFbrWCzDpmpJkNUNkmZbZWWFh+WbvAQMFUnrk56wIliAH2OrAYzSTuW1IISIa5VSIltaDFsSsQQL12XHHbMioQdaTOhsLbsgFEneUBuhJ0/9lTZ0OaWI1C5e9DSNtG4+up1VTM7QdOT2ysO0VKFQVEjJtskttLFbxOBWXBqcP8DLBVoRj3i7U7jhe4RtxiKOmlshs4ubvL5eLCTNApQ2HegodBM+sl1e3B4376cafFquJwTdpJTQ7joWQhIIaSgI8tHQpCBNivZlCVFboqhxbQgKpeDgIV3w3Xon5nsfEqkIINttbEsI+iElZJIpDPQ2vSsenW7H7YfL4263jU1dxE/IjrAsUMG04CqOuecfdPnHWBRPfE1D4dbJO2IEq1eX8d8b72Xjva8hwxGkYUb/C0fYMm4CxsbEKNyid7+meuVGIsGoM6plmJghg49ufDZW7uS3Ri/ORStOjGAKt4u0w/f5Xcbg4ODg4ODwZ8IRhA6/Kd9+9QMV5ZVxpRks00JVVNQk4ZaBQwZss6+AP8iEVyZyxTlXc9e//s2yRct3+ngjoWQL6eIRQhAGklnlSAkRq6UUg4D6D79L2ofWbvFbuuYlTXVTqKXhERpCCAQCIxBm/L3jOWPcbN6fXUFdc4Sa+giLKtP4z9vrqFMTZenWFltKhBYhv0sTpQO3UNCzltXB6Dq19tgWNG/WCBoughnZLCvpx4Nrm5lS6eepdQ18uCiHBn+8yNDjoi0CRYmKNU+ORFElRMykxy6lRGkXBVRcCnkj0pOuOWy3MdaWuug/bcjPlmhJfsUEkJkG2d28CCtRZGpuhawBHioUiam0nQtJVqpBl8Im/lYEXXoXc+4153HEpy9jX3wHdn5HJIKIDbYhkZE2It2GLfUewpHW/qSUNAm5wz+0iqawT916CIXBtDCDgkhAIG2IWBCywDIUqlaloQC6kGSICC4sFK+brP0GMfisQxl96sFoLh1bgCktGswQMxvWtjlKcPncdDx/LFljBiNcGmqqF+HWSdm9Ox/4GjnwwCNZ98ZnyGRCzpY0fjo7oXnZRzMxQ4lRaMuIUL1y4w6ehV9PwX8uQknzIbxuEALhc+PqXULGaQf9bmNwcHBwcHD4s+CkjDr8pqxYujpm0NEWKSUuzYVhR7AsC1VTcbvdXPGvfybtx9/s57zjL6SqsppwKIxQBF99+jVX3nQZhxy5827ydtt/KMt/WLTN920ZXa2nCMHHqBwtLVSi4k/K6I120Gz5WkUsrMZAYiehICcedQiPPvMq4VCYUlc2nd25SCRKy3qyMFYsYickhJsF/353Nf9+dzW6S2fw3kOYb1bTwZWGq33aIGAgUV1hzh9Qh1tRcKlgpRuU5Bt8vkHlgE4SpSXaJm0I1SmsXu+jPKcTB718DyWhMO98fhTlazcTiUS4PDVEP82DT1qktxxzoi9qFM0XTWe11m1C7doR0cYkyDZtFNEmh7UN7hwXsikAqb7W9YNtj0vKaMpojw7YBbmwrpJQnYnLmyhYhAKmIbCN5Puybcla06RCkZTI6HlXFZsR/arJzjRRNBgCSMp57bUHWbApQM3b32HVmfhkLpqUFOSH6Nq1sUUISypqPcxdFXXKtaRkmVnHQmMTA9M6sVC16W8p6C1j2WoM2j5K6C7MhMbytkeC0aARaZYENZvKWi+uJnfcMQkB6T6N7DvPImvMIISiMPaCY9nvpIN59ZGX+ejN96kKNiKlxXAtkzShsVaVDB68G4qm0ePecwlX1NK0fCMPv/Ear336CsZHRjQavg1/J4lMmn6pbCMqjARFU5FS0lDXgMfrweP1JHwsHAzz7vMTmfbBV0jbZp+DR3LMP47Dm5I8DXZbuHuWUPrxOJo/mYW5pQ7Pbt3wDu+L2OZCUAcHBwcHh/9dHEHo8JvSuWsJLpeLoBlfJNvr83LKeSexpmwtq1esoW//3px67sl06FictJ93XpvEloqqmAGNtCXhUJiH7nqEMYeMxv0rrOQty2L5ilW4dJ2Svl0Rithm6mKdFSRT9WJLWCcUxiPYW5p0kQLTUghbGnZLCE543aTt0ybi2VCHfPoBxLIFnC5tRu6WwX9WRdDNbDr7ogJwQ1DFluBGJdQiuYQQ6G2iqREjQsW6zZQZDcyyNrOHtxiQKCggoIwgTdic3jGAT2v1ZFGV6Iqz3bMsps7Ko2thCJdmU1ntYlONBwuFjPwmXB/8B5/RxA//GsNrywI88uaXrFT9DGtOJ1NasWiXRnzyadhUcWsWph+kBbKyBktK1NJicOnREJppgqYlz7eNmJhrN6J17QQ+TzSy00YxCY8HqbsQqWmoRRK1Rwm1X2zCGymLlYOAaLSzqVrDDCs0rg4mNViJmJKv5zayWUQoldGUyd4ljWRnRKKGNi37FcDJHX1s+vht9Bovro5u0F00bIxQtcVHdZUXt8vEpUfIzwmyb+cKGoI6q6o8fNm0gU1mEz1TCpipKoQUGCIVMkUEtxoVsRFLwbIVpARPmomvdyrKKishxVRagqawht5ODMbOTThM9gFD4tqWTPqG8EeL2cdXgk83GW7YLQ80wKO5qBr3NoVXn4AQAndhNrc/8hgTPv+M7j7BEX1yEAi+3xjATrLsVCgKae32BzDg6JFULd+QECX0ZqWytrKCKy6+ntqqaBr13gfsxRW3Xo7XFxV7UkruuOBWypavidWmnPLGB8z7bi73vnY/antL2e2gpHhJP2pkQntg0VqaZ69Ay0knc//BQNrP6tfBwcHBweGvhiMIHX5TRh64NxmZ6RhhA8uKChxFUfB6PRx76tFJowTJ+Pqzb2JisC1CCFYuXUn/Qf1+0fhmfPsDF1/8fwSDQWzbpkNBIbsrBckFoYBMrTVSoegq9S6Np/117BMSDMeHu+VmPaIKGgtSWbupDPn+OkpLO9Dvtf8iKzejimiudleX5OHeOpZsQhESAYRswTNrU1kbUGNlKGwpCdrx6ZdZ2ZnccNP/ceft/2F+fRWd9QyK3JnYqhotWo6kb6ZJkoxS0nVYb1o0rk6PS2Xs1FdnxMGp6OFGALRgPad1ghPHlmBvacDwb2Hj8hSaG10oQpLijuDSLCxbwR/WaQq6cKUGCdQI0iMt6/q21GI2NKP26YJQW/wsbQsp1DixJ6UETUPv1x1MC7spgJqR2jo4RQXd1bqNiJ7EgjEd2Px6LTnZDVgyKnr9NSprZ/ui/Vqw7MVKep9VGE2VjZqKMnlaDWs2hkgXCgEBXgklBUEUXSQY4SgKFPWDjscVoWytqajAskkN1M9vJlMP07FTY8yF1Ktb5KeGeFwpZUskTNClUrhvDv33zMbtEpiNEaqmVuJf3oyu2iiaTUE3Py63DTXzUXLACktC1SpbxV9EwrKwlyIgJXFKUXMy4l6Xz13JvOcms29aA53SDOyAQu1mD6bRIqoiFnUTptGck4bsV0pRn1ImTJjExT1SuaRfNq6WCO0/+kg+X1ZNzurc1mtFUehw8RG4SwoSxtH74D1Y/8MSVn0+BwkoqoKqawy+9Ahuuvx2wqHo2sJM4SLyxQqe/PJyvBkpDD5pf3z9OrJ+5bqYGAQwDZMt5ZXMmT6bYaP3SHLkO460bNZe9SSN3yxCWhaKrlF+12t4370ZCrftmurg4ODg4PBXxxGEDr8puq7x2KsPc98t45g140eklAwePoirb7tqh8UgQEZWRtJ227JITUtN+t722Ly5kjPPvIhgsDV6uXrdOvJzXHT25RFpJ0CtNu4eEgkK3PTu/Tw17hk+mPIVZSoMDkUtVmYT5Me167BvmIMpbPqmWjzcKy1W6B2i9eHcLemGW/Gokku6NnHDkgzCdosgRNJsh1s/4/Vw9KlHsff+e7HH8N0Zd/9jzPj6O5YE68jRUhhU2oN99tsLb9M3UL8l4bgFME+G6Ct08qXasg8YOMaHu93aPqGA1jWfSEUtbi90GdDI2jnpeDUzaiAjQFMsXJpFQ8BFeXMKwm0Snhkhr4dFaoGFWpATnxvZ8mBAqmo0etciPqJpoiqoKoquIU0r5nSZUCdj6/iEpHCvdKw1zZjVQRZV6VgrU5C2iAnqpvUhpt21keyePlS3YMuqEF8ZARDgRcEWEBLx89D+hHl27wKaGpfK2vvIDBZtDlGU1RxXkkKIqIgsLvKTusVL1pgC0nfPiq2b1DNdFB7dgU2vbyC4NkBOSQC3J1rWQkkRCFe0PIWWJWlYC9IQlBkeloVTaFYi9LGt2IMHAOFxYY0dwdJv5rH20zks+3QWXtvgvP416LqNqkajpgWdgqyen0GgKRoRlcEw5f99hxmpGgFFsmdGJpf2S8fbZlGmpgj2761z2toVdAimoqoaA846kkFnH5r8VCkKB912NkNPP5iNc1bgy0mnyz4DGHfrf4kYUaGXJnT2cBXESl+EGvzMenEq3u6FcWuNtxIKhFi1eGWCIJRSsnTOEmZ//SMen5d9Dx1JYafC5HMI1E6aERWDLdFLOxK9DuefeT+9PronqSOug4ODg4PD/wKOIHT4zcnJy+Hfj9+FaVogJZr+8y+7Y045igWzFxIKhmJtiqJQ1KmYzt1Kf9G4Jrw9KRa13IqUkgXBckbsM5zNc9dEDXA0lVAolLC9oqmsmrOM/7vzKs698hzeeHkCTz/3VjTa1dKtEAJVKhSrNi2F7+L6SHYPKoCBmSbztRx6D+vHt3Pm4K4KoSgKEcPkmNOOZu/99wKgR49uPPHUOGzbZuOKtbgtyOtZiqKriG8KMd96Gq1NdNGwYE6DwJORybJaPxttKLUVQkgyM3KSnifhaZOOKyCnQ5DgFp22wToBpHojLA/4CJgaWsRN9x+j6aX9Lkghpf2aQMvC8hvY1fXonQvi1hnGsO2osGtxq0m+GrAl6Jeiowci9Mo0aOjdwOolWXg8ks5DDLI7RCejdlOQstku3CGFA9D4wh3B3yY5s7zOQxdPKGEnIjsDdB2hKi0LRVsKvquCwmEpqGU2QgPhUcCS2MGog6jmtlE0QfruOUlNdHL2y2PjS2vxppkIBZR0BaG2RihVtyS9O4z/MYuqcFTErVc0yu0AY3ChI1C9Hr4TFnPf+oSi175AkdEHDQeWNuNy2TGhutU3p6R3E8tmZcXOpAr4IhIFm5NK81BFYhReFYLBHXSeXlFFcWERN1xwSpJZiCenWzE53VrTvzeu3YBtR891NzUjofahGTJoXlaOR9fxm/HfSbfXTX5xflyblJJHbniIWV/NJBwyUFWF9154h3/ceAEjD9sv6ZhqJk6PicG2RGqbCK3ehLd7h+0el4ODg4ODw18RRxA6/G60d9b8OYwYOZxTzj2JV55+FV3XsW2b3Pwc/vP4Xb+4z8qKLUkNb0zLJHePLvzzwWswQmHeGfcqM9+fHhV6bbBCEcbf+CSv3/oMVobOt+uWoEsVpX3KoRCUhURSp0nZrhYdRNf8jTx0OKddcSUA50jJyiWrqK2ppXf/XmRmZ7aOwYgQqm1iwX/eonLGYhRNBSFwHTaQzFF92XPvAzGnf0zYtNEUWB1QmGSVsOeoQZgTvqGvGZWpEonRaOHOSPKT0MZ5VVHA5bUJJVFmipC4hE01kqW6ySZFYZgJ/ooI3nwNpV3+quLRUEvzSVbxXSgK4Yp6jEaT1G7pkLKNKLAQyLo6hCJQ0l1ozREy0wwUn0Xf0QZun4x1n11skZYVYsEUL/m24Oiwi4kug0Ys0lGZuzaD4qwwbq9s6VpAihdtQLdoLmrrpIFlIlSBlqag56po6Wqr3rfB2BzBDoCSsu2fWD3HFZVFLYHRtmJw6/4VAd3yw1RtiApCU8AKTeVbJcQew3Zj06zV+GzIjq4gRWkR3p2zQ8lOKy6vjc9tEgxrRBBUKgIFgRcF1zaK1EsBGdnZXHzpiZx11imkpiZLWv1p+g/pz6plqzEjJumKnvAdAdDdOqnCQyAcbk3ZFgJN19nroPhyEXO/mcOsr2YR3lrewrSwTIun73ySoaOG4UtLHGNSt9SWfWD+PiUxHBwcHBwcdkUcQejwp+GMC07lyBP/ztKFy8jMyqRXv56/Ks1rr72H89ZbkwiHw9H0QimxW+7qhw3bHVVT8ab6GHHEKOZ+8j1Gm+iCgkBaEomFbVpYwRAD9EKWGYm12QBW+G1m1hvskenC2yIuIrZEFYlRL9WlU3rMkbHXQgh69usR9xkzZPD9fW+x5qMfcIdNNLtFixhmNAr72rdUvzqNyUg8ew5m6Il70qi6UAtKOKfZ4NMLHmS4GY0QuVMtinqFoGILMqUQ0SZlUFoW5urNoEQFi5RgRpKf86gWUskFVGlSowo+UwVrfvBzej9PnCC07a0CKPncmBGbDTMtIuvr6X6UhZaXlzDXUkpkQwPEIkrRkymloKgkgu6W0X0qCljRlEzNJcnqYFG7QUNHsqch+Eapp0BNoUPERaRZois2ii6QAvTduoOqJF5nioKMREh31SIztLjjkEKiF2hYdSr5fayW2o/xSCkJV4aQQsWIuHC7IskCyKgq5KVGI7y2lNQQQUMhMysda00Nu1ue2LkHqJGSiADT3powmwQpcCk29VJlU8tca1KSs96N0j2c8HGXy815jz0MmXlx7cFACE1X0XU9YZv2HH3aUUx992MCVoBGGcEnE0WhFbG4+tmbePLuJ1m7vAyAjl078c+7Lseb4iUQCDBhwnt89tlXqFVhwsHEqL2qqSz4YQF7HjAi4b3sw/dk0+pNCVFCNcWDp6cTHXRwcHBw+N/FEYQOfyoyMjPYc9/hO6WvnOwsrIgZq4cokahCMHq/fejdu1WAdR3Yk/1PH8unL36A0uJAahvxaW2qUHArGumKm2YZf8NpS0nADHPhwib+2TuPI7JU3Irg81qDrqk6gzO9KJEW91S3BzFoOLKka/S1lMyfv4i6unoGD96NzMzoWsqvb36RjTMWYbcRgy0bkGPZ6IBC9EY98v1Gpv04gUO/fgB3WgaPH3gl3SMmCuBJteg1MroGTjQ3YG8ApUMewqVjBCLI1ZsR9Q0Id4sokpK0ThKhmPjLtTbHCHWmjt2yci8FlRw0dCnwVsHsV+rpf0gqKUU6tiERmhoVa1vdU6WM5c+GIhbBeovN8wLk5dkoeVlJ508IAaoWjXBKCbqC1ikNJWii2QK9cyFKbmb0w6aFvbECxR8ipUChdkNU1Jeikyt1pAVbchvwptgo6d7o2sUUD8LrShSDQiCFggyEoKExQdQKIRApGr40BaGAXVmNUpgXTTndOk0RSc0XVYiOBSzpWsJuGz9LagBkWVDfpDBGbSJfsQgA35kK31f76YSO2k5B5tpQoUjmb/GxZ4dm2mbiShsCDRrYEl2z8AibXCGoQqWjKbFMlbKFXroMCLZWlBCwpHgYPduIwZVLVnL/LQ+yduVahCLYa/ReXHHzP6mtrycQCBIIBPjyi+l4PG7+fvghlJZ2Ircgl0ffeJjn//sCK75dSEG7pYKax0WfQ/ekpE8X7n7lXprqm5BSkp6VDoDfH+Dvfz+B8vLNBIMhuqYWkOdKT/pAaFuZCDnH70f9p3MILlmHHQgj3NE04N2euRxzB8pRhEJh5s6ahxCCwcMG4na7t7uNg4ODg4PDnwEh2+fB/QWpqWnG3kYZAYfflry8NKqqkpVw/2ORUjJ61GGsW7chrl1RFU488WjuuvvmhG1qK6pZ9v0iFn05h6Uz5ie8b0mbsnA1DdKIu00PmmECGOi6zvg3niUjM4PZP84lNzeHPYcNRv1hGmLG56AqyJEHwR4jQVHYsGEjJ518LpWVW1AUBWmYXHPW2Rx/8rFMOu0eLMNEkZDaRhC6bEm2bSekp0aQzO+dxemPXcdzh17LAaGoIOw6zE9GgYlot0HQEHw13cPunQPkdrQSbrxtC7bMc2GFo+2NlsaqUBq2EASwqdeipi4uKUi1oIsZjj59aglcDbu9Yyy9ta2iklKyeVET37xTT6plM3pMA64BnVFKOyaPEG6pQlZWRtMB/aFYO8XFaDnprSJMUZBuTzRaaEO4KsSq59diVoRicbSOu4fIGVkUjQimp0XDc0qS6CAgwwbmj4uT1uJDCHBr8emf2ZkohbmgaYQ2h6j+ZAuB9UEq8FJhuciSIYYPr8ed0priatsQNqF2ngthtkZTDQnLTJXqSDoeKVCJmgIZAiJCUi8kYVVyTLc6SjLDsSGahsKmRT6UNtmRloAyNKywi6yWdt1tUdQ1hO6y2LJZ49kGm2s+foLMzHRqlq3mgnOuoT7QasSkaRqWsNnoryZX+CjVs1CFQnmkgXKrkVtvv44TTjw67hSVz13JV/e/QdXKjbhTvAw6cQzDzxkbvSbazfGCuYt48tFnmT1jFiPsTAbr2QSxWKlbbFTi3Xc9Pi/Pfv48Lk9ysSZtm6bvltD8wzL0vEyyxg6nqFfxdn+jZkz7jhuuvCU2p4qEE0YfRMWCtQAMOmg4fzv/aDypP69eokMru+rfiv9FnLnYdXDmYtfhzz4XiiLIydm2CaMjCB1+U3bVL9CWyir23eeQpGsI8/JymfnjF9vc9ofJX/POfeMxgvHpdaa0WBgop9b041J0dF3jwLEHUNNQR48e3TjxlOMoLMzfRq/xSCkZtd9Y1qxZi23bHOIu5lRfZ0Dg0XSaFSgXIBGkbxWEUpJq26TJxDRUiWSuatCYk0FhbYDdI1HROOCgRnR34nfDtmHz9yrpxSYpRXZCFMy2oGaVTrBSw7TBRGG5lYKJQpli4RUqCgJdQqoFvRU/BfkBfL4I4bBKxmE9SOmYktRVx785zIo319Fn90DUeTMjFXXYblHjma2flzIqCDdvjg6mpc3eXA2WjdqvR3wR8pTUOPEpbYkdMll6yyKscPT4+12ajeJVER4PuFzR7ZWWfUoZDbERTaO1123G3pTo4ApE1xvqalIhafsjrPtcBwS2hBWRVAzU6NwRoU/PZnI7hBEKLKq28K5NIdWSCafJkjA3kIFNq4CSQAhJtSrxC0kQiwEukz1SwlghhVCjike3EvqKANXFJbCmGpdm03tQLbpuIxSJbQu2RKC80yhKZy4mEghhmyYzIgbPhYJsDfTZ0iYLF6XubLQWBxtTWtRGAswMrmf61IlklxQjNI2GylpmTfyK6rLNdBrYnSFH7Is3zZdwrizL4rrLbmbWtz8igwaXaV1IQ4vV5DSkzSzhZ5EngqZrSFty9YPXstueg5LPyzbY3m9UTXUtRx5wXKxkBsBQXyd8io7SMhZN18gtLeTy8bejqNuPNjoksqv+rfhfxJmLXQdnLnYd/uxzsT1B6KSMOvxP4vG4E0xituLz/fRT/sF/G86Hj71NJBxBtjgnWtLGJQX7+ErwCI06K8SYy45l7JlH/aLxzZ01D3OLnzw9jRJb4zRfFzyi5ebfskmxoFiBcl3FbVsUWTYa0UiRCVjER94sQBUqwUY/cSu+tnEOhJAIUyItkq5tQ4KwBVIK3BkaHQ8vpl+3VGwJq1cG+eb9evxNNhEg3RWhR9c6VHfUvMPlthArNyI79krqGupK1+gzJBBLd5SNzdgbNqN0KIhG7YQAy8Kub0RBxkxppJQoBTnYVXXxx6XpCZFIoQiEKsgdlk7lN/Vk9dUQeks00OWKis+t1e5bBKFEQNhA+gPYldXRchktD5q2ZrxKGxAS0fac+bwonYoQPh9KIIR3/RaaVzRRZbmjYrBlH824+G5FFo8uXU2tFaKrqfJAbgoiSQaknmIxpEM9QoPN1V7Kq70gBW5gue0npEhyhYulhk5+WCPTNPEoVkI/QpG4VJtFG1bQR2ZR0r0Rl9tqdSdVJPkKZK78hqYmV0uUV7C37kIBHg9FI4UuodLZnfP/7J13mCRXefV/91boPDnP5iit0mpXAeVAEAghohBBYLJJBhsTDRiDAYNxhs/GZAwmyiQhjCQUUM5ZK2m1eXd2d3Lo6VDp3u+P22F6ukeALSwBdZ5nNNrqCrdudffUqfO+59TKrwFsYXG2k+BDiTX4l3yAcdchPOdkvvqL+4kiRRSE7LjlQW7+5hX88Tc+TNui0uArLruK22++k3KpzFmyi+wCMmiOKTlRZ1j+0qexYuNqTjz7pJZmMv9b/OJnVze0Y3ZZaZILyCBAGIRMHZzg0Vvu58jTNz/hY4gRI0aMGDF+m4gJYYw/SLS1t3HKKSdy8823E4b1srNUKsmrXv2yx93WTSb4s69/hEs/9XUevtnc3BKFtNspnMrde4+dZtuXf8HxJ25m6KjVLfejw4ixr/6cie9chyp55E4/mqE/ezE3/vJOvv+P3+SI1AA6Cc8PMyRpZAUSUyraEUYMR3WdyKq85qMNKcSogwoYrax0UGqOq47Bi9CJxrJIrTXaV0jbojhukR1q4cAooDhpIWzB8jeuQWZMRp8FrN+QYu1bLG7++g7uH8tx0pY8mRVtte3CCY/w0CzajxCJxq8grTTeWLHpi0lt340enUD0daMjTckTZDsXZSYKga6pMwuo5uLIi+oarkXnKV10H6XR5VJj2axlN6qXQhhS4NiIbBq5bAB94DBaQhBoymVIWGC7QKgRbsVBNpvGOnJ9rfRUuA5Dr0hz4Mf7Ce8qIagQzfoMIIUkUoplIo3QDe2VAKR7A9o2JbBW9SISDkNTBVY9NMPdd+ZI64iTNUzJJHkhEQhuRHOasOjX0YLT0XSuLJPuDNEaXqbgW7vGOLm72fTVliDbQvLU40dcITjVcflquUQJyMnKA5YF41xPxDOkNiQuUuiSh/7vG9gcWdxe2Vfg+URhyNX/+gNe+JHXQ7mIdcdVyO330nP/DlY4AdtLcKTI4i6uawaUgOee9jS6TtnU8ho/EZgvFBryEXNWoql3E8AveRx8dF9MCGPEiBEjxu8cYkIY4w8W//BPn+SSV7yRfftGEEIQhgHPfNa5vOa1r/iV23YOdPPGf3oXWmu2P/wYl772Mw29WWCcQG/4959w8b+8s+U+9r7/S8xed1/N9XDm53cwe+OD/FTNEYURtrBAQKZlYAWEWjEQaiwEllQ4VkSoJGFk4QB+hUn4CO52QkJh+vrmpWBcCHq0wp8X2AmNHO5EpJPmpv3wJLqkUJFA+4KZ3RYdayK0Ak9rEkIwvi2BjgS5Y9qQCdlQJiekQCYstm62WT85Tc8KB7HAMcXuNv1d/l27SZy0phY+ryKNDjVTt4/TN9h8vmpmDqbzjG53yZw21LwCgK64xY5NIPt6TA9hFC2ZYZjoTqDbesx2pZIpP41Uy/WFqJjgWBZyWT/0tKOm5xh9ZIadox6nrwzrZMoLwLWRy4ea+hCla7H8wiHE7vuZny/zcKm9RgpnCcnrkAjFxe1ZHKuxXFRYmvatOeyNw7X+SJFO0D/QwXET+5jYbdOBhQpDHpYWO2wbLQSpCDwcErYpe+xcVSbVHiLbkwjHJp0v8cp1IbqWg7H43JvnTiLoEBYFFVKKfPSivyanighn0Xa21hwrQu7QTu2cVaR49Ib7oJjH/dx7oDCLCHxOTcMJZ3Xw4bvyzI6GKK2bnElTiQRud3vz4Frgvmvv5Iov/Yjp0SlWHbWGC952EcMbfnWG6dNOO4mvf+GbtQzUkgqI0NiL5slNuXQO9fxaY4kRI0aMGDGeSogJYYw/WHR3d/Gzn1/Kvffcz8jIIY4+ZhOrVq0ADKl45MFHGdk3wqq1q7jxlzdzzTd+RtIT5LrbufjPXsVJ552KEIL+9k4SCZeg1NyPOPbY/qZlAN7+cWavvRftLbBbVJqoUGaD0Ny9QBA8JCMySjSHeaNJ6oiurEcmUY8t8EOLw/ksDzmCSIAnQAoHQV0JvSWhOcG3aZts48gLViASNsK20WGEXDnM3H9vQ0fmeKUxm+Kkhe4U5AsOclaTwBAVp8dFuC0Iq2XhdKboTgQNZBBM3ITdk8B7ZAr/9gh74xAilaB4oMSOy+bJDGdwju5FoFGjE+jpudq2ftswQ29ahXAqeR35OSjMNx67VEYHAToMobcbbBssB+3Ytb5CrTVCGWW31muYSqLzefDKiFSLsuEFZahCCHQyiUx7LDu2l3bnYLNLqB8i0unW0SiOzcAFXRz6eZ5VfpFZP8GsgJ/pMUBznHBZ6dpNRMxtU9jrhxocS4WUaBt6Tm3HUlM4fRY6EmT2KqIpyYwUKEy/aTGwyaZ8MgMC57g1CKdesmrtn2Ri1zg5G+wFqqpWUJ5trlsVwPmijyHbphD67Iok+xa8FXJLxF5YgAss7MB1kgmsG34M+WlEZN6nloCULfjw8Vle+9/TbBI53AWfAS1gNCrywre/nYsvfiGvftXLcF2XVrjx0qv54T99i6Dy8OWhm+7joVvu50Ufeg0Xvf75LbepYtMxR3LOM8/iul9cT6lYYiIssG7RuQkpcJMJjjnnhMfdV4wYMWLEiPFUREwIY/xBQwjB8VuO4/gtx9WW5efmec+b3suenfuMclgOWOt0kcWEznsT83ztg//KzOgUz3r1BWS62+pB2ovQtXKg5fLSo/sRjtVICAEZKQaEYGGF6L2Wz0plY2sTiwHg6YhvlvfwlvYeMonIVEVW7pVdO6I7U6QY5mrSTiKTpK8vx+iug2Z7IbjJCVl36iAk3braZBtnTf+otaiHTBacAALPYmZ3kkgLBAInUUag8Q57KF9hJRYRBqVA+whnCYMNAc6giy7NE933GFprHCFY9/KjSS/LIm2J1hqrtwt1cIxox17k8iEyG1bVSQyg29pMf9/8PKBRB8bAj8C20DNz6Jk5yKRBK3RHJ6KrF5myESqEFoZCanLOxBFkcoZALmZkepEMLCVCaNIDbTA60bQ/7fkIp8XXrBDYa4dY/lZB6pfjFK4o0aY1g9jcU87zV6tW0P80F7dDEvma/KMheqZEepXdUuoUUuIM5eg+fhrpCshl6TxekL2nzI47bCJh+ksDZVPUGufoPnOeC4iftbwbpkpMTs2RtSUZW1IKNTKUzI24DaWrSkO+7LApspBCs3oQTmoLOFiQfGtSEGgYF4JlLUihD6SUeVCBMP23YVcS8dBtNTK4ELYUOG0hlxcnOV93k0gmCTyPkajI300/wPS4z6c+9U9ceeW1fPc7X2m6ZlEYcdnnvlcjg7VrEym+/tF/JxABz3zeec2TWrtUgr/69Ie44dqbuPyHP0MIydlnnsaun9/Nvod2AbDiqDVc9OHXMbX3MHbCoWvlwP8qIzVGjBgxYsT4v0RMCGPEWIR/+vi/sPPR3bW+oUG7DYlsKFeTCH76b5dy9kufhZtMsPWic7jr0usIF9x0Kgne6hzFYpF0utFFMbGsFx226M2zJHlbsAFIAnuAOaH5iVuiv1hig8gwqwN+5I2wTeX5cKqjqYxOCsi4AVkRcVRvib50wESQYvitL+dr7/ki3aFACThExMZNmSZXRCEFPeuz7JxPk3Q0bUdmSXW5qBGPmcdKKA1TXhJXRhQfLNHxjIiUI+rqm1KGbE3PoVMuIpdCdHWZ0PipGSiXK41xIBIW+AqRcLC3rMdtz9VupE3OoIUc6iPafxhr3coGMmjGKtGZLHrvAdR0HnxDKHSoED1dyA1rTJmnAFXyueFf9rH5wg46ViZbXHljGqMKRVS+iL1hDdp1az2IQqlmEx6lsCyByCSIFvX6aQ3Fhw+R3rwKuXDcWiO0ouqa03NOH2tS8wjH4q3j7Uw+NMOznpXFqdRb2ilBxzEO0WSAmg9a128CRBFWVw65ahlVF5ThVYIoPcmeXxYoEJEVEpFOIFKNZBBAWJLM8m4+dEWZlwy20ZEKcPIW4biLLTTZhI9rK5QS5D2HcmhjO5ojz8jjJhTShoEINobw3lvgv3B5h2UjgjrJUxoKvsPpodGrb3U1u/B54L57OdCeYWWu+bRSrsOFr3opds8AJ59zOg9edQsf/Ngn2VOYrq1TLpe5994HuPmW2znt1Mac0tmJ6YY+4dr5CkFSW3zmo//MaeeeSTqztJmUEIIzzz2dM889vb7wJc+hXDCmOgfv38l/vuFvifwArTS5vk5e8vdvp3tV6wdCMWLEiBEjxlMJMSGMEWMBwjDil1ddT7jgJjYr3SbSBaCUYmzvIZZtXMk5f/JinFSCW79xBUHJI698bprZw8TX7uerl/2In1z2bTo7O2rbpo5YTmrDMkoP70MvOJbrCs60wpq7pxRwq5TIV13AjV/+L7pFEqWTPDd1BJvxSMhCy/OQruI1R4xjSY0jYa3y4Pt/y2npfubmNFrD0ON8/AWQ7HA46q3DWAmJdAQq0JSnAh74t4MoD3xlgw/3f3GEE16bw+oxLpFqYhq1e8Tsp7enQsoq+x0eRo2MoB/ba8ouMcTQWjto4h6WgOzqANdp/aJtEx405EBaoEKIChapU9c1EEiRTnLyW1bz8I9G2DzoIheUumqtIQgQ3W3IhGt6CudmIZM2jqN2o8mM1toQWyoEuOw18LQwAqUEt/wsZNPsKENn95uLKYQhg2rBwwDXZeisblN+7Cu+9dzzYPduWBBzICyB1ZNGTU+ipueRndnGoPtIoadnsdYsb4zbAFY8q5tgfJ4D2yzulIrTHImKaAitryKTtnjrMVluezRLUimOCAIsINKC2ZK5PhqjNoJg+aYiiZSikjSBZUNWwpuO1nxyG0y+9WIGr7+Lkcig+gABAABJREFU4JE9BEWfvOcQRDYO4ACn+Job5BxnW708slMzdHTAQkFVCwnDq3nJW95UW3bXxH72lWabxl4qlbjj9rubCGG2I7ekgu+rCDth88iDj7Dl5ONbrvN4SGZSzByc4L/e+28ND4Om9o/yn2/+DG/76aex7PjPbIwYMWLEeGojDkyKEWMBlIpQUaNy5+tmu34ANOQqhhZCSk5/4/O4TO3iS+N38J3Je9nvz1Aqlhg9PMbnPvuFps3XfP5PaTvnOLQlUQImHU3aKeFGEQkgIcxN8+mOxRGH5jghNYAjLBLSwhUWK0SKfaFFq3vd9FCEaxkyCGBLjaUCtgyPITD9iBaC6cfmTKj7wtNSiujQFGtf2oudtbCS0hCSpCTV67DiWfV4AAVMzUn8R/YT3nof4a33oXbsA8fC2rAC64i1CEsiZOXHksjhIUgsIH8CRMfS2ThojDFModTyZTVfZup+KOyDwgjMbYcwN9ikpEkpcFKSZCFk+qE5dKjQYVT/iSJELlsbp7CkIW6hKS/VUWQcWKsKqFcnbGpitkL4jAo2MWtz+XXdzGiXzBFtaN+DwIcwaCSDlskrrKqiliuxbAtrxfIW86ARGQc9NgVlD60UOohQgaK0bdIwvFYxIkKw8owk7Z0BO13JldMKrZsfcGil0PkCm5aXaUuHZLVuVZ2KwMSYaASdQ36NDNbnGY7rBr9c5v4HHuXAveMcnkswUUzhRXbTvk4jR5tw2Dea4MF9KcII/EAQRIIg10vwyvc2bNPX10symaBdupyTHOYZqWX0WylSqSR9/b1N43WTCU5+3plNpbZaaxLSRoSatva2Fmf66+G+n9yIDhd9R2gIyj73X3U7c7NzrTeMESNGjBgxniKICWGMGAvgui4bj97YsGwiKqAW9Y5FWrH2+A2093TUlh06NMrYxIRRvRYgCAL++2dXNR3Lbktzx9E9/HVijI9ykB+rMZQfNK0nvIDwF7egvMayNwvBDj9HCQgqh4wA5Vgks7opbUEI6GrzSYn6zWv53j3ooocOogrBCNElH+/eveRWpZCLnFKkI+k5PldTiTwhKCDZtSNFrf3LtrBWDyE625ckKHJggRtjdWqD5p6+KqLRSaIHdzTdeGutkUmLnucMUB6Fwh6BNyWQuQTCbv56s1zB8ClprJF9BPc+SrT3IDoIEbaFyGYQmQy0tdWyF2pnXyWB5TJ4njGt0RpVLBPtOwy2gKQDKReZcpA2TEZw7HltZLtspF0hftX9JRKQzhhi7DiNGYmVLMQmCU8KnGUdyKwDU9Pog6OosUkO/cdupm+cgRaxDNWTELZkcG2Rt6TmuKR9itmbxlGhqilnOlIQhOipOQTwrE1TbNkwTaa9RZ8lUGpJFRsP2hEKVv/kQdR8Ge03l2yCeQ8PikQlX1Bw52M5vn19D9fc38ZP7+rmwcEXQFtXwzYXXPBsTnR7+WjnSTw/s5oL06v5QMdWnu0u43kXPLvlcV7ynktwU4kFoxNYQuJisdruZOXqFgT810R+bJpoMSEEioUiH3z3Rzhh6zm84mWv5/Dh0f/xMWLEiBEjRozfJmJCGCPGIrznr/6MTDaNm6hkpdlwMMoT6IhQRyg0K45Zw1v+4c8btksmE7Wg+sVItXCtLBaKfPPfvkmh7FEWGheayGQVlgrpJWAVZXoIEFrhao1SFv9QdPllYLEjFNylHeb/4s9MiWMLaA39sq5seSVN+cp78e/YTrhtP/5dO/GuvNfEJiyBQGhmhWTSspiSFhLIb7cZeThJUBaIzlzrjIeFcF3IptGBMsRqKm9ISaloVDitDEGNFDNXPIYqRlCcR+3fb+ZYa1AKEUUIIbA3riS9ylwvIWB++wyR10LZFZDt1+ROHMY+Zr1RMNtyCNuuK3VCQLXns6IKNsxhpAgf2Uf00G7U3kNmHJVthRAgBe1tkpPSEeuOSWPbixoLE4l6zmH1x7Ja9AbWj6uVRiAQsq4mCq0RYUDmiASz0zajN88v3V9oCdq6NblkiGVp1P45ineYvkuVL6JGJ4l2jIDSSKFpSwYsPyrFplf3cMQrO0gPN7p3TtsOs0IwNeKiFk1zpOCBSThap7CXIqkLMG9ZqAXnWvYl+ycSzHgp0gOdTes7vuJlqXW4wijltpC4wuKZ6RVE+ydbHsMrekQVUmrSGQ0pFELghIKvvPtffuU4l8LqkzfhLCCbNWgYKc0QBAG33343F1/0WqJoiWqDGDFixIgR40lE3NwQI8YirNmwhm/89Ov89NLL2bV9F0ceeyTnv/DZTE/PcHjvQTYevZH27o6m7bq6Otm8+Vjuuuvehhu/VCrJJa+6uGn9PTv2Yjk2eEaF2a7DloHXJF3avZAOUURCLUJgwksCgnaZ4Brtc5XQDK9bwTPOOZnw3mOxtt/VEDKuFBQnbZKiTlp3jKdZ1l5GHZ5BHZ4BKlwrgNKBIsnlaeQCqTEIFVfeN0ZRwqquEoOdRWQE+bEEs3ttiiOCdS9PkJQSSiVob54nhEAO9iEH+9BegH/9vXj3HcDesgGZ8pCej5Y2YVGx/yv7QAWsfm4WHAvhOKaEswV5SmzopLBzDKU1qcIhRHEI7aQbzW6KRdMj2NvT2GsnpSnn1LoScF8haFFk+gkRYEt02SfaN1bv77ObnUhFMkF6eSebN1rIxUF8QjSH3i8cQ1RRaufmwXbAFehimXCyhNObaZ5KKcgOwrznEjyosK6epP/crgaFU2iN1ddJqqcdOTRL/tqD6EDh7fFJpMebYkEAnOM3IrtyCNuibVix6chO9l0+ycFb5hizHCIhmLYtrnw0xYXdIamUwpLgKygGgm8+5LIWixZtirXr5YiIpNScEMG40IzKulKqgQjNwKnNgfOjNz6ItG2iYJFaHESM/PxOOjY1Zwvarl2bD/O78Zx33vMoI9v3MbxhxZIjXgpHnLuV275xJZN7DhFWHqQEOmJneZK5yLxPoihicnKKm266jTPPPPU3PkaMGDFixIjx20RMCGPEaIGunk5e/eZLGpbl2nOsWPX4pWX//NlP8fKLX8/4+ERFxIo49+ln8apXNxPCru7OBvMaD/h6WOSP7DSOEEhApBKQcLH9sMYhJEZJ7HB85oIEy5TkWb7LpckSz3zTCxBCEL3szaj3vxknVb9p9guS6QMJJpWFV+mL/OLUOFvGUrT3+7XqTq0EU3tSRKMjDL5+LZYjcFyBDhRi3ufUh0dQmyIyrsautK31dJSZn3SZH0sgyiW0Splb7plpdEdHJSNxgXto1TnEtkicu5WJL97Mjs+OM3CUQ6LLZuagYuqxkACH416gDBkUonUJqtkpVm87JKdwkz6JnCa48yGcLeshlzXbFeYNSe3ubjJeqRG1cIEyKmWlL49KjIZGT08jZQi5hIkMWcylLIkcMPsXAEGAdpw6aRQmTqMpkkAIo0RGClSEsARisL/2cji9c0nVVYp6r9/odbO4dpnOMwbNOWoNVEiulLjLs+TOGmTuFyMoH+Z3azKrBFqDtCpzm2tDdueMmQ6mP9ZyYeWF3dzzkEe50sopNeRCh+uu72SwLyCTC5krWPxwSlPSMGZpQmX6YBdCo0hLE5UigXYgo0NySrPdclFaM6cDbi4d4pev+TP+9j1/iiz6ZI5bg9PdtuR7QGtNeb7Y8jU3meDI047j4evvpZUIL4T4tQmh1pq9j+5hdnKGNZvWkuts4wWfeANXf/rbjD26j7zvcdPoTrZ7jTEkSilGRg7+yv3/NtHyvRcjRowYMf7gERPCGDGeQAwM9HP1tT/h9tvu4tChUY499ijWrlvdet1lA2w4egOP3P9IjRjerHz2RZr3Pv1M+rIZEmdsYfaDnzORBwsgBCStiLnA9GH1akGET2d/F7MHJ7jtK1eRGxlkrZoimYgIy5JiUZLXmu+Up8ijeEwVsFIuo84w5UfHcNMRKhL4BQulBeNFzY1/f5hNx7ocucxHTRYIRmbIdElTa26kSoQAmZJ0HmvR5YJWZYgUWghEsWh67hJJcFx0MoW1oISySlTm2gdZ3X8IPQ5iHLoEhMk0To9NNiVrhEfPziH6epsUNiEE9kA7/X98LNHoOO5AmyFxUsDMTGN/4mIXlIWTSsVBVKlaGacQ9W3kQB967wgil0W7DnpmHl0o1Ms4s2kamJvngW2bG3Ep0UFQL0ddAK012vMQpaLJNlwUBZLYspZo936QjTf0Wmt0EGKnrFrSu+clDWlanJmIyZl0l2cRCQvtRQQzsO86B5mVdAyVSecC3KP7a2SwYVs0J5xjcdvPfZRjseEoh41bJKmspJhXTI1bDGRtXjMZcPu2SXS+THFeky65ONSVP1dorMZZwgZ6dMQDOuTH/gGKhHQFNi/bHrD7Lf+CnXDQfkj3S88iuWWdsXFdBIXmv396HX2nrmQ4PwGpFOLU0xBtxjDmlR9+A5962V8wP9Fs8iIEdA83G9IsxvT4FJ95+ycZPzCKtCShH3LuM05n5pfbUEGEiiJStuRp2WXs9qcIFl2DY4856lce44lGUCxzz9//F3t/dhsqCOnduoETPvAy2uJIjBgxYsSIUYHQixtkfg8xOTmPWsJ2PMZvF729OcbH80/2MJ6ymJvN8/oL38Ds9FxN+VACeod6+dqPvoSbcDn8tFc1OlNWoDWMlQ25KKH4r06fzNa1pG8awcaQqFUEbBQ+goi7ooDLQ5/DYYkDhQmOPvpIvvP9r2IfmmDqjR8x8ReeT0lFCGFzb5jDR7K1c4qhTJnM0e24KzKGCEpQUwXUXNHEY2QdY15SJVVSIHu6EO050Irw0CT5bC/d6/ubziPyIuavegzv/sNN56d6M/QerRFuvcxS9HQjBvoNWVu4MqbXjihsCDivka1qFl1Pb7NCWNmH9ipREsUKMVtEPLUGkU7Xe/+URpfLRI/sMD193R3ItubSTi0t9FwZNT6L6O7AWr8MUenzrPWdTk6YfbYoQ9WRQk1OQX7ejKuvD7q6oOwR7dnL3G3jlPMSS4JY1kvPM4awXMu8bypNflWiq7yAmR/uIZzxCTyLYsGlHNi095ToW18mef6JCLtCCBeoslprol0HiJJduMvaDNmOIpidBdsyDwCEMNdAKfI37CYam2e65HJgTxuWNjQwKUIc2fx9HAIPSocfRuMcUAXexzB9OMgF1FED5YRDpMCLIvKy8lABOCRCjumaZWvWw3XsmimPfM/7kFtPAGBuYoZPvPC9+CWv1kCvBCTaMvzZNz5C/1Dz+3MhPvrqD7L74Z0NTsTHWu04i9rxIzR3lg5yS34fYPqLTz75BL72H//2uPv/beAXr/07ph7ei6oa+wiBk01xwY8+SqLzcdx9/48R/6146iC+Fk8dxNfiqYPf9WshpaC7e+nv/NhUJkaMJxGT45PMzOcpRz6eCimrAD8KmJyY4hc/uwYhBInTjoNFipHWUI7qKo6N4MHSBM71+0hoiVWJltiLyxU6y2Uqx/ejgKIQZO0kyUSC973+Ddz3ri/wi0s+w8NWN/7JWyiefhz/rzzJ6yf2MqMUno5I2yGpDW24yzKmFNI2ERKyK4vVl0PmGskggDVgegRFKoVIp7HWLOfwbr+l0YuQAm/vTMv5kX5QyWTUdWIyMYnasatWxrmwhFBIUSNatWVCIBzXZPV5AfrQGHqRuYeOItTULHp8Cj05jUhnEJmsMb9ZuK902kRFWFZlLixEMono7EWVI9RsER22IO9+wPQdhwn2ThDcvQP/lkdR0/Poso8ulmBqsiXpr0+EMCWsUiK3bEWsXYfs7UMMD2OfegrZY3rp7PNpXwG9z1qOzKbBTUAyBckFiqRSiGSKxFEDyOXdFIsOgRJECGytKM9ahki1dcLao2H9cbDuGOgw6pm1Ygh3WZuJ5RCVue7qaiDP5hpYZE9aQaIrzfAJPZx0cZJjXpJh04U5sisTTVWfQmgsqfAErLHaObs/zdGbLLqXA2LB9QUcL4AwwtEaW2kOi4gHpI+bLrE14+EKTJ+p54Hnof7ub9GViJC2ng7e8Ok/YXkyyzISLCNBv3Y4MDvOW1/0Nh6+7+ElL8HEwXH2PbangQwmkFgtIjwsBFs7ltPb283w8CBve/sb+cKX/ufGNf9TTG3by/Sj++tkEEBrlB+w84c3/p+PJ0aMGDFiPDURl4zGiPEk4pEHHkFWTU8WOi2Wytx7x30890XPof19r2PitX+JLpTQxTIKgQLygSEr2rUZP26IlXfPkF3Yr7YAEkhiUSZCSMlH3/52Zv/2J1iFMmkN5MvsOjRL7vRNbHnb69j7hUu5PBonqyU9nmLV6mxTjIOQAlJJKHmNy7MZRE9ngwpnAUdsbcM/XCQxmEa6hswqL2LunjH0TLmlz0owHqICC2FFRrWSlRawcrki17XYqGXUBagDh9EFz5AZFSGHBmrr+w/sJdw9RuqcI2tZhABaSmPuUixUTsRqNpGxLeRQN+WbdyBkkWRnG6ScWtmnVgpKZdpXCKJiGq0S6EKZ0k9vx86BffRqRK7iQvt4pFBoxOo1kEw29PcBuGedSHnXZbgnHYFIuY1lpVKC4xqC1NUDCjJndpAOFJmzy9z3j7uIIm2IV7Ydch3Qv6J+/Swb3Tto5nV2qqmcFSoxGX5jRIXszJG+8PhKTbEgCRCGdJykmLxjhoM/nQA07e0l0ukAreE5cp7nHd9Ge2cXjtCgIkIP7r/Mwi+K6tHM/hG0aRgTgqyAzWkPu8XbQQHy/vsQJ56ECiN++cn/RHhhbY4SWnIcHdxYOsw/feSf+fcffb7l9BfnC1iWRcDSDrwLYQuL2++89tda97eFuT2j5nO6CJEXMP3o/idhRDFixIgR46mImBDGiPEkom+wryWncVyHoWWDAFj93fT98B8pX3sHwd6DiK5Opu/fj33rw9gdWfpecx5f+OG32OB0NZOV2m9BUAn8SyRcVh30mSp6JPTCdWD+xm2M3hayzGpDS02I4nv5WV7Y6k4baAo7BER3B7QqyQSmrtqP05Uid3wPKlDM3TpG/v4J2pvTBQDDQbzteRIrUlgdlUG6KVRJIWbmkZ25pp66heWiNZTKRsXMJhHpJMzNofJ5EBI1NoMc7Cd9/mZwGslUtcdR2zb4/pJpGiauwpSslm/Zg726G3tZO0JodL6IzheQ7TnsY4dNcj0apCTctgc1W0QuXwEqhLlpU7pKXXHVFRVUpFKmXLZFfx9SIno7kP0dTeWwxjXVhrQNQtacT0XCIjWcYv0rBtl36T50WpI6qgvRM9i8D2lBzyB6bqq+cGAVom85wrLBK6Ieux+mKll7lg2u2/xwwrYRIqTn5A5K+2bRe2dIpcNaBW7nuiSpbtngfCptzVHnBtx3uU2kJQuvrgCkFvRoizYtW70dKRVKfPkT/8Iln/8H5rcfwss3pigKIZAaBmWaQwcOMzs9S3tne9N+hlYvQy4iwyGaUGgcGp1LFZooXbfTmc8X+Ma/fYNr//s6ctrimSefyHPf+jJyK3+7fXztawZrWZMLIRMOnUf85o6qMWLEiBHj9xMxIYwR4wnGyL6D7Hh0BwNDA2zYtP5xXf2OP2kz7Z0deGWPaEEpmmVZXPCS82v/FgmX1LNPo5pmmLuocT+r770J695HWh9Ea8Z1mQhNIpngpW98KfnLHiKh6u6UUmuSKCzgDF9wqyPZbWkkAke1MT+jyXW2OI8W5h7AkucsNMzePMbszWPVoREpi/mCSybt18ix1hAGEjuh0YHG213E6s2QvmALODaWxpTRBn6NMCGEMbCpGHmIqnOn1qjRCaPuuU49axDQWiGG+7GGe1sTreq5CImam0ckUujEIgVOKVS+QOJ5Z2CtHESXfMo3bEOOHDLqTC6HfNrTEN3dxhwoP2N+AOfpZyNWbqyrmoFP9OAtiHIRbTvGGEYp0y+ZSCytIAqBzLXKMqwgUkZZXMSYhCXp3tpF13CId8cO7AxGTWwFywLHMWWnQ2uhd1l9zpIZ5KaTUNvvgsnRln2QC8eKJRg6I01BTOGP119KDieaYjCEFKT6JN25Eofn0gQLOh08AR1oVokSbSWBSjc/i7CE4OY9s/zyuW/kba96BaHnI3RFaRb1dXpkkkN4tfzRxbAdm9d+8E188a/+lcAP0EpjuQ7jUUA/LnKhwi80x15wCgCBH/DpF/0pHYfzvFy79OMSXf4AD/3sIXqefSJrPvk6pPPb+VPcecRyujatYPLBPfWyUSmwEw5rX3ha0/paa6KZeWQmiXQX+8PGiBEjRozfV8SEMEaMJwhhGPHJv/gUN159E7Zto5RixerlfOYLn6K9o1lxAJBS8tmv/yMffffHeeShRxFC0NPbzQc/9QF6+3+162EVL3/1xXzxvz5Aj0yRU5XyPMBDM5ewmGxzOHLwCC585fM57Zmn8YMf30NPdQxak62ohwJTXvq0QJJRioO2xREqyb3Xa045XxvjTSlqYe26YvNviJfZn5qcrYS9LyJYUjC7a77pSydUEn8+iVd2SKV8FPCI53CkFZJyK+V5AlLnb4FUopGMCRempwzhiUJQ1YhzY86iy2X05DTa8xGJREv1TPZ3LUkGq+emyx4iitATE4jBAWOgYlloaYGOkJuORtq22X8mRfqCE1F796B37sA67bQ6QZIS2rtMGaqwEKuObBiTtiysY09Dje2trAOUSzBxyBi4eCV0MtW4jVLG6TT00PMFyGaaCev4FHL5UMvzEwDZFMkzNxFs2wd+ubHvsIooNOqltBB9y4xquHA/loUcXocqzJrr8XjQINGkl1v4EwphYYjg43S1p5wIDyNpC6mIlCAv4QRZwELjZB3cI1PYaUE4WqJ0sAgKbh1v40KdYCKKuPcbVzCsXayKnldGMyMgkhohJGEQ8MG3fJg//cg7WLGmWUE7+Vmn0j3Ux+Vf/zHzM3NsPn0rA/29XPrxr2IHEUJplGuT6m7nnFefjw5C7n75X/OcQxqXajO/MLmWGqavvoeRz/6Y5e968ePP1/8CZ3327dz7Tz9gz09vI/ID+k86gq3vu5hER6O5wMzV9zDyif8knJ4HKei68BSGP/DypwQxHB0dY2TkEGvWrKJjie/SGDFixIjxP0dMCGPEeIJw6Tf+i5uuuRnf8/ErYfO7tu/m0x/6Oz75ub9uWFfn80Q334qaL1Ca0lzStg553tH0nn8iq8847jfOClu+fJiz3nMxI5+5rKF8LYFgWTLDW374jwyt7GV8PM/42ATX7N3FRbQjgMQCMliFg+C4yCIhLVJIJg7ADT/SHHGCINelEWGIq0soP6xFUMw/WIZQo6MS2WdkSazpAFsSRRqt4Wc/GGcgHbFuIEAIKIxZzIw6KC2xcxbdp/aQXpakdMjjwdunmZ7xOb2oSLeBvXEAkWrRHykEJJIwO2PmVWkIAqMIAqKrG/m0MxGdXeCV0TseRR/cD3Yl+CAM64Y9tSDGBb2JUkIqg0i3oXPtcPgQ+sAIYuUqdGe3UeycBCzq3RSOjVy92vTvLe47lBbk2hEdAy3iMyTaSSAybRCY3kydTCMGVsDBPeYcigV0OlM31fF8ojvuRkiB2rUXa9NGtKwQ1iiCIESPjqI72qE92zgWbearWhorcynUtoeRmzc3ED6tFEyPmfUcd+k8yGSm5vqpo6g10daG1OkwAgG5YxPYuXreo1aiQcnUWuPPKHSgGV4xz8qhEpalKfoW+/enkDOC9o0uPaelEdI8sLC7k4TD7dzxgwjLt1kBLNcOBQ0lq17cmQHSGg5pTZEIqeGhex7iTy/5M756+VdoS0jUpV/D2XcfSrjc7Qzz9u9cQxiEaK2xVrRx3ivPZ2jdcm76/i+YPjTBxqcdw9YLTkO6NhM/vhmxc5REi2JjDeCHjH3vugZCGE7nGf/qFcz98n7srhy9f/RM2s7e3Hq+fw3YqQQnfODlnPCBly+5zvzdj7H3fV9El+t9oFM/uQVV8ln5qTf8j4/9v0W57PGOd76PK6+6Btd18f2A1/zRy/nIX74vzlOMESNGjCcQMSGMEeMJwo++8xO8cqPBShiG3H7THRSLJdJpU/AZ3XEnwSc/Y/7f8+nRMD+fZmexnYlfPoD9Fy9nxfNOadp/FEVcd+0N3HjDrfT0dPHCF1/I0FC9B+nodeuYSiaIFtzUCSDyA/b+9x0MvdmUoH77i99hUobcq0scTwJL0+J21SBZMbCRwMwY3PqzKhGw6Mg4bOgPkIHAn1Zk23SN38xftYv5/iyl5d3smnPZ9kCB47qnOeqYMo40PCjVHZHsiZgabWfdW1cjHIG0JZnVad5xcjt/96U9dI4kOHG4g7YTlrcshxRCoGyHqBBBoCjuzOMdKqCFoPuULqyznlF3HXUcOHozDPRDYbZ6gdClYp202XatZFJrDR09plxTSmhrh6Fl6PEx6Gg3y6Q027S6OVUKursbVcmFqloLgxoDDaK+jRDC9OQlU1AuIeZn0fkZ9NQsulBCjYwaUutYJobi/ocQ3Z2IZBKKRfTMrImb2L4D6/hj0JasR3YoBb55zwopkZ05wjvuRc7PY590knEqDQOYGYdCJb8v8JuHXJ2vUsWS25Lo2XloyzbUcIqKyiiUQg71InIp5HwRiiXwA4ylrESFIG2BCjUomLrDI90f0N0T4lSmMJuI2Lh6nsl9KXrP6KiTSCGQjiTTLuhbJzmwzfRsCiCjBaHWRLV5N/PQqwT7hCDQCo3G9wOu/v5lXHT4aiy8ymUrcnJxhr87sp033z4CwA++9xOkZfHev/hTXvKB1+B5Pn/zib/nLR/7ML4f8Kn241gVPr7CpubLPPTnX2DwRaeRO2olj734o0TTeXQQ4e2E4oO76Xvjc+l/03Mfdz//G4x+4fIGMgigvYCZK+9k+P0vw+54cuIpPvyXn+CqX1yL5/l4lYds//GN77JixTJe99pLnpQxxYgRI8bvI2JCGCPGE4RSsdRyuQB8zyedTqFLJUMGKzb4VmWFlZkCE16S2bLmgb/5LsPP3IqVrPcy+X7AK1/+eh55eDvFYgnXdfjXf/0y//pv/8BZZ5teoLndh2kVKxqVfGYWOAoW8/M8fyjkBcPTpC3wPcnIzhyzk8mG7QQmG04LmkijkoKC51EeqfrKSApzLqlMgLQ0kYYHdyrufaCMokxnKmTzcImFVaSWDbm+iOxpfciErN3QS1uQsi0uef4QX/nyCOedsczQ0paOogqpAkR3htFv7MTuTtJ1/hqsjI1YtbGWRVc7J9uGviHYWyEurguWhSp6yM42Y5BSPU461xinYFnGtKavDxEGDWNAy+bxSYkam0KkKyWeVZJX7V/0iuAkmzMRhaipgw3IdUK2w5SSlkvo/YdgdhaRS6KmS2BLE4sRBTA5hW7YpUBHAcG1t2KfsMmsp5SZn1y7UeaKBdAR1kAOZsZQ996G6O1pLrPVCj26zziRWgv+hCiFPrjL/H8UobbvQrRlEe1t0FZxqV2Qa2hItsmpJJ1A5wuQL6KKPuVpSVQWRHnF/N4QFWo6loWLLyfSgt4TbEBDNofoNhEYaI01M8vg+inmt/mkKiq4j0BFDjOLypktBKWoTLXgOPR8Vj14C7LbQy44RcuBszcmWfOAy66ST7lc5tJv/4A//fO34iZc3v2uD3LN1b+kXHkwVCyXzEaPgwiYuOpupm58kO61g0Qz8+ig3purSz5j//5Tel52DlZbi1LeJwD+/rGWy4VjE4zNPCmEMAgCvn/pj/G8xs9CqVTi8//+1ZgQxogRI8YTiJgQxojxBOGUs07mqsuuJlqUcTcwPEB7RxsAs9dcjwxDFttWSAFDqRKzgYuQgtlH9tO1eS0At99+F299y7uYnpypre/7ARDwp+98P7ffeQ2O49C2egBpSRZ3bw2uS7F8YwJdmgfgDeuTdExHJKt+IEnFqiNm2bVNkJ9OAOYmdU4KlDAKYRlI6mo0hqDYl2XvzATrtaydSxRazM9aKK2ZCuERbRNIxTIizuicx2rB54SExPJsS2v8lUNJnnmSNOWKWkCpCKnKDbEQhkhEkYk7EIKu84ewO1NIp0JgUpklFDhhSFWV1NkuKtWG1d4OkVcrxRSO26Kks9pluQBRCNI4eFINmw8D8Dyiux/CWjEEiYRZJ1xwc1uah1QOjYOQsmaAo+cmzLlVx+omTVlqtgO8kiF8bgJ56hno3dsRvofc3IHoG6Zq16kPHYSD+83+5ouIznZkRzuW1qipWYTW6J4+hJuoESjSGcgX6gRwcgo6O9Cui6Di4FoldIf3mHMcWAm2C6V59IHtUJwzmY6HKqZBc/OouQL2prUIZMtSU1E9flsWXSgjURTKgoO3QMrWBMphUtj0Ugaat7eyEjIZ48AqF5DujnbSQxFJDtceZrholuEzr5OEDe60MBkVyWHzYtnGFmzWqhmsFn8hVQR/MriSaw+FbPcnKemAuekZlBRc/YvrakoWwLXBBGtkhqRoLp2tnklQeVCgSj7lB3Zht5ojx6b0yD6yJx3RPKAnAOlj1+Ltn2gyLdKRwl22dC+z1prtD2xnenyKdUevp6e/Z8l1f1OUSuWm79Iqpqdnn7DjxIgRI0aMmBDGiPGE4Q3veB233XAHxUIRr+xh2za2Y/Pej70bIQSTo5Nc+o//wUvtqIlTCIzVBJibMLuSS7dnzz7+6NVvwSuVW5IbFUU8cP82tmw9jr4TNtA93Maq4qMMZUqoTILc2euRCRvbfZjydz6Gs/Z0+h+8icX3p5YF/Svnyc9nEFIwIhVzIdhakdIQIZitmHPewixzs3MkQ8H5LVrEBIKstjgNxbj2GBKKtBsZi9HFxana9JItzjgEc6xTNth1VdH3DPmqkhjfr5UvCilwehrNVvC91o6ZQkAmB8V5sGxE1wCOqPTv6ZQZVBhUyOASvXIL+wy1NhOYqKs3wnbRSuO+7PlY/asNaaLieDqxH7wCoNFThyCZgWQGrSL03KQ5RzDqW7YDRF2l1JYNfhnhmTJXhpbDxCgMrmg89+Fh6B9Adg5AxjyMID+D3rsN6TiANOroAgIlELBqNdovgx8gVqyBgUFDMJWCcgHCCtkJQ5gYQU+MoOYKxjTHsVChZvbOcVLROHZfDquvE2y5dE1ydf6qvxMuer7E9KjFeOBSDKFkWQiha5+PxZvqMEJ2dTYrmVKSXtXJ0HEHmN4j8WYl1SvarUJGFyh3ZSL6ZZrniQwrdYQFBAXDy0ULAdf1E7w4IRlMdRMB/kXv4vC5J+G6bgMhvD6cYIvVwVa3E9eywZKoIKSoFDaCSEj0gs+1WqCgNpxnGGF3tz3OJP7v0P/Hz2X26rtRJa/2lpcpl77XnoeVTrTcZnJ0kr96818yOTqJEIIwCHn6C57BGz/wpiekvy+XyzI0NMC+fQcalgshOPnkLf/r/ceIESNGjDoex9MtRowYvwl6+nr4j598hde89dWcevYpvORVL+KrP/oSx2w5GoCffOWH3JuPWiplkRYcLqdAClKDXeTWmAzCr37lmwTB0kHYWmucigugKMxzTtdOVrUXSdqK7nPXkMjauAmBVAFEIe6OG5HtqZb7yvYnOfKqT3PUTf/M3JlHg47YEEQsCyNWhSGrw5CDImBKRoRByDzwDaUoaU2ojXGM1hCEEhC4wHIUNpDMtcgGBBCa4v1jqGCRMlEJc7cyidp5momKjFJYmG/oZdOtQurHDqBVo8KgtYJy0aybzkJXP0JKROWu39zIVnr2RMUNsnEHdWWx6rQqDRkUQjT+pLNYQ+vBMe6mQloIy0b2rqQqPWmt0MVZ9Ph+GN2DmJ82fXh+2cROLCCDZnwS3FT9XFNp6O5v4Z5qIYfWQaYNISrnl+1AbDzBuL9mM00uoTX09CKOOhYGhxCWZcZu28boxnbMsW0bEkkz71EA5RKhpyhNR0xMWFjHbsTeuArR1YHI5SCZbCpn1lrXSqcrg4Z0CtHdQX+3z+bhMU4dGuXknnHWpufwp0VdOK3tBIIZVVNmF0NYgp4jYN0zQrrWmfegBJJaobUm1Aofxe7hBGd0dXPq+Z1s+ONhhp/fy/xksul4WoFXEGTnPQaljyXAFeAEIf0/v5mX2o25ghr4l3A3N53Wz/A7X8j9yzJ8MVXgdsvHk41kEKCkBWrRWy5CMyYjyp1Ll4vm948zeud2vJn5Jdd5PCRXDbD+P/+C3BnHYrWlSazqZ/gvXkH/Wy5ccpvPvOdvObTvEOVimVKhROAHXHvZNVx32bX/ozEshhCCT3/qr0ilksjK+9uyLDKZNB/+0HufkGPEiBEjRgyDWCGMEeMJRK49x8tfdzEvf93FTa89dNsD5APFN2YtXtUeITE9hJGG0SDNrJ0j09/OyZ99W40EPLZjF2EYGlqiaXrynmvLcdRRlTKya34O5RISjexIIRJOc+6cCrGX9xCMTTcPfnglTo+xdD/zrC2MXXFfwxMjF83mQHOPsTEFYKft8Kq5/Xw+uYw2BEpXCBWNio6TVGgPSDQSF+1ppq4dg0yGzMY2c7cuBAQBzM+bUsr5AiKdMgHxCoQjm+bB9MhFjT2DxTwc2ovuX1FZrk2EQ7ly0ywlraQrIeqxAFAno8aEJTKxDGCkIyEQcokeMTdtXm9lhpPpQE0dNjstGbWw9hqgyyVErmtp0xnLMWqdBpLJ5lWSmcqxFxi6SGkUxo5eRLlQLwFdPDYpIduOSCTNtQgDc94AiZSZ1yopBEQ2A5aFIyVOFtZfmABRNxiimgcppblG1Rc8r04IpYREApHUIAUd57bjH5ineP1eOrVPz3JJ+rjlWB0JtB8S7psk2D+HN2URHQpJnVZCtLXoc4siBAphw+BmhTfpU5iz2R2F3KnmKeqIA6mQjz33Irb27cS2BNIWpJcl6TqhjdJIEWtmFDwPIWF+SnLNbUk2y+YSaFfAC5wEUc9WfjT9EDOReZ8kkgku+sCbKRUCbvjiN/GDgJ0yYkvU/GAmFMbcZlmkCVFI4AA+XymOMHf2RXzwU+/nmec/vba+ny9x5Zv/kblHD6DQWAhWveg0nvaBV/zGKl1q/TBr//Udv9a6k6OT7H5kF2pRvIhX8rj825dzzoXn/kbHXgpnn3U6P/7Rt/jc577Ajh272br1ON721jeycuXyJ2T/MWLEiBHDICaEMWL8H6Gzt5PD+w5xS9nisUBycjIiIeDRKMHFH3g7p64coOPoVQ03cieccDx33XlPvQytSk6EIJfL8oUv/jOFfIEffPOHnHDjTzjaqqznWEtHA/QNoN19CL+uzmjH5d7Bzfg33cXmk44jvOa+pi8HiSCroUdLJoS5EdRKUZSaCW3VUtYcJySVCGr3/b5voSs8QJcUIikRrokZUEFEUJIc+t5+hl7QQXp1m1EBF/YOKU209yA6iAjyDqktQ9SsJhdAhxFoUS8/tWyYnwX2QirbXK2qQVTnqOrkWTtmVCdBvmf+f0FIvJFDTS4gadFYQlqBWIpwSokueeid2xG5LKKtWgq4oERVCHS5VOmDbFHIUe1zDH20kGipEW4KkW43TiuW3VzrCIZ4uSn07IQpp20iDRqSaURH74KhC3Oe5fkGl1QNaMtBZHIIpQxRVgphyUoPpDa9j5m2yjkXYGQfOgyJ9o5hLe+pv0eTqYqbauWgtoU7nCVc3YGaLZM9a1ntugrbxVnbj5e3CQ/OEQYw+sMRBl65vqH0WEcRat9Ifd7RDG8qo/IB7liGq0c9vLW9fP5zf0XHTd/DcepxF9XfqWVp9MBK9l92gBu2KfK+Q0KAXuIvZ0ZoksLiwq5NfG9+G1u3HMfWjUfz0Tf/FVEpqJUDZ7RgRof0YaMABWghGLfAkzbjMuShcJZ9usi0iCrno/nrv/gUW046nu6eLgD++23/yPzD+7BMhyag2XnpDaSGu9n8R89uPcgnAOVSGWm1LjAqVbJJnygcc/Qm/v3z//SE7jNGjBgxYjQiLhmNEeP/CBe85vkkkqYEciISXF6w+YmXxN5yLGsuOIXOY1Y3PdV/9atfRiqVQkqJRhsVwLE54aQt3HbHNaxcsZy3XPQ2vveV7/PoVJFAmRtsNVWs2n82IMIi3HQG6qI3obv60LbDVLqLv3gg5C//8bt84l2f4JKnv4r5A61dBxWQqjAFjcZXId0iwx3SOJLadkQ6GSBlzd8E140ojNuoCETWRqRshC0RjkRmbHLHKVQqIuGU0OVyIxkEY4zihwQj8/iPTJisQRavoo2zZaGIPxOgla5rbuVSZeSLEIboubzhJFV30eqPtMA2ZioiChAqqq8nLbNOFJpeumocw+IxBV7L3jkd+Kgd22B8FD05adTIRMrkKSZShqhZAg7taWph1FobMhgF5tiBj0AgMu2IbBfCsk256lIPA5QyGYWdfaC0KVlV9R8mJxCrj6yV0dZ+sh2InhWIriFI5QBDzESuzRjTJJImoqNnAHr6obPH9D/2Dpl+zXQWOnth3ZFo20GHGu0pyGQqCmcrIxULd00nyWO6m3pMhSPJHNcFAvyyTXlPgakrdpq4hjBEF0uonXvRE1MN20mpkRKW9xZ5d28nn//Xv2VuLk/Wybc0NhJCIB2L4XP72NAxx8aueQbbSugW11VpGNcm8r4jneXK732LbrJcd9m1jB4cZXp6hjAIWR05PC/K0YdVqxKwgcOWxqsSUiEpSlEjg2DeSlIKfvmLGwAozxWYf9CQwYWwEdz/5f9uff2fIAwsHyCZalambcfhac9ojsyJESNGjBhPbcSEMEaMJXDo4GHuvP1upqdmnpD9HXfa8Vz8zleSSCVJplM4rsNRJx7N2z75ziW36enp5rKffpfnPvdZtLe3MTQ0yLvf8yd869tfIpFMcNl3f8rM1AyBH/CTCUVYva+OFP7d+9BhZG70Ac9XkOsmWLkVfdqziD7+ZR543Se45NoZ7p6MCLwAv+yTn81zxe4diERzKaQFHBQhSmuU1swFZRzLpojDNlwSC5TBKoSA8qSkVHCayj2lJch0KXpXBKi5YsV3pU4OjPOmQs2W8A9HoKF0U+W8qj18FZIk/ACpFVZQJDo8WR9AGECxWImH0Ib8RBH+jfeS/8ZVtdLPxjFXFEO/XFH/ZCU6opEw1noKJw7W9quVybITySxEUeP5qMiYs6gSZDMm2zCdbSSa0jIloVKg5ybM/io9b4Q+zIyaMlO/BB290D2ISCxyVNXKOIkijErnpmrxByKZRnT0IHoGENkumJ2GqQnze9mqhtxAhIBEBiwXYTuQzCKWbYTOAUgkEam0IYNVo5+qy6ntQHtXfRkVxTSRQvb04px8FHL5ACKXQ3R0mBiMFpBtCZwtR8KGTbB2A7R3Vt6IFiKToOOlG1n27uNY9bET6XrueoSl0FNTRPtH0NMzi96IoObDyuaaoc5Zrv7Lf+fNL/kTQq+1m2UVVluSo4Z8Tl41y5lrphjcMI90632xShtn3nt0onIowUO3P8C+XfsqjsAQoYiU4kyVxkEgK0SuWmTdtWAIAkEkrdo6pt8xQild6yke33uogUZbWuNU3uOqUF7yXMJimdLIBGpBtEUYhDx070M88uCjKNXi4cni+bAs/uRj7yCRTNSUwkQyQVdvJy94zQt/5fYxYsSIEeOphd+JktFPf/rTXHHFFYyMjHDZZZexYcOGJ3tIMX6PUSqVec87/4Jbb74dx3XxfZ8Xv/QFvP9D76qZG/xP8ayLn83ZLziXQ3sP0tbZTmdv56/cZvnyYT77uc+0fO32G27Hr5STHvThg7sj3r3cotcRhLun2HkoZH5lP+m0zbYwyfkvelNDLtp3v/JdwiBECIGLpFsmSQmHxyKfc9uT2JiAagSIhMMV/hQzygc0KeHQZ2VIIMgIm3EhlnzEpBDc5rs8XTcTRscClTQlfergOLKvE10xytFln2DvBOXHgpqIFOybZe6yR0mfsQK7LWGUMr9uvKOVpjSpyXSXIF3J+SvMQbmIdhPoQhE9NYmzqgv32BUV99NW0LUSvxoRrEIIo8A6iQpx9Ijuud0U7tk2csMmyEiIfNDK9O4B2iuhH77VmLoMDNbMaOr7tUBFJvKib8gQyNkxcwylTOlq4FccOVOQyi1ZmopWiGRbZbgCLS1D6oqzEAUIy0YLiWjrQs+MQXcvwrIa92UlatvXfgsLepahD++sz4k0Cm3VhUVIixaesibLsaMbfM+Y1KCNgU6pYM7PX2AUJCTWJpMlaQi6hR4YhGQCpicRjoO7rrvep2nb0N0DM9NIAUpF6AUmK8FIsUGIdKyIqVse4jWim4mb50ie3YnlLvUGVghL1U5XSOhZV2bfA1mEEBzC4j6dYM4ki+IVyuzdvQ+/tChPUgU4rcqIgZQGW0M6ChlQEceS4iAOP9TT7NIeoVa4wOlnnwpA18oBAhQJLVmlfNoqcx8C91UyTPWCEnMVhDzyye9w+Ke3giWRtsXaP3kBh5dl+Ph7P4mKzEOHdCbNX3/2o2w86vH/zm45fSt/951/4L+/+zPGRkY57mmbOfcFTyeVbm1aFSNGjF8fBw8e5tL/+jHF4jwnnXQSZ5912v/6/iNGjMfD7wQhfPrTn86rX/1qXvnKVz7ZQ4nxB4CPf+TT3HKzIVrV3r0fXvoTVq5azitf3WwW85vCTbis3LDqf70fgO6+bnOzX7nxe6AAf/RIRLulOFiYIyNL+DeOMEaJK67+XlNI9o7tu8gKm5OsbrqkuYn00IzJgMu9PC+/+BnoB/did7fx/YOPceMj80gt6LeySMyNeJaK8oQgH9l02c2uqJEWJMoOSgUs/pumFWgPwjmF3RagRsYrKpXG9zWFPT7OIs4WTXvktxfpODJqaZ4xfm9IcWyc3jP76iWJyoepKSgWkYMDiGyuUvoZoCullo0DwxCwpcw5EhnoW1kjGVb/KtS2u6A4bRS46omq0PyYf0AqhdDKxFQsJplC1OMr/DKi2sdYJaZaV5r3tCndrJa66hb0K5Vb5FAq0EhEWw96+pBZJiW6u8+QWyFMv+RCVMlYE4RxHF1ImC0Lwqq61OTPWhm+RmTba4qr1hpSWYTjopNp9MyUUUjLRWOMY9tGabVM+LwIPHSHMGpmtq3JtEdIiW7vQJRKyI42ggOTRnX2QlOiWhsHzOVd1ukEaeEw9stZMt0uXZtN7MrCfeowItw73nSpsEC2CQ6PZti90uGZp2bp6bY4fCjgtptLTP78IZ5hD7EzmmOnygPms/V4Vi99YcigjirPVSTrcHkHvXyGwxxISl7zx69iePkQAJm2LDPH9HPsPQfIomvPYlxgqxfx+bf+Nf99+10opTj+acfz/NwyZq+9H+Wba6aA7X9/KT+KDjPv14lzqVjiPW98H9+7+tsty0IXYnjVMG943xsfd50YMWL8Zrj6mut545veQRQpfN8nnf5PTjhhM9/8j3/HcZYwMYsR43+J34nHDSeccAKDg4NP9jBi/AHA93x+fvmVNdWtinKpzDe++u0naVRL40WXvBA30Zi1J6VkSgmmbMWIXeAgBT70V+9ly5ZjmrbPdGQ4x+6nS7imFw1BAsEQLkGoueqB7az7j/eRed9LuGbHdpRWpIVj1qzcIQeV/jwh4AEvUy9brSDSsK+cJn9waeXAn9YUdkYE08r0/wURYVmx7c4Uux5rI4wEYSSIlEApGJ3OMPZghGqRyCEsQSaVJzo0x+EvP4o6cBA9Oo4+cBA9M2tMXDJZQzqTGUM+FkErBYXZOgGT0hCVqhpXdeuUlolmsCxIppDHnIRIJJoCvheMrpJb6NDUN+emINcDyaz5aeuB1KLsOSGMQugkEJ2DCDcNTsoYxSymGi1iJYQQxv0UQNrgJCGZQQyuQnT0G045N1kvUV2qF1GwxDlWJTRheiEdt3Ec0qqX31bGI4SAdA7SOcTQSsTAMGLVBkRvPyLTbrIiq46pThKRboPVR0D3AMJtQVikND+2BV4EviHVdoeF3WNj99k4fRYdgyH9AyWziYK9l47z0Kf3M7ctj44UOgjRkSI6PE2wbV+LuYR0NqB9jcsll3RxxAaXvl6bo45K8kev62Cgz8ZGsF62sVJmAPCF5lFKRIuuvaHzmv4aGdR0dBVZvW6STRum+Nu13Xz5S3/La9/8qobtXvf+15EWuvkPeRjRdvM2wiBERYoHbr6X8Z/fifIaPzDaCzg5zDWdm4oUN193S/PcxogR47cK3/d569v+nFKpjF+pmCgWi9x5xz384AeXPcmji/H7jN8JhTBGjP8rlD0P1cK0BGBurrV5yJOJTZs38bYPvIV//fTnkVKS9CPWrljGOz/3YUbGxsjn59m6dTOZTHOP1tzhKU4MupBi0oSSVyAQSDQZJKOP7ccrlpmemsF2bEq+T0LYSCFY60S8KOszaGt8VeBAPs2hQpr7dDurkwVyVoSvJAfKGSbDBELDrbd2cMIJs1iWuQVWCh6736VPFElIKO6KQEYoCXtG2vA8Q3Yf2d1LJlOmLBVeMYkf2lhTmraHffo2uUirEiIuIDo8SdfKwJiEClBzRWQ2UVd9kslKiWGFSKsI8lPoVNYQNaVgbsL0+lkuOmnMZahmFEqjai1W5ExZpoS2LvTYfhheVynBNNBaQXHOHG+xTCqk6c9bpMbpRAoCD0Kvsg+NCEPEso1N2YPacU2ovLmISytRWhlCaznGOEdIUKEhlLkec+6TPiQz6CiEdEfDsbRS4BVYHNJXJTW4ycr8VObErpTeeiWEJZvGXR1w03IraZYvVjktG5FImSM6DkTKKLChb8qH3STiuFUIN0FiyxmEd9+HevhB5PAgwrVRUxNQKpPuhPXdHgfvU0yPGKukIB+gtz1G+QDIbNK4wXqBMWxt9jqiWLDZcFEbjlsfo2UJpIRznp7hu9+eI6MFT9ftlMlwgBKzVoEsNuXIqZF4ATWDGYDBZXPkcl7tbTJgzyK/9ln0Uf8PsSBmxJkt4aQS6GKjsiuBZZFde+Tr6la2PQZZ3Xw9oihibvqp930XI8bvO+6+5/6WfbzFUonvXfojLr74RU/CqGL8IeAPghB2d7fIp4rxf4be3uYn0E9V9PRkGVo2wL49BxqWCyE4/YyTn5Ln8qo/vogXvuDp3PW6vye4fw/yoGDs4r/hmE++lsEXn9ewbnX8+fEZ/uXVH0fMFMgs0dNkY+z3+wc66OnLGdUI8HTARkvy5g6P6n1wylKsaZsnIzSH8lkeCdsJhFhgh28wOe1w5VXdtLeH2JamNzPPyoF5AqHwCxJREEx7DnNTGQKvrnxqLZifTzEpFKNOxKqExxyC714PQw8pjl1h0Zn26czNISt37jVham4eXFnrSxSWhXZcRLXcEgxhmZ+pHsz8Tufqrzf1D7YoMYVKrIOLPrwPsu3G9KW6P99Djzxm/j8MDPGslmo6icb9OImKy6kAO4GeGjHkDGBoVetIieqFC3xDyMIAbTuN5Y9KoUtzaDtZIVUVkqVthO0a0iCkmY/iHJTm0WFo1Eoq0Rqhb1xOk9l6pqPWEPhoIRCpbEsSh/2rSp0EDbRFNudNLtip+Z1Y8N2udaX/MlEnl4kE9klb4dgj0fkpEALJRtRjO9B792FlXYaP9kjbZbQnsBKKRFIhItCzhdr4ax8IgAjjkqpgeibJ+q7WSuzQsENbBP3KPGRZYWmekVBoHARGlT5YylCMqiXX5uwTbthABitTQTQ1hfjpTzicWEamv5PVzziejlOOYKTsNx1fa0hhV1k6BSJCFA6LxipgVAam8XDR+M8579T/8++7p+L36x8q4mvx5KC3t23Jh3nZbDq+Lk8yfp/n/w+CEE5Ozi+p+sT47aK3N8f4eP7JHsZvhA/91ft5x5vfje/7KKWwbZtkKslb3/nmp+y5PPb6fyK4bw86CIkqPUIPvesLeLksmePXAY3X4trP/ZjyfAlbGSfKxX+ANBBIwcYzNzMzZ1Sn17/z9XzxH7/EbLnM+VnZ9OVhSejPFRnNZ8gqwbRsDD6vd7kJ5uZsTj/6MOlkiCUhBfiWYtxx+en2Lk72WpTBoVlte2ywFLY2PVBH4jM67jIzLujZWkTmWrtF6pJnXEg3b4b29maFbiGqr1UUwVakRHslYwjTpPQJo5y5DnpuslZmqmfGYfyAceSsEp38jCGN1qKZTKQbCKd2k4i+VejDO83x7MTSfY1aGeJlOZXsRIuFM6mDMrpcaE3akEY1lZap860y6sI0OihDIo1s64X23ho3JCijDjyK9gowOYpYfRQikQGEMdSJTImikBbaSYBXMkY2C98XtdLUpowNo4i2OletjbMpdcMbqsRzsWOsZaHTWUQ5XyPncv06oolJRKGAzLlku+aRCYnIWEhHon0FQeUpvUXDcbRlxlQ+LOhMlVChxnKbx1guKfqUEekcoVmZKFaSYOrnOZwqsHO+HYVAI5hH0J4K0XoxOQYrCtj7tUu5dbIfaVskLIsTXnkOlhORlj5CgBdYlH0bjcDHphObaUI0cJtV5Fza0KFCV/pVraTLoTUZko9NUS4blTGZSnLWeWfS3t37f/p997v4t+L3FfG1ePKwauVakqkU+flCw/J0OsVFL3lhfF2eRPyufy6kFI8rkP1BEMIYMX4TnHLaSfznpV/ha1/6Brt27mHzlmN5zesvYWCw/8keWkt4IxMU79+FDhof82vPZ+xrV7C6Qgi11nD4ICjF/rseIQpCIkwlnFhACxWaAM2oKpFuq9+UvvAVz2d4xRCXfum7DB/a2SrmENA4VkQU2ZV8tAVmJ8KMQQODHUVSiYiF2dauBb2pgP6Mjyo7TYQwaYWknbDiICmwpSbX6dHrFFAaMkmLpdqitR8i1q6C9vaGMs6m9aoEZCnCVYVfgtBH226NFGqloDxvHEKXrTdh69Iy++xbZvY5th8SSVNaasmKwakwwe/JrFHnFqmPQghDotLtUJqrkKxWHp4m+1Ck2kwZqBBGicScj1aRcRfNdFaIa7SgR1Ag3CTCTaPnp9HFOUMq0+3Ijr56ieki8x3tpBCdA+hd9yE3bDE9ftX5EElwM8j23kp5rjZurGO70X5p4aSjQ7+Z+EUhVOevSsYqMSSGkTYriEteO61Nz2SFoCIEYqAfvXMX2JLE+nZk0ja9gyUPnQLR1YP2FerQYUSkGo6hASsh6Mx4zN4/R/txbVhO/b0X+Yp7b6n3pnbaHqBrVcdVSDQr15ZoXyGJQnhkp83krM1A9fWcjbs8g0hI0NB1QMNhn56CokMp9Be/RdaOap/FlBti24p9xSwKQZeVZlrNcaxO8dwgScox2ZOhbeOcehTr3vlCzljVz5WXXcWVP/kFjmPz3Befz1nnndk8hzFixPitw7Isvv7Vf+Xil78OpTRRJZf3+Reez3PPf9aTPLoYv8/4nSCEH//4x7nyyiuZmJjgta99LR0dHVx++eVP9rBi/B5jw8Z1fPIzH32yh/FrIRyfRTi2iYdYCA3+wUoe34G9TL33b2BsHAS8JJJcmsowUnKY0hFZJNXOpP1RgbuDCaZUmXsvvYznvPjZrNu4FoCjN23k3sOCvHJok82lagBBVKGCAgLArigdlq5+4Wjash621azaW1JzWt8sHT0hQgumZlKMjudwZERvrrjgXlqTbguQlrnJtgQE0wo7KxBWC0IQRIiBwZZksBb2LgVCqUXqYaX5aiEJiiJ0sQBBgMh1oDPtlebF0PS0dfVDwpBBqEc16N5lMHUYvLKJjGjrokrW0BrKBXS20/ThLe5PlBKynejSnCFyftkoh5XSUa21Ialzk5DuWESKqgqcQCRzja+FPkShySM0jZKIVcei/RK6PI+wEyCrsQ8t1DcpoXMQeqZM796CUlaRSCPaeupzgIBECmt4I9HeB82xMTmO5pwXKLNVdbAwa3oZqyqqiszPUqg8cGgil0IscHo1/xbJBNq1kfaC62RLxNAA8pjjFhgKCcJrbkbtXVBGLsFKaWRB4N11kGnbpeuoFCrSSEswdkeRwi1FLCFASCS65ke0cGg9J9s4nQrLNp+FzuGImx+D2TlJVwYSa3L197OA7iHBuSf5HLjeImlFuFbU8GDGnILCtUL2YJO2XVZHKV4cdmBrDX6IAFytyRTLZNcPA3D+i57D+S96Tm0/3lSe8d0j6LYUw2uXx3b3MWL8H+L444/l3ruv54orryEIyhx33GY2blj3ZA8rxu85ficI4Yc+9CE+9KEPPdnDiBHjKYnkuqEmdRAAxyJ78hEmSuBj70fN10sd0sDLhsr86+4+SkqSRzGjFTOqzC3ewdp6QRBwwzU31Qjhnd+4kvJckTt1hr52H2fBzWikYHw+jUIQAaGAOQHTUtMXQjdUVEiB7zmEkWgihUJDrxMgQgBNb1eBdMrHnzFGNlVIS9fIYO34cxp/SuF2SaN3VjhIbZ2lnD/DCPXYY8j2DKRT0NW3aAVd44VoDb6P3rsbsW6DIY8qrPeZIdHZJVRIrSDdBnNTiI6exj5AISAoQ34KuoaaxT9tFDESGRN275cQWqGrxjhRgA6DeqloCwjHZXFMg7ZdRCrXuFxY9egLpQzJ+xX9fyJhDGAaluW6W5d7CoHsWYbOT5rSW4QxzVGRcT2txlmU59FRgCjMGDLqJhvnTCsTo9HQIxk1leBqrYyTbFUNtWyjdC5bjnRs2LMbgtBEXPT0IDYd01QKbD/9NPzv/ASKVWVTY6c0olehxi282/aSfyxCpBPMHNIUixar+mCu6DJScMlHNoOLyGCyX+B2CqRdL3l1bc2pGzRfu7KLl60rNwnetg3LlkeMJSWuilr2GgkgskMeEZJjztjCSR7M//L+xjkJQgr37cQbmSAx3FNbHpY8bn3vFxm76SFCrRDAA0mPCz71Vk4666QWR3ticOCh3Xz1s99jz/07SbdnOO2SZ3Pqy5/5hBLR+QPjqCAit6p/6d7UGDGeIkin07zwBRf8zpcpxvjdwe8EIYwRI8bSsLIp+t/0XMa+9DNUqaLa2RZWNkXfa86DO2817ouLYLs2xw9qbp9wCMOIyaDI3eXDpIWDLSTzykdKievWzV323vwgKgg5jMuVcx2cmsnTYUVEWnA4n2E0nyYCZi0oY8ggaLo1yAW3r4cn02xYPmt4TmVxtc1XhCBcid3tImwJMz5+UUFYJ1lCVJW7xnPyDylKh0HZDioAp02TXaYNj9i9H9GWQ9iLCEPZZ/6KR8icsRxrxRCikIdMXUmrlSlGEaKtCzLtWN19UJw3SuBi1UyzdO9bVMk1XIJg6aBssvbcZH37arg4GpJZ9Hwlq09FFZWNOgnMtKHL+Sa1rqpyNpdYyiVKL03Eg/aK9bFW15FWrb/SHDs05azRgveY5bSqaK3tWycyRplMt0G5iJ4Zg7bOhlxFkWlHH9hhlM+2zkYTHjDuq26qlsEJ2sxvcRadaqsQy8j0b6rQbJdI1echmYJlKyHXjt6xHbF2jXl9CVhrVxI98Ej9eBqkC+neCGdOIQIgX6C7T9AdaRBmyGvKNnv3ZcwbY8GkJPqkIYOOA+lk7bysosfyHk3ZcWkTzSq6jiCR0USzsmXhcAjslgItBNOhx54bHqa3RSm1cGzCsZkGQnj3X36d0ZsewtLgVrY5ppTgm+/+R/q+9TesWr9qyfn5VQjzJQ5fegPTNz5IOSGZ3NhH34lHMNDTw5ff/GmCijlOfmKWqz//Q/ITszznnS/9Hx+virndh7nx3f9O4eAkSIHbluHUv3k9vZvX/q/3HSNGjBi/L4gJYYwYT3GUdoww/h9X4e0dJXviRnpefi5Od2M+3cAfX0ByzSBjX72CcGqO3KlH0f/HF+D0tMPt05VeskbIMODYZxzN5pf8EfOlEq9/0ZvYkhokKWwqhXfsVjOc++yza9uku9uZ3GVCzQ8ECa4pSU7qnaMvGbJs6wAdR5zO3vGA+79zFUprNkUBqyvZagqYwGEehzCS3L6tly0bJ0gmjHIXRiCKYHU4JFZnjbonBXZPArcnYuKWsOazoSLZknBoDV7ewisa8qgOw10PZMg5IWt69tLV0Yuzotc44EQRKI135a14U5JUaCE9D5gzTp2ZnCE/XtmMpWe4MX4hvYTbmApbqFSVstTiXH2gC0mY7ZpMQTRqdC9yeH29dLXinllDImXGlWiMEhF+ySiF1bLKxbWEvykW9uM1kMF6hqBZZkOuGz0zWv+3ZbEUI9TaxFBUy0h1Ig1t3aanUtTLRrUWiBUbwSsa5VQrQNZLeLU2r1UJqorM+zwKTXRGcR4d+DA1acbT3d9E4IVlmSD7DRsM4bas1nMlJTh25Toal1EA2d+Gu26YpJtEzxeRURGUQgcRwe4ZZNknudzi2I1ltBYUD2nyuwRogQo02rYQmcYxWakER6+NmJvU9OSi5oQSC4pzAkK7VtW68NmBArYrSTEqs+3Ge0hj04VT6eldcB2CkGSlZBTAny1w6Lr7WVzJ7QjJUWGKy759GX/yl3/S8ppWMZ+f59Ybb0cIwdNOP4lM1uQvBrMF7rvo4/hTebQXoNAkb9jGpd+4HC+ZIO03ji0o+9z2/as55/XPI5ldmqT/KkR+wNVv+Ae8mXztu6NU8vnl2z/LBT/+GMlF36MxYsSI8YeKmBDGiPEUxtxND7H7nf/PlIRGiuIDu5n4znVs/P5f4g52Nazb8cytdDxza/NONhxpbnQXqYTFSPPZS6/j9DXHc85zzub0vnUUJ/MNpZkbE72ouTJU7hu3vPKZHHpgF2HZZzDl8ZJVk1hCIwXoQ4+SnthN759/lHJ/lvzff4fVWpsvGWGq3/p0gEJSxGL1YB7XqcepWxJEFhKrsw19gMISOO0W6WFN8YAhRloLvLLETag6b1LGbMYr2ajKjfJs4NCjQxI6hEgz85U7SKztILm+C7wy5YcO4o1rVCSQ7UlEEEAQQLFoiITW0NaO6F/WxG+q5iJNUBEEZeOqqSrumVEEex6ur5OfhVzF7TSZNWWbCKQQ6N4UqAAW5cNprdChDwjTn1d1Aa3kAWo3BZ4yBMkvG1JaYxPChMQvJgU6QqgIXe0TrC3X6MCr9+RV91FZZ7HpDY7pNSTXZY6radnPV3MUDeqmMkJKSGZqWYuVhQhpSJ52U5DthPxkxWim2olaGVe04GGHlCCTxsSmrcd4z6xJVrIKI1Be5eFIta+SumIb+uZBQLI5s5NIoUYOof06A3M2r8DasLp2Dlq1g9LofXsRUuBu6CYan0GEUXX2yAyBldTkH9OkezQilaRJnZWCoZUWP/uey8rlpQZe7ofw6GOSIBBYwHgxTVeqjC3Ne6CgJVf7Npt0Eo1GasGUDPAVuOgaKYykYOi1z8ZaQLb8mQJLOEWR1hZ79x9u+VoVV//8Wj72/r/BqvRkRlHERz71F5x73tkc/PpV+JNz6IoDsqzE0TzdS3OF9tGyucTasi1mDk0wsH55w/JdD+7gF9+5gtmJaY47YwtnvvBckulk0/YAB294kMj3mwxsVajYffmtHPnq2KQjRowYMSAmhDFiPGWhtWb/R76GXpAzpv2QKCpy+HM/YsUnXkcYhPzyFzdw8/W30tnVyfNecj4rV69o3NHaDbDpWKL778GqlPWVlWaPB7dMBdz1sX9hVf8gqhw0kEEAHSlu/d7VvPgjrwdg9WlHc+pbns/N//Zjzh2ewJH1Oy2hKy6S//FvPNx5HGdphb2IgEgBXTqAhKK/u4y1YHtLAkmbVrWg0hYkhyXz+42JRqQ1hALLEsatRkDZkxyazJIQGg/JpHLojYw6GYWydlPt7ZzB2zlTmWPIBw6PzGV5ZjHESlRuTKv9hpmMIdO201iCWUUYom27HlxfLe+MQnRhzkQ8lEswNWZiEqqDmJ8x5KWto+IKuki1UgpdXSSEmROvZMozs13gLlJNQkPeaj2EggpRtCp9jhpdNbOhQmaVIUlqfhTZOUid+lUIbNAYdl4znVlKbcx1111Iq8cXlunhq5WXRuhyYYG7afUCV5VBC5HtrLiSVi5QcQYtQM9NmFJSwkpLpTBq5cLxOElE11BlX6ZIWTjJhnV0eR49OWL+EQWNCqwyhj24ydrc6yBE7dmHHp+i8ubD6s9irWpUjIWUaKERvb3og4dAgNWVQ43NLFgHUqsypFZZCO0tHX+iwY8kV/wixZbNHj29ioIHtzxqMf6wTfUTrpTFoYIpRy0Kwf1Ss1ZbJFF4QuAJQZdweMD2SauIlcrCRiC0YNeXfs7k/btZ91evIjnUTbq/DUVzX6JCMyp9jj9lc+uxAgcPHOIj7/04YRCCZ662Kx3+5r2fpjhTYOjqe2tkcCEE4KqoKYrEXJqI9v7Gh143/Pg6/vNvv0rgBWit2Xn/Y1zz/av4yDc/QSrbTOTLE7OosLl3WPkBxcPTS55PjBgxYvyhISaEMWI8RRGOzxJOzze/ECnmbnwQ3/d5+x/9Gbse202pWMKyLX7w7R/xoU++v6HMEyHgXR/iJ6/7Y46ZP4Ql4BfTmp9MaRQgpeSx+x9tSXi01uQnZhqWbXnFM1hzytF0fuyNTU/eAeSBvfz0R9s50+5vWX5no0h3mKi7xbpAhY60LDacCxzGAoktNJ2OR8LRCC1QoajsFzLJiNG5DJ4AW6jafpSWFIoO6VTQcA8eacE9+Q7mlSTaPYpuW4aoZmFYFlgWQkUmP29h4HltgirKk7TqJEdrQ7b8MsIron3PEMxKyWPtxnduygTIt4SAwixahUa9CjyjYKXbIZVrJmV2wvTaCWFKH4VlDGxEdVYxSmB+EuGmUEIalc4z0QhqZgyRNn2TOgoRC/sBK/EaaE0rTlzDokgKs2NDALWUhpiBIaWJNHgFc05V1VA6iGwHWM4CgxsBmU5jmHNwH7gJdDIFjoNOpEyPKRginMohMp2N18hqNtIhkTElrvlJs10UGmWwagRUKkBgzlnP5VE7dqAPjYIAbdk4J67HXtn6vS2EQKfT9f+3rdqbWmTSWE87ETLp2ntF7dyBzs81zZtSIPMaD8HV1yU4LBWBMGXGW5RAohs+J5GWuFpzqta4C1LmywgOWg69wuUKa5ZenSWNMP28kWL2tkfZ8bZPsfXta7CmD/Dyd7UzsjPgjp8VKRc0Ck2EZkci5I9f8hxa4fChUS668FWEQYBAYAlJm23mQCL44me+yKvpr0VpLIREcFAVGbDaGz7zTsJl8/mnkGrL1Jb5ZZ9vfeZr+AsekPmez/TYJNd8/yqe+9rnN+2/57i1LR9g2KkEfVs3tDyfGDFixPhDROwlHSPGUxQyXS05bIbVluZnP7yCndt3Uqo4H0ZhhFf2+JsP/y2etygSwrJ4qHsFb9upePMOxaWTGr/aj6cUQ5tWE7VwKnWSLhtPP6727+nHRvjRSz7KT1/5SbygtVJUjGAWRfPeQGnNY8LnQdW63DIohvgtTDKDAHbscNjtZYnKFqlk2HQ/LiV0ZkpojLHG4v3PzqXIzyeIIoHSMOU73DbTRTGycSWo0VmCRw+jg8jk0S1Q/JidMK6WC5QtrZUhYV7Z9O1ViE3NhKY8b4hhsQC+D/PzhmhU1tEAHYsdTRdAR6Z3rjBbK980oe9LQFqGlOV6EZXSTVFRXoQQJj7CSZjoivmpBQpgpZw09CHwDAFuiKYIjDoZhWgVNsyBmQejKC7ZpWg7CCdZG0d1TFQD7Kv/tZ1GMrgAIpmtkMO2ivmMVSuVRdqQ6UA4iWaSJlsY5kiJyHTUl1tO5ZpHRpnVRk3Vu3ehbroZRsfMeq5D8lknYq/sN/tYSil1XBgahs5O8ya0TDmudfopkMsibBvhOAjHQa7fAMnGcketNLN3FhjCoy3SrNEBz3PmucTJc7E9R79TwkLhYMqxbcBBk0aRwPxRr/4k0XRV4jZW4ZCoksHqpXE1W15kY03vR6CxLMHQWodzX5Vlnoj9+Fwr8hx56vHk2lo/vPjg+z9GYb5Q+8BlrSQCatUGYRBySzRDZDfebkRoxvAZEwHesiwDa4dBCNx0glNe/gwueO8lDevve3RP8wMZIPAC7r729pZj6zxiOQOnbMJK1o2xrIRDblU/w2cd23KbGDFixPhDRKwQxojxFIWVTZE742jyNzzYECshki69r3omn7v8h5RLXtN2AsG2+7dx/ImbG5a/9DUv4vab7sZbsI0Qgo6uDo4+6RgmXncB13/t8prbn51waO/vYuuFZwAQFMv8/E3/gD9nVKWHJrIc2zfHgjxuvAh+MeHgioBL1Swvk+0kKrKS0ibw/hd49BbayAcSW0YsjA2MNHzupoA/OT2BTf3+fs8um0MjFg6KJGpJjxQpjKnGrCVJIOhSIa4TIYXGD2zmC0nmCkkelkmUqJOR7mGX5FlHYnWkIduBlgljJmNXDFrCEEZ2QfcAOpmpxE+UTHkhmN6+ZMYM2CtW1D1VKXksmOWWbZxz5iYMe+0fNqSvJTS6lDdlplT6LCtEsxUR0WCIl9tWV3qrURUVQiCEMO6lAMnKzb1Wxkm05QiqdE2bcQamjFQnMpV+xArCwKwrZd2IRlMj0LX9VJcvpOqOW1Mpl5Ifq2TWOvFZRlGt7FtNHURIy2QUPl42YStI46KKXzb7X74G4XsmBmNmwqiKK1ZhH3MCOC56bobokYcQKbeRlCx8aCAEOttuWi1z7aAixIoAde0N0JEF12kmNEIgOrvQY6NmXvyQcGQab5+i17VRPgylirXWPhfoSvgkhGbOS9aonUTTysZHAm1acQDN1pOOxbl1R8NDpsFjEghLV+JgDGxL0NEueO3z8qiZIo/mJfvW9racRt8PuOXm20FpEtJBAFaL8s+HowJ9wuJksoRoJDBDxGXJAulEmnf+/XvY+rSjOHxoGmlZLd/jqVwaFbW+zodHx7nq59dwzjPOxF7kInzap9/Azh/eyM4f3IgKIlY+5yQ2vuLcWv5kjBgxYsSICWGMGE9prPj469j99s9S3LYHYdtoP6DrhafRfdGZpK79ecttlNYkk80mC6c9/RRedMkLufTr/4XtmI9+Op3mr//fxxBCcM7rn8fwESu55XtXU5qdZ9M5Wzn5JefgphIA7P3FPaigfkP2wHgbKVuxoWueUBsydvOMw2VjLmkZcnVUZE4rXmi10YnFLu3x7XCaQiLJgO3wze1dvGLVDD3ZADQEgeTnu7LcXVL89WWS85elcAmYGLUo5M2NtENEIhmYkjpZzSGs0BYNJd9ixBJYQmBZir7OPK6s9xBNzSZ5pJStkUGA9l6LZ7yqEzshYeVGSCSR0vTxgUaPHkCUC0Yhm5tCLO6tA5Nzl58xxKlqkKEidD4PloVcthaybRXyoNEje6Cj1xCKyEdbbsPudClvTmvhjbEQhnhq1bK8V7ipxuVVsiJkXU0TFiQzNYdPhDG10UGjoUvVdEVTN/2pOaP6RbRfNOvZLsJNNhARY7ZTKVuNQkCYDMSFqLneivq+o1aackWBtB2wFvZaWsjeFSa7sdrvWS602rhJNdRam+MnU6Z8teJ4KtJthlh29aOLeUSuq07guvuwT+1B79/e1FupRUVhTaQaFUnLRguJPPoo01PYAkJK6OiojF2gSz5q9jC5Pk2wVzKYLiwq4xFIAVk3YN5L1K7Okups5bW9a7KcvXk9E7c/gtYRJW3hI8n0WthuCyIuKhUKc0WOaIvYuPfnRPnnE6Vz3HfbfYwdGmP9URtYvnoZAJFWeFFA0loir1LAL5njdjHPIA7zKKYczSvf/Eqec9FzauqjZS99SzK8Zhm9w/0c2j2CWpApGmnFfXu3c+f7Psbadav56rc+TyKRqL0ubYv1F53F+ovOepxZihEjRow/bMSEMEaMpzDstjTr/+N9lHcdwj80RWrjMhMlAbzw4gu55/Z7KZfKDdvk2rJsPKp1f8xr/uSPeN7LnsdD9zxEW3uOY044BmtBiPqG045lw2mtS6mKEzOEC0pRNYLbDnVy92gbebfIQ35IUQkUpvcI4A5d5vaghEIRakUyleSiV15A+p5x2rftY++D3Ry2FVJqAl8yBBxt+Wy3AvbuSeOETu1m15URx3VPkZBR4z2+1mgt0BpuybdhSYkEtnRO4VqqwTixo70MKg0LjCmPOT1tjCs7eiGRrLl31shA7zB67yOGkOXnjXFJK3VBRVWrU7N9hYyIFeshnW1Uh5atrutkWkFYrilkWkVQmGkuf0xmAENmdMXkRuuqi2kAOtnMDKrET1dKXEVFfWkgjhbCTZqS0QU39EJr9Px0XVWsRlks6O8TbrNLpnmpskxKhJNudhq1HdO3pw1x1MLEcmi/BG49hqGe+bdErqPlIqqEP+MYYrUwOiLy0SJRG1O1nFf7hTrxtWxEhTALaaGFQLR1NzmpaiSie9CUDztunYg6riHpuk5SattJiRweJHxgW0sDGa0UlIsmG9NxELksyfO2Iu7ejT0yX+H0ut5cW2m31Aik1ESqOsYKCafxLaCAbXhsGJul+PXLSakALSCJooTFzMGAQT+B47ZQnQvl+rl7JcpX/Bdv+8rNzM7M0RdYHKOydEqXd/Zu5XbvMV53jMvp/SkCBVcdiPjiIxHeoikpCcUuDKFO2AkyucySpait8Kf//F7+/u1/w/ToJMVSCaHhkDfDXFSCIuzYvpPvf/uHXPKal/3a+4wRI0aMGDEhjBHjdwLJNYMk1ww2LDv1rKfxwpddyH/954+wbHOj77oOf/f5TyGXci8Eunu7OPNZZ/zGY+g9ejV2wiVcVKZaUpLHyoJi5VZUShNqrzEW/RpNhCKdSfO+j/w5z37eMynNzvPoWX+OJCIKJVXd0QbOihKUgwBLVO6AK/vd0DZLwooaCF413q9ccni0mGZeu6SBdifAlarJRV8KWJMq8pjn4AlBJASdAzZSCmjvrEc5LIAKNZO3jlHYMYXIl1j22q3Ivk5ERWU15bxV05hGCGgmgxjiUQ2W17ZryEe1RzGsRCM0qGrCEFEhoDBtQuOdZKXks4CQNqSaM9W01ghdIZka4+KzIOuvOkZNRe1buC0g0jnU5EFI5QyJ0xFCG1IonAS/Ei3ms07MKmQvlTVGOJVLrUPf9AVKYdxOowhaKEdCmPD1armjBkhloJg3Y60qpEEZpI0WAh2UKwqfru2jvnF1v5LFfZK15Zm2+nWpksjygpLbqttr44bYm49Ej41BXx+i8gBGK2Wu83weUqm6+Y0rSZy0np7sJMUbdpLpDWuVv/lDDsoXpHsCejNlvJLk0N4s+dlExR/UaIY25plHAMzYDmfN+Q1qohCQ0hFX3HOAnrNW0WcnsSsfFh0pdKGMztejQSSaw1ddxfjhIoORyxmyHVtIiDQDUvOlczpxbIUlBa4F56+wObLd5eN32kzpMl4UYCs4EhcXwWP4zJU9RkceP8piMboHe/jEpX/HdZdfyyc+9GkmC3NE1D935bLH5T/5eUwIY8SIEeM3REwIY8T4HYUQgre/5y285BUv5J4776O9o42TTj2xVg76RGPgxI10H7GciW17iTwjsQnHohQFlJMOSeGgIsXr//qtqKTFu978XoIgqN1rFwtF/uGT/8K5552F69jIFjfdYL6UjiJl5I3KTWyn49GX9JpEMyFMZeJNhU5KlZgBrRUJEbU0rZEC2kREb8UEJS8Ek4cC2ntspGomdGBusXfeISntSyBJYH3jTnpOGcQ5YgVoTbR9D4QezolHmXB1qNSvliokqvV5IoRRtGwfbVfIVeCBXzbcaGFOnrRo8F8NyuYHTGmqKiPCoE4uF4xe5SfQgYdItyEsu77PhqEYBWwhqRVCoK2K8+fCvjAVVTIOW++L6vkv2E+rWaXioCqEMMqkqJxjFNb7Cmtofk9rrVloTWQIooRMR41sQ8XkJwrMv1VYCbKXlacJrctUAXOOQoIWtXy+2rUNPBDSqK7JdF0tdJNQmq/vV2tEEKBdF+F56N27oK8fLIkuFhGFOUN2FzmhCilIH9WNNXkIpubAtXHX9tO1yUJNzeAM9yGSNhkE7dNFdvy8zGOjSfZtHEI/to8BbZEXglHbYq2KsFp8GpTQhNLh/Z+/n3+4cANda9sAjRqbRu0fb5xrBf1TPp9NJtkVJJmI6g841g6XsC2NteDpi2vBqnbFse0Oo2EbXmGGV/uJ2hxaZPmF7XPEsUcsPf9LQAjBsg0ryatyAxmsHTvhttgqRowYMWI8HmJCGCPG7zgGhgd4znArU/cnFkIInvn/3sG2b13Djp/eAhpWP/ck7tPTjHz7x6hIcd5Lz+OoU4/jm1/+VrXCrQFBEHDzL2/lrGecgdPTTjDanAXmV1SfqsCTsQKOys4uOS4NlCqqV48OWImP7Wts0eImWEGh5NbiLrJac9v1s6zclEROj6NTmQaVUCuNN+0xu2+e6m3mzu3tJPU+kg/sRiZBdiaxurNEt9+FdeyRpjSwan4RqJaESVelzWo/W7WnrkJShBDoMEDYbkXpWpDlt3g/vgdzEyjfRw6vR9tOzbxFT+xHF2ch2222j0ITQt9iHpfqQxNuqrFvTggTG4GqkDgaz7Hat6cXmOE0zYGoZCtIE2q/MN9QVEIV/AWl0Coy425RSlojd7JCxqVASwm2gy7Pm7mNKuHkyXTtWGYfDlpFyHRHJcMxRM1PI91Uxcm0cm5RaH5UYEx1tIbQryi7jeenUxmTM1mFZSEyWZMrOT+HHtlbWRF0IoFItojrqJybc8Qg0R4X58zN9bFIAdNT5gewOtOsu9Dmsm9Jzn/1cXRMOrQnHfY9kOfa66ewgoDOfh/bhsK4RXnWRGGkhhxWWoKLCx2E140xdt0oiVxIchCka0hpda61FpTHbbJCcJTj8SgWhyPTp9zdHtKqglprGEhHjE6EvCZIsVhPfkaYYGVHd/OGvwbWrV9Dd083IwcONqi5qVSKl77sRf+jfcaIESPGHzJiQhgjRoxfG1bC4ZjXnscxrz0PgDe84R1cf/3NlEqmvGzbP+/miquu5WmbjycIgqbtoyhiZnoWIQSD772Yfe/7onHepNYixeSi8srlyWI9Z31RDrnScNhLkEuFpMKIlV5oyJ4WzOcTZLJezfhSKQhCi1Jo0z8wj5SamZkk7aMW3/6PaZ717JD+VBY6e1GhQoeayIu452/uMDnpLngFzUB7iWTamMe4J65CdmRqpEDP5iGbrpeIao2eHoPOvtqy+g1snThV160FpVe3Xagc+SV0U3+dKYkUA2sRmXbwSqiZUVNGqjHqUyKLqATSEwUm9L2V0QotWhCh7uJZ6UHETTUSvVay7WJVdAFpMiS2bJZZDg1kkIqiaCdqURs1QqwwCiCVN4PlGGOY2pshMudX3QeY0tpi5WGCmzJKp5MwZDX00dJBZhfkOkoX2d4HoVfpAa0czrIr47ARQdmU64aLol0WwnLqrwth3GKjELnmSOjsNfEjB3aj5yZN72SrGAshEOkEzlnH18pMa9PZ2QXFInhlhBRYKYfzXtTGEfZu7BWmJ+/IMx3Wb80R3XkPUmlk0kLmHHQigezIoRSs0WDpXmZ/cRj/YAkvb6NURKpfY2XMNQwLktk9DqoSM2MJWG2Xa4Rwes5mWZ/XRAoFMFqU9HtRy3wrB8H8T24is3Xj0vO4BIQQ/Mu//x2vv+Qt+J5PVIkLedb5T+f8C8/7jfcHEFRKZJ1c6lesGSNGjBi/f4gJYYwYMf5HuO++B7n++ptxI8lQ2yC2sChFHru27+LcM08nlU7VMhJr0JrjTzwOgI7zTsDLl9j7sW/gKIUnBNNS4kmJtC2UUkilSVf6BlUosVxV5xoCdEaweo3HOmscS2jKcxaHt6WJfEmxkCAILJJpj3GpSBRT2EnNkUdNms0F9PUXaJtI8aNDLt/46jSJL9/JsR0puo/sIpjzmdk2zhGnBvQ+XaEUJiPxwP9n77zjJLnKq/3cW1UdJ4edzVGrXUmrLIGEEkJCGBA5GrBIxoBxAtsYMBkb8GdMcCCYIHJGIIIQEkIJJCSUVmEVNuc0uXOF+35/3Oo03bMKlo0xdX4Ms9NddevWrZpRnT7ve04NNQvpJ6xA9+fb+gPFA6nUIJtukpnCFEQB0jcclwc60FrqVidQJpxDpOYQBN86ako621St/Cp6yTqbMag0uKC9FOL3IJU48NxJ2ZzAumGMX0HSzfD0+ncRQZS25igtpFUphXhpq8R5qc55PRxasxuJSz0zPahsfOx6bmMd9QiJRjSGxCWgAcQ5iMrxUF46Jkox0az/O2ohao6L6hu1BDnTa0lzq0lL4HcQMUtIU22qaKMcFWMVzZh4ikj31VAKMj3oBSts3qJESLWE1Mr2fsnmYV0v7N0B+3dAT7uxSj3bEaeL9Aa2FHnVGnsuhVnkwAE2nDiI05L1pz2NN5zHu/gC8DwIQ2TvHpQfk0hoKOUDT1vE4W/sQKqGoOQSbAMwiCgC32XuNU+r5vXasifLsavLaG2a2YMRHChods86rETipIs5KyWCKbcbYs2FKVUIJ2ZxFw6hU+0OpketXc3Pb/wxv7zhJibGJzn19JNZtWblEcfrhuKuQ9z+ri8yvWmXXYtjl3PqB15Fz/IjZIQmSJAgwf8xJIQwQYIEjwm33XYnvSrNUK4HHSs3eZUhR5p9+w5w1NGr2fzAVqpV+9CXyWa44GlP5t7f3MPn//lzDAwP8MwXP5P71o/Ss3mceiGjKFj+grPJLBrkvk9cxmTg0uOEaKWIfG09UZSgsw4DqxSqRanJ9kUsOaHErtt6APswW/Qd3uMf5q9T/Tzh6PE2s0fHgbGRCqOFGoeraWoK/Nki5btnKJcdjjvXMLjIoB3beuZ6IKt68HeBHulBOXPNYjRSrRDt2Y/OppGaj1o4ahWpSsnm6A2OdJqtxIRDxURRjLEunKk5hXahb41oYtdN1TuCdQ5tzkNpx5Z01kqWaGltxbkosMqVRDZoPt2uhDTLKOtoJ6cdwe+xMYwwp09wvp7JugrZ0edIs+xTxJJbE2FT9OKx4ggHwpqNifBSHf2QSkC8VEwIVf1/ltx5aVQ6djttlKZi1zfsVLK7kt6YREpc7ipK0bUuGkso9dJjWj4s0JDrs32J1RIgdv5LViH7dkCphORyzbmFIVIuQ9ilr9X14tO25yK9fehsjqhQbv8vuuuhsvnmmJ4Hy5Yj44egMKcEW0H2qB4q908jJj6vWNdzMpBdbO/XyoGIqAwF0ZjYpqbiK758U56nHVdi2bBgDBzYm+bB+/Isw7BbB7ER0ZxDZtP0Pu0JXdYeJAg59OGvUfjhL0FrxAjexWey9K0vx802ewS9lMf5F57XdYxHgqjqc8OrPoI/U2zkM07du4MbXvURnnbFP7QF2idIkCDB/2UkhDBBggSPCYMDAwylehuqgAY85VCViMPbDvDpb/07l3/nx/z0R1eRSad55nOfzo+/cjmf+8Vt1Ko1lFZcd8X1BBIyECqOVr0oYKtTYfXBh3jf297N6heeyw1f+i4Lv/8jUiZCi7IpDWjc5b0QTbfNSWnwMoZ0b0StELuAApl0Lw/1TXB6F66ilHBUf5nJWoqnrptm9VAVMQrtQWpJf6OXqgEN7sK8fYDsJuC4LlSqmFoN5TjIvoOobBbJZiCdsWWLc3apEzGpP7w7DipU1jEz19sWWVAngwAqk+9wMKV+1m6qaTwDVmUzcU5iF/dPuxbKniBNlbCuyHXZuGEwU59TQzFrVQVbCaLT5T85dWLVVkJbl/BovFZXKpWXbsZjtBLL+r5uyqqnKh5D0VFy2X78djOdbmhzRQUkimywfTxLhSB+LVYOBb3oqC7GPRrSORutUVdBxdh8yplJmJ1F8nl7brUaKBdyqTjiImrOlXYCrrRGHAedcmljp3UluXUOjgMjox2EUDkKJ6fRjoAjVpQNNCxxGTsu3bg0/cc6lLbU2PoQTPqGYaPJAL2VDFExIhqq4rjQ02fozQvHzbpsV1W+JQVerAZIaweMoHJpsqeuI3/+KV3X+/C/fJPCj36F1Jpkvfq96/n5Fbey4M3PZ+CUo1ixZnlbZM5jwb5r7sTU/AYZBMAIpuaz75o7WfbMJ/6Xxk+QIEGC3xUkhDBBggSPCSccdywoSx/OVEOsVz0oFBUi7pnwSaVSvOjlz+dFL7cmD9//6g84sPcgtaotxRMjhHGZ5AHxOSBxiZ6BA9fdTKVcIZvPctGf/hHmOU9lx998kJ4D+6gZxZ1BhhOLJYYGOh/kBXBTQg3wEa5RIUbBuBZ8YG6HkCh4qDbJE1bAqqGq7YVyxFoltjp7xlBKoSTqqoSJEaRQssqOAnEdlAhm5x70GWeA67ZELMyhhSZqV87SGRt4X5qFfK81WxFpL1ENfMh0y+iL++5QtsxStxiXmAgJa3FfYTclLM7cE7Eumo5n3TOhqeI1Vhrb66d1TKxaSG37ylA3gOnuOto5faTlH/H4LTSoy5Vpzr+pAqrGceeD0F722XAlFbFREy3zl7h8tV492ryGyq5RNbQup848RjGoeC4xwdMuauEKGF6MpJyYw4qVrqPIHkRAxKBKBfvL1m1cpVCOQoxp6Yec55y109HnKaEQ7C+3C8BZYfi4NNppP17+qDQbpkosmo64Y2oIheKMk2dZsMBvVLgODIWcfvY0N1w7wGI/zba04cNmko+8+KWoSo38BaeSP+eE9ns5dmqVIGT2e9e3kUGwn70sqlS5/Z+/yxX6EFHW5e8//DZOe9Kp3c/zEaC8b6IjRgcgrNQo75t4zOMmSJAgwe8aEkKYIEGCx4RFSxaS8jzODvtZrfI2lwzoweUJJZfxO7cwcvJRje1v+vlNDTI4F7ZYsvmAqlBUK1WyOUvfCtrju7sCIn+wsU3PZMTyXp+UM4eYKZgsaCYxXK8j7lcGRHHbjEIt63TrDIzwlUMzXH5cHq/1rSDq2BYs6YuKAbL9IO7aRdQjA8TYUPpo3ziqHk4fiTXCWbI4Lt1UtjctjpkQiJU700kglLIqT6VsNzSRLaX0mqYwUpxA9Q62zVPq/YgmavYaqjnBA7GzaT3gfi5sDIWyhGVu+Hz9XOth6FEI4oBq7Yt0mudLXfRTMRnu5jraiUYJq45jGdqvwvw7duQA6i7kXcWESaG0a7MPozgqIqja9cnkrZlMHX4VFdTs+XtZSxrrbkV1Z9h03s7TmHlV2IYaqRyU58DYsnhGgpSmbakvxC6nMXETbO+iX20SujnnLOOHUbkcko77V6MQ5XZRdsOwjTiawBDsLxEeavb7KgV6zEWke+lsdoHLQDlgyPOpuW4bGaxDK9hwdIF1e0PSShjPDTB68ak4xx/TPtzdt6K/81mmDx/AyfcSnffsBjmcixQ2V3OJ73F3ZYp3/eV7ufTyz7Fw8VjX7R8O/euX42TTROX2v0tONk3/+mWPacwECRIk+F3E/B+bJkiQIMERkO/Nc9HTzuco3YM3h1Q4Bh747E/bXuvpbzfOaMXcx/WR0WH6B/sbP++9ZxvOnHDyOw9lKQcqDuS2iByPa8dTfDAK+bQTWDIIZFHo0OWjO4SaEaqRUDMgrkf6hX/Ej+68mVRHHSeY2QrSUk4mRpAICvcHqKCC2bkfKZSQSg2ZnMFs3WMf7IsBUgwwM/H+ff3NssV6WHpQhUoJs/n+LitQX7RBWL4ehhfDyGJYsKy99y/0MYUJxERxPIDYHsPybKz01ber2f7Deh5fUEVmDkKt0jWEPT5ZVDrbQQaBprIT+pZMtUK7bWTQ7hY7idbjOOaWlLY6rdZfVzFpq+/bxdG0OXfV1Pnayj/rr1njmsb2cRahUgqlrfOo0k4cTyF2jWOVrzH3VMbGVqSzqEzeupZ6GWsa0zsM6XyTAPvljnW17qqVZklsHKPR/NKo/GBTzWxTOjWk01CN9+8bRa3YgFp9EmrJ0XYeMzPI9LTNtOwbgtC03btgS11lx3ZkqkAwXqG2p0Tx5gMUrtvHXOiHIe0OwkDKp7cnIjLKEtiWfbQDAwMhGS0oBaOVMpW3vZ9o6/bm1XlgI/qz/w912AbUq1IBfeW3GFpU6jieAEUUGkU6fnQJw5CfXnblEed5JIw96Vh6lo3G5bbxvFMu+aWjjD3puMc8boIECRL8riFRCBMkSPCY8UeXvJBfXP1PXc0vSnvaw62f9dJncdev72pTCe2DPriOSxAELHZ7OMkdomfK4wtPfjPHv/R8Tn/9s+kZ6WcuafIjzefvG+V5Tx5iVWoKyeaIznomN/zndaQyO/GrPo7AyeQZkxSRIzgFxec2Fcn0zRClFGf8+RuZkjS5X93JcpVlsbQHopuZGqYiqN4M2lX44yGlzTWkXs1WqSJ7qu0za32Q9iOi6Qq6VEKGhtr7/WK3S3/bFJmlPmTmGMg4HmR7W/aJyUau3xrO1IlPadpWL2rd7MWjpfRRxVkdYhpLWCdhMjuOHlnWSbSMQaJw/pLMOtmpVdq3idUrpevHZA5BE6u+OQ4SP9Tb8tuW91uP0a3EtLXnEJA4C9EqisoStKAa5zxiezqd2ClTTNfyUaUUksrYAlUddC35tI6trl03N2XdUbVuuqHm+kBGkZlDNu+xWrTmPvXjRaElz+VZSOWafZBtCy+WeNbq92ErGdeQ7UH1L4DhRc28zEwevXw90eQ4anikScZTKUsA/Zpdg1oN2bkDOXwYImHyqkNICG6Pwhnrx0yXkWrQmMam3XDmms4pIhCMh0QCvnHIjWTIHjcAscOpzJQw+w4jkSGay+t8H/9r3yP77r+xp/TDr1rVtQXahAwvipjYnbZmNLRWKTt4xrDH2PUJg5BDB9r/zjwaKEdz9uf/mgf/8yfsvuJWEFj6jNNZ//qLOwyjEiRIkOD/MhJCmCBBgseMvhVjeK5DNJcQasXghpVtL51y5sm89HUv4Ruf+SauZ41I+gb6+NsP/y03X/9rNt94F8t3+ihjS+SCco27v/4LglKNs/76ReQGewmqfpvqUcMj98d/RbhiIWAfn9926nlc/4NfcNNPbqT//gMsCBwcpRoupqOmh8p0nhkV8pH3XwquQ+D7rMr5vPd4wdPg6rhcUaC6o4b4tTgmUGEC+yBufOvA2AprxmEIQ4VWglZQ3h6iJjfT/9qldiOlqPf2qcAnfdQwZs9u9Jo1doZ1MpTOdRC1xkG8tFWbwJag1ss/aeFWoQ+lGaRnsJ20xeWE+BWrIh7eCaPLG+RLTGT3ndoPPQNHvgHqcw19S5KUnuP+KbZ8tG6KYifQMH05cj/hI+g1jLdpjc8AmjmBjtd+nHoJZJfjKrBOr27K9k62zUHafq4TSNocU+2HG/SPIVP7rdmOiSCqNbdxU9C/ACpWwSXba9U9iWy/aK3crpbW/53rt6rlwBjkBzrXTTvodSchk/valVnHsfMslVDDC1D9w8iObZitm8ksTeEev5b8k1YikUE5muqduyj8cCNihFun8vh3K847IcTR9TlBZVeNqGQ9RisDOZ709Dyqtda6P4/WmnD7fqoH5qjPIphtO5rzO7i34zrYlRRmHU0usEpkiKIqNlZkcRixH3vvZ3MZTj2zuzHNI4WXz7DhzS9gw5tf8F8aJ0GCBAl+l5EQwgQJEjxmuNk0R7/qaTz0xauIqvUgbnAyKY553TM6tn/JH7+Ep7/w6dy/8QH6BnpZf8J6lFIce+Ix/OihT7Bn+/1t24dVn00/+CVP+NPn8LJP/Q3fe+snmdi+H6U1btrj4ve+huGYDDbm5LnonhT7y5OsD12cuUoPMKIMvUoxG3jcH1i1YXdR81BB2DAgjXK/sADSki/uuFKPoKO4OaTvWNf2CCqFMbYi8vob+8mlAtb3FtAY8osiVKaM7NsDK9daB1EA0lAqoT0HiSLM1i3oFSus6hRFqOAIwectkQ+IwMwhVCqLZGO1qlKESiG+GB6SaYkfiEJLQFIZCGtIYcLm9PWNIlpDpYgEVUt6StOdBGSO4ybasXwpqNkyyvpitX7X7aRQjthHWCdd3Qtp7bWxc1BOl366+ghuqn0OjUHn72Ns91ppIX8Nhap5Dko7XeeH1lZ1bc4YKRdBbHGzOB5SK6P7FzTKRsGzpZ6pDMwcak7CRJY0prO219Pt/p9spZQtZ+12Tj390NtyDdcdi16wkNzwDtyjl6O8uJcRyJy8DK/XcPCXm8lVXLbuNpSnPFYsiFjR66MzWQwuJQy/nOrnCc9IdyaoaA29OWa2ORg/bHvPABPKY3S6QM9AL7JoGWrLpo45G1FEgUOpSw/jUG/Ap4/OsLZPURaHXGoy7tl8fBU93/eplCr0DfR1/eCiWq5yxaWXc/NPf4lSirOf/WSefsnFeOkkqiJBggS/e0gIYYIECf5LWP8nzyC7cJCHLv0ZtckCQyeuZsNfPI/eVQu7bt830McTz2vPHytNFxh/cE/X7bWjKR2eZnDlQl7zlXcxvW+coFxjeNUitKMRYyhet5GZn9yMch1upsTnr7kWXQ0Qb0XbQ3JOhRyfKuIpa2HzROBSH+4x8MZ1hmP6aCOQbq9ganSWvgHBpGHyrgBZksbLKQ5OOtzxUIbpokbQLKfAwnXWkVL3Z1GLllky2PpwOTgKQQ1VKaODKjy0CXI5QCF6H+rkszqjGhRW+YvZi+zcihoeQfK9qEqhsZmIWBOamcNQnrGqopuCfD8oq2yJl7YlloUpZGJPrB4GkOu3allQs5l7usXhs96rGPiobG+cixf3xXXp84N6hWeLoY9Yox+hVSWU5vt1xY9mn2BbTmLsAHpEFXE+wjmf6tpCcpXq7IG0x9ZN1jiPwqm00/l6vhcpzcTvaxhc1FEOa8s8szC6HNl7f3M+mZ6m8c888RgiArUuIe9uqmOeSikYHMI73kXNGU95Ls7aFSzYtY3XLy8TTJSREGThKJkTj8VEdk55gfSX9pEb0ui5sSyAH8Bhp58BNYXTcgwjcO3909z/3L/hhOedRX46xwu0i2OaxDGMFA/t7cWI6jA5yOZDTjhtBicu50xjCH70VfbefCfRS17HsqNXPIzq/PDwfZ+P/uO/ccXlVyJGGBwa4G/e/WbOfcpZzfOIDB/+4/exf/teAt9+QvSTS3/Afb++m7d97j3/5TkkSJAgwf80EkKYIEGC/xKUUqx8zpNY+ZwnPep9RYRrPnUZN3/tavpChUfnI74YoWfhUOPngcUjbfvve9tnKVx3FxLbxx+F4WLJ8F2qVDH01HvVEE5KF/CQNk7w6pTmX8KIJ44IqTlPoEorvH4hKoFBMZMdxhQK5JyImtFs2Z9n384sVQRfK5TALlPg2uoezu8fbs4zlYFstvNBUWvoG0JKRUvgRKDUZJ+y8yFYsa5lQiruUQugVsXce6/lJ9UKas3RlrhpxxrCiNgAetcDv2a/Fq9u62NUSiHasVmHsRENjgu1Mnrpekso/AqkMu3hDGKsjaTrxecUl2rOc52BpotnHW58tRuyXPdyzroSJ/Uj1KMwjoTH9EB+xNnbtXIdMNqWo3ZTGo+kerqe7Z9UCuW48+RHYktIU3moFu2c5o7ZKM9tvx6yfxukvPYeyXnjL0Clc/Ex5sBxcJYth7GF6GKJ6KEteCetsT11Lcv+vFctZuqm3ciwi5oTTeFquH2Hw3KVZXWmjKeEqcjlrkovEnmMFAOu+8pP2efPsHckzyuXwkAmpBZoHtzbx85DebLKkBdpI4VLV5U6lsPTwpLD9/L3r30vQX8Pf/6xv2XZ0Su6r+0jwD/+/T9x3dU34tesQn/o4GHe/dfv49++8FGOP3kDABt/eQcHdx1okEGAoBaw68EdPHj7/aw/7djHfPwECRIk+G0gIYQJEiT4rWHTNbfx62/8nNAPmBUYwqU1YMDNpDjxFRfiZbqXYVXu3NxGBgHSaM4mzy8pcl14iKe5C3FRDDkBeg4ZBGu1fHZKtVVBtsGB0ChCHPo/8g/84Lnvx20pZYuASMFBfH5S2c4i0rwqexQeRZSOSVBorDzSjQPUFUA/gMFByGQt0aiUYdcWzOH9qJGFtixu4oDtFxSQ8Qmo+ZbG1HykejdqwULo70OFoY0ocGIyGLtjdoMlOimrToW+PaHeoZb+uNgdUzuWFJoQ/Bqqb7jTeAWJOVLz9UYMRts5WzLY2K7R4zfnIsSGOG2dfKqLAvdfRUxq53VcbelRFB0bvwS15nxbVMN5oV0gJhCxytr1PESsiut5lpCLsX2YdcSurlIn1FGAFKYg34fMjLeVjioTIdLdIGe+2131DKOedK4NvBfBOeEkZP8OqLbL5I4jpFWEhNaoR8VKoQkME3cX8GuKLfSwpdqDANX4cwMNjOBxiBT7gC2Tih9ML8BVGlcgayM8KWuNE0W4YlAK0vkc+b7JrpWhRhSrHOHXByb4yBv+gfd888Nc/7Mb2LdrP8eedAxnP/VsXM+luHW/3X60h0//++f46Q9+RlD1WZMf4dyzzuDCS57FL666vo3oAVSrNb74n1/lXz71YQC237uVWqVTkQ2DkO2btiaEMEGCBL9zSAhhggQJfmu46etXEcS9h6GCKYnoReOhyY/0c8prns6GF5037/7FG+9BumQbKuAYMlwrRb4f7uUMZ5gFyukcAHCVwvWhEkF6zibGQKno8OBUDwfTY/Clq/FdhzA01LPJRdkcxbyBVW4fz3MX4QiMT2ZZuqCK6woyMdVJdrBunhQLmH2H0KtX2OD6uOxScjnwUoS/uR93VfwwruMy0WoNlUnD0IAdp1KFIIDxQ9DbY4Pse/psU6MJaWbxzaMWge1Pq0cpZLtEhJi4By7w55jEdJxVfKrx8cRYZawVc0tnG3u2zLBrj99/XylekwxKbEYTr5kYWpW6pnFNnAuoVKzKCUTScNvsnLy2ZbtRiERBHEMyhzjXj6WdZoyFNHtaG6WrQRVmJxolnwpLENXQQqQ0BYVC3NsZGxB1O9dKrEDage29mOtDpZrqo3VWdWDxSth2X/sgWpEdESZ/vIf8ScOkl2Qx1YjiXdNU7y+yxhsmv6aH8aqwd0e58ftSn28GTVo5jBsfqaeYKChoSxp9MXzF340Swyo3xxve8Soe/N7HOTFrfw1a4WrhtCCgXwu313ze9Ow3UjUhtVqNa358DVd84us8nRHCQhkRmK6Vuam6k5QyXJxdgxMoitc9wI9u2MwTvDF+5XeWr+/e0XxtaNEIqUwaf87fHi/lMTQ2PHfXBAkSJPhfj4QQJkiQ4LeGyky76hAoYZKIVM7lBf/+54wdtfSI++uerCUywRzzCgXV+CH6kNT4mTvB09/3tzgf/kwzCy9GVYRNRnhwM/zVekhp+8BpDERGcfMDIxSrDvsrBcqX38SQKEQp5lIiAc51F6AATxQHJzLMljz6egJcIsKbbsN90ungOk03zyDA3HcPKpXukt2nEe0gviF8YDd6uBerCPnoBcPgtZQd5nM23H7FGqswNpQ3Dcax5ZpRYMmI8prH0Q4q09sswQx9W2Y6DxqGLkpZUjinv9HmIAaWXDgOqpUYNlYJ6pEb8x1D2QV4jKWfjx5Sd16NYx8ax6/3DZqIriWldSJY75PTlhw2z1gaER9KKdAuohxUFNiewvxAcyxjkFoZTGCvq2mSNRWTQjGRJaFBzSqOTfaMch27rNleS1YBYqVYUpn4+LERThBAYcrOMpNFlIZiATU41p10Kw25Hii3lJgqhZmawfVqTP/8ICBox17X3nPXcN4frLX3utaEtZAff2ozex60Pa5Dw4oN69M8w1nAVZtnOLCnyiIyuEqDsmSwQMii3AhaKWoovvq57+POpjiuPyTV8sGNiaAy7rDEGMY0nBHW+Jgf8ICxHzRF5RpnVzQ1phv79OHyqtRKNuuQDC0fTggskzwrnF52Rs1+XMdx2HBiU/V74kVn8t1//Tp+i0iolMJLpzjlyad1rl+CBAkS/C9HErSTIEGC3xrWnXsSjtf5uZTjuoysXPSw+/c/84xGqVortNbc5wVkshn6B/p4+wffyvpnnEfmuU9ty/uribA3irgtjLj5sOI9dytuG4fxosO2fVmuvHWYYtVhQgtFbRUOq+G0k4NADFuiWfJodKPoVXHLxhHu39rHxHSKgzft5v4v3IoZH0cKM8ieXcjG28HR0N/bDK5vhQJ35RA676BqFaiWUK7TTgaJlZzePsh0CZKvZwICTOxr9r4JqNwgOJYgKqVsiWK21z5lm5Ygd1oUtFjtk4rte6y/XieLEtRQjmONULRulH02HFHrpLFbcLuYpko21810Hsgj3O4IAzQJnRsT49ZS1phIdYXrNcm044Gbbq6lsqY5NoskasyxkWeolHV4LU0jlQJSK6JMYHs/60qt0qhsH2poMXp4CbpvAapnAHoGUZ5nj++lIJWyY7ou5HpRmVx8PV1b6mki6B22X9k+qwD3DiFRiJQKyI4tsHvH/OeJVcJx3ZiYGmRqGqcvTX65w8Dx0LM4IpULya3vZ/DpR6EzKbTroByNm/V47puPZWhxluOPV7zo+S7nHu9x0YY873/mQs5/muaOaIpZAooSsMeUmdCQ1x6ucnCVZubAJOPlFF/Y1MNE2cGI/WyneMBhdoe9Bq6CjII/bHFjXUuuK5d3UIzSWU7rKc3R3mDba6m0x6vecEnj52xPjrd99j0sOWoZbsrD9VyWr1/JO77w3sRlNEGCBL+TSBTCBAkS/NZw9iufzr1X3Up5pkhYC1Ba4aY8nvWOS3Dc9odTExlu+/713Pqda/GrNY674FTOeeUzWPyh17Hv7z8XEypLdNZ87E18ad0SioUitdkKt179a75+95c4/cIzWX7ysVR/cDVSqbLJVXzi1jsRI+R1mgemDW+f9JkJy+RweGJ6ISOO06xRUzCDMCgKExOgCOGQqbDJzHCyO0RWbMmkg53Orn15du23JZjHn1vDPHhfmwmH0grCEImiTlIoQK2ZY2edKL3u5ZT53vlLKuslgWGAmj6M9A5YZbA+ZmMzZaMnAhPn+LlIvbTRhEi1bFVFsL1rxSlUOoto1/4c+Kh0vs1Bs973RxRa2dWEDZIlrQqjCFIpourlqvUQ+dbevFbi19rXJ9JdcHy4vr46SROx5jrdHEKpa5yKVmbROD+JS0znCbMXFddAtpnqKJSXASnbzMPIoOaMLY6LyvU1CDuApLMoLw2lKUsE66Yw9bXQnq3SRUHg22Nme1GjK5pzdjxIZS3BK83C+CHUwCj6zFPiUmGJVcj2Hjnl1xrqohw6DJUKKptGeyVS/eANpPAP+KSeuBLS6bZ1tz2LwjNfvoL8zBZct/leLqU5Y1WexS/zOGo0AwL3b0tzxQ0BxaoQYJht6PGKHVMOP7yln140T8gUcbtcr2Va42E7NnM4uF3uDgdFe3CIMJizx5ktugQmwlGKQCIWLFzE8pXt1QpL1y7nA9/6f0wfnkJpRf/wQMcxEiRIkOB3BQkhTJAgwW8N+YFe/vSb7+c337uWrTffR/+iYc78wwtZtK7TJfD77/8Cm35xe6Pn8NffvIZNv7iDN33jfRx93Sco/eZ+lOOQO309Om0Vg+u+83N++uUfEtSsqvWry67heWMr6N85gQQRg0cvYoM3wpT4jTK/rHGZCcsUCakoOhqWIgWHMVSNz6bSfnYGM2SXL0CmNQ9IkadEPQyYZqGkAUpaEyjIjykcpwvhmJ1FDQ4iSjWUP4kM+D7MFto3jqKuREeCoFma2HkElBikWkX8GiqowpK++Z0uAQLfKqFRCMQ9Z9UC9I9RJ96YCKnUywhj5auj9DXue1MaifsQAfDL9hwcz5K/KLTf6zEXSjX6H4U49qJ+3l2IV+cpPwrV8AjKWHxmc/6l4n8KytFIFM4fgKGUJcTaseqqGEs8U2l7j/jl7nPVTgfJrBN25aWRALt2UWDLR72maZByM5bqzI6jRpd1jgGoVA76h5FSBX3SWagGOVdIPU8yqNprNzvV3DcIoFIvKxbIZVBD9sOIzDJQoz1d10IpRd+KXsxdne9lU5q1CzLoeJ7rVzuMDWs++Y0aoFkZGdaH0C/giUsEuMrgzLPqAg0KuY8akWrcQQ0EGPv7DSzoDXjWibPkUlYpLviKO24IuWXc3tvlLVvZtOkBjj12fcexBkYHO15LkCBBgt81JIQwQYIEv1Vke3Oc+6pncu6rnjnvNhO7D3LfNbcR1prmJFEQUpyYYeNPb+b05z+Z3vNOatvnwK79XPGlyxtkEODCgktu9kAjQiF8cC/PxOP76bDxcJjXKZamBtjlT7EjmGap29PmfFrHr0q72VjehwIGDhjOP/1MJjftptfkUS17aCBnDHenYMUkjI52I4VCcNNduMeugdFBECHaP4HZu5eOTUsVGDKWPLaqVN3QCDg3SBhApWRLDcXA9GEk02NjKubCREjcdyh+CRXFa6g01MpWqaoH0tehsAYkXWBLKEHExIqhahK8umtmo/TUoGh1fRWQqIUEPoK+wpa8wpZJdN+2rq7Fc+hw/2ztmxRpJ4+NVs3W824vYW1zXHXt2itAKdeWfKYySHEyXsuW+Wq367la9dCzfYSOa/fxukSaZHqtOjk3x7I+hpuCbB69/uQWMtjyfiprexqrJXsT5/uR4ow1MALECPgharivvWy7OIuMDHe9SlHJj/tK2yFKoXN5qyBXK7iOoq8HVi3VmB0Bx4SK+goL9sGlP9NpJgW29XJzpAjje20PFXZLhZWpXnRoCZ94DrtrBbaJsN7J8aLTZkh7zYkNucI3L1jECZdtpRAYHEezdeuOroQwQYIECf4vICGECRIk+F+PvfdtRzudalZQ9dl+2wOc/vwnd7y38cY7GiRjUOAp4rDOCYnEUI5cwrjbTyOsC13u8mxJn1aaYTfPYafCtDbkl45Q2jMRFwxaZWwiqnBPeT/H5xZxWu9yXO2Q3RNxwvAq9P52Ra+lcJKbNhpOWOu08aYoEMoHQlLTZcJf3oNSEPia++/oY8PTInS+ncuICLL7AHpsBMnG/ZBVH4zYssO5D9xirDPo7IwdKNcLmQxSmbWxBK3lnXFJp4S+NSOpzNrSxHofnVLgl8AEiJdtvhaFsYNm1JUI1M1mGu6kYhrlog0FUQzUdRzT4kfp6O4K4JHQtn2s1T5c+Wg8l669i3WH1rqiesQy1C7v10kl7QRRKY3U3V1r5ebmSqNSme7Di1jine2BkgEvg8r22WPWypYo1sf30sxPoOPexlwXR9n6nKMQvJRVM9M5VE8/Ztt2y7qC0JrGZLO2RLRcttd4egqCJYjXnpUoYUTtpk1kRuccZ2AQtXhpc82jCHZtRwdVRgYUw6HQSrftZwsGT5uulyECfhBEBCZiojpLOazxz9FuntK7nFefcBZaaxZd/ETu+OHP8LfsZWisiNuFpWaU5u/WLOGdD+zG9wPWrVs7zzomSJAgwe8+EkKYIEGC//Xonacsy3EdBhfPfcK08DwPrTULBF4rLp6AVoIQkXYjpqMUgdj+oiFpJ5taad789r/ggqc9mVw2yx3fuZY7v3MdExOT3Daxg19Pb2dddgFP6F2BF6tDfqmKBEFXpy4BHITJWfjSj0KeebbDolGFCeHQPSG7fxVhGCQ/GOL2KqqzLtWyZtO1DhsurFlRStnsNyn7mIJPtH82LmdVoAXHyaCGhzv6EEWE6KEdMHkYvWYVjMVqkhjM7vtRI8ts7p0IUpxCpg9Y1U4pO/E6IWxF6NuAdLHOHsr1wE9Bf8qqiy29eA3lDxqxC4jYfESF7Vk0xpITby4J6iYnWeIIPCzBizfqvt18BLFl3q1k/hG7ntZ7GruSwm6ba0jnrCJbVytbyHL7EE3lUykNA6PgtFyfdNa6xBanmjtFAdLSh9gYp1a2im/cK9ooba0XOps64ar3J1r3VL3qKIJND+KtXAyLlkAqba+f1nD4ILJrB+bee1Br1lqjI7H10/6tDxLdvY1dtVGWP6OHUIQomyG3eGlb6bJoDStWwab7qUxEbb9P2YxPX28VRxtMoAhrDmhNbt0A3liWcKLGwXtnOCRVHKUJTEQlsgr0zTLOX73juZxwwnFc952r2bNlNwrFWMp0zTZUDlzUO8iX3BkGTzqKo49e01i72elZHnpwC/0D/axdt6bzWpsIdeev0L+5FrSDOeMC5PgzHuH9miBBggT/80gIYYIECf7XY8XJa+kZ6mO6NoGJTON17Tqc9vzzuu5z6gVP4Jsf/yoXiYMHjf6kuHqRPidgInQIEcZVc0xBWH7sap7zwosBMMagVg2x6GVP4ux1q5j5+re549v7OL2vSQbrOEDEIJq5hZOO1lQX9KCmiuw5ZPjs9wUlwvLAsCwStBjGVirWnlUnOhGRH3Hfz11+870MQ4sDhnt9Mnmf7EDYfK40sbNnJAS3P4izZpVVl+ISPgkjZGIK89A2dE8K8YPYvCQeIAqQg9usQc7MlM2vW7zEljLWyUe1DLnufWFgDVmoVSDj2p4zQKWytiQRLNE0EcpxmwYsJrLHiIllA8YgoY+q7xsTV2GOSmiih+37a+zfDQ/TX3jDfVN87bqDjM8GjPR5vPy8Mc49buDhj9c4rJr7AqBt6Ws3aG3JXIs6Oa8q2ijfVQ1X05YDIemsLfMMapaMVUuQ7bGmOfE2iLGOsuk8UpyCdA9Ku41xRZTNU1SahgMrlhQythivOIkaWRibx+iGciojC6BagYMHMLfdhqlBcDjCTJXADxEUpX0ht32mwFVLJ3nxs09k3ZxLYfskHbSX5oL+7ezr6adcTDHYX6a/r4LWoFMGLy/orEv6D05FZdMoz8H4hr6nRzznX3dz//QsV6YqzAZWeQ2CkJGRIQCu/c5VjaLuw1MaY6zZbytMBLUph+f2ruZ1X/0sxhgu+8L3+NZnv41fswY7FXwGF4/w5rf/OQOD/axdfxSu4+B84cOohzaifKvWqi33YE45B/PSP+t+TR8DRIR7b7uXG6+8AcdxePLF57PuhHWP2/gJEiT4/UJCCBMkSPC/HlprXv3pt/Ltd3yafQ/sRGtNrr+H57/vtQwuHum6T//wAK997xsY+rtPdVXtHATBEKF4wAkA6xyqXc2r3/9GACbGJ/nLV76ZicOTjf6y40/ZwO2/uY7/eMZbrfFLC/a7sDwS+tNppOpjEEKE65wiN03t573/+HYu/8dLyRciIhGulCkORrP848AKjj4namv3clw4/mkht37bQ08EVGeEKO+Q6QutkBND4ggJSjVqP7gW75xT0ItGIDKED+6CbQ+gUhpcjar5EJnO8HQRqNWgMA2VIehtUZTq7qLZbqRQxVENKUilUVEIURHxq4DEMRZ97S6pYMmckSZprJNCR9t9WklOFILjtWuFLX1//yV0UQlvuG+KT12xl1poj3h4NuBTP90LwLkbHruBSIOGzzlm3XBHOV6jVFY6cg/VnJ+Jewy7QVkltlamEeFRmrLbZ3tpOMC6HuT7LBF1nLY51V1ByfZBebrjTJTrQjbXae7jOLBkGap/wMZjpHrQB2YIfn0X4X1bMEZRrjlschRfuH8/b3je6agupeCIEO2ZJe0Iy4+aZst9Q/T3V9AKtCekegWlwDv1KHRvtjGGk3FQnuYpLxyj+IWQo5w+DjrTiFaccsqJLF5so2zKlUpDxd04Dc+dUWQGpPEZg4mgOq05OOGxYWyMTCbNNz71DS679HsEftDoEc5Kiv079vHm17+VTDZDKuXxr299JRseurtBBgGUX0Xffj3m3Ith8cp5rtujw2c++Gmu/fG1+LHJ1rXfv4aeXI5KscLg6CAveP2LOP95Fz4ux0qQIMH/fTyqHMKf/vSnXHLJJRw8eLDr+wcPHuSVr3wlV1111eMyuQQJEiSoo39siNd9/h285fL/x5u+8X7e8qP/x6pTj2zy8MSLnkRmPhdABZlT13LtiQPso0JZBYxtWM77f/BRFq5cDMCH3vFP7N9zgEq5QrVSpVatcfft9/CDb17OyMqFHUMaBQ+sHKJ28Uls1TXuocQXOMg1wQSVUoV/fM9HeNbrXojKe4REoOAMb4DFR3f2QyllxReWRHiOJQpBSTO7w7UxgaF9cPVrGlM1lmc4EezajLnlZsztt6IO74pL/2LF8FD3v90AMmNJL719HeqUCn0Iag1SLCLWsCSdi7+yjVJJuxBhowR0/v6/luxDsITF8TpJnlJWFQtq1vnUt06p3U+iS/9ft21ax56Dr113sEEG66iFwteun3/tHhatsRj1PsXGj/E6xA6tKIXSDoIGN23LaL20/QJLprV7xPJDUbEa2ZqxGPd7zu1hxE13HUMpbXsbW8c1ETJ5KD52fA7abeY3AjgOeula1MKV6JExUhuOJvdHzyX1gj/g+v1D3OKlUMrhyakhpu4/jKmFdEApon2H7b89zZozKvQe55Fd6ZIasGQQz8E9ehkql7dlq0rHp6lYti5PytGc6A3T62Y47bST+cxnPgZAFEbsmTgcE3ThJa4wvtFhZovGL4BfgOktmh23ZphVaQaPX0UYhFz+5R8wUDMsFKdhjKOVotfNIiJUyhVmpme58yuX0pZY31g8QT+0cd5r9miw+d7NXPuja6lV7O+kFtChUClYx9qpQ5N85Z+/yM+/87PH5XgJEiT4v49HpRB+97vfpVAoMDY21vX9sbExCoUC3/nOd7joooselwkmSJAgQSt6R/of1fZ9f/R0Zj75XaTaUpqY9uh99rmsfMerOHGe/crlCnfdupEoai/z82s+P/nuT/mnf3wn3/7b/2hzPnXTHhe+5SV88dvf4xazr2PM1X6Wm/7jB3i+wdNpNuTGONpo0pkK2ukkMkbBjh5hcBLq1h/lwx6VCRevxxCGitvGB3jqaftJDaZwlw20R0lkUyinF5ksQGj1SnPnHeiTT2l5qFeweweqFsdMzAe/atU6N2X3yw90unHO5ShiuvfTzYXjxWRFH6HM04bWKxEkDK07J0corew6xsMby4zPBo/q9a7HgPbjtDqUmqidUDWsSmNyHKulykvFL6vmdqks4lfj4Y5wrUIf8oPN+dRKcSvlfB2u85WnhtZoKD68HDoI0+OWuIqCwbG4vDjevjCBCkPI5NucV1U6hXf6CajRHZy98zA4wrnrR1mcn0TVyoibb/S+Shhitu3AHXAwroM3UF8HjaQFBjOE0xHpZ50HuXxzbb20LW9uyXscdNK8fPBETj/zqQz09wFw+823UzY+KtJc6PUwQA2NorTXobTXzsEITKoUxnW5zpnk5nd+hDcWcuTjgusA+LaeZYcOcOes6bRviJTGlfbqAbSDZLsb+IgID2x6kGqlynEnHEsqdeRw+9/c8Bv8WvPvWUp15mfWqjW++6lvccELL3r0pkwJEiT4vcOjIoQPPvgg559//hG3Of7447n22mv/S5NKkCBBgscLfS9/GuG+wxQvuxaV8hA/JHfuyQz99cuOuF8UztPvBQRBwJozN/DSj/0F137y+4zv2M/QsgWc/8bnsebMDUTf+HbHPhkcFpLF+M0HVhMaDhnD+B7F6ErLi1qhNGw5BEZcnkSIpyA1pHHzisqkYedsioJ2bOXmXDIIKK2QtGcf4IMItEImJ5GNd6AGBmJnyor97sX/OSjMID1zMgobyl8EfsU+fHfwCAGJrLJljw6VIsptDylvqmNS38rGMUSB7TWUedQvY8sf646kZvYwuncIiUsnVTw/gSYZaVUtm7M6Ikb6PA53IX8jfd6RCeXcjMS523aLrWiJqFDEJM+1xjzMc6gGUaSLoawI+FVL/LRqzEEyedvLiULVy0jbdoyNelpLWY1BDmy30RPGINu2wNQkasEo0tuLGl7czEmsn3LfMKpcbKh1bfNWcOELlpApV2zJc2SgVMHceSdq4UJkwQIber9rDzIxico4ONpDpT17tn7Q6I1Nnb4O1dMStdFiqmMKs+x+qISKhByKrIEd3/4FPcN9nPpHF1G96z6e6QpuxmFxZPA6Ziq4njCWK3FveT+3/PQB/lKWkY1diQHSwCtMPx9XE0zM6Qv98Z4Kbzgq2zlqpcb4lVvoX3Mq7shA4/Utm7fxF3/y10xPTdvfORHe+6F38tQ/eErHGHWkM2kc1yEM7N+SbrE4AOXZEt/5l68wse8wR596LE96znlke3LzjpsgQYLfXzwqQjgzM8PQ0NARtxkYGGBqauqI2yRIkCDB/xSU1gz/3SUMvP55hDsP4CwexR0deNj9evt6WLFmOVsf3Nb2uuu6nHPB2QCsOv0YVl16TMe+T33WhfzmptvbHtP6dRojBke1m6FMKuGh3bB0UtE7JA1SGATwy60wVVbcjstQSrjwQo9Ur7Y8QkOwS/PQL4WCypKf2xdYh4glBwaohYgCUyihHY1KeY0yRYhJxoF9qFU5BEvMVL0M8xF4uIgxUCvaMlUvTcNFtGeQViqmTNhBDBsxB62GMsRun3NIjFQL1rhmdhJyfSjHaaiFDWJYd0kNfRuH4KWbYx8BL3/yWFsPIUDaVbz8yd0rY5on1c1I5mG2k/rPEjuHxgS2ThpbSz6p9/Y1r7OaozIqpSCTt5EUYBXaSilevxZEgSXgdTJqQtBNaiSAHNqJTB2EShnZsbNBLs2hw+jV60B3qlKgbNxEF+KstZAbBfZZ0oPrIH15mCkg+/YhB/ajMhl7cM8FI+jhvvaxZ4pQC9BLF6HczhtSlKJaFX713UNkPMOZG4osG/NRwMRtlxJs/RUn/+ZBTswoREI0IdWyC6JRjpDqNThuhKkKI0rx/N40z+/JsH86IKi1l9Yq4AST5ofRTNvrJSfDfac/l5Pu/ilSCyAMEVHsuzdHpXgzpRvvZen3/wndmyMMQ/7kkj9janKq7YOLd731faw9eg0rV6/oOEeAs592Nt/6zDdbrpd0kEIHRR6XG777c6Iw4oFb7+XnX7uCt3/1H+gbenRVFgkSJPi/j0dFCAcHB9m5c+cRt9m5cyd9fX1H3CZBggQJ/qfhDPTiDPQ+qn3e9o9v5a9e9RaCIMSv+WSyGfoH+vjjv3h11+13b93Nz75zJQ/c9yBaICIOWUcoS/eSQ1GKa92Au38e8fRVHitXQyGCa7cq7ttf30qx8swUTr9CtyTVL18mnH5MQH7QAT9A3G4P6SBBS59WJESTFfTIIKJjgxHHgQVLUUMjqFoNmTqMcrXtzUqloR5mX1eRgiP08FWLtrSx/pBankYqBUhlwE2h0q3Bii1KVVBDwkJc/peK5VJLEqWF0EhpOiZ2Kna37ObKKVZRjMLYlVPFjqzdptze33fucbbUss1l9Mljjdf/S5iPNErj/7rEVbRrgW1xHvUS2/o5KNVeRqscmztpjCXGJgKU7TGMjWvqESSY+v2pbP9hZdYeNwxQCxcgU9NQ8y1Zmye7UCkVG+LMc+7VKejvs1mDpbL9nsnY/rqBvsbh1WAvUgtQwZzfmYEeZHwaicLumpgI7r5dnH9ugFeYpScTNtxDR3pDxN9EKMY6DscDZHMhulfTv6apypoAilsFz7fbLRkos+NgfM/F8FCscXK82F1JMapyWzjBeFo46ujVrH/Jy9m6cD3pf/xXiITqrAOiUBiq4zPs+MxlrP6bV3DLTb+hVq12qNhBGPK9b1/OX7/tL7ou5diSMd7wzjfy6X/4FI7jQCRIYNrWJBsT/Hqlg1/1CcMZrvjsZbz077r//UqQIMHvLx4VITzllFP4xS9+wdatW1mzZk3H+1u3buWaa6552LLSBAkSJPhdwNr1R/G1K77MT39wJbt37OG4E4/jgmecTybbGRr+62tu5uN//zHCIMREhl43S2BCDlanCcWwvXaA9cMDjHrtbp3adZiUgAPGcN+OEHbAsM6QQqFjxSjlwrrFGs9pfwz2PDj+VEF8DzGCklgtqJMGI8hkEfyWh3QF3vqFjfI7HBd14hngpa3SZgxqZAz2brN9g7keSzxawtUBKE4gPcOWTGjHvlctWjUulW03UUlnUV4GiQKsVDlXzZS4NDFEpvdbg5V6tp3SlhxqbYmo0uBlGyqaikLa7Fkbh1WIUpaWxsqgijMS27arO3pqt6GCnXvc4ONDANtO8Qjlpo1YinYlr0HuuvQLKsdt6oMNfm06CKUC0No6upq4D9NxbZlutdTc0ESWCNZrgR0PVavGER8KBgeQg4fRI0PWQbPbBw9ikNIMMjuJHl3WPG8RzP23oYyxURWpNPT1w8SEvd/yufZ5KwWZlCWMxoDnoZYsQw0O2bLS8Qkkn7dup41TN1Ap4xqf0QWghnswh6bbl1gJ6TGIitbEKSgonCz0rYnaKnm1hp6jYHZTvS5aSHsRtaB5PAOMphzOyBTI6wjo48CCBaz65Af54b99m/3fupoLqw5zLXtSwAPf/BnL/uIlTE/PdO3ajcKIicMTXd5p4inPegqnn3s6d/zqDhxHQyh87zPf5vDeQwwM9SOFGmZO2bsJIzZed3tCCBMkSNCBR0UIX/Oa13D11Vfzspe9jDe96U2cc845jI2NcfDgQW644QY++clPYozhta997X/XfBMkSJDgfxQDQwP84WteesRtwiDkP9777w0LeABHaZT26EvlKIQVxnID/LyynVetPo/wwIyNuEi5nP2WFxL+/Ffc+6uNDRI1YapkcMgoTYBBCIB5Ki8UTXJXroLnNMLezWwFiu2OhyqfbW+kW7S8QQaBRu+gLF4Fh3fTltodh4wjguzbCcF90DNkzT1SKRSmqezFZZqqfwyUjvujUrY6EhOTnJi4FiaQ0LclqohVs0TAycaSTWifwJVqxi3UHTOjAOgk6CJiyUadOCplA8NNZAlSXZVrxGvE2YaPwHgmPkBjHo9420c6duuu8fe2veIevU5Tn25Nh6pZjqp1i1KqbVlvPfJDO7ZX0NhQetJpqwg2xgFGh2HxCsj3WkXXSzWMakQMhCEc3G2JXrkEI4vsPRMGqAWLEQdwnEZprFqyBMYnrBlMt7l7LoQR6oSTLSnUGrJZyOWgWIzLguPzDgNk61Z7KjourU250NKzq7Qis0CQXmuflF0kRIFq/v60LJl2wclBVLbXwG8h5RFgHMOG3Cxuy64LDx+i+Ncf4MaHphkO6ipm+9ghwmEMt994G6eefjJh2Omyms1lOef8s9peq1VqfPez3+b6H12LiPCkp53Ni9/wUs57xnmNbc5+5rkAlGaKvO0P3sScQmEA0rnO35UECRIkeFSE8IQTTuA973kP73//+/nQhz7Ehz70obb3Hcfhve99LyeeOJ9vX4IECRL838POzTswUefjl1aKvJOmFFlS5uAwvb6PG7bfDoFQJuT7797Em97yRnZt2k5xutAoH6uqiKLxqUiAE2kOFCOW9bf/yRaR9lJIEaQWIGUfqUWU9xuyI+0+Ji3VibbXb2hBgwx2YJ5IAhFBSiWYnUGNj9sX+waQxcsg68T9TILK5EDrBmmwLqIgoY+Z2GuJQXHKKn/agXx/I5uwwyhDqe7zEUsgxU21l1OKsSTP8TpUM6uUtRAopZpGKI+GsD3SbR+OuM1VAK2c1cYlhLqaOc+x6z2THYYx3UtllVLtOZBKgXJQGEu0+hbAohVwYAdkcpaQja1A9Q23HUPCwP5cKSD7diDVCmpoFPqHbG8igOMgOoMaXQJTBxvHRykYGUb2dYlpqGNsIbhum8mRcl2kt5fohl+ih/vt8YvFznN0dNtqSKxWKqe5tG5nnGJj2VT8+cC0EX5sKjwRIQJqOsXSXNBRtqoB2bWH4cDjAIppYBjBadkyAm7WIQunCyxcNMZLX/5CvvONy6hU7BpkshlWr1nFhRc1K61EhPe9/t3seHA7gW/LaK/6zpVsvPkuPvKtj+F67X8X8v09HHXyOh66/QFMi0tyKpPivBc/tesyJ0iQ4PcbjzqY/sUvfjGnnnoqX//619m4cSOFQoHe3l5OOukk/vAP/7BrKWmCBAkS/F9GNp8lMt0+jwfT8kCuleKnl/+sLcoiDOHfP/opPv+VT/Gdf/06D935ACBEnuJgsYCJH2nfd23Avz5zAa5SpFyFicRymLlEVKA6rpi5F8QoHFdIDdg3FGDGKzjLWh5lA5/uUEhpFuY6jsaTlh27UAO9TQVxdhqKBTj+lCZBS+e7Rx0oDaVppLUX0URQmKIevyDZ3ngWMdyWGIa6ykfcA+lXIYoQz/Z5SVCFWhVSqU7r1lZEIeJ61gRFq0dO8B4u6/BIaFW1Ol7Tba91zEY7sUrbcvzGPpbstMV8tCqTXacSk0KlIagCysaJaNcee3ARsuQoZPYwyvEg1xuP3ZyZOCDTh+HATkv+c3nUyOKODxmUsoYzjeiNOiIDmawtD02nrZtSLSaIw2OolSvnfDggjf1UJk209wBqoM/2Bbadp8LUmqTNkkEgmFOWawRRirm3uNJQKyqMKDbPpHmhdgm1wUUxSUCvE+J0uV2CyDCoDAeUw3cceEYEy+JAlwLCN6gwqRw2nH48AG/+uz/nlNNP4jvfuIxSqczTn3kRz33Rs/BSzfv2vtvuZfeWXQ0yCLYqYeLgOLdd/xvOuPDMjnm8+h/exCf+9ENM7D2E0oooiDj5gidw3osSQpggQYJOPGpCCLBmzRre9a53Pd5zSZAgQYLfCqYnp7nuqhsol8o88ezTWbPu0X2wtXjFEhYuHWP3tt1Ii2JnxDTUQbAPpXNzDcESxWuvu5Ef3n49yg85WQY5Nhqm4qS428ywTyrcc8jnD7+9j+cd28PKAY91lTSjKzr5jhgobotsOxiKqQccyp5DNeOyoKdMVgUUzAH6T12IqxXs2wG9A+39WFGEOTROeNVNuOc/Efr7rfFMrKyZe+6221WqkGux/zcRsn0zrFoLXhhHRXRBndTNh9CHwoQ1onHcmPS0hKpLBKGAm24qQKFviWhYa24b+IiTapaXtlwHa1gTxMRSobRpEsy56CBU0lLLqTq3ezhiOV9p5yNCi3LYktsogiVbQWhLQ4k3i0liA3W5OF5/pRTiuDZcL50D7bavwdBi2/NXLc2fUplK25Lh+nH0PIpzw1W19XQUamQU6vdffgCVycPsLGS8FidV2q+DVjA0hHvySXEPqUH27oV9e5DIYKYrSCGAbJxvGBjEj7qoxRAYhXYFL1YEjYH929Psm8oS1RSrlCV/XrzwwwgSKCKXDlLoiLA/FkYrCr7nQlrs69tMCTftccFzLmDR8kWN9X/yBefy5AvO7bpk+3bv59P/8B/UKhXmlp9Wy1W2btrSlRD2DfXzzm98iJ33bWPywDjLj1nFyJIFXY+RIEGCBI+JECZIkCDB/xX8+sZbeNdfvQ+AMAy59JNf5g+ecxFveddfdicH8+Dtn/h73vO6dzF+aIIgCGzYdVSlYlr6Cl1r2mLmOl4qxY8uv4KgUOGN+WPp0Sk8pRER1usMk2aWB0yZO0tV/v3WaSIxnO728s+5AfKj4Hh2nlEgVPaHBLNiOZdYXfBAMctJyyZwtOA6Qq0wy8FbqwwdvZhMsB/l5tBrjkaCCOU5UCkh99+GHs0T/epm9NAgamQECQNk4rANHweoBfYZPZeJSZ7BbN8Fu/ei1x5FFEY4q49HOXPMP4ozUJqFdHtem8xVxQqTSP/IPCTNQFCxpMhN0+gHjBmyzTS0LqUo1WEmQxirLUENdGzQ4rWXpDYdSGV+VVDm/GCZ2aPuFXzEUPExVfsxmpEVunFu0rJNByGO+0wb81a6mSvYejilIDeA+LU5dKSd7CvXa66pX0G6jEXsGtuGjO1pU9pBLV1nDYkcBxmyhEkm9jRdbeOyWDER4vvoVStbPsjQsGQpkvJQs1M4gwZxPcJth0BsG6rb1y2aRZiejdhRTnNULwS+ZveuHFOTVpFeoiodpM8FjO8QZWzPa70F0Re4L1QcFnBbbowKMC0VIoQ161bxx2//ky7z6MS232zim2/6KGuNw1pnjBkJmJAaVUKmxCeVTTO2dP44FKUUKzesYeWGpHIrQYIER0ZCCBMkSPB7i2qlynve8gFq1WbpYhRG/OyHV3POU87iCWef/ojHGlsyxid//Glu/+XtvPNt7+fw5AROQzBSpNIpTjz5eO6+69624wGYyLBj127O8sbo0R5e7Oq5lir9RKBTnKlc/og+Pu35HIwidhvDm6+t8oerPDas1tRE8+ttDsU9mjMcSDuGUuByyM+yYe0knmMaZXHplKL3+IXgabQW2LsFs3c79A8ifhUKM/bhP+sh7iDRwQk4MGF5Q8axD91x5WBlR5ni/jL9KwXXMZhSgNOfgslxqBQRNw3L11lVT2moljAP3oo4DqpSssojWJLjekg60ygRlNBHVYpIOmcNUOYWUYrECiKN9xp9hICYEMKaLWUU0yQUYtqz+eJcPkyIpHPN44jYbY+oGkr8o7SrWXOdVB8vgniEclVVJ74SfwgRVCCVaRjrtG3XNowCOYJiq7Ul9Say5FrifRSgUqisgr6aLTutlqFWgUxPwyW1oVBqF3X0abb8169iDuyAasGu78CYdaOtmwDVb9bBRcihHXNPFFEa7bY/wijHgdExKEyD5+CuGEWlPGp37QUD/hS2fFq1mgnBaNYwnK5w/wN97JvsaStR1fPookYUXyimOS8bstoJCVDcUtP8NFAYhIgIB4URYcJUGqXfszOzD/tB0wO/3MiVH/8WaucEvbiN23EAjz7lUSPCADtcn7Oedk7XMaYnp7n3jvvo6evh+FM32HiKBAkSJJgHCSFMkCDB7y3uvPWurg9n1UqVKy+/6lERQgCtNaefezo//MV3+fFPfsbPr/wFhakCy5Yu5hnP+QPOOu9Mvvy5r/H5T34RY5pE42/f9Rbe+c4PsM4bwIuD60cJ6Cdq5MFnlcaI8OowzUeogtZMIXxqRwA7II1mWKc5IUyzvZZpVhUiDPXV2viIs6AX5TmoFulDEdlesJaeRDs/YfuD/eSrBRwEJGT4RIPqSUFoSDk+uWzElp/0sHDVLPl8iCmE6MU1yKQxD94OOzah+kcQE0ClEE/CRdKZ9j63TB5LNJr+jFKeRRljiU4615xXvexzbvNX42I4UDgMmV6rIGrdOJaaW0YZj6VC3/ayOS6NKAh3/v9Mto9hWmIibLxD41y69VE+WjySvsX6NiaKlTihg0R37CLNjMIuhjciYtcklbG9mkrZeBPXlvIqsLmRuV5k5jA4k3bHoGqvsXIAA+kcqm+0SfTSWfSyozHje6A4heob7iCugL2Ojhe7yVoopdDpVPcTajWfcTTOogHkrgMEswYxijBw6L9wJXp0wC7VVIHwnu3oco21KwtMz6SYjVLUy4InnJAlKcGEDlHUHLsCTIjmwGwvZVEYYBA4Sfvc4dRAQYQQYhpk0IgwVZ5tjBGFIUprdMucN11/J99856dJVyN66CTyGsFFY4BTB5eQzber7ABf/89v8PX//Aae5yEI2VyWD//nB1mxZkX3NUuQIMHvPRJCmCBBgt9bmPl63CC2gXhsSGfSvOAFz+YFL3h2x3uv+pM/4sUvexY/+O7PcF2X8596HqNjI1x3/S8pX7/DxlEoxQJC5j4ea6XoQxhGMTFnfjUM+02Fk1SaEPvHvV5d2OFh0pdFOfOQlDnmHNpRuGnFgQdS9Od8Vj8vC45uWPWrtEc2XaFncUDNd8nlQihH+PcdIH1mD9I7gF65HtUzgKqWMbsegunDiDFIuYIeHLICFQrVO9BJ0EWQ6UNQmob+UVtm6qabpitHinLoGWk6b87J+GsoV5WCJUNeGvEyNhahMW6LgcvckssGgaK5TRxnMbc884iC0Hzzb7kG9hRMs0ev1TSmm4Oq1mAUol2UGETqPZSqbb6W7AVQjUl6WEU8SzBUnAGpGucVWWWvTtaNaSFp8Rz6R5FUBp3Og5eBKECmDyLFSVTvsB3TTTWiQ5RE6KEl1gToyIvUsiZ10mu6fxgQBu0/G8EdTeGkK5ggIvvUDejeVOP+1YM9pJ50LLVrN+JlDKl0gW8WKywfHOE8b4pjMlD3zfVrLhMTWSIU12jFWcqjD9pcRNebFFMqYrsTYkQoSxBPQzBieODADvZs3MJl7/4chX3jRCIcUBWe8Jo/4JLXv4Kf/tu3Cao+eVz0PGS+butTnphles9hBpaONt6765a7+ObnvkXgBw0Tmkqpwt+/8V18+covtpHPBAkSJKgjIYQJEiT4vcUpTzy5KynMZDNc9Kz/Pje+FauW8bJXvaTttfd84O289YVvYs2EoDtDFxoQaCOKra6SAkwQkFNpslL/A68Yn84wMlBFewqdd6waaKQjfy0esP1HA4X9hlLoseK4qI0MAiitcAay9C8qsGlTjr7+Gq4SzOEK/n1TZF//LLuP0lYVOvZ0ZPNG5OBupFQmOjiB1HzUoiU4SzoVDKU14rqoaskGqWuN9A6hBhZaM5QwQHmpdkIhYsmTqlPi+SDWZbNWBr+KSuU61yIKkLnOPSZqMcVpOa4xoJ0W5TB2/ozzDbuR3XmJUGt/oEgnMRVjlcc5KmXDOVTHNKV+b8Q/16s9EYOqd7ql8425E4W2jFe1GOwox24T1hrnLVqDSjVzDAGlNKq3pedTp2F4iVVctWNJYsu4goPK9SKOh5RnwfXaVMIGYW2QvDqRNUilAukMym3Z3hgYP9i+jlpB1bfmtUv60TmvPcJCa0QLzuJhalsOs9CFnoERnpALOdVVpFouTyoT4g7U2Djo8qenePSmQkwEO+5z2Ha3/QjGQ3GCZNhqZthdnUQ7Lq52mPXL7CmPc8zK1XztT/+FyA9RKFylWChZ7vjclRTLZSZ2HwIgwGDQXUlh089IdYTP/+hbP+4oSQcozhZ58J4HOebEYzreezQIw5CvffFbfOfrl1EpVThlzXoGyJDOZjj7eefzhGeclZDOBAl+B5EQwgQJEvzeIpvL8q5/ejvvf+sHESMEQUA6k+L8p53HGec84X90Lo7WnH3xBUx89WYWGOEQDsswHSphBeFQvQQNqyaaFuXkXimyWKWoKoX15oRf7xrkyX0HGey3AWwyU4LhXlrJTD3TsJUoijGYYg3KNY5dV6R/ec+8JDI/KJy0erJRLSkCmQvOawSR16EcF9YcjypNo6ZnMTMTdk4TE23zaQxtonbVJ5Wx5i+VGUuIcv3WjMZtIW31HEKwhCgKO0xOpG4nqZTtHTQhao4baWOsoGaD1xEb0+E44KQssZhL1FqJYn0hYsOW/xKUtn1+rU6dMo/CrbTtk6tTh5Zzr5+doK1K7LiWZIdBswdyHnMZcVPgV5o/18+7pUewcyoODIzZiBHV7uJa72VUPYPI7Dikc0jdaChWdmV8T0c5rhIF6TRSLSNhhMrlkFIZitOoarkxvoQR0YFpCOw10T2ZjtZOwJLKfJbapCafMbxdCqSdqEkGlSK1JEP26F6GMpp1Rmw8RmTQDqzcYMffdre9B/M4nO0O821ziHtm95CKszCdlMfTjzqF2Xv2tN3prtKMkuWHX72cpyw5lpmDk5Qx9NgVaPbUIpjmVSXT38PginZTmWKh1PazRtGr02RMiod+s4kFY6N8/9++yT2/vAvXcznr2edx8Z+8gFRmnhLcOXj3Wz/A9b+4kVq1xvrMQmYfPEApLone89BO7rtpI6/94J89orESJEjwvwcJIUyQIMHvNc654Gy+ceVX+MVPr6NSKvOEs0/nmOPX/4/O4dCBQ7z6Ra/nuEoP/aQpaeGAaHqMoh/BA/BcakHANwgaT/Xa0SxYMsaS01Zz1Q+u5kQZIaUcHpCQZcahB02FiC1RjYXi8UTEOiaGEdHuwziLhho9clKpYfZPonqz0JsDBDNVItw2zdq1YHzAN+05d3UohZQj67YYR+WZfAZ35eLuBhqOCz296DWr8bdMQbmIYwqY3XvQy5c2MuzEGPB98K0xDEpBtqep8Ihp9CRK5EFLOH0bYmMZaWUDjT4/wIRWNPOtGcrcMaQ+RhjaeUR1pSomTt1C7VsJ6Vz31LbBj6ASPpZ94mM1dcN5yg7rBFEEcTwbet9N9Wzfq/MlXY8jseS6qSq2lLWibB/iPPOQlCWBMrHXjpXtscrj7AR14yDlec1+QgUqnbE5k2FE9KtfQaVMbW9Aav0YzlAWCSKi3RNEOw81jiWz5a6CsYigBnoxksZRIXnAU5A5ZSnZM1eish4EAXLwEBQK4ChEp6DmQ2RwPUsKt9/jYkRRQnCM4sW966mYiON0ngFcdugaMzsOduOkGIQeneLUZ5/F9ZdeQRRGHManD5e02D0iDKIUoRhcz+VZH3xdx7167kXncP/G+6lVa6SVy1K3z66zUVz/xSv4+ed+SGhMozLiF9/6GTvv386bP/WO7pe8BXt27eH6a26gVvPpd7LknTROS3+sX6lx9w13sPvBnSxb98j6FYuzRXZt3cXoolFGF44+/A4JEiT4b0FCCBMkSPB7j5HRYV58yQt+a8f/93/+NIWpWfozw+hYeSkrxdUqxWIxLPI0T/izF7BlIMfEv1xKJgiJIsOyNct4y7+8leGxYZaXc2z6xW2YyJqZFBWUidgWFrgrmODP+3ppaxus+ETbDuCjcRBrGAPIVNF+iSBV03iA1hrCQ2WcgXRbzaqIIEGEmW3GCei8Jr1II6USKtNpegFiXT4dh/SZx+Dfcj/BRBHzy1tJnQ8Mj1iSNTNl3UoHB5F83opecw1aJIJqEXID3WlMXS30KzGZ0LSWHuI3cyIpT1uVqiWPUESgWkSCilUF64/zUQjKiW1bDK3SU8PKpfGwLke2d3kkpFDqZByg6dz5sNEoD8c1GwROA3XSNt9sG8WKzX0dDQSWJIuxKmHrNarzwmoJlc13jCtioFa251YvDw2qMRF0LJGMQvuV728vpVUacRV6/Trk7o2kFnrU7thDVI4wtZD0YPtUzEQBU6ig+3KNHtr6Ouq8y9ALV1H42Wb8cUiftozc2atRqfhmT6VgyWJkz14oFmMi60HFlmdqDcqDyIeZ2KwpHRo+mF6Hwj5s+SJMHq5wX1qztD9iaX/IbE3z4HiKXKC4xB+g/9+v5JkG9mnFnZ7hEFV2BzMcisosdPIM6QwVCUgvG2XhhlUdV+ipz76QKy+7kl1bd7MwyqJbCVu1Xt7bVJajWsi2jQ+x8/5trDhmdZdr3sSD92/G9TxqNZ8+J9NGBhvX0xg233H/wxJCEeGLH/8iP/7Gj/FSHoEfcOITT+St/++tZLKZI+6bIEGCxx8JIUyQIEGCxxH33ns///bvn+HBB7dwwokb+PM/+xPWHnXkB62bb/x1115GUYq9ymGyt4envuLpnAp8+g/OZu/2PWTzOUYXjzIzPcuvrr+JTddaMthvNIvEPsRqFCe6AwzjUhrIIMFkx2O+RBHbDqVYtSDAnVOfGpXb5ySlkGBXAW95T/yKwtRCgs0zbds5/R5oMHf8GvXkp1l1pz5Gnfxk8lApogZ6SJ24HJQieGA3TE/C7FRzMK2hVrP7eB6UC0jPQItKKE2SFwWNHMKWA8ZfEaCs82X9vaAGfrllW4OZ3IvKDUCmp/EaXtrGXpgoVrric4iCuBRUA3XyrGJDlpaVjiJLlFqJX93YxYS2v3KObtRGycRY4iR1qyNpjNVKXpvjznVQfZSIQqsazimxlcBvdrcq3SgxFceLS2t9pJtKq51GL6C4Xny+zbJdU5i0CmVraXDdBMdRVjWMoq4mMkopGB5B+nrR6TTZvqIVJKeqhHtnUAsGcYb7MLMlol0Hqd54P+knrccZrl9f66KqUmlUJkvvhauJtu/FPXNlkwzWj6U1LBhFisWWOVoEAYyHMOspTFxGuyK06n59zdJKMSrCa08osGAgsGKzgXCt4t6b+wj9lDXBQbEoUkRhwD9HO8m7GZRSHDRlDhp7v2b3htx5y12ceuYpbXNMpVP8y5c+wo+/+iN+8enLbRjpHOj4Yw2vfs/5wuff/HHe/MX3MLhwuG3bK7/9U77271+jXCyRyWVw4899AokwYtoIJ4DjuvQO9nUccy6uuuwqrvjWFW3mNxtv2ch/vP8/+OsP/fXD7p8gQYLHFwkhTJAgQYLHCTfddAuvuOT11Go+xhi2bN3GT35yFd+/7CuccPxx8+6XSqcpFcscjkqMOnl0y4Omk3LZ8IwzGj8Xi0XS+Qwji0b40n9+hc/+x6V4nsdZLLEPkuK0GVE4KJal+3COfjI89P1myDdgXI/xRWvZv/Z0/OsuY92SAo4WCIWoGDVKI4EGx4gmqkSTVUzGo3TIIZ+r0pEWoGPDiy0Poo87CRYtaZYo1h/0Fx+FbL3Lmq14dgDvmGVIsQzZFlLheYCgalVbOlqtWBXPswYkErtdKuJettCnHtou9TiJRn9fiESBVQvrBLGjrzC0RMcEDeLSasyCdmz5qAA6LpFss3Cd83N98UK/3ZymPtd6b+FcF9TGdnM+KDAtpZeCVejqRLNOGKOWTjORRg9lc/1bpxaTy9Zx68YxTuxVK2IzISXqVABFQEJ7HnND51vPJ9+HmT2Eyg9CKmeHLc8i+zbbdehGXFMZyPY2+xSjsKXMt1neqnI9OOc9NT4Pg9l0N45zEO+MkyCbicm7QaoB5Z/djnYiW/5rFwSyuUa5qx4bQS8YhtTcmzqGN+caApXAcNPGFNOuNe5xAC/+mlssvHxljUWDQSN+09XgibDhlCJ33TjYPIzSLCLNSpXlcJc611q1xv33PNBGCGuVKg/cci8mEk46/hge0FdCFDFNRFm1xMlA7GHanFtxYpbP/MVH+LtvfbDx2jc++Q2+85/favxcLpbpIwspGA+KLEk151uHdjQnPvnU7mvXgu9/+fsd5jeBH3DTz2/iz979Z6Sz6YcdI0GCBI8fEkKYIEGCBI8T3v6O91OpNEsQo8hQLpd5z3s/zPe/95XG677v88Pv/4Trrv0lo6PDnPOUs7jyh1ex0T/EWZmlpLCkTjsOY2uXce4bnsvU5DQf+LsPctdvNqIdTSaTZqZYwK/5+DWfw5kiq5zerp6aOhIe+vVBlr7pLbiX/ycUZxDg1sk8X7xmJ0btZmkqx8r705y/epzRHvvAaqzPDLsKDovSEZmYB4QRVKaE2YMu0peiZ8RvE2+i2QiVdtCuQvUNdC9rdNOWcJRb1EURwkMlvGWutdJwtDWl0Rr6hyAXqzrFaSSMIJW2JLF/CLL9TeMYidW6OBZCWlIZCeIAdbARCK1ExBhLAlPZrnNuRFUop6kO1hW5lvLQ9hLQFkUw9GNyM3/cSetatHUCqpaA9+arliRpDaIsv0UhjgM4YMLYOAerwLWVcraMF1j30LbRo9Aa6MTOpShlybCao34qhdIpq2CGRyKEg6iewfi6RJhDO2F23AbZK9Wp/nlpyPU2Sbl2kEyehnOsCJRm4hiLdpVUH38SsmML5HNNJdlxwHXIXXg87NmF5LL2vdihtvGBRbz9vLqqb8sujRH8sk9pRthyl8fkLk3OBd9ehnkrdceW1ZibEa8VZHIRqUyEX21xTQUWkCLvZhh2c/gSsScsMG2qpDNpFrT03G266W4+93f/CkCPb1gbpliGg8JhpdiInRBhXEXsUwGm43MBYWrfOPu37mHBgmMJgoDLvvDdtm0UCkHo0znKrs+2YJw16VHS6TRaKXL9PbzhI28mlXl4MleYKXR/Q0GlUkkIYYIE/8NICGGCBAkSPA7wfZ8tW7d3fe/OOzY2/l2tVnnpCy5h8+btVMoVHMfBcz02rFvH7h17+LU+zJCkWTw0whve9aesO/tEAP7mj/6CbZu3E4YhBFYhEJGGgcim2iEWZ3NYXaITXk8Wc+zp7Mwv4V/+6n2U9swiUo1VAkOxVqZfuVS2Zxnv88j1+0ShZnIyw09qKdL9Bc4f9ElroTDdy56JXrIYjpopEEWK3mEf7Qp+TTOzx2PEU6QHwIuCrvOJFwPKLSWbShEVImpXbSF77CB6QR86k4EFiyxBaKiGKXAF2b3dEpfpcVvW2TsUq3BxwaVftmqeE6taUWgVRWKlLHbMtE6jVv2SVKYlsqITSikbuRCX5bbFP9RVOtVOCDrcTe0/7PcuDqjd1DKZQxDbxhaxrCJWPBvUtF6m2hgkJsqxuydGWtRSWsxoFEhk7426KY7SsTo4Rw2tfxcFud647LMLnaqTLgWg0WOrMMVpu29+AHoH7Dr6VWsmk8k3ySBAKoPK9KByfY1raVJZG2rfYXKkUYuWNgyHmi9r6O9DHqrAQL9dG7fTURWAMESU01Cv7fIZzMFDBKWQf752nON2LSAVz7EHyIWGWa0oO4oQCKmrhK2TmL+Ed+40HBSLsiP4joOjNCLCYCrDtnCaQkpx7lPPAaA8W+Jzb/0EftVHC6wl38hGdA1YamUVwQFclkuK31Ah7KjsdSjPWJfSiQPjRF2MgBSKjHL4s+f/IQMLBnnis8+jXCqjHYclRy17+J7WGMefdjw3X3Nzx4cc/YP99A/2P6IxEiRI8PghIYQJEiRI8DjAdV0ymTTlcqXjvf6B5gPOd7/1AzY/tK2hJEZRRBRF3L91M1/5+mfZtX03S5Yt5tgTjmk8XD10/2Z27dhtyeAcaOUQSURNQq4qb2Nl7pg4bqL5YBYhHBrzeOGLXom/dZqMOAzqTFtpqmBYRw1HKWoFj1rBEkslsAbDt2dcrp4y+BLxInIMoSjhck91gIHAJz1lcELQYh+Gb7tRM3JMlfM23ol75jntfYTGIDMT1jSmFQLB7gLegl6ckR4wxqqIXrotO65RQtg3AFPjUK0gm25DBoahd9A+5KdzkE7bNWwtZdQafB9xHFsC2YoogNA9ohGL1EssW+MWTBirb9rax/g+4qVRep74BqGpEkpkCZp22g8bu3Y2jmn/MXc28VSaZLDjWHUX0PaTaFEgpbmmNE9daCG5rapgF4fZ+rEAxHWRwGcuujnTqoExJJVGZXubylw6CyNLbDZkHY5r3V/z/U2S6HrovhFMGLT3gWKJn6QyHYSwDaUiZLNz1NwWRBHhrn24KxfZMtFqjdotmwkfOogx8Jxyjt0Kciokq0IiURTEo9+A1hG+0uz3HJYGUawYCiFwYLqfFdmpDpXQr2rKZYWjwMGQcwK0NjxFKe7G4WC8hmk0x3nDjK5Yyq5b7ufoJ5/Mxmtva9wj/Q17KEAsGWy9slog42hWqDRbpb1kMwojlh2z0o4zNNBQBFsx5uTIK4+NV9yM4zn86htX86J3voaT/+DM+dd6DiYOT7J//0GMWAMsFZ9bKp3iT9/5p4+YVCZIkODxQ0IIEyRIkOBxgNaaV17yUi794jeoVptlo9lshjf8yasaP195xdVtZaV1KKUoVSpcdPGFHe8d2n8IZ+4TZLxPq+CQdzPcwixPpA8dP8hpFFtVlas+fynj5VnW9i7G6ZKJ52E6+p3AenqsEIOOqnhjfcweGOdGmeLZejTWFhWF0CMvfsMWxQNWRIapbR7BrbeiFyxCrzmqUb4ohQLBjT9H92Uabo9EhtrmSXRGkzl1KWrhQkinsA2JHdOKH/pbysqMgcnDyIG9yPgkjC3GOa31IVVBKmfPsR5AbwxUC9Rz7vBrUKsi2R7rWjqnjLFBzEzUTgghVtkiO2a9JDU9/39iRam4RDUmrCbqIIX140k9f7B5Ji0/qHpl7Dw4IrulLR6jUd7aGpnRQgbnmuXMczwJfUvc6mvU5X5TKiZttJSFEpNYxJanNkprFSrX37ZdfQzdO4xMxITQy1gVM44IkVQG5cZ9kIGP+FUoFu01qtQQ10XVqkimvUS4bnajawVkU7Ok2es1hJ5GB4blwxXyVUW16sZZoDCWLpPLBwhQq3qM+x73qTwZIxTEoM9eR9/CMQb3/JiefITnCmEIIoqbN/axXwUsRbPACyHOGF2KsMj43KQ89mg31r4VEw/t5cfv+jxPvORpBL3p7h8WzXeJImGB57ErZQhqNsbGS6d49l++hHTOOnxm81lOOONENt58V2O3nHLJK6/xQVIU2Hv+u/9wKcecfRKZnm6Owu0wxvC3r3krB/YcIDIRjtK2PF5r3vrPf8dp55z2sGMkSJDg8UdCCBMkSJDgccLb3/YWJiamuPyHV5BKpfD9gJe/7EW8/vWvbmyTz+e77muMITuP3frRxx5N4HeqLtY00yEMIqseeGlK2nCtmWYYFxfNJAE1MRAKnrKkMujSw1Zj/r6pSCme5CzgumzAwnVLuW/TVi5Qg/Qqq/r1S9hBOxxgsKzYe9hl6Y++jx4aRi1chMxMY/bsIZiIiJxeUqv6UQr87dOEB0v0PnsdauXKFjLWvSNLjIFapfO1gn3gl907iVJpnGOPB9ezLqFzgtFFK0hloVpEGWPVNL+M7N8CvcMwuMiSjIYpTdSiBkJdoWsjhlFssOJ4MdHUXRUPhSUeMldtbCE9ImJzDIKaJUjdehtjJVFwOlZJRBAToeaUpTbKT6PI/tv1muWhddfWKETEtLRCzksvOhEZRJmmctnFn0VMBGWb6Td34kppRCmk3tPJPCoegOPZ0s6BMXusupBZq8aEsu6E6oDrYe68E0RQ1RoM9ds+Sc+z61M/Pvbe0MuWIDt2t04MdzhNeKCCdgQ3/jJG0T9QIdfTzAjN5kLS5RBmFTerHJexj8s/8Rke+uhl3HDLMAtHagwNBFSqDnv3Z6iEinu8Ej1SYTFug3Qp7IPa6RJwWFwiZRV4gKDqc/MXf8pLPvu39VmTQTeWu+33WYQcBg+hgmbwuDU8/YLjuPf6O+gd7ufcl17E6pOOblvad/zr3/PuP3kXD975AILQ00IGW6FdzZbfbGLD+Q9vJnPfHfcxeXiyUY4aiSHCmuhsunsTpyeEMEGC3woSQpggQYIE/wWICPv3HUBrzcJFY3zi4x/mXe96K3v27GXliuUMtJSLArz05S/k9tvubCstVUoxNDTIMceu63qMBQtHefpznsbPfvxzqrG66LgO/QP9vOAVz+XWm25jeMEwTzr9dL738a9Tq9QYp6kYGBGm/BKlqIZSihBb+pnGaZCESYRJBaOibDtajAjYSwoBijsOMoFPKBFfC3dzibscjYrVxS5rA1y7cYAzj5nhKDMBExNIIIQlQzANSJHquLXwD2sKROMetXyOMmfVmlZ1qlG2OTtNw1lTBGYLEDsXKqWQ+zcR7duLXn80av1p3cs33TSY2fZJI8jsOObQLjCCPurk5py0G5MY1bqD5XNB1TqU1sPtTQSOjvMDW01h6gRHoDxjDXS8uLxVO01FLQyQ2IhGzRcfEY+rYoWxcV6tPYq1Mrhek9yKaRnbFhh3lIQ6LgRVSzS1Y3s4516TuddbBPGrKNdpxn9EEfjVuIS2Hjdhg+wlnenqTCoiVq0tTSPZXnAjm1upujDLoIrqHe4k+6kM9AxaMq2UXR9KqJWrYHYGKRZbnFylEaHRWFYvZcuVUx7EsQhKK1TKif2B7Lk4jqB0RK4naPfsSSly6Yjhss99lRIf+NyHKNyxlfKmnaQMTB1KM3koTYRVi12EPjfk9N6QjOvj1xzKpTQSu7+kgDSKGjZFsL76bsojKlY59Zlnsvnym1lKqmGiJMr+7qcEVlOJf4tjkilVlr30Is5/xdM71zSG53l86NIPc9lXL+OzH/k8vkSNe7kVJjKEYWe/YTccOnC46+tBELBv575HNEaCBAkefySEMEGCBAkeIx7Y9BBv/au/Z/++gwjC8uVL+edP/CNr1q5mZHio6z5Pfso5vPZ1L+czn/4yruuiUOTyWT71uU8csXfmLe/+K44+7mi+89XLKBVKnHX+mbzqDZcwPDrEJa97BWAfpO+74S7uv30TfkyM3JTHVHma6cCaRRysTLMgM8AUVUZ0rvEfgQj4GobXK5d0y4PjXjwO46IRikGNIA4vP0iNj4ZbWKt6+ENniCWiO0rUNFBVmp8/OETlwCRHL6mRXuiQyjqkhiGYNATj9tHWTQt+WaO6qaRRYE1ctGMJi1+Dg3tiFQtrTjM101gDTKy8RQaZnMY8cD96/SNUHvwKzYgDSzpl8iAML4xJXmgdK2NzFntMA8UpG5MQG8w0HpyjwJrV2C0bh5H6MfSc/wybqBmpUCeSsQPofHdHw1nVWHVPRLWP47gQBTZyo70oFeYa2rS+ayKU49kezraSSmjLGjFxTmIU2DJmN9Xc1tEQCTJ7CHqG7Pz8CtTKtuwXFwlqqNaSaBG7noEfE8NZJIhgxbFt24mJMDOHUANjnWRfa8j2QTRht9UOKtsHCxdBykENDVjH0EqpXX30UpDvbbZWnnQKcv8mKBSQyBDN+iBQmUnVT510LrTNtgp0ziF7bD9OrwcCubLhiddH3PyOzzM9YdBBhENdz7PiaSBCX7bGny4o4cbc3EtH5HoDJg7mMZH9zQqx5aIO0iCEJozID/fzqne/gUuvewBnpla/sgCUlWKNVEjbrtDm2j2wg9mvX0X/JfMTwjqmJqfxo4AJXWbQyXRo0bVqjY+/8+O85NDLePrLLz7iWGuPW9vVrCaTzXD8acc/7FwSJEjw34OEECZIkCDBY0ChUOQ1r3gjxUKx8drWLdt59cvewFU3/pBMpnv5p1KKd7//b3n+i57P7bfdycDgAE8847SuPYKt0Frz7BddzLNfNP8Dl1KKv/zo33LDD6/lxh9eh4hwzrOezHv/9aM405ooMuwpj1MKqyzMDbJg4TBRwSeKP92fBv4T4RyyZBFmcPDRRCJMmCqzErQFURuE/nQ/G5Vmkd/esxQBB7VDFD9s9w4ImUUa5TQfJr1hu0edFCotmJKPzqfoQBhAZdoSqSCwXwBRhJmYQdWbKY3Y0lEjEESogTwqm0EmD8HQgrY+NDtW/AAtcQlqazi6CJRLyM4HUIOjTeUuqFk1TmmrohWnUX4F+hfY4PWwZuMQGuNExOGMzeOKacZQPByMgen9sOjorv14bfOVqMU0pk7/hKYf7fwul53QVlmcg7nkS7RGhRES1JrKYGNbjXgZKM9iaiVUFJfdateOHYZQmEKyOXDTVo2sVkC5UBy3pFBrZPeDlkAvP8bGjVSKmNmD1pX0SGy5Zc4igsr0gDoMjoOk49iSMLDnoB3I98W9k/GQWsMxx2Ju/Q2mHOAfCihOZIgCHWfa2zJb7YKzoI/ck9egJITJCTAGr9fh5Rc5/OJbNaJAt1yT5ncP4ZjhabyWXyCt7X3S01djcirLLlwbeN92UjC0ciGjaxYD0OdlqNBuFKMRejAdH9ZI1afw7Z8/IkK4fsN6AIrG53BUYoHT0/b+pKkSRIZvfOKrjA4PUn1gP/vv3srgykWc8ooLGVpt5yciHJ4YZ+W6lex4cAd+zZbBu55L30AfF158wcPOJUGCBP89SAhhggQJEjwG/OwnV3cYOYgIfhBwzVXX88xnP+2I+48tXMAzLj7yNo8Fjutw/vMv5PznN81p1j1pA69+9Z+ydesOXNchVPDn//hXPOc5z+DmK27k8s98j8lDE/QO93PRJRezpKK47V+/TyQGjWHK1PhxbSdeykMrTRCX0C1weshqj1mluTYlnBoIg2KVjH2Ow56YvBiEwSXSRgYBlKPxFrpEtYBoJqJS9jh05U5GL16Nk56jGNWdKyMhmimiEIJDFfy79iIzFVKLM7hjGZSnrJpUC8B1rOmOCGbz3Tgnn2t7xVwXiSJAkOK0/T47afv1mgeFiXF77MIUsvkuOOqkuKVRQbmA7LwPevohk7eEa+Ywqm84Nqip2P5EJCYspqU/L2ieD0fmMhJF1kVTBDm0A8ZWtRnAHNGRsU48GyWr8Xk13haUCRHltSuAgHJTKNcD7Rz5GNRLbz0ghzKGjpxF10WNLo/LPq2Jjvi29Fl5QHo1cmgXKjeAcqxDrPT0w4KlyMReq3QWZpC9W5D922wmoVaosaVWqTQh6PYPEURazH3a5um2vmD7BytlWyKaSs97LULJU9l4kOJEiijQRPGp9PX5eNmA7LNOI3XCyrZ+ULlnIxQKaA1L18KBByIQRRC20zPPMaScLhEPCtLZkL1TLnfH5yci+BgMUCDgTR/788b2/lAGMz6NbjmLI3V+mkqXvmSgtPMgM3fvJHvUYlIj/Zxx7hPp6c1TLJTYGxaYjKoscvtAQUXCxh3lhsJN7/0qjtKYMOLgpp1svvo2nvWxN6EW9vJHL/8TJiYmraNo5LB4YJRcLsvZF5zFy9/wMjK57h+iJUiQ4L8fCSFMkCBBgseAAwcONfr5WlGr1Th44NBvYUbzY8niRVz1s++zfftOCoUi69evJZWyD5hnPuMcznzGOR37uCcs44NvfBeFoMqUExB6mj985YtIuSm++oVv4PsBQzqDGytuh7XiyrSKzSs0Q7hYOxChiCGbnkMSMh4qm0IJ5I7LYHzDnp/D3b84xOJUlic9dRFaK8t9/BqOBJTGa1xx+T4OPFAhL1DSDkYN8IrVVZzxKtF0FXdQo7QCR6NSAj0ClSrkqpjbrkGNLEZyvVAuYA7tRYplVMZD5WLDFi9lZ+37VpkTQfK9kM0iex+0vXTGwOwEqly0il0q03TFnB23Klkmh6R7UF6Keii9QFx+OecxXWKDlzkqsUQhRD5SnmmqopUSeKlGv6F0IWwCtufQRJZ8dkG7Y6pu9B+CQrl1gqgaPZqPJApAadeayURhkxRqp0kq4x5AcTxUSjUJm+PAwpWosIUkOy6S64PKrI2gGBiGbC4uE457MCtlyOaRyX0wsszOXWu7bkh7dEX9nP12BU2qPjI9i5Sr6GW57mKjUkRVRZDJ03eCJtsXggJ/WihuhvzJi0ltWBE7mrbguOORX9+E68JRq8sc1T+LAmYLHvc8MEitFn9gYtS8QnHBaG7RHq5AWgQRQ5GAnaZKQYW854/fxTs/+z4GRwe5dc9Wzg5ziBJqWiFKUZUIk6vR40Ct4hKF9hqEQO+5J7YdKypXeejNn6Zwx2aU62L8gNFnn8mqd72cj3/5Y7zhJW8i9AMCiSiKz9wi8eUqB5HB1AukI0MY+fzig1/l2+UH2LNnH6al97SiAv7fO9/P05/x1O4nnyBBgv8xJIQwQYIECR4DTjxpA7lctiN3MJVKccJJG35LszoyFo4t4L7b7+Omq37FUcccxblPPbtBDOdi/cnH8oUbv8WtN/+G2ZkCJ59+EmMLFwCwc89ubvjJ9SilMCLtzoNKUcIwKzW8ukOogn1FzerB+GHQcywZVC2ukGnNgnM0m3+WYvPP9nPj1QfI5h0qVYMfRVxb2oYjLidmFyHaPrY7GJY6gqtjchOCBIAnKDFIGAexByEUikhfD3JgV2OqMjmNymdR6VST8MTKXSOAHlBjS5qmMiay5aAjS2zJ58xEg1Q1DVm0jT4ARLI0TrJWtvt2ffg3SNgs95RaGUqTUJppLu2ClXY56yTPO4KiEvltxi+NMtVYtVX2RftaFDTcU5XTpUQ03v/hSWGsRDoOKrTH7kZY7TYuzOWqc6M8lEblB23PodZIJocqF5puqaGPKhkb2XFgC6R7bMlweRZ6+lCO216SKwLTc0xN/BrKD1BLFoPpdMsFQGsya/vIjMX5HmGE2T9Bqj9k8CSFOnU1KtW5bmgNvX3I9DRu6CPxLdTXG3DaiRP86tYFCFARuKeiODYreC0TMAaowmnODAfDPqri4CqPHnFZrjP8mlkO7jnAB173bl60cDXPms5APT4mEg5lyzxr2QwOQkrZUJniTJrxyQxl4AZd4TUt0932/q8xe9tDiB9SvzjjP76F7KqFrLrkqXz9yi/z7S99l6sv/zkUO0uP+5XXNbqmuv8wL81PcdHJYxgRLjtc5pN7C1TKFb7ypW8mhDBBgv8FSAhhggQJEjwGPOmcM1h91Co2P7iFWtwLk86k2XD8MZx6+km/3cl1wd5de3nTy/+SWrVGtVIlm8vyhX+7lE9+/d8YGBrouo/ruTzp3M7A6Z2/eYhlqSG6PT7Xg6xFgd/Ss3bZQy5/dmqNjKtQaa+DJGit6OsxXLRgFrcasStIcXj9Bq75zS1smz3YKEubKJYYc3ut0mJqLErn+OOWcaJpg+5R6AygINgzi7ekD2aLUCpDNmOJQaVqv/fk7IP7fMj1NM7B1vDl4n8qSGWQ4YVQmLGZiek5kSJhLSaGtn9PRODg9rjsU3esngJLzOLsPpk+bMlmKlOvH2xfNzW/clePw2g4jkqngUyjy7D+vkTgZbpEW0jDzbRx6Lm5fXPOxDqJdp3ao4LErq1UCs2evpjoWsOdEHVoX7NMM6jBmuNR9azIWPkUxJLrWqVJPEVsv2K/7RtUUWh7SF2vSSRFUIEPvXkoFWzvoeuiF49gdh8ER1Dp+ft/jQChQQrNagKtwXMNw4M1Dk2lOZQC4/ZRy5RRlQAFaAVhzUHXPI51FOucIr+q9VMDnFi9PUF6uNFMk9sxgTdVpm8MZiYcotDeb89aVMBOrXmt8v019tdcDlc9ostv5/DL9jK6ZgnGD5i8+vaYDLbMv+qz/6vXsOiSpzI8Oswb/+b1XPD083nrJW8la9xGqLwRIUQ6Hio1wguWHKTXTZOK7Ytfs7iXM/rTvPjew8wWCo/ibkiQIMF/F34nCOH27dt529vexvT0NAMDA/zTP/0TK1eu/G1PK0GCBL/HcByHz3/1U3z5C1/nR9+/Aq0Vz33hs3jFK1/6iMrr/qfx/971L8zOzCLGPjhXyhV83+czH/0cf/cPf/OIx9mzZRe6EKKUxgCHTIVRnUFhA8W1owmiqG0NIjHcOF7moZsr/NlxWY7vVd2i6XCBdT0BIhFL0wHT227hpzWfJ+ZXAoqDwSy7/El2B9N2B4G+dJp9kmGpCnFiUmBKgqnYnkWVVVQ3TaLzHmiFM1LDybeoOUaasRYPB9dGL7Sem9IO0jtgS0WVRlLZrjQZsOrjzGGkOIVaeUJbNiD1bMBWcpXvh8Jkk6QENaSVsEUhoudxCTXWk9JmHUZdlRsbAq8RCVHKsX2QsUtqx5gmNsGJ4z9Et6pvc2IoRKBatN+1jfbomp/YsUydDFIFVUQp249Zix1gaTku2LxCE9l1SrXEY0RhI9ZCQWwEVJeklT2XTBY1OIjq6bWvhYHdx/Xs+EH9Zxcy6eZYKQ81PAAT00Tbd+OMDXWqhCL4Dx3EKXUhPUpQ2YiBHp+LTiphRAEOiMPsfQZ/SjciJ7SypHu5W2VzmGsM0YPDsh7Fe86CbLpil1vDg3emmd0LjupcT0fD8r4afVWXNRKy748/wMjV/0FU8ZGoyzUByuPT/MP7/pmnPfU8TvHLrL57I+89/xg+dv09lE0KjcIn5N7wMCe6o428U4Dl+TI9btQggwAZrViX8zh7uIfTn35ht0P+j8EYQ6VSJZfrkvGZIMHvEX4nCOF73vMeXvayl/Gc5zyHyy+/nHe/+918+ctf/m1PK0GCBL/nyGYzvP5Nr+H1b3rNw2/8W4Rf87n3rvsaZLCOKIy48ZpfPipCeNcv74iJhB2rSsRuU8IVRWphL89+8cVc/x8/aHu4D0U4GBYpzWR43y0pXliIeOHxmrTbhToVrblGChhS8FcDA1xfznGYgFRqgBPdPG44w7SJWLvO4fWnDKFCwXOEcDaksrtKyhW8dQvw1o5ZzqAV4c4J/Hv2onscJNcS0l4qg+dC3ulUvYyBcpEGAZnXYEVsaWS1ZAlVvh9RyrqNKm2JIoAO4giIENl5L2p0OdI7CChrxmJa1BmlUFGElGYh2wNikHIBletrzicKwYmsQ6bSTaUuqDXnJQYpz6LyA825K910K43CRk+jclzqlp2tJaJ2LcL4q27YYvXftnHtxpY4uimbSVgtQU8qFhlbVMYwsOtiIqvihVUklbFnpmIVsGDLcRtkLp2DdBbCCNU3ZPMeoxDZsxnZv93uG4bzO7eayK4lQLWMwsCCMdub2MiZdGJC295/OHdcBbBgCDNTQLbtIFqxFGfhMKRcCG3v6eEv3EZPMI2klTVUqt/vBrQRekZcTjouwqlCq5w6dLymvN+gNFQPK6rjCkcpBtXczEbh7892yGfbP89Yd3KN+8vzP97pmCh6QN9skds+dinf3vQg5xufoTmPhUaEu6qTfO+rt/H8m6+lkkmRFsNaEf59oeKjVYc1L3weR5+4jte99s9Jh4pjMqNEYnCUJp8qktadxNRTijMWDvLyV71s3nn+d0JE+NxnvsSnP/UFyqUyg4P9/M3f/SXPf+GzfyvzSZDgt43/9YRwYmKCTZs2cemllwJw8cUX84EPfIDJyUmGhrrnfCVIkCDB7wNEhAduvodbf3wjIsJpzziL484+qZO0HKG00HkkylgLUukUjutg5qgJkQPPfMkzufVb1xLEIQe2cA0ihKXeAKI0Wimu3iw8eQ0M54SMq4iMoATKD1TaygxdBSszNTaW++hFc4wqs1y76NQQ2SXC0hOVfbj17EmqXo/ZoRSjgy7e2jEbkF4fa/kQiCHcdhBnII3oeE1qPmZyGm0M5HN1v38bXREZu3aH9iELFlvS1m29lIZaBbXyONTAWFNhMwYzexglxq5Ftg9yAzB9EIpTyL7NtkRz6dHtuX5g++IKU3Esw7RV5dI9ltBkemJCJ5Y0KSCdR8LQ9gPWoyKUQipFqBYQNwXZXpsR2KaUaev+GcWER9WvWpO8iURItWSJoxikMmvNXsAqd62h9aFvQ+BVHE6fzlll1HEtSa7nLyL253TOkt9M3pJQsGW2SkH/CBL5NrOwbiTjeDCy0O6jlD3XlcdZg53dD4EEqNIs0jdkDX1QYEIkCKzK1zdo59k3iBRnwBhUOgvZHmuKUy3ZDMSYuINVICk142WaEFR/D+wv4f/oOqq5paRWjxHO+szespfB0Sl0VoGjwFPN38F8mvSGNRzrufUGTcz2vcisPYZyhP/P3lnHWXaU6f9bdexqu457ZuLuRIEQIBDcnRU8i7PsogtZdhdd3F2CJhCSQBLirjOZmYx7T7tdP1L1+6Nu3+7b904IiyTkd558Oj197jlVdaru7a7nvO/7PKk+MxeJDo3fB6MbLEI9E4c3/2/tDMm4jW9JIaFjCTDWOGKloFSYrRt2gIHv/5bNTsiUFrxSd5HCbA41UEBzWWUfL+tKs9iReNXIrlut//1nt8zrvvFjvvaLr7Bs2RJu2baDO4v76bBT5KIK+WSSc9x2pD9P0dRxeM173oaXrbew+GujUqnw4AMPcdWVv+PnP72cctWvdXR0nA9/4FJSqSRPi2saY/x/iMc9ITx48CC9vb01jy7Lsujp6eHgwYMxIYwRI8b/17js0m9zz1W34ZfMpmbjLQ9y7Pkn8bIP/WPdea7rcsKpx3Pv7ffVmUI7rsP5z/jTvL9OfvJp/ORzP2w4bjsOhx21llu/cRVAneOdJSQdVpIJ7SOAcgjvvzrgScslxy0QFMqaYwolkm2aZK9AR+CPairDoJREIlhExFJmRDcEvYc1errbFvT3aeTSejIIIGwLe2kX0daDhLunsPoykHYAQTgwjXpgELs3jdWVMmmOfkTka+xlvRBNIUoldGcvdPfPCsxQjZ5VSojWHvM1h9hpIZHZTvT0CCSys6/1LIOuRei9m43S5vQ4OttejdAZdVE9PQ65CXN+Ig2tHQjPAxVAaVZoxkywg6ZUTcMU6MKksb0IfUP4hDAkJ5ltEHkx/64K4ig1RxxnblRHVLNZqxEqvzh7PAxM5K0JhJea7WvmHD37zhCWXTee2rm2C0HFENBsF7q8Z7bRZMssGZzpx7Jg8WFE6+9BtGYQYWRIanWdtHDMm6UU1gv6tHQgbBfZtQgsQ5KE1uCXUFvvQYeBIeR2EnqXQn7SiAjV3yXClUgVkd8zTOW2KZykovfwIsKq3tNcMigEzjGrwalP9ZUrFhNt2g62RLZmTK3idBE5kcNtVSQ7NZnBiNPtHPfpFFORReSqpqnAUoLtae4rpThtWQUURFMhyofAtyjl6z84Wlj4lSIjWuKgsBHV/8DVmufbvTy5rUKiycOQpIR+Qi7/8a/59ve/zPve9UFuvuk2himydOUSLv7Ie5Hf+CT4QW3dERK3pQVOO7Ohvb8mfnf1dbz33R8y4jr5QkPta6lU5rOf/lJMCGP8f4nHPSH8S6Cz82/7BCpGPbq7s4/1EGJUEa/F4wetSZsN372Wnb+7l2RnK8e89qksPuOIR339nk27uOe3t+KXZ5+8+6UKD1x3Nxf947NYeczquvP/8wsf4BUX/SOT41MEfoDtOCxdsZj3fvQtpDPp+c0fEt3dWd712XfyyUs+ibQlaIiiiHd86h2sWrekaR0YNB6uRHDtdsW122FJRnHaySCrPoXCBq8HtAX7NqWRGhaJgLkVWtahBDY1CO8Qf9qkNGQvUIhkAplNgta4LWnC5DTh7nHCwYJpRkFUgvLmHO4xC/EWZ9AH9iITCci2GeIERjm0OI1cfVKN0M3A+N654Kbr002FQAsb0bccve9hQwwz7dDRBwj0yH706IA5v2cRdPfViJ2OQnRVCdQooTqImRq9mdotL1VN84xm6YIK0eUcwk02nxshDWnTCo2cNXIHCANDsFU1apjtRk8MGGJWKaAT6TorjZqi6SEd46uE81D1j3Pjy7ZbX5/oNKlHNL1CW5dRGJ2rCjszT2AsRWrptAJh2cjWHrDd+vF7KcSCVeht9yOPON1cNyNEk59C3X9TjeDqXAGRTkJfFmUJ9MEcrYsrVTLYePuiPQtSNo3iy4U9prZwhsi6NrSlYddBkgskLccm8bokh6HZPhDx+7ttLFlvowHghzBpB5xxksaWrlmGPofiDh87iuhZmKdctMlNJikpzU3KCN6cThrbzEytLU9IzrDbidTBJnNufA6LQcTB/QdYs2YxP7/8mxQKRfyKT3tVrCo8egXTn/gY0a6dANhr15F86zvZdsdmiuPTLD11HX1HLGva/l8KO3fs4d3v+HdKc6yC6lKYqzg4MPi4+zv5eBvP/894Iq/F454Q9vf3MzQ0RBRFWJZFFEUMDw/T39//qNsYG8ujVPNNSoy/Lrq7s4yMxCpijwfEa/H4QWvS5gdP/VeKw5OoipF333vTBo5640WsffmjE1m4/bd3EoWNkZmg7HP7b++gZUFf3XFhJfjOFd/izlvu4sDeAVasWc7xpxxHsaQolmbfF1pr7r38Zm742hXkRifpXNzLBZe8kMPOnPUsW3vysXz2mq+w4fYH0BqOPv1YUlkjdtHe38XQ7oG6AFOoIwo6MHWHTTbzF6+IGjfOUuB1wlgwk95W/zu8PArpBbO8bAZRCMWBkLaljXYauuyD0tirupGtSYQ1e7Hd34IuB0SDuTltCUpjmvK1+0EIWp93OF5YgcnhmvhKbVzzUz5newW7UVVVCIlOZkwCYKUMhb3oob0mVbGrH7HyCBN9y7bVkxsVmRRGIdCBb6KSTdrGS6ODcjXqV00FfTR/ByMjRoOUCKqkUuuq4IyhClpIk3oahejCJMJy0HPTRlVUtedoYsXwp2KmrtJ2qqmpurkFhrSQCxeAs6ypuqmxunBmCeEMeU9mmO8LKaSEjn7kitAou86NCGfbEcvWobavR41OYq1ciuhoBzSLjhZE50fo2+5DlGciovPG4TlNObKQEtJJKJfrjmkbRFuWdKfx1xTSrMHKfk3X+YIbNzicvS7ArhLQSqiZLMOSFo1bt8MTpFe65NeXQRvDe2SRq4YF23REGpsVuLhNrOwDFHdNRCxJKFJz5kJpzUCoGbcc1hyxdt7fF2v251QnfPhTkM8xNTrF7750BaPnvh8hzP1Yts2ys4/h/I++pm6u/5L42ld+SBDMr8FsxIqVyx9Xfyfjv9uPH/y9r4WU4hEDZH+dT95fEJ2dnaxbt47f/OY3APzmN79h3bp1cbpojBgx/m7x0A/+QGkOGQSIyj4bvnAFfq70CFfOwksnkXYjCbEcCy/dPApk2Rann3MaL3jl8zjh1OObRlru+Ml1XPXJHzE9PIFWmtE9g/zkvV9m803310ylozAi8gNOPO9kTr3g9BoZBHjNf7+VTHsLXioBliDSilxUYSwyaYZaa0JUVf1So7RmcUY1Lc1TERyRynOazlNWos62bnxTLaBVbddk9z10r8e2a/JEvq57EBgFivJDB6pKo+k6MgggLIm9sK3u2NhgAllNT/RWd+IuaTNqlnURMNO5njhoBFIabkIdMmqKBiZGDfEDQ3oOOw56FiIyrdDa2ZRoCq2MFULoH5qIzqyt45kom2XSYw81DB2FRoBmpsYvqqprVscuavWFM+3LmSvR+TF0YdL4BVaK1XTVoGl/1arE2X7mz02NZOuaXYZOZU2tohCzZvZ1lxhVUyEloqW9eZ1ntS2R6UAuXItcsBrZt+qQc4IQ0NLZQFCEZSH6lxLtPICwHERHO8K2ELaNnbBwWhzc0+ZF+lV1jI5l0lCbfO50FKH9+caMhhSK1jRgyNMMLEuQTsDiPOy/VZA/APlhGNsgGBuDRLPH/RqsrLkfk1Yaoew0L3SW8BxnIRmZIGrCpm0hudtP8GDJxVdQUVBSMB7BfwyHJFNJnvmCZzSfxzmYKoZ87nWXMnTdgwiN8YwMFWHZZ8f19/Gd936OO2++q868/tEgCAJ++P2f8vyLX8ELnvNKLvvxLwjDevI3NjbecGw+EokE73zPW/+kvmPEeKLgcR8hBPjQhz7Ee9/7Xr74xS/S0tLCJz7xicd6SDFixIjxf8au399HVGnc/EnHYnzTbvpOWfdH2zj2ySfxq8801vIJITn+Kaf8n8allOKGr11OUK4XgAgrPt9/x//iJy2WH7mK/Rt3EQYhlm1x7iufzlNe96wauexZ1s8Hrvw0D9+6nqnRCUbKOb7xP98AAXlVwRM2FhKfCK00Y8E0GyZcepMelqzfKEsJsixIo/GEQiY8gnIFGygVBLuv14g1Fp1dmlxB8OCWBBMjFouCkPu/OcaK89Kkel3yoyG/vnGUnYVp3rxS0nMIEiBss1lWEeRGPdCytnf3DutEupZhnW5VibJmpK7RO9YjWnuMUqbtmCieVqjhPYh0a71dBEaoRI8NQb6A9lzzWu8i4xVYJSGzlhS1/zXCLxvlzYbFjEzkbm47AhMhmxvNwxzTQQVCHx2UkZkODkmUZtoJZ94j2pDDqhCMnklt1QrKBUikqpmjM8qogbGRqAr3CCkbSW1QMeRNa2NvIWckTjDzXSmg3dRsm6GPjgJo6zKpuej6PmeG7XiItr5ZkieoPZiYrzCrxwchdYj0sAj8rVMknrFmtlZVWtDWjUxljdn9rmH07n3V+9HgCkTSMcqxUzloydYeSugoQpcqxuJi3oMKrTXKV1hNFHktqWltgdzDgsFR87rjhKzoi6pprkAQHvKtI7XgMFtyIDC5rTnboXc+KXUsym1pvHLEDyYjfp9XrHAjpiJ4IIA155/OP/zL62hta2neyRzc8K3fEBUqyCamMzqI2Hvt/Vx2w/UsWNTPZ7/7qUeVyq615h9f91buu+eBWjro1i3buO73N/Llr3+mtq5nn3MGv/3NNRSL9Q/cpJQ4jsOq1St413vfxuln/N9+d8aI8feOvwtCuHLlSn76058+1sOIESNGjL8IUt2ttRKpuVCRwmt7dDXPmbYsr/uvt/Kt936+tulRSvHK/3gDLV1t/6dxVQpl/GJjTRKA1BAUK2y/a1PtWOgHXPft3+AmPc552dNqx23H5shzjq/9/LNv/Iyp8SkUmpIOavettOKgP8lnNzs8qa+X1BxCqEKYPmCjQnPM1gK/WOEB6ZBGU0ZyoGjTer9FncW7hFR/gcN6ptEPQbBRs2tK8529PhYOY5UOLj1a05qt32BrpYkmSyjLopzqxrc8ZDgF2hAfXYlmCUylbFIOZdU2IZ+DSoXgF99BWb3Yxx+FkD7R9k2IwiRCWsgzL0QnM0bpMjT+eOqeG8GR1ZRMENmOR58yV41GqskhZPeSJkI3hXoyCCa6pjPm+0yapDbEVefGELpac6gVWotGkqQUKIXOjyPmCITUtS8tozCKRlcK6PEBRCoLCKN2GvpGedRNIDNdhvwJWVN3bSZQIyy73pIjCqvCOrMfIiGlIeMz6arSqv98BRVE16LGiF+1jmxmbQ2Rj9DDexDdi9GZtvp5iCKCjZvRvobqAwQsGxYbpVghJdpL4j7nIoJrriPassX041gmXRTQQ6PoYgnRZn4P6NFJon3DWCv7IeHWr5nS6JEpVEsS6cwjuBrC8dmblFLRvkyRWNVqbC6qKdo6X4JKAAKi3Gz0TQpN2hc17u8LwS7HYlU6AfkyQghazjuW3+zbjdppxHSGQ8lwaO477di884OXkDhERsJ87LhnMzpU0NSFFCwtOCFopW8PfPfJ7+LI557FqW95Dk7Sa3o+wJ133MP99z5YVxtYKpW54467eeD+9Rx3vEl1P+/JZ7Pu8LVs2ri5dm4ymeQFL7qY93/gXY9q/DFiPJHxd0EIY8SIEeOJhGNeewG7rr2faE4kTkhBuq+DtjWLHnU7604/mv/43efZds9mQLP6xHW4iUNvnv4YvFQCJ+kR5YoNrxn9ykYEZZ/rvvWbOkI4A601pWvv4j3ZLoanI26PKtytAxSm/qgkAtKZNAe1ZNt5r8b77bdZnRZUAijtcZjYVV+DJoBpFbBdpowDgRa0zetzUbbIEb3TWHO8z1a3wpeWZ3loTzeyKLjz+pDzn+EYj3UpjD+jUkSFkNSTjyCpoV0DopXCvcOU149R3jBE8qje2UKLKIQIiCL08AgoRbBtCDW6C//mO8CRBH2ttCxrBRmhbrjCpIK2dqKLOfSBXczYRZjaPl2zOWiYRzOZs/MfzknlLOfRI3ugrddE/lQEfnHWZmHuqkUhulSAZHpOqqY2PoV6lojp3CiipRutZ0VwCAMoTprIWTJtLCOkZaJ3c0mWigBlau+8FDgJo3o6U7sXhVAYhDBEr241qaw6qhHBBi9IgFQrlHNV1VRRF5mtx1wiNYdYzhBN61A1jRo9NQK2YyKlxSnIthnim8qiEQjLMnNaKSF23IeSguJYiUxLEtHWUyODtXtwHJwnn4vavh2UQma8+vvLFVDTedAaVaigA0Xw8ADO6n5IurUIdLR7BDU0jUx7xm+yKrzkhxqVVwhLI22NCiGRDmg9rRXpzKxHta9MElUJKe2szD6MUVDMu8hI1O0ES9Ji+tTDOfUDr0R4DtJzmHjam5rOmpCSYq7wqAlhS3cbI7sONg1YhlrRIl3aEUghIFQ8/KtbGNu6j4u/fmjCdved9zZE/QAC3+euO++tEULbtvn297/M5b/8DVdcfhWpZIIXvfR5nHveWY9q7DFiPNERE8IYMWLE+BtjwUlrOPbtz+OBT/0caUlUpEgv6OTs/33zIf0CDwU34XLEHMGXPwfSkpz9umdy/Zd/VZc2qrWmTHNrAYDCZA6lFHJe9GX8g1+hdN3dtJUqtGGxVCY5WSb4MmVOeNKJnHLhaaRSSU48+QRc1+Hgsafykrf/G4vX7+U1XheJeXMRAUOE7FR5epwki5cuRIyXUBN5JMbj7ujOaex5RtiuFCxu8RmzKoxECXK74cDV4/Sf6CHTDmqqTDiYI3HOWoRVF28kc2IPXluI0BH+1gO46+YR9pERhCXRlsQ9agFqqoz/0CDu0hReYk4kRGsY2o8e2m9+VgoSifrI3tB+WLLa2CjMmXv8sjGCd+Ypbpby1XRLjR4/aKJonvFS1JUSItvRyOLLOXRQQjiJqvKoUVWtS6+MQlMTabmIYg5dmoLBfcZPsG8xeNVxWx6zNhUzEIiWzqqqqomWiUwbevygiQ7OTVedSRUV1fmpeh/Wqz9Wf05kID8+53waoRtrz7TWxj8SDCn1Ug3noBTkx2ebtGywLHA9dH4cHA9dKqN3PYzevQ0in0q2lcpwRHapgnS2eWRXCkR7G3psHOE2KqrOqJ8GB3yinMLpgOChfYiEi7AluuijlSIqQWXDFPKoRbhJic7lsIVGp2DBuQ5CwOCtAV7yEIRXw9SgS2UwIJHQKCXITXtM5TwmRH20ztcRdw7s5IyW2Xlac/w67rn2DvPgZA68VIK27kev53DWK5/O3g07GC0FdFc1gwXmeUhRh6SEbchgFZEfMrplH8Ob9tBz+NKmbXZ2dZBIJiiX6mtLXdelq6tz3jGHF7zoObzgRc951GOOEeP/F8SEMEaMGDEeA6x+/lksf8YpjG/ai9uaonXlgj+ZDP41cPpLn4rl2Nz4jd9QGJ8mqpLBEH1IFbLORT0NZNDfupfStXcZZc8qPARrHZcvf+jN9FxwekM7/Qv6ePPb/ol/fcO7eeW8Hb9CEwBb0EREDIgKT7r4NJxIs+0zl9OuYV0QkLYPQVw1dNs+roIDOsnofklnariW8Wgtbm8u/mIJnL4W9MQUujSOeriE6GwzPKtSNtGxqvomQiBbEnjH9KGnc4gZs3cpwas6iPu+EQ9RypjPz61fGx+GdBbd1W/IjRAmGjg5bM63bEOotDYRu0wbpFvqxz09BlFg+rYc6OhHJDOGuAUVdClnhE0qpTkKno2KrAAEZbQE0m2wLG3ahppASwMZlBYi3V5nsSGENLv+jgUwMThLUKVVb9MxQwq1qt5Ok7WQtqkVFBYi3WoIZRRCOY8OfVOT2WZIQC39E23uVynUzk1Yq49BzFE/1VGInhicMw4BVr1XI2EFLSP05CjYFiKdpPP4FJNTAdF0HivwwW3igyIlump8Xqs5rUU3ZzGTxhlOgdMOuuSjq6RXhyBXLqXl3CNRobEEsUSI3vowlGYjY31nOkxtpnkYX8CwkBRH0rjVEwI0ZQSD0qpdotCUdcQP7ruZV4+N09FpyN6z3/gCHrrtASolH1X1MXUTLi9596uQ1qF+KzRizalH8vRLXsxVn7uMUaXxfIWSsLE4zCKRpqXJ+1AgmNg5cEhC+PRnXsB//+dnG45LKbngwken2BwjRoyYEMaIESPGYwY76dFzwuo/fuLfEEIITn3h+Zz6wvPZ/dAOPv/PlxKWDXFoVv3jeC4Xv/2lDe1U7t6EjhojNqIS4G7ZC00IIUA+l6cg4L3F/bwn2U+PMDbZw0LzY8JanFJKwboTD8eyLH76pct4cR4sBMWcg+NWGoQctRZEgSRFhEfEgJ+gb9Sjpat67iOR8RlyIwU6CBCFQlWm0Wq4TlgSskko5KtimRqqghtCCCMg4weo8XEolRHJZF0bau92xMgAJNOIMIAwQKertYdRaMRihAA3Balsg/qnbumA8UGIQkRrNyLVOsfXLolwPBgfQKuw3qNwnieg8SDUNXsGLSW09Zi2BfW1gzP3nulgxi+xKRy3JkYjsh21Oan1Wf+/+a2bubRdZLJl1jbCstGWDfseRuTH0X7RpHk6romslkxapi4U0Af2Ex3chzz6VERrBxTzRNvXI7p6ZiN8h6rhlBLRtwD2lasm69DW5iNQ6KF9sHTtvMiuAr+CffgKwg1bES1ZRHe7WasoQo9OoHNFwrE5kfgI/FEQnuG6KgDR2Ub63CMQjoXlWNW2JWLtWvT998/OjgCRaO7rqEMI9iqukZqzF0rWnuSRaJXsHlMEd4dEIxYJoRnSIfeG4wjP5sCBgzVC2L2ol3//0aVc/e1fs+3+h+la0MPTXn0Rq449rOlUhYNjoBRWf1fDeE593rmceNGZjO4dJN3WQq5U5M0vfyuFgiLUCnve+0qjaVva23xNgLa2Vr7xnS/w1je+i3y+CGhaWlr4/Jc/SeZP8FeNEeP/d8SEMEaMGDFiNMWyI1fypi+8h1995kcc2LaXbEcrx51/ErvXb2d41wDdS/q48A3PY80pRzRcK1vTCNtGz/f+ch1k26HNfY8/8TjCIGCH8vnHwm66hM3iRBfKcpHVzaKX9DjhnJNZsmYZACedcSxdV69HAiODKbJtPlLqmlWg1jB+MMlM+CSBYlzbXDWS5eySRVtHBWtnAeco0Rhg0RpdmK2pFFEEkTJ1ZY84ewIkiM72uk2xEALtOoiODvTIOGpwBNnVUSOXQimYnIBSEW3bpv9ymVrqZDIF6QyirfcQAjSiKtJiI7L1tgkmRVFAIgNTI4bkzUxQpEx/tUlTdURTCIGWlrHGyE+jM60zvRk4HiAOTQYFsymd0qqLIs7vQ6uobm51tQZQRwEy21tHOvVM7V57n6n5sx1wErP1mdKC/BQ41ahgWEQ9cEP13yF6OmfEYdq6TDszAoy7mCoAALrISURBVKXzx68BKSCRAM+DQhGBQo2Ow3QJ6aWgf8msumlQgakh5LKFuIv60MODsxzatqGnE1UIqeyZnO1LmCnyK4JEh8RpB/uEZQ3Ko8ZT0YZlS8GvQBghpqawnCLlvUUSi5NgmbXQoaIyHCAHFKcu9zjxfA+3Kk6zNilY3WcxdsM40WhACPSXXP5zKmDpsiV1fXb2d/Oy9722YVlLpRJX/fb37N2zn2O6e1n3m7uI9g8BAqu7jY6PvwX38BV119iuQ9+qxQBkaeWHV3+P6391LXv/9yoIotrzAOnYtC/vp+fI5Q39zsXxJxzLTbdfw5aHtyGE4LC1qx8X2RYxYvw9QWjdLEfmiYXYmP6xw9+7kecTCfFaPH7w116LoBKw4dq72Hnvw7Qv6OLEZ51Fa0/7X62/ZlCFEgNPeyu6UC/4IBIu/Zd/Eqv70OP59te/zxc+91Uq5Qpaa5LJBGv6l3LYgmXYrs3ZF5/PqRecXktT9Ucm2XHev1Q31pqkG9LeWyKZCYhCQeRLtBKU8g65aYf9OskBIdGJEk92SgiMVkzy6Fban9QDEuM/iIZcAT0+OTs4Sxpi4HmIhGfqxOZtPrUfoEbGEdk0sr+nLnJk2rDRrmdSCqemUTv3IjwH0ZadV44nIJVifhRSa41YcQSyo7th7rTWkBsHYSGXHN6UNOpyEbV3o4k4Oi64yfp7cDxTQzf/OqVgetSQEGlBe68RjxECvBQikW0eoap6Durpkdr9i2zXIRVVtdbomkeh8d/Tfhk9PYbsWdI431qb10f2QKrFtKsUVErGBiORRpdL6OlRRDk3o6iCLhbMv3N5WLgY0d1v0myTqcY+lEJvXQ/FfJVAR1AsQUuLIYhSgG0jOnpNm1FQdy25aShUP/OOSY1Uk9PkrtyKZWnsNjDlfAKRsM3zBAnylOOxFjRGyLRSMD4K5VLt58I9w4QPD2O1u7gLkyAhGCwTDFYYGsiy9KUtJLKNc+6P+ExcZ+ozfQ33Z7sp9Kyke91Sjnrp+WT7OxuuAdi7dz8veu6rKJXKBMUSl3WsoUXIOtVfkU7S86tPcf/27YwMj3Lc8UfT39/XtL3J3YPc9J8/5OB92xCWxaqnnsgZ73oRXubRidY8ERH/3X784O99Lf6YMX1MCGP8VfH3/gF6IiFei8cP/pprUc6X+OJrPsrU0Dh+qYLl2liWxas/+3aWH7fmr9LnoVBZv53Rt3/K1BEKQEq6/vMtJE476o9ee989D3DZj3/B9NQ0F1z4ZJ7+zAtw3OaiGbltB9j1/A/iVCNLllBINNnWCl0LC7UMRxVBxbf40Z5usgs1z+qroIuK0oHA5MMCqtVm/8pOAmmzPFlgQdY3NngA1f5roidSIKppacKS6EiD0KihCQh8REsaubCvnhDaDnoO4TDRL0X00MPIjnmEyrbRnteUAIlkK2LNkQhn3pxULRRk58KmUTitFTo3jt73sDmQzJg00rmwbLTtNL2WkQN1fdHSAZl2cDxkpuOQhFAP756tVRSiGuFsbj+glTLKpI6LcI24iZix+DhESqqOQnQUIlSIrhRNqM1NgmNScoUQ6CiC/AR6YKt5vVhAT09BoQgLFlaJoAQvYe5rZtsgMPWDpQIUCzA9WU1ftcFxZomt4xoF16YkvGRIYWtr3fFo8w6CTXuQM/YZrQlE0oUwgmIFsXwx1pFrEXZ9QpfWCg4eqIkMaa0p7ZvGv2FPQ99KwehohpWvakPKJnMXaoZ/NlT7uawEv8x3IW1JKm3ztC+9k441S+ZdpPn4P72eJcEIBT9i/7YKrwi7SM9bU+06fFtP8qOpgwghCIKAl7z0BXzwg+85ZBRPK1Vbs0eCUor9O/Zh2zb9yx4fNdh/acR/tx8/+Htfiz9GCOOU0RgxYsR4AuHG7/6WiYFRwmqdU+SHRIRc9oGv8u4r/vtvumnyjl7Fgms+j79xJ0QR7pErEc6j+7Nz/InHcvyJxz7iOaP7h7nlsmsZf3gfyyyH3ioh1FpgS03ngmLd3lxaYCcjXnKxoiUjsa0EOoLWYzUjf8gT5RVMhhTvHOfWMMMtUvO6E6FrCQjbxD1mxVKESS+cLhDmAnQijZvR6HIF4Uhjt5AvNpbDJeqjcSZNUiIXLzD2FSlvtubvEZ7X6oP7oKsPOrsNWZg5V2tEuuXQtXxao4fnkIZm50QhWJbxIpTSjENryE/WC6JoDZMj5gvgqLMPMVhlUijDwCh2Sgs9NYJs652dy8aLEF66fq6k1XRODDmXSCthyLKXMoTSrY/0CctCZ9uNSE4pB6mMIWmOO0sGwURAxwZnhWIqJSPSIyU6lYZSwdSSOi7CdcH1jKm8CpvOp9baiAO1ttZHRYXEOmINIumidh9AtKYRKXfm9o0QzugoFIroTNqMf2YtpifrFGeFEIjWRE27Zj78iiAMwW2iHxSV64WYPKFZvTjg7ONDEi7oX36A8hFnYT39VVV/R411zVf513WQsHuJtEafBMO3VyjtqK8bFn6AWypSmJN2fdlPfsHxxx/Ds551YeNg4FF5cW66ZyOff99nKBfLoDVt3e28/VPvZtHKxX/02hgxYjQiJoQxYsSI8QTCht/fVSODc1GYzDF+YITORT1/9TH4vs81v7ueHTt2sWb1Sp7ylHNx5key/o/Yu2cfv/rBz0jeuxOxb5o9QpKPFK06SSA8MigsNIlE0FSaJLkog90ikdaMUAxoCzpOSTFyXd6cVN1Rh0rytTtd1t4d8uznSxy3OXHxB0sklwoozaqNApDwiHbux1q5qKZGWlMknQMhBGQzRPdvQrRnkZ0t1Tq00ESr5l+gNTqXR990LeKEU5HLVlQJajXK5Cabp4pqjRrdj/bLVQN6DX4FbdmzZGgG5ZJR70xmDaErF2d9AGeunWfzoEf3Q9fCura0Uuj8RPX8yNhcVJU8lVbItr4mDKaqYNqkmm8mOlsXYYVan+a4gFSriSjOnzwhET2L0aW8IanlEkxNzu1g9v4qpdl/z33dS4DvI3oWzqq8CmHOL0xBMmNIYhiYedMKHfiIuRHuOZ6IctVK5JLFqJ07TJpytT8tBLItTXTPfYj+PkRvjyGeIkIE9Z9xpTQ7DwZ0a3Dm3IZSMD3psQGH4Q0RZxxt1WoIAVSoKGws1LUVddg85aSQ2Wc3GuehG9l870ZWvPdSvMEtONvvx3NNNFAiwIIFpyfYta+ImtXJoagj1vv17ReLJb7z7R/WEcLJ0Ul++vkfcv+N9+J4Duc+98k88zUXYzd5gDQxMsH/vO1SKqVK7djQ/kH+4x8+yP9e/ZVDZhL8qdBas2PjdqYnplh91GFkH6H2OUaMv3fEhDBGjBgxnkCwD7EZ0kof8rW/JIaGhrnoWS9hcnKSYrFEKpWku7uLKy7/EZ2dj96zrBmuv+5Gvv+2j/A+pxdRFTCRRNyE4F5Z5hSVANvBdh2EVUTYlpFYnAO7J1kjgzMQUuC0WkhXEFQ026PZMIoSgk3a4cxiRN8hSpkiZTWzwDNthyHh/VsJWvpILM4gDrGn1JXqLrpcQU/lEJ6pMWQ6h27JUgs1CoEemzRkEWBkCBYtqZrQzwwoQtu6MfKmDTnT01OQTIAWiKBiUkQdb45VAzA1CuUCTI1BKts87CRkHSnUI/sQrd3omRRUrdETwyZFM91qxmg7s6mjoY8uThnj+dlW0LkxY3jfRN2lVo84x7KiaYRRSDiUd6auEkvHQyw5DH3/rXM7eGTFWa3RkUK0dkG6pd5H0ktCts1E0WYIejZCP3inqTHMVNO1av6Lsw8QtOsiFy1CDx00r0UKQYR2HZMeOnAQPWBeE13t0N5qFG1n+g41pevz/Dif5nmdRVpaNFpCedxin+/wsGWz8X6FZQnOPELW7iW/MU9512ydb6jBXZ1gPg/zbDhcjHLZp7/H8/rHkKLxDa8UOAskld1VGw2gLByOaVlLJprmzsJ+Jnzz0CWXy9euKxVKfPDl72VqbKpma/Gbb/2KHQ9t4x2fe19DP7dceSNqvoKxhsAPuP/mezn5/FMbrvlTMTwwzH+84cNMjk4gpSTwA577+ufzvH94wZ/ddowYj0c8egOZGDFixIjxuMcpzz8XJ1GfFyakoHflwr+JsMy/vv+jDA4OUSgU0VpTKBTZv3+AD37o0j+rXd8P+NA7Psj7nF4SQuIJgYt5qvkkNCkUN9glNmTh8A+8jKN//HFkZ8dscMcS2AuyiJRnFD2bIEDwYOgwpOqJs9aaqx5UDcbcRswkMj5yh+AQGogKitJNe5j+/S6CgakGOw4VRKgd+6rjrKZ6RpEhFEEAY+OQK0C+gB4ZQ09Nz167f099BAvQ5Tzzc1X1TMTLLyEODsCWh+HAXvToCHrrQ6gtG1Cjg+iRAfTuzehStVamib2EOS7mESeBXHks2K5JX5xJrU1lYHIUBnYZ8mi7CCERtmtqF4MyamIQvX8rKjeGGjuA9iumDvAQUNUawbn9/EkIytVbMIqsOpGuekI2YfVa05D3Oz2J6FvUEIUVrmcEc6RZQyElSAu5fC16Kjeb4jnfv5FqmmQmO3tPlqzVIqpyhI40KtREAQT7Jxi5eZKwYI4X9lXY+u1RvMkyL+0p0bVU43aA1w7tKyKOXFniTDfHk9umsHeMs+3Howz8YpJ9P5xg6sEKKhI1nZzbi1kSKZpCKc3m624h3LHnkOnMtxRzDAuYRrANmy3SYTmS00U7F2ZW0ptow/Ncnv70p9auufU3N1KcLtTIIIBf8dl8z0b2bdvb0Mf48DhBkyyIKIqYGptqPvg/AVprPvHWjzG0f4hysUwxXyTwA371zV9w/y33/dntx4jxeERMCGPEiBHjCYRTnnsua888BsdzcRIeXipBS3c7L/vPN/3V+9Zac+21NxBF9ZGZMAy56qpr/6y2N23czAk6gWqSCGoB67QhZaXWJP0XnkRyURdDz3oNRSUJHJvk6Ytx13QiE64Rh0klaptypTRlnaL9659kyYffRoeOSFXJgUaDgDsPasY3ldBKmy+t0ZWQ0qZRElbxkLwpnPIp7goQAtRIkdxlDzJx9ygqUKhKRFSOGL3qAPt+PY0KQVVCQzxnCOFM+mClgi6WyT88RpiPzBjCCJ0rEl19JToMTHomAqLARAKVMl9aQ1AhGtyB3r8PXSlXawLzMD4OuRyMjlD62fWUb3yAYPcQulQ20ULdbMaZHdvMV0uHIXtzbS6kNIqlSw+HJaur1hSYKOEMoRQCpImQcf+NsH8HHNgBW+5DFSaMCI5S5rvW6HLeEMlDTThV8uuXYXoUraLqV3UeilNGXag2yCqROzgAc/upfSkzt5Fpg5EhE71tZshuNfoAGkuMTkRHO9G+EXR4iKjlPAghwLbQ5QBVsQhygsqQ4uA9gj23urSvc5BBCT1dINka0rZY09uZJ7NQIaxZzikkpNoizjiswEm9RY7tKbJ4WRHbLoECpSR+xaZUdNhWtLjLVwxNyLnlibPzCiQqFZyRg3AIob7L9uf5rtYMO3Bsssg5bo5zU5Oc5eV5ZpjkVLeXBX39vPZ1L69ds+X+h6mUKw1tCSnZu2V3w/HDTzwCL5VoOmeHHbv2Uc3vI+HAzv0MHxiejZZXUSlXuOpHV/7Z7ceI8XhEnDIaI0aMGE8gSEvy0kvfyNCOA+zbuIOW7nZWnXwEstkG9m+KP0/pOZFI4Gh9SO8/G0Pekp2zOZljkcuPBpfw8nNCWhwLIWcFYbTW4DqU8xWk68Ir3kfpD5tIfuLbnItCAhNacgMeJSFY1tnNpo27Wb29QusqVZUsjapPVTX+QB63P2N4igAiCMYqFDfVb3S10uz/1V6GrtiPk7FR0wEq1Ggk916fpX1FyIpjFbYnEb5vhEyQhPmQ8Rtz5KYE6RWKnmXVdqVAj44SXvYj5IknIFesMWIofgntl4yBu9booIJ64H6inXuw+ztgTtqsVhqVDwgPlOBACfvETvQ+H7JZ86VApzP16ZFgrBWqKZZCieam7paNaOuCwoSJxs2kejZ4MyaMuEthyrTTtaBqVTFqUkyFMDWMWiPSjcqrwKzgShQYiwutYOIgCAtdTeEU81U2Z8ijbSFGh0xaqxDGy7C1w4jrFAswPmJsIyzLpH6WCuhUc5uNZhBtrajtgwRbBvDOOQaRStRdq7WetaWYe52OjIUEmAxYp4x3WCt2WtbdS+/paXJRDiEaI6tCgnQFKpz9DLb0BAwWJFHooIAiil+3RfSuzMKFFxLd/zPQClkdYyXUXLNBc9FijS74hAcL2AsyddHph39f4aCC51iCw+2KeYtVh5h1AvpTRZ5XbOeVH/0HWlrM5/S3V1zN1b+7jladIClsXCHxdUQFBRq6FjRaqxx/1oksWrGIfdv24ldTrb2kx3FnncCSNUsf1Xo8Egq5wiF/X+am/n5VJmPEeCTEhDBGjBgxnoDoXbmQ3pUL/6Z9CiE4//yzG6KEtm1z4dOe/Ge1fdja1exodZH5xg14CGxDEGrFjs07a6IjfWuXEkaKhQudBrl9Y+4t+db9PncOBhx3+6e5cNcwllLMJJR2oDiHCleRoDQ2zXVugpVWHl0IGgJU0XCJ/QOQaUli2RCNlRGFSkM5mtYCP7KZKNqUgoCUgB0iQgZJUqHHwc0JhndVOOroMuklLuiI4k6f4i6z8XWFID8p6dQCO+POkrBIoW67HRGGsO5oxAzxiqq1hkpR/sNGpKVQUxWcFd0Iz6TGhiMlyhuqSqESZMIy+/h8Hp3PAwehpxd6+wzB9CuQm6qmbUp04IP0jJKmM0/GUs/x5NMKwfxU0znn9Sw0dYsAHT2zhCmcVSnRWhuhlqScvccZKIWaGETM1I3WBGIiYxdhu2jXrdld6DCE/DRE/qw1SBiaOsD+JbNKraksdHSj9++AQnV840OQTKORsw8YoqAaJZxDnKupukIInCOX4n//Jko/vpnki54EnmPSl5UyEeGRkfr7CcN6kSIbUivTkBANxFZYgsSqFth/6FTbGci0xMpYLF2oCUs+uUGLxaf28t8dHrgucvRmpo46gwM33sqSVk1U0oyvFyzbLVi+roiwIDyQIxotIls9UBp/tMJDEy0sTrVzvONjz1tiKaDF9aGYoH3EjHHDgxv52L//F1RCjkp34gnLlI0KKOuI/eUCvUsaPQst2+Lfvvohfv/Ta7j1tzdjOzbnPfcpnHXRIVRu/0QsX7u8IT0cwPEcTvkL1CfGiPF4REwIY8SIESPGXwyXfvwDPLRhE5NTUzVRma6uTj784X/9s9oVQvCJb36Wy158CS9UGZwZJVBgM7CFyGwmA1PrJyxB59I+Vp91LEpvaNpmpODhTYIRNc3isTJaWszVALWAdhRZrShKmyNe9wKu/953uVgHzK9ClALCoubeLTb90ifhCtrrA3FobTLt8mWHUEqK5x7P0e95GRO33sMPPvVtzppUHIZDUIHCFp/SVkOEhNRYrkIrgfJtxDhYWaM+WlPbtCQkXKL167EXLkFn2xC2bbz30Ex/93r8QZNHKOwQsfsgwpZIIsScza9W1YmZj+Eh9PQkpKv2DPZMemRkvo8OVOvw5imAKgXlWQERVISWTSwxhDSEaobgPkLkTVfyCC9pgpO2XROaUQf3IBKHEE6SFnrLA0bAZuEyY38xPAgT+41tx4wIjJTQt7jOI1FIiRYgOnvR1ihUykZBdGgftHaibdeMfboMHX0mCiqEmUytYbwqFOM4JE8ztghq82ZU6BhfSt/H6XKMr6UQhoxojS5WaNCktUXTelUhBdKTNNFVNamvgVljmTFkcIZQ2knoPLcbkXQQUkNoIs8tUzvwX/w6Hnjvz8kMTWBV1Uv9goVrR0ZPqBIRDRtypxXsUgmOtjJ4jDYZhTli25KWqnfnD7/zEyqVCsd5/bhC1qKRACkkq3D49xf8C//x88/S2lHv3+gmPJ7ximfxjFc8q+ly/zlwEx6vfe/r+fqlXyPwfbTSuAmPzt5OLnhhc6uMGDH+3hETwhgxYsSI8RdDb28Pt9xyNdf87nq2b9/JYWtW/cVsJ1atXsG77vg59/zkSka/fiX+dIHNaHZDbf+54qhVdelez/rI6xj9/qfpDfZgz2FnYaTZuCMiIxwkgjYhjHz+PCgg5UiWXXAyT3/lRVwXVYiu/04DIQwjweB0ignlMaZcxsKIg/4Il/RlEdps4pUS7BxsAwRu0uO0559HS1cb5190Hkfdvo38dfeg/AA0FMsO6aRPyzKN1yNAWAQTCmeogsqmiJSoU4I0USoo7vEpfOhy2p+xBmflQqKJArkrNxDunaAmG6Aldk8WhYXIjaPDoMZflBLoUgC2nLVJEALR0TabTimEqaOznarwjQ9hiNr3MHLBSmNVAca2Ymp43kT5YNvVTNMqcVSREbyJ5ijCFqbRLZ2Nwi0z6zI1jLBcUzNZLqG2PghtHdC/qIFsajSMHTQ+gcUisqdqst7ZD/o41KbbYXrMkMFkurE+UUgEwojPiDFDLlUEpQLC9dBzxW1G9oOXNHMT+lA0Aj+6qtoiWrNQKiEcjYgU4c6DREN5VDaBvbQDkXZROR/ZmkCmU1AszYrRaA1BhEg1SZeNFJQKyISAyKiOVr1F0CHoapB2LhkETKps0m2MOIY+7fvuom0iX6dZNDGUJN3i131SfCV4YCKFryRBFLJVK45xLOZn54ZKYkmb1lPXATB0cAgXySKnBTlnzo9yypzplYzvJxX2/8uHaPnaf9XbdsxBuVwhDEMyVaL5l8A5zzqPJauWctWPf8vEyDjHn3Ui5118PolkY+1ijBhPBMSEMEaMGDFi/EXhui4XPfNpf5W2HcfhtJdfzOCZJ/OxV/07ge+DH2I5No5j87L3vrbufGlbtL30TYx87j10ZDRSmCjdRE7zm1vMLlkAm3REH7IWeaxdDxTbWjjmeWchhODJr30B5ZYKlV/9GEdUI4ORIFexGZhMVa8RdGBxq+7lLdtHuCTbh6UtCmWHGUojHIvM8asByF95O8Ub7kf4YY1olisuC04MSLTPpgfKHonTKggC1WALANVyuJwkGA0Z/s4mYBOgcb2o5uDgLc3Qel7/7CZfdjJ9xxi5TRNMFTzakyVSI3kczzICKI6NaDOWETVyls7WR/ksq0oKA/TYgfpBWTNpgDNRQ2VIkmWhvZQhgeNDhhDOZRD5SUhm0I5bM6QXUCONQgh0WEbv3QrTE2jfR7atQiSyoALjMThnYvTYMDge1mkXIualtcqjzzJ1hI5XE+ShNG1I3Ry/QBwXYbtGbCRfMsS2XIJk0syu1sbXMDdVPUYt8iiqno+kU8YWxPcRlsRe3o7KFdG5MpX7B5ALOkietbpKvKvDHx6FfKEWNZ24e4q2E1oQlnlvaKXAD2AyX02FNhHyyBeofGjC6JLmMoKWPGR5rygXwLGhMqvoGVRsDuxopXVBgVQqpBRJ7hrLcO+EIWMCuK4YcVSrhdCzgVcNDPsZlr7zhThtGfximcMrrSzPrKk9iNHAcsvnLK/EHKtE+vbu5SfnPYfrD1/JO97xZg47zHxuJsYn+cj7P85tN98BWrNi1Qo+8PF/Zd0RhzW/oT8RKw5fyZs+8pa/SFtzMTExyX33PkhrS5bjTzwW2az2NkaMvzFiQhgjRowYMf7u0LdsAR/92f/wh5/+jt0bd7J4zVLOe9EFdPR1NpxbGS+z4XJJe7pEulNQGNfcPagoWpoyERGaG3XIqcImjaj9YQyAO5AMjE/ytX/+L178sX/i8LOPJ/H8lzPY0suBL3+ZJRoOTqXYP5FG6TlCKYAlJGG6mx9OjvNMt58IRTqTRgjBmi+8BVllddM//wO6VC8+k2yNSLRRF7kRUiBdoKxMudq8gIlSgvykQMzZ4EdK4BccxpSHk1Icc14/wqmPhbae2okoTKHHy7gVha5owr0TiLSLsC3s/t5ZMuiYusW6KJwQ4LjoyTHwkiYFszaAqCqMU0UYGOEYpSAI0KODponeBVAXd9Xo4b2GpLX3IGy3zvOw1nXakEZ7zcmGmEqrJiyjJodMO+NDkEwiFh8269c4Xw3US5rrbBdautFSmgjf3POkBUsOgx3VFOSWdnAcMze6GpFTkSGtxSI4jok6RpG5b6pENmGM7QGwJFanBy0R/qgmedZq4585Fz1d6HLF1DdqGLg1wLKnyB6RAkui/QB8H9mVRo3ka2tjuRrZahOMhOY9MTN9rm3qRwVoP6QZI9TCIt+9mrC0qyEaXizZrN/ZxkOO05DSGqFZodrYMW3T55VJ2CF+JBksJxiVDpd/5afoz/wI13NQfohVF43VnOyV68gggCvgQsdj6w2befGNL+MHv/oe69au4Z9f9RZ279xDGJqHBFsf3sY/veJN/OKan9DV3fh74PGAr3/lO3zuM1/CcRy01mSyGb71vS+xcuXyx3poMf4/R0wIY8SIESPG3wW01uy892Eeuu4ebM/huAtP5zlvfNEfvebhN34OK1dmelIzfcBsflchyEnNw8qoBhaBzziat552LImHdjIymed+LdknJChFUPH5+Ue/xdozj0Vakr6nPoXUiSdz0+s/hR4frtsWKzTDwmxSV7gh566IWOYNMBpYLH3FP5J97tOM/cUMgkYrgmS7aubLjrAEhBFhGZCGA4HhIFPjkjv3ZUnZEevWlOhd44ASTG+qkDkQ4C9tm29ZaCAFqeUtOJUhVBKCaYnbDhR8QxXmkqKZtNEm8zx123ayxwusZQvNOcp4+KlNDyIWLQJpG4I7kwI5NV6tmVPoyXFo66x6A1ajXoEPY0NGIbS9tyF9FAT4FazlRxtiJmbrDzWOieYN7jCELJUx9hLNPABnwlgzP0sJmQ701FDDeRoQHb0o30fMkMHaHAnItMDEqCGv/jwrhZk+5uVSyqSDUgpnTVeTxakik0aPTxKM+dhpyCwViHJ5ZhZM/ykX0Z5AT8z6LCog0DaODg0BdFxk2p0T3ZWo8RyyvcXUMEpBGCgK0uZp//p1zq0kuNhqJynMGy1CEyJ42LJQgJxHJjeH4zyFDhIR5IoJcszwUGEClHkfLSAoNdZHCgSZJob3Zu7gBYlezg47+dTHPsWb/+VNHNg/UCODMwiCkF9edgX/8KbXHHouHyPcdee9fP5zX6FS8alU1VGLxRKvf9WbuP7mK/9vnpoxYvyFEBPCGDFixIjxuIfWmp995Bs8dN09+OUKQgju/NkfeMo/P4cnvfzQ6aml7QNU9o00CKVIYE1PJ3dM5XG1hW3bPPsNL+bIl17EJ5//PkYnyw1sLPQDRnYfpNtRRL+9hsT4GOe/7ERu/fLNlCYKiFARognRbJBl1iZC/rm3jCMcpBD0eiCu/C7iuJWw7oiauXfmojMob9qNmON7FpQE6CbES2l0RbPpt4LeYwSdyxRawb4dNtsecnAsOPuigMyiDqhSyvTSDK07ChRGG828AXOfriE2JtilKAxYJHs00oFoeBKrr92QH6VqVhP1k6M4uDEkvPd62l+4DtnWDr5vUjWVQk9PQW8vItti2GupMMeoXaAODsPBUUR/D8JxjJJoqWCicgd2Q0snWjhz6g4VlHKGeCVb6pQ9YYbUtRuzc62NMEx+AtHzKG0JDuFzKIRAZ9pADjQhqJj0VGlBFNZv8KsCO8a/0q8e0ibV07URRR+ZsRrI4sz8AOhIQ+iz+jkeYn7YrgqZ8oimKxBVRWQE6FCQG3cRSUnXXDI4cz+VgMnbRrG708iszQ+3jfOtjSPsH53ku1pzwKnwkkQfGQT7hWCzJQmr966YU9cJXHjEUXgPHqjLTpWAh8bWikPQvRoGlc0KETSdBktbtEtB94P7ObDvQOMJgO/77N65+4/08tjgh9+7jFKpXHdMa83k1DTrH3yIY4496jEaWYwYMSGMESNGjBh/B9h13xZDBquplVprgorP7770C4654BRautubXhdO5htT8DCb2AVdHVxxy2fYtWOA1vZW7GoKZzKbatpWUPH5/Vs+wMViAkuAUApxz32cuaqPh1afxR0/upbJKGBABEQCXtRZxpMzvVX/71fwv/JFPl3q5eH7NmHbNqedfwqnaIGHSZpUwPSwhR8IPKnqBT80jO5wSaqILXd5FO+ZFblQaJavq5BZ1FK9Zo5q48oU+d3TyGZEQmuEPSdKaUOyLUKXoTgi8PwDpM7Loh0LEfho16vjylopKrmI6R1F0gmHtokpdD43273GELfxMVM758wbRKjwHx4h2j9BaO2i5cJVRtRGCHNxFMLWB6B/GbqlSnRz40YIZr71xHwoZb5s26SqhgHadhrJ2nxEYZ1i6nyIKGr6utYaPWKEemR3R43MiRlje4BKeZYMVuZYauQPYRmhNdHAOFQq2C3OIwmwmjG5Fro0GzmLSgKBwGtvziKFJYgswc4rK5Qin8vCYYaiPFprJIL1ImRclrCEJCMcOpBk5qrJzmlrbVs7Fo1kTQA+qqlCag1S8EBLH4sL+3D0LDdWGqYLCUCQEBanuu2sWbemwTgeIJFMsHbtGn7/o6s5sH0vS9Yu47QLzySZaf6Z/lticnKq6XEpBLlcvulrMWL8rRBXssaIESNGjMc9Nv7hXvxypeG4tCRbbmtuKwGQPnyp8ZubB+E5tJ99NF7CpbOns0YGAU5/8VNwE17d+RpQKuQZagxbq9loXrkCBw9yzFKPtotPZSgliaTAlpJep3k8RO7fy8P3bmS5G3KCV+LAjbeyE5cDeIxhM4LNdp3iD7e1UZyW6MhEh4IiDNxpUykYUqDmEMUITR7ForVVEtVww4LMModweNpEGXX1SykolhAqQrgS4YG0q2bmNiRaNaoQULp+I9HOAaIDw6hde9F+gA5DdBgRDBc5+NVNdMsKUkBhc9G0q2eHopVCjU6aKNmcjbxR31REByfRtkX68CxqZLxalzgrwkPgw96t8NAdsG8Lemq0euMhlHJGrGbueqkIPbQXvW9vXTRT7by/ao+hZs8zA6m7Vg3unB3f3Ha1RqsAXS431DRqrSEIiR7egRoYRo2MQhAYb8g5BEq0tBirj4pfE9wRSRfh+6jRcZNCO2d99PgkaqqAcKoCQ9EhVGAAQlWrFdRKE+QNIQTQvm761lARlPKCILKIELS7DsenU7yrvZN3dHSy3DarkJaaw3TIafgchU9y5v41WFrjAolMuuZvWdcHMCJN57PPCebMORoVKdYPjvPlQpLtgUUYCfzAYnI6SalsUqwjreg7cjWrD1vJuiPXNRDydW43e792A3d/6mfsvfxOfvPJH/Hei/+F0YF5Ho9/I/j7hhn94q8Y/u8f87zDj2uqUhqGIcced/RjMLoYMWYRRwhjxIgRI8bjHrZr6rX0fI88IbAPIUcPYKUTLH7bc9n3uV+iSlVfP8/B7W6l90XNjayPeeopHNi8mzt+eh2WY1MpVVBRRKftNz0f30fdchsv+9QnOP1ZZ/HADfcytm+I0o7rSInGHXghgg8uKdHvKmN9JyqMFwPu39dNXs9GcYKiZNOtHl2eQkhM3WB1Ox2imRYKu0pYpoRmh605u7EcsQbpCmSlgB4OECkTcdHlsolUaWrhyTq9GAmWByqvCLaNYrVWa8m27oFkmumtEfndIZYLLYdFeFmF8qeIJiVWe3I2vbTsQ75IsHU39qrFMEO4Kz5qYgp3VTvaD5AJC7l0YU3VVOuqJ1+VVAEwOQmZDBoJliDavQFr9UlG+dR20GEA5QJq893oqSl0pgPZnjEpnpUS6uE7oK0XyiH64AFEZwtyyWHgpcEvoXY+hN6+EZavRixYZvqpLUrFpIOms+gDB2DholoarfZDghvvRjgJrJY0Mp1uICxCCLRtG3VPy4j7CCHANQI0emoaVSgiWjJmfaZz6HwR7c9bmCBCz4+0BmGVBIYQQWVMUh6ZvcYfi9CRRtvUjUtrGN1u2pLAq5b1cVShiFX9rL2gO8LuqpB1AQ2FCYfhfUmOJuJ32sXXDh4SgeT+mx/iKL/RpzNEsdcykUoTu57bvxF3yhGiEYwoyXdLCV4SSFo1WHPODYHCWeuYmJjkgQfXE0SzwjRr3E6W62x1tQSOEHSGgsGpIt//xLe45LPv5m+Jqd/cxvCHvm1+Z0URaxMu78+s5FJ2UCyVkVLiui7vff/b/6KWGTFi/F8QE8IYMWLEiPG4x3FPP53bL7uOIKonZVop1j3p2Ee8tv/l55Nas5DB71+HPzpN+7nH0Pfic7APkRoKcPgxh+Gv30thbJqdpUGGqJDR4tBpNckkQghWHLWaFUet5s7Lb+KW9XdwdjpfTRs1qCiYRrDIVThzjnelKqzunWbzYAsSgdKmFvEGVeLpFQ9vHrEI0fxKFlgms0Y8RBjP8ts3Kp6/rElentY4iYohLkEA0/VRUx0qdKCQh9gVCAlRThEVFNIVxrPQn8LtbmPBCRksW6OmSuipApYHopBH+yWwLSPqoqrRIcdCj08aQiSEsbXwHKzeDORLyK6OOouLGSEXhEDn8yaqNpUDDaFO4CxqRQQB0c5tiIUrDFGbHkcP7kP7FVAw+fMHaX/OOujsMDdTnEY/+AA6l0cXTPqmXHY/wnWN+mc1gilKeXRhEmE5ZgJUBFQJahTB+DhqYgKEQ3hwktJDY7gLU3grWhC2bF4PWF2LmSipEMLc74w9R3X+9dhEjeBFUz7F/RHZjjmljUpDJURXfVR0GKED2HWTIDfcTiZZIZuqUFfmqGHirjItxyaxU9rwawXbb7Go5AUhmv1OidOmfWO/IkA6ipb+YLZfAan2gH5HMbIzzfky5ObIq91XVPHZatusVgo34aK1Jlcq8VvbJ4+kS3tNSbKlBRqBgyCDjRRwh605NzD1hzOPVYaFzcPfv5r2r13L98VqJryAn4aj/EFNsi7R0+AlKoWgQztsvH1987X4KyHKFRn+8HfQcyw7dMnnuGSK/3zJK/nFrs10dLbzkpe9gKOPOeJvOrYYMZohJoQxYsSIEeNxj75Vi7jgzc/n6v/9qTGerypRvuw/30Qik/yj17eevJbWk9c+qr7u+sKv2PDjPxCWDfnswqaFFNuiAlNK0CV03V4/lBbJZ15Y18Zhpx3Jxz+RwolCzmgp1xRDb57yOK+7jD2PKzgSFrYXuHEwRRrJsPC5XY1T0CFHC4uF2CSEIECjNHw1nKbb6UJLgSsVF3ZOsTJVQQCVnRHeimpNZTWDVFd8hC2qaZy6lqqotQal8Xfmap5xzWrUapmTClTZ/JA4rgeZtBFWVZCmM4POeKj941WTd9cQu0iajbHSyIRrzncdSCdrjYt00mz6W7KNZvQzUTWlIF+sKpGC7SjIFcC1zT3t3WosHVIpaGtFaE24f5LSnhFaNm9DutLUk1br/0CDHxq3iD1DyJ7WWbIiBHrvXkTvIpMaOjc9VGsYqSqQRhHRniHUdMCBrS2sPi1VS5nUlYohe80mtFQyx2VVKlbUa27qhIfKVcjv8Mlt1whhkVoNotVCKBMG1kqjfUVpZ5GwKCgNgi4aclYou2RSlYb1jAqaoT+USJ6wgPaz+7HSDgv7ShR+Nci1e8fo9nycOY89Em1hQ92flJDIRDheRFgWpFEU58QEixLuc21Of+dz+OnXLmN/WMaSEvkIkjI2EhtowaZNw9pQ0a0EFQTjwkEJ8BGkdMS5oyESQ7TahcMr7V7sUNRFEufCQWI1qSP+a6J412bz0GMedMnn6Jzggm989m86nhgx/hhiQhgjRowYMf4ucMaLn8LRTz6ZrbdvwHJt1p5xzB8lg1u3bufDH/kEd955L5lMmle/6qW8+c3/gG03//NXHJtm/Q+vI/JnI2gScJG04/LdKcHr24okqqmgloA7Sy6rs13M1a9s6+ngwjc8j6u+8kt+N1UhKyMmQ0lFh5zfXa80WOtHRzxgmzpJpTVJkWQqyvFfUY5jcVgrJDkBN0dlhok4pyo1+cKecXq8sEYyg22TBAN5rP4WnHYXISMkatbSoVrrpqVEK0WwuwCVEJxGMli19EMbO8FaDZrsSCATs2QQqp6Jno1oSyIzCRBVMicFwrFRU0WiXIDtuYh0so58AdDe8ohrSak8q0xavc7U1Cmz+U4kYG6aphDY/a1kT+1j5IYhOk9NYrdUbyCM0Ply9R41JJoIzQQBavMG5NojZ/u1LPTWzehisWpvIbEPX4osR7QVClgpZ/aeSmVIJtFC1Ke/jk4genoRiSS6VIJ8rlHYJtJMbtHkt4PlCdovWIx3ZHuV4GvU4DDqwCjhQB5HauwU2AsFE1sS1eEblVoh69sVAtrPXkD2rCVIz7x/WldlOOqty/n2/07ROlqp2klUb9fVh3xA4HoR5bJN1ISIiQje/YnP0q8zWHMUSZtZqYCJeKew6VXwpEAhMZYWGk1W+xwQLo7UrErkSbkBaEGh7JAvuSSE5Ll2F1drNc/X0CAQmpMvOL1Jr389CNuaeRYz7wUQTrz1jvH4Q/yujBEjRowYfzfIdrVywkVnPqpzDxwY4FnPfimFQsHUKZXLfOGLX2PPnr18+tOXNr1maMNOpGPXEUIAiaBVOAxEmv8ay7LciUhLxZ7AZlpbnHvdPSw9alXdNee+4umsPHEdH3vtBxguhyg0Cs2esmRZQtVFGSMNG/OztZBSCJLSwY4EgVbcpgpcHRZZ1NOHX7KgEjGlKqxNWHS5s2QQUTVIL4Wo/ZPI9rYGvzdznoDQpHKqUgSHynC0BDqVINFiCJEqKYLhAJlxTVpkk3ZlSwoxZytci0RaDpUtU9gL2prOPRp0rgBt9VFCrbUR7ynOI9JRhI6UIaVhBMlUQzROOhbZk3uYvmWQ4euL9JxWFc2pC8cBoWquKjoyir/+cmRHp7HH2DcAOkK4NvaRS83GX0osz6H/qa5hzzPKoVob4phMmE6UNuTwsMMMmbWq6bRhiN6x3fx7ZkgKVCARAjouXEx6XXvdfMsFvRCGqMkyOh9Uaz01ydaQ8rARYJGygY6AFGTPWlwjgzPwbMk7n7aSj35jPc+eo3sSliWWFzWQQiEgrEgKSCrMj+hqVizRvLYjgSrb3LlLkavqQU0T0KKNDcsMlNZM4tOmHU4KVN3GVGDIaZcKWNCaN6q7wixaJuXjOhHj0ylasNhUGeKoRD/2HFKo0FiL2njx21/ROBd/RaROObyZfg/Cc2l59hl/07HEiPFoEKuMxogRI0aMJyS++rXvUJmR+K+iVCpzxa+vYnBwuOk1yY6WWr3bXAhLsvSY1Tiei0awM7DZUHGZVsYeQTZJDwNwMgnGVIlRVURhCMc3Bl3KCvwZFwIFxUjwq9H6mkaNRmvFmD/NdFgkmUzwLx+8hIte+ExSqSQyKnO4UIiaX6GuRuXMl0xYze9FCJACrTT+uM/BgsVI0CSlToDd6ZLImnELIZBJibvQQ5WiRoEfqOacNmlKCETChlJIOFBoOlcIQbBrFDVZNDVxShFWIsJShDow2Hh+JUCVlPHng6YpegDCkQgbBJqx+zV+zpQDqhD8IgQTPuFIoelcAcjeHuyjV2GfsBbnjOMQqRSivwtaWhHJ2Qi1sCW4rin06+5BHLYOsWwlorWjKlMbITq6wLIMGQTz3XEQvb3zBg2VgxXcjCZ9eDvCmUe6pET2dGL3ZmbHKaGte1aJt4krA1bWbZoTLKRg4aI0FwUt/KgIoRF/pTRhm4zZOVOjLUFkuTi9goedejVe29Y8/xkh550R8rKjW3jR8Q7//RyPwzttLAQ5QqYIiLSxoPBR7IlyTCkfjaJZVa8A2r0KTo0MVu9XgOtEOHbENBHbw0nyS1O09ncibYtUdytnXfJ8nvTmZ/NP//BWLjjvYj7875cyeHCoSS+NmByZ4A+/uJYbf3U9uYnpR3VNbWwJl4WfeQsi6SFSHiLhIjyHtpc/hdRJjy51PUaMvyXiCGGMGDFixHhC4sEHHiIIGi0nXNdj+/Yd9PX1NLzWe9Rykl0thAdG0XMIguVYnP7Gi7n3zf9FEomFEeEoo7Adm+OfdmrTMaTSKaJq5GcmXW5fRfKenUnObgtY7Gn2VBzuK6bJh407+ImgYKIcluTMc87glhtuo7u7k4+sOpVg+wBOqYDVRMkUQJejpmE/rTW+r9myHe7ZnWJ30eOEzgLn9eeYGzgSCcsQzDlcxJBJjcobwRYt5/jRVesRiVTzcGOkEBb428dxVnbSUEipNNHAFOHDQ8i+VmRPltyIxpUFUt0WuA6iNVv1FCwRbBzAH5vEXtKG05/Grviz6qVzu835xuZBgK7A+P2aqUoSBSR1gGWnSHUEZJwCyWWZWQIkNCrZibuqfzbNr68T58J5EeoogpFB811rxOLFkM7Uopw6mQIvASMHwXEbopBCSnRLK2rP/uqbRDBx0ySeF2C1eWilm1fHOQ649UTRdUJSqQqFgsdUPkF7S7m+hjAfHNILMBgt02HBgh6biucRjSkqkzCRT7BgaR43HWG1OtgpC1sI2rsUzz9siqvvzTIwZub9mCMi2tuMlhCAW13j1z7J4sO/EuQJmNY+rUs7WEiWwb0DpJDsDKcpUUbT0XRsjqOwmo1bg7Qirg7LnHXemXzwvz9EKj1LK7/zzR/wmbd9lErVsuayfQe46re/4/Irf0Jvk8//DK7/2e/5wf98e2Y5+O4nvsnrPvDPnD5/7R8BqVMPZ8X1n6bwh/tRxTKp04/EXXzoPmPEeCwRRwhjxIgRI8YTEmsOW4VlNUa+fN9n6dIlTa8RQnDRFy+hfeUC7ISDk07gpROc8YqnIqeKdFseaWGREhZZYdEpHM556QUsWN28vdaOVo44/ggs26Kiw1q0cioSXDHm8tXRDOMnnUVguXXXRVoxFZbIRRVCFWHZNrfceBu//OkVbPz6FUyv34EqVqgENhO5BE2DdYEimvBnI2iY9LxKKPj87xP8bFOG3UVjP/HARIZ8tgdSLrjC1HvJao1ewySBFpC7exSVD1CRJow0w6OagWtyFHYHqHCef5/SqHwZt09iWQH+wyNG2XTGby9ShHtH0dNlZEpiexXk5Cit7QVSXRKRTCBXLEV0dSI72hH9vbinrUNFUH5ogvzN+/Hv34GuCcZU+40iinftrUVNZ3RcEtJHlY0Bgo4EhRGXoRsC9v9sivG7igzfUmTv1TncVQvqar5m6jCFlLUvbBs6us0J0q4jg3OvIXloawEdQW57yPgdBQZ+OoaaqBK5Urku/bZ2vtboYqkuqqkVRGVJZ3eBUWmx308xWEwwYwkp0jZaQP7uIZRf70+i/IiJ2wY59YXwojNclp2kWfk0Qe+JkumCx7bNHQwPZhFJG2EJpDRaPo4NTz0+j5BGqGj58pBm+i2tKehIg21ZnHHkkXSOREzvGyaFzUory9lOPxUUD1AhnHe/ITCoJGGT5x4auMcWnPquV/GZL/5XHRkslcp8+pNfqJHBmXmbnsrx2U9/6ZBrMbR3kO/997cI/IDQDwgqAUHF52sf+gKTo5OHvK4ZrEySlotOp+1F58VkMMbjGjEhjBEjRowYT0j88z+9BtetJ1qe5/GkJ53G4sULD3ldtr+TF/7o33n+D/6Nc158PkeUIvLf+j27L/kSx08FpJUhSQKBbVkEgxOPOI53feJdrDhsBdq1UJZAo7FsCzfhsvKo1bz63/6Rt3/j31l42BK01kRaMeRPs6k4UOvHr/iUiiUAjlNZvDl/vnccbGNgNEslaPyT7u/O4w+WCHxNGMHWIfjatTZTxXqit7pb0eXlkJ5EehZW2qZctImChiYJlODOwQz3jabZvFMxOFDhoU0Bv7heMzAqGb03oDRQ9bxTypDBXAmKPkIKrIwg3D1M8MAO1P5R1IExwvW7UHuHECmwu12EFCbV06mm5C7qR1jWrB2FbSEyCdzDFwBgexqmc4T3PIwen0JXfNREjvCBbeiRybrxCwFJb75ho0ZKhSqGFLaWyG+vELWk0U2its1sE/A8NMKIuYSNZpBCSvA8mJfCDMY6hXKelhM6cJdmayqiQmoSLSHhroHZ9Fwp0dKkAquRMXO9EEb8pwyqYgKAvZkC2lIcLGVQC1roeckiup/TT99LFmGpPPm7BlEVk/YbTlXY/8PddC3NY3tgOwJpm6/O5ZrelSGRlqQXCuxFXcijD0MetQbR21mdOY2zEj6Wu4vxsLlgkhFYERx97BEUdgziFcsc6Qec5vscGUT0YvFcp5+DdsR2USFAU0IRotkl4abInRHIrUFpGNdwq21z5rPObehz147dBH6TNzDw+2uun21HKYb2DTIxPEbh9o08dOl36K9EDYowgR9w85U3Nm0vRoy/d8QpozFixIgR4wmJFSuW8eMffYP3vu/DbNmyDcdxeOELLuYDH3jPo7reKVYY++Y1qKr9hAQSaI7x4Q4PEymLFNtvevAR22ltb+VTP/wUe7btYXR4lFQyQW48R//SBSyuRhYXrl7Ce773UZ5y5kWMjIzWXW/Ns2Hw9XySIjg4nuHAeIZEt+a4xeMElQCUQgB3bRJcP25S+iKtGYgKHC4yREKTF4JEwuJ5ayeRM+xPgLDAS4ao0EZIkNWoTxDBcN5iu+/xqnNDLEtjSehpjVi7OOIH1ydZlyuhbq+Q6lZ0rlEIPW9zLcDOCnShTLRrtp5LSIGVtdEzMjgz9+3YJgo3/64tC291F+W79xtVHgR6ukB439baOSqCsNj82XeoZrwOVS16OAPXUewYjljdTDinGbRG50tEe0aRC/qbvKyNh2J+Gtq70dJBzKR7+hVEbhrhSrLrMuQ35aCQw05EhklNjqP2W8jD14LtGFakNbJ1ElUeQaQ8guEyOjTpvZaCTisgm8xDj8uCJ3ci59QgJhZ5+INF9n/8LoQjURVF4DrItY2hPWkL+g4LGdpp0/akZcjOZK3+UacS6PYW9IZdjExPUSqV+O6DQ/zbk5aSnNOfUpqhaShELr1+RLbsc4If1ARjMlqxRhZxbEUECCLuCfPcFAiGdUReKNypMS4WC2lNRjWxnDASPBgk+MfPvJ1MW7Zh7F7SQynV1PajWCwC8NCdG/jyBz6PmsrzsqJNm7DoR/MSlWRUKL5vlQnmXL5xwyYu4tn1jUUhYv1diK0PQlsX6pTzoK2zyZskRozHL2JCGCNGjBgxnrA44YRj+f3vfkml4mPbVtMU0kNh6Cc3oOZFGCQCB02rhqnqRlE+yjaXrl7K0tVLD/m6lJKPf/LDvPWf3kEYRgRBQDKZRGhdF+m4VY1zlNXSkOKjgYExi+Mu/zY3vvRf0KUiu4oe48Hsn/quCE6JsijAljZWyuPYt5+DdfdPoFJ/r7YNu8YkeeWwus9HaXjwgMctO5O8/JwAd1YUFcsyX+cfH/Gt6zMkUBxVqXCun8ebt9MQQqBF81I2zZzyw5moWPMSSfNSpBFSo3zQIWDrWpqrSUUVlMfn6KwKjZuNUK4g4VbYN+6w3Ko0VdHsyhXZv2GchUd2IN3ZNW6mRqpLFcL7dph/j09DZ2uNOAGgFNHWXagDI5RGN8GSFWSP70BEAfizKY3CFqhlWdTGXJ0aqly1Eix7Nv0UYMUKRKmEzFSQI6BtkLbCL0gkGs9WdByfRswrvpO2xO3zsNIWYc6Qdf1Iu0FL0LnWw2pL1t2TsCxozWK3pNg1Yu7hBxsmeOqKLk5ZmEFKQ8j9CL55k0JpxY4tO3meHzH3E5PxfDzbkPKq1A7H25L9WrEnAqEFr8304miLYtFi9g0hODXp0n/C4XDwAGzeAJkWOPZEcF0WLVyAFpCRLn1uK1JIRoIcE0GBdCbN0HV3cvW/fQ4qPk8NPdq1wK6GIG0EvVpybuTyO9uvjTXZPY94+hWsT78PMbwfUSmjbQd5zU+J/vnf0WuOeoRJjRHj8YWYEMaIESNGjCc8PM/94yfNgz8ydUjlSWdG2NK1OeLpp/05Q6vDKaedyC+v+jE/+/GvGDhwkFNPPwmlFJ/6+GcplUw63hZKTKDoQCLQOJj6rUlhkV29EJHNMrTgMPbNiZQBJBWsjqxZA2+lIV9m4Ju/o21VZb4+CQBRJPjD5iy/2xhxZW4bZ2VXYgnFgs7m87J0TStvPbId2xI8sHEaWS6aArk5UBEERYGbamwjDCK0a+PYVL0AI7P9r/johFdHxHQQUdk8hDC+7vjDCrtNYKUwCpZFzfYtHt1VRUvpaFqX+MZiw4JkW4Eli2F6l0vkS0OMNMxQ1YyI+On3DnDWsxXHnNaF5UimhkqkkxZW0sbyLHRohGTC2x6oMdngD3djn3wEcskCE0WeyhHd+xB6YhoVweQelyRTZFbas1HCmfnWsDcQFCaznJicxHI0JNLgeXV1iYCpZeztg4N5nBP6QCnC7QexgjLSMkmaTqvdvA400siUBbnIeAq2tqN1o5KmCjWlfSGZZam6KOPcMTxU6KBT5Dki3c+YLvPGKw9wZI/HOQs70ZUED+2HiahCSyKNroSk6tinxnMabS08ITjflvwhUkghWCyduZ3OuTxCf+VziLtvMW8CS5o6zvd/DG/ZCs4+/AT0gRyyek2P24If5Hl/Vw/hB/6X50cRtm0Roec/D8FGcLS2uUZXUGhGVY5zLjin7hx5w68Rg3sRgSGNIgyAAOvb/8O+N13KwMFhVq5cRiabIQhCkskEMWI8HhETwhgxYsSIEaMJ2s85mum7ttRSRmcgERQSFo5t0b1yIee88eK/aL8LFvbz1ne8ofazUooH7nmQa6/5A0IIMtrjF4zzatVONyaKpoGMjmh9xkkAnPWPz+Inb/ss4ZxdbldkbArnh+aGBmHdct2gKuBHgi3jWfTCFi7bfDuWsLituI9eK4UftpBw5tXSLV6ASKfprto/nHFKO/lcCu55CEsbg3OtoDhmMX3Aovfwci0VFaAYKn68p8JJPRmO6AtwbNDFCmTSqFAjUxl0GKJLZbTSBAemKW4YxpJVwRggnNCEE4ZolhX8uAKJssVZdsgRK0NjP1EdtmNptISWBQGTe7yaoqRRlxWUtKQYKn738wP87pcHcC3FeVaOvqQieWw/zooOSoMVspWdWG6E6KgqnEYa//b1cOMDiIQ1aw6vwZ+C8qRDpVSi87zGtRcK5PoAq+iyeU8HR60dIyqKpps1o06axT3/lOrANe6paynfsIHi9SNmDQ+WcdqchighFgRjASb7WMBEnhvvgXNPNuskLIEKNcGkIr8nIkwpokBju/Xt+AHsGgKp4YhUH7eX9gOweTRk/fCB2nlLU10kA1P5qtA1gvZISM45ZVArsk1M5xMpH3HvrRDUf0b5nw8z8f7/wR2tEM65zkbw+kSGllwJoTR29c1g2wqlIoKofqaF1gz6kxRkyCnnnMLRxxxR97q858YaGZyLytQkb7n4RewJJGEpwJYSBCxbvpT3f+Q9HHvC0X/0/mPE+FsiFpWJESNGjBgxmqD7otPwFnUhE3MM45Mu2WedyllvfxEv+tzbeOU334ub+ss89T84MMivf/lbbrj2Jnx/dpMppeQj//UBfvCLb/GOf30bFhKpIzqIkJg/5Fb1e/5Lv0IVyyw54TCe+4k3kOlrR2tNRYeUokqdIfgMAj/kuo0tBJHADwWRMrWC24YTVJYczoqXnMNx2WUcnV7EylQvaS/L5ZuLlOYKrngeIpM2JvFVuI4kmXb5WaGb9bsTTO23GXoowcjDHpWcw/DDSfyiEUSZ9BVf3F7gf7ZO860HBLfem2XffpdiJYN1ykmIvn6ElwAvSdTSxi9+OcZXv5njZwO93DrU0RDIVRqmI8GOCtyjA95TmCSZVU1TQ520AnTtNSGMGutotp2nvfPFiLYURRXxTHeKbjuEUFG65wBTP9lAcOtWpKsRlqx5NWIJ7HYXIo0uhKhchMqbL9uKUFpTyNns/MUUUaCJKoqwolChZsfVeYJxhYMgCh02PNzF+G5/tp5yDnQUIVzPCOxY0ny3LRLnHIXMmIh4YcM0KlD1SrOBYvq+PMoHqhqm5SV9fHlHnk3XROS2BeR3Bozf6zNya4Xt+RY2rK80+BoqpVFKs3GT8ZW0mJ0DgcASs2zfj0IipWgRmoLn47kVbCuqrlXje1Jpzfbqoiqt+JE/SXle7WwEeB0KUak0XE+xwN6rrkPOm7c0mkVgbEjmvQ9cpz6SHaHZkbVYeuIa3v/x9/DJz368MVXYdmgGrRSFik9QKCO0RimFihQ7t+/iza+7hD279ja9LkaMxwpxhDBGjBgxYsRoAplwOfIH72P45zcz9rt7sVvT9L34HNrOPPIv3tcXPvVlvv+tH2PZFlIILNviC9/4DIcfta52zvKVy1i+chk//Oz3OWla0LRyUQoKN60n+7STWXnGUbzl1//FO9/8Xm69+Q7WhUmW2IvwRP2VEtg56fHtO7tZ2VXGszV7J1yGCzbHvnwJl3/xV9hC1kUW/7A5ycIeOLVPIGwXmU6hVKM3fNKzOHlhB+vvEiStAu4cz8TylM3AAxkmtODbgc/vSyOckejiOf0LYd8E6wcznPr21bS4s2mPwrawlOb4cxZw+YYdZCNNT1kyaqXp7inUVChzkeDTg0kmVJGpSpF2N0NEE2+OeRBSk1kUkepWLJQD5H//RdJhiqQV4Yl6LzwhINHfxOR9pkYyYRkvSJgte9OgtSDSgqmtFdZ/epjW1R5CwND2EL9Y31YhFJS6M6jBQWRv76ygi6qaJTYjikqTWNtN8Z4DqJJi5JeDJI5uJ73YIywpph/IUd5pFGsVEAh42123UZYt/GQ8yemTGVrsgFBLJgOXCEGlFPH5r2zhJa9cSkcqgRCQL0T84EfDBIEm1IqBMFc3BxaSM7NpXu559FqSkq6QDSVam/euJqISWuTKDtmkb0RmBIRaEwA/80OUhsmgyM4gx09kiue4abLapEhXIgmlAjRz8xACxxINabYOoA4ZnNT4aFwEPhpfwDH/8zYuPuOYQ12AOvNpiJ99DTGnDlRpzUApZG8xwpNOA4n0fZ/vf+tHvP8jj07cKkaMvwViQhgjRowYMWIcAlbKo/8VT6b/FU/+q/Vx521388PvXmaignOyz976j+/gmlt+3SCE88wXPgP5rd+ZEMl8aI2eJ4Tzn5/5D37y/Z/x8x/9kpGRiH5tY1UjRsJzuLkySDmyWBK0sGnQ+LgprcEWeCt6EU1S9VCC/7hqjAP6AGu60hxzxCre+dR2svNUOf1AURmPkEiGQ48FdrkmGqO1ISRbRJKFlse/eMs5xmrB2jsOQEJH9KzONNTASSlYvirLmAg5KgyxEExNJslNu2TSAWEoGSlZ7E9V6O3vwxkeRUeaG0fg/J56L3etoJKzQAqSCywySzVSCkTFBw3Z1oDXHz3FlesTTQm4naAu7bVuKeaNWysoTtlIAa4V4Uc2uqKZfKgM2kR5BRZ1NvQastkIMTyELpeguxssGz01icZC9jZ62xmF1lnyGxUjNl7pgw7Y7Vh4ls0KyyYtIkZti49N7GNTpUiv53KrBaMq4Dy/gxlzlcgW+EJy82CRuz61nbW9GVqUw8hIgBACpTV55bMnnKobx1OyGS5pSWNXxYGygJaKMDCkUAC2HfEbNEOhxRlS0S00m8KAqwKf8aoFS0n5JCyXhNvF/UpwTODX6mCnJxIkE/nGNRCC5c++EP31a+oOTwFlYH5Fcag1d2vBQRnSjmBIaEaXdvGR0x85tVOfej56y4Ow/k7zs5BM5Iu86f4JxCHSYqNIsWPbzkdsN0aMvzViQhgjRowYMWI8hvjlZZdTLjX6t/kVnwfuXc8JJx9Xd/zlb3w5P9i4h+D2XXjzLwoVqdPrI5i2bfOyV7+Yl736xaggZPCKOxi++h7sdIL+FzyJ//3Yx9i7ay/Hqm6OcDpxhGRQFzn33a/AziZpJvMphEBozb6pMvumyty4a4J/OGMRScfCnhMmjCLFtnvzCK0paoeBUNBpVXCEpqIlo5FH0bLwlM8RpLDmpKFKTHqj5TUyriBQKCBT/Tnp+bSmq1EaF5KuJJP3mRqbZCYw+J29klUZxaLkbIqtDgSFMYfeJyeQnvHe00qDTqCG8xAppIQ1fYposHHTVJmERL+uirjUQ5dVnZ5OFEgm9idNmqqlCKI5QVcBloYkEcU5vVgINg2VeVJXCjE9jZ6eI/ziJaC7q5GRSoHaOzgbLa1Y7LYsSlKihSRSApRFiKDFh4+5i/iSGuL3lSn6EhZbZIFdFDmMDBkkvuWwKyiSxMJRkl1DZTx8klhILSgTsS2aQM15nziOzRvaW7H9+vo6IcCyFWFgxuwIOExq1keSX0QWkVbsC+amgArSdgI/8vGQ9EVhXf3h1GSC1rYyXjLEsiDUIKSF/KdLsO5+gPcdvYCND+3gXu0xgEUURkw+9xxafv0HorKPBZS1oqIFwzqDsiVjQC4Br/7oG5taVtTPtUX0mnfBgd3InZtQ2XZe9C+XsqcQHvIS27E56pi/fJZBjBh/DmJCGCNGjBgxYjyGmDGcb4AQVMqN9VG2Y/PKr3yAvW//POWbNyAqAVgS4dh0XfJ87K7WQ/YlHZsFzzuTBc87s3bsc1/9JG987dvYNDLGwyJPEAS8/g2v5tznXUC5UEJFjamWgYrYXTbG6AJI2h4v//wdfOZVx7NuYQtaw9BUmUu+dQcvyK0iWd3El7TN/nB266EBT2lUpHCbbEmGbh2l98xurDlhvdCPuO/OUZa3BthhiJuXtGYqzA3IubbizVmLD+UCpCXRkaakBP+zweFtmQSZlCIoWSSlT/9pNlZSzKaldrQjFi3Ccl3U8Dhs3E77VIURJeiVui7CWRyGlpUK7clZuwulUYWIYFoxMZjE8TRBxaKSt2hutmEghBFnEVqhEARofqGGWLYJzlyXNP6QtT4U6uAoKpDYh6+acX4HwL9xPcKvEIUeSpn0TGFrtJagNUdRxEPXak8dIXljopfdqsKW8hiusLGlxQ41Qqud4jz6eBnt2AhQsFeGPGSFFMWMoJGmz2kl50SUiiVS6SQLe7pJl8tmULWxidp9zkDpGl9HaU1O1b/fhRBIDSGapFRYYt7DCS3Yu6uNRNan0howoiw2F7O8+JtXoHfvI1WucJIlOMHSDJ17Fgve8HKy7S2EL7yAbz3nn+hWMKAlwupCCKsWBW6vaL71+kt57n+/iePPPvGQa1bDwmWohcsA+LeP/CtvecM78X2fSCssIWvRQiEEiYTHS1/9oj/eZowYf0MIrXXjo78nGMbG8qhDSIfH+OuiuzvLyEjuj58Y46+OeC0eP4jX4vGDx8NaXPmrq7j0Q/9ds5WYQSKZ4NrbriSZSja9TmtN6a7N5K69F5lwabnodLw1i/9PY9Bas3HDZiYnJjny6CNoa58llQ/8/k5+9KGvoZQmCkJCHbGvNE6iXOSFqeW0S48J7fPbaJD71RSdGRfXlgxMlPBVyDlWD093F5Booi2p0By0IKEiVkQ0pGUKV7L6TatoW5lFK+MxOLVnGnn3HUilkFJga0V+n0WQq7+6ojUfmY7we7qZnpzCL/m8U7XQVk04TCQDFi2eInNqe00MR3R3I5Yvr6/VixRbfnA/N97hc3bSJ+OZ6E/Zt5kqeCxePUW2X2C12KA10VRINBkSKMGObS1kACFMIqgQGqUF5VASRY2CJErDuIa7dI7r1TiOF/DDI1rxkjbemlZk2gOlUGMF1IQRc6E1i7VsAWhNsGU/0YE8xUmH4qRbnQeYVBYJAWUlSUcaa56Qi9KaG8IcP9AVsnYSrTXjQZ4jRAsXWz04c1YuRLNPRqy356QmS8HZ//Ictm3ZwZp1q3j6c55G8MKXk/CKCIlRWC1aVHI2WgmCaoTQ1/C9ULJTCUrKZzQqNsSjj0pp3rpIsMAz1iC5KY+h/RmUmhOJBq72bEIhWONUOC8bIOZFJ3Fdsr/4OiJt0qLPOO48CoUiL0mvo9VqiLUTasV9XpEvXvd1En+iXcTDm7fyja9+h10795DyEhzcf5BSscwJpxzHJe9+M8tXLntU7Twefj/FMPh7XwspBZ2dmUO+HkcIY8SIESNGjMcQT33GU/j1L3/LQ+s3USqWsCwL27F5/0fefUgyCCbakDrlcFKnHP5nj0EIwZFHN2/n2KecwtKjVnHfNXewZ8cevvzjH7JOebwkvZpEVaCmXbi8wFqEAh7MT9XatIXFvXoaK7J5ltXbtK5qyhLkLYsVUWNRpPIVd35mB+kFSTJ9HsWhEsev2INjz9hkGPqQXRIxuVWigtn2Iw1dCZeTX30xC5cv4ppPf4/MxrHaCDq7CkaTZQ4DEUuX1puvS2mimMetYOVtW8gXkuQL9WMcO5jCc3JY47MEKVSwezzNnijFWquAJ1UtsmihkVKTK1ug62suldB8yy6QF5qkbuXfl1VwBYhKSDQ4adRU5zzgFi0estWGiWGEFDg9LlYqw/iNs3PpAl0ywhLQIgzr9n0LNadvKQQL7BSt2jJpkgK63Cznqo46MgjGumGJstiqZ3Ne/Ujx/U99B21LbrnyJvZe/hvekCzORm0FuCkzpvExB6UVIDhw+Eoe3Lidiw6XvPCYNjJuO3smQ756a47CoMcyT/CaFZN4cradbGsF21bs3dmGri7f/bYkrIYeV1oVhN8kZdOxCddvxjntBAAuqH7uUrK5UqiFwJaSjXdt4ISzT2p6zqGwdt0a/vvTH/uTrvlbo1Ao8sMfXMY111xPe3sbr371SznjzFMf62HFeIwQE8IYMWLEiBHjMYTj2Hzhm5/hpj/cwk3X30prWwvPft4zH3UU4ZEw+ds7Gf7qlYRjU6SOWUnfJc8jsWrhn9xOe18neytjfPmXP0Y58Dy5rEYGZ+AKyYVWLw8qQwilFhyeXognbUoIbo6KnKHTuEkPBFQKZfbYikhYRAg2uZJ1vkkglLZERxHSDlnlFbCnJylN2FgtM0YJjfDaIkojs9saRwhaTzqapz7/aVi2xZoPtrH9xR+uESrPMwQlHPWxezxEwmuq2imkpGVpCnmIfvM5j20HBMv7p5FSIxDsHs+wZbgVEIzjsEBU6lIlJZq05zNd9rAQCKGx0z47dUTJ1/SLFN3C5Yj0EHaHh7M4bSQ4BeiijxotgBTItlSd6I6wJDLj0baywPhmanWEMyWONQ9GJ6Liz95rAIwKhxOsDCGaAVVkjAotj7BNTAhBpdqei6Q1tBmo5AE4qzCAPaP+aQvsDg/hWYhcwFf3T0Ik2exIvv7Zf+Ozv/46PUMbSFaN75e1O3z4aR384irBamuSeXaXWBIS6YDRpGbat9jvaE7uyfHClhJCaCaLFjpnI+bLiWqFSM8+YLnk3W9mwwMPMXGwQg+ND14qqEehS/v3iWKxyLMuejEHDgxQrqal33LL7VxyyRv5p39+zWM8uhiPBWJCGCNGjBgxYjzGsCyLc598Nuc++ey/WJvD37yK4S9egS6b1LncjQ9SuOthVv3kA3jL+/6ktjZvfJgvf/4b+BVjD5D1mm8f2ufoNy722klKB1lVKR20FVfIAiet6ufC1z2bjbv2kvvyldhV0jJuSW5LCFqVZtFJaznh6H7KP7wcWWU1GTskkQobvAQBQ5Tm8FNfwx1Wlks++2+1Y96axWjbgmr0yK9Y2HaIv7eIzNpIfJo3Dgcnijwgy5wlsjCvpjIE7sol+HxRc5pI0hpadPfCcacEoMHdG8JkfXtSgJSKe0WZpyzO0N06RKA1/cAZWnDZvjQjvkBkbJwlmXpj+aSL7BLoko+Jj80bswSvzyLaWOWQTW7JHDPXhkAZwZhIYgvNYhmxznbZFAhyStOhaYjsKuoEcRFC0G2lGYwKKDT9jmlbJC28NS0gTI2m1eHy1q4Eb70n4sOf/CgZ16J7aivCqSfitgWnHKdRWwJksyWxHeSZK/nd7dt4z8Jpet2QGYHbznQEiYj8sAfV1FilQVk2B50EW/73Z0TFCktPWsuPfvFt/vDjq9j+hasgUrX7jLRmpy6ilOCIk49qMoA/gukp2LwBkik4/GiwH1/b7ct+8ksOHDhYI4MApVKZT33qC7z4Jc+ltfXQdcgxnpiIjeljxIgRI0aMJxhUJWDky7+ukUEANKiyz9CXrviT2/v1L68ythimGaYImp43hm/S+LSmw0nXyOAMAqW4Y9t2Os46mtNfcgGJRH3tlhaCfCbBipedj/+Lq2tkcAb+dGMdIoCKYNuYy2Ak2BFKflryeKi9t+4cYUmy73wxIYbEjY2mjdl6pCmvn6Ly8DThzoPooD51NahE/Oz2AU761CVEKY+ZZMQIE1m72ZZstSMSwkZFNsefGnHmeT4rV0esWBOx6DyblsMblVI1MHZ0F72941hSk7AgaUGLrXn5knGODSR0ZRp2akIKRNIx8cpDyCPoCCYKKQ6lEqGAg1iMIdksXG6QKZKW4sWpKS5I5jg7UeBNWZ9F6TwKjZ7TUYRmj6WZ7ycv0Bxme7QJ2Fk20Ul3WQZhzQruCEvSm3H40T+dzWELexHFqeZRWQGdbTBU9AibhOksC0581+tZ1SXpcGbJIJhoqJIgEhElDSUNeQ2fHa7w7Vd8jDu+cxX3/ewGrvjAN/je6z/BOS98Gs/9xruR3S34KKYJ2WIXyXnwpkvf9ifXD/Lrn8NbXg1f/Sx89lJ40yth944/rY2/Mn7/+z9QLjcqG7uuw/33b3gMRhTjscbj65FFjBgxYsSIEePPhr9/pPkLSlN88E/fnFYqFWPHUMVvgoO80FmEOydtVCYcVr/xmYhPfoJiqcQhFTW1IYx2wuXJ738F137kOyAEYRBiuw6rn3wiC5f3MNmE7ShfUhixSXWFWNUdTBTC1KTLFaNJRqrEwHJtnvXccyl+73LKV1wHQYh73qksec3z2GxJ9l/6fZaUHPKT/6+9+46PotoCOP6bma3pJCGB0HvvVRCpAioIiIq9PfuzIPbeffaCvfeGXRRsoCDFAoJI7x1Cet06c98fG0KW3QgokJCc7+fzPs/Mzs6c3Utgz957z3EQl+BHMyCYF6B0yl/EDFfEdKmPaYFpwrzpmVw7+WmsoMlk27vUs2mkWFCkwXabgUIno+zjVHxdiybNTGxl29JCPQE1EtrZKN1kESxRZcOg2KUpzunXEn7dEvE6bUDDOB+mYYs6w6csCGYFMOpEf3/zN4bu4wnYcDuCYbNsAQXrLAeLjJiwpw12FRGnWWHntnT4+SXGh9/rItYKNWvfZijydFWxsCltbH6Oc3pCVUFxkV1qoZJMtCgtQwwdtOXzCX76PapHb3BEZnyWpcjO01iWF0+7OsXoqkJ1V4cT+g3EWb8+550zAv2zdyOeb9dhNoqFpaGEcI0JrfQYbBW+oDB9AbLXb2fhRz/S9+wRXDL9ETau3MCfcxfRJdZNn2F9SUoNvcGWabH01yXk7cqleYeWNGrVmGAwyMvPvMaU9z6lpLiEdh3bcud542j+yXsQCIT+FxoFePBOePbNUCZbDaSmpqJpGnvXlTRNizp1kqomKFGlJCEUQgghahh73SRUMFrnenA0rBv1eO7ObGa+/y1bVm2kcdumDD5tJMn1UgA4duQQpn35LR6Ph6ZaDINsdbGjo5QKldJvXJcW15xE3aHdeK1bU26YdDt5OaWkGLHoFTIaTddo3as9+fNXsOaBD/DtzKWD3cDdvQVWtxY0HdCZ9PZNUKXeiKWZu+3a6MSXGUd6fQ+6rsjc6WTNLgc7HEFQoT188Q3q0HnhH5T+sRx8oZlN7yff4p/7B+3ffoQFk9+jcYGJCmh4ChxUXHpZ+Nly8r9axXKVyoZcC617M3ppGiU5hfiCJhtsBhsIVUR1E2opsPsVNm1olieqYRQ46ukE15mYChQ6qXdeTp1ti9GiFNMBsBkWOTsdxMSbkY3XgcLtOgl6Ec6W8XsOahqezaVsXxlK9jx+O5qucNlMgmUxB9FoqftpqgdYbTlZbrmI0SySdDNieaZdgzYOL5+Ye1XhrJBH1NNNRrs8Ffb6aaQpnZJcjfCUswJLhRKmhb8T7NkSG3nheyGVYucaHx4zls831qNn3Tzqx/owkhJxjB4PI08Mvb6kZAylcO715YPXgg1ejcXB0HEnetQlcUFfgGXTf6Hv2SMAaNq2GU3bNgs7J3tHFvdfeCelhSVlFesVnY7qQq7Nxw/fzChfdrlsyXJWPbOFZkm2yK9C/D5YuQw6/H2j+8Pl3PNO57vvZoRVNtZ1nbppqXTu3KEKIxNVRRJCIYQQooYxEmJIHNmLgm8XoHx7lndqLgdpl4yKOH/r6k08euE9BP0BzKDJusWrmPPpTK577U4atGxMn369GDJ8IEu+ncdlqgnOijODTjvxbRpRd2g3ADp36cj0Hz5l3Yq1vHr9ZDyFpfg8XpxuJw63k5NOGsGya1/CKlvOqkwL76L1aIbi2pmfs3btBho1asB93duR9NtSDGtPYhhUsMByE5dnkJ/jJIjFb2YBU6xNOEwHTt2G17CY1Kc/gWlzy5NBAAJBrKxccqd8S3Gim2BBAF/AhmEEIhqQa36TJG8+24mh75hQ5cUFf/2Fz+/HXvbaHehoSiNWQbwJlgaWqWFaoT1wFZlKI9vvoDBo4Vc6ObiI+2EZiSNb41Df4tp7+aWmyC92kv+XQUazUDXP3SsrfUHFzL80ftmVTFo29FrnpV4DC0vT2bLFRv6uGNKVRgATh6azMuBmk9JJ1YP0Ncp6EGpgQ9Fe95KgmSy3XJWtPsUWpbSKBfiVhQ2NnnZvRLsQm6ZhesCba+FK1sOSPWUpzOyyRCTgJ/DbSlRGHPZ6brDrqJIAgY2FdHAGWGiLJT9g8Ma2GDbWi+eiiy5kwJD+5ddy9uhD1osWDk3HXnYP01L4LY15haGPuI2cFo3sJrZggNxAZHsJwxG9yuhuz970JHm7csNmyJfM+5NtpTlhe/AAYsrai0TQNPBW0m+0CnTv3oXb77iBe+95GJvNhmma1KuXzhtvPhfxuyBqB0kIhRBCiBqowV3nojns5E+dD4Ae6yLjptOJ69024twPHnoDX+me2QIzaGIGTT585C0mvXgbmqZx38N3MrfkSQJzV4XNEFm+ADmzluDdmYerXmiJnaZptGzfins+e5zFM39n65rN1Gtanx7H9mXltS+XJ4Pl9/P4CcxewQrPUjyYLCso5My1G3iqUUda5OehAx40/gi6ycZBrh02aIDSWeIL4LUsvJYXLHDanByVnh59f53Xx6rnPsLvSqJIA0epA7czUBZz6JTdq+jqOv3kGBa9hoYSwocem0xscTFd4xpi03Q0BY2CEG+FtvkpwL/WgA6RM36aBms3O/EH93zY3jZrCb/N/YOB6SZtY3RiygrHBC3ILnDjCxiogMbcqQ5adglSp77FquISvl+uyNwZTxwaKT4bm3wONmXvuVdAt3gvsJVdgQKOT2iPWZZJpmg+dAibBbRp0EgLsDjoIqg07Hs1flcKnJrCjkkAA6VCuwl3Ki/FBFFK4daDUQu/+BWs/s1P+4EudIcqT2it4gDBXRX2rykLc1sh5rbC8PfM4WCLsYP5xaWUqCBshLuvv4+rb76C0SefAEBichJPpHdiwIbFDEqyo2nwe1GQyVssNM3GLY1NWrgVplLYNT/bPA4+3pFMsGwDpO6w0X185YWcCnLy2bx6U1gyCBDw+aljxJBFQdjxH/L89Iq3EbPXG2IF/CzLC9K8sJjYhMp7wR1OZ5xxCmPHnsCffy4jMTGBdu1aSzJYi0lCKIQQQtRAusNOw7vOJeOm0zGLPdiS49GiFPBQSrH+rzVRr7Fu0ary/9Y0DXe+j2CUREtz2PFuzSpPCHezO+z0GtmPXiP7lR8r3ZgZ9V4mFsfb0tHRWG0VscRbyMO52xhkpuPSDIKAU2noZbHYQkHRy1WPEodiu+ZBKcX/nriHRIebwiivNagg31L4izz86nbS0O/BXeogKda/VwEWDQNF02AJV553DU+++igbN26iuLiEGJuLVq5UYiyIt/SyNvehBafeIp2lvxh06GtStroQQ4ffZtvx+/Z82LZQeCwLgvDVlrp86tzEhDQXrWNsKAUpcR76td3Bsi3J5Be7WDDH4F3PJmYHdlHHEUufuKaka/FEY9d0WmpxrNIL8WqK3fNfKVoAozzhq/DB32FncdFGTD2NU2P8Ze9v2VkaOFAMdBYy1ZtAEItc5cdbNmuogJJmTbF2bEUPhvf+s2saPxQlMPNrRfd0P90yvNiDfvCEJ8xBK7Tnb29WMMCqUi9+NHQ0LBQ+r48XnniZ48eNxCjbjzfx/lsZ3Pc4DCs0O2cCASvIrU2CtHC7cel6+ett6PYzMKWA77IS0HSddoO60emEo6K+jwABf+Tscbkovwff5foYm2KnXYydGENDaRoBCz7KdDD77pcJBgOcfPlpHHf26ErveTjFxMRw1FEH1mNR1EySEAohhBA1mO5yoLsclT6uaRoOlzNshnA3hzt8iV18+8YUrdgcsb/P8gdwNw2v6lmZ+A5N8G7LDm+wrhSJaBxrS8Oh6QxWqWyxPDyWt44FiTZ6qFQ0BW7NiGiBYEdnVKtutLp6FF17dMbpdLL4t0W4Skupg4ahVUzEYI0Vei8su43U88bhK8zEmjELPRBeOdUESk2T5X+t5KE7H6NZsyb89ddy5hVuIEvzMUari0Ese9u61s6i7TZSG1pYFni36hh+rXwP2+6anYV66L2P0Z3Mzbe4qbGBo6wp/O5oOzXJ4fuVqbxfvIXZgV1lRxW/lGzEcNSjsS16+5BGziRGxMRhKtCVoonuJ81m7rm0UmUJsBZqWN+jLU/M+4Uhzkak77Xe1a5pNLMpdqkSvHu994bNIOH0sRivvImVX4BWtrw3oGC5z00AnT62EloX+fCutbDVDS1/1bTQ7KNPwfRcneNTLVwVkkKl66wvtig0nbj10FsSUCallg9vqZfC/ELqpIS+fDCDJkFMSgN+NE3DUgpd0xiTujsZrPBadOic6OHXFt0Ze+mpNOrYIur7t1tKvVSSUpPI2hZ67+1opOEkVrfhT3Kww8qnqMJS0KCCC1bmMayOk+Epbhy2eGbm6GzyApQC8MnzU2jWvgVte7T/23sLcThJ2wkhhBCilus3ZiB2Z/heKrvTztHjBocda3TecIy9ztNdDtJG9sKZun+9y5pefDx6xWsohZ1QMRhHWRVIl2bQWHczwl2fa567g+m+TWxVpZiVbHTbuXYLnzz+LjeMuZonJz3CnRPv4eaiPFabQYJKEVRQoHSmm7F40bEpaFwcwPnWj3jnbS1PZCpSwM/eUN/FH7/5ibvPPYuXGzblx6bNeSDBTn17AKuSvg5ev8aKTQarthhstjSKNMrbN3g02GJTmBVyq4F17ESryhrAImFUBr8aBcTFxRIXu6dMy2/+TEwVfX9fvqawoRPQIEkLMMBRglGWiGla6FaaDhgG9m4duP35Rzhh9IgKM4jhdJuByx45h2AzDFr278HaAcNZG4ihyDTICdr43ZPASn8sHWxe2jp86BooS6c420HAo2MGNDwenUe3OPgwy86UXTo+C5Q7BuVwslNzcf+mUMKsaxqapmHXDJyaHd3QiIvfs+wyqU4iLndoD6SlFDoayY54HFEbGILLZnDlMzfvMxmE0P0vve9KnDEuYnUbXUmgAS5SlJ16hXBqXFtS4+JRgGlZ+MwAAaWYnuvltnWlvLrNYJM3/KO23+fjhynf7vPeQhxOkhAKIYQQtdy4K06jXZ9O2J12XHFu7E477fp25sTLTw07z90wlW5vXU9ir9Zodhv2OnE0umA4be46a7/vFdsyg26vX0dSr9bobgfOuoloRuTHEadmMLJOU9q0aklGTAq78Ee5GgSVRb4KsnP9dvJ25fLHrAXEe20UoHFLST4TS4p5PxDLx8E4spUNQ0EPHzQwQS/2UrJ+F9tK4lC6QYllUWpZ+JRicmEJWWWJYmNdo92bH9PfHUsdw0Yrh5Oj4wOkxfoi4tENnVLnntejNNhhmPysClhuBNlqC7VvgFDS6SGI206FKp0V3wONvh3bsGDhTzz+xAM89fTDdOwcmlkKoPjIv4mAsggoC0spLKBAsyiqkNi1t+09r7dnSWgAOwkPTMLtdvPYY/eTNurYqK0RjLoppHVoibNsxlgRSnAdjRPZuWMnf348l0UlMUwvSWFGaTJbgy40NLo6PWH7Cx1Nk4gd0R738V2wtW5KG8uFHZ1pOXYuXeti05hz2HDu1Vy61E9eMDxqTdNwGnbGTjgRe4VCMIZhMHHSf8v7BTaLTaOZM5kVJVpkwq5p0OHAGs237NyaAWcPp7HlxKgw46yZCs0X5MpBJ2LqFj4rgFVhHamhVfIRW0FxQfEBxVDT7Ni2kw/emMK7r37A5g2bqzocAWhq7yYkNVBOTnFZqWBxuNWtG09WVlFVhyGQsahOZCyqDxmLcFlbM8ncuIP0phnUbZh2WO7p2bCTpRPux/REJlcx7RtjXnEcz976FJ5iD/Vw0kaLK99HaCqLAIqFqoBghQ/jCoXH9JMZDI1tT0c9Uo1QH7qMIDQPElEZ03AaTLc24FWKRYEgxWUfj5RS3JIQy9Exbvbu9G7ZbCzKTsI0FUrTsNkM2j10AT+98Q35m3fh9fowTZOsYAmfFyznpKSOpNpi0KG8dud2e4AOfTM4I3MJzr02pvktjY+312FNciolzWOpU7cOXTp24JZr7wTAbThJ1By0NxJwoJPmSMJbNgO423hHEXX1aL3+IM/rpsVvr6GXJYFWbh6eS2/ELCwOVWi1GWCzEfPgrdC+NY/e8ii///AL/mCA7EARPoKkxsRzursNli98ya0di9FxOZTVyiHuqHrE9UlHd5TdK2ARKAzyv2dW8acviE+3yNM8oMAVjN6vz+6wM2X+R9j2WtYaCAQ49eTzSFhXTDdXOhaKFEeQCY2y0TWFQwfLsKE7nXDPY5DRMOr1KzNqwBiOL60X1kKlPKZYFzPSCljy5zKsCjPNMS43Hd0NsPZaXu1wOTn9mrMZesrwSu+3Zcs2Pvt0Kv6Al759+9C/f98aU/DliylTmfzgsyhLoZRCN3TOufhMzr307KoO7W8d6f9W6LpGSkrlBY1kD6EQQgghAKjbMJ26DfdvL+DB4mqajjM9KaLYjO52kH7yAAoT48u/1N2JD48yaai5cSqd7WYJOVoQa++2EWg4dTsGOiYWC/07aeFOoWtaE9JzfRjFkcmnstlxN27Lt0sXh+6v6VhlSzI7xrrD9jzuFggG+daWh9uyEUSxza7oOmM2V759CzuWrOPtZ95k6uwf2eoNVaPcofnxoeNGJ4CiiCAqADmFDpxHDYA/fgNfaC+n39LYUupgu8eJe2sRmzZt5pOCtThtdmJsTgxTI153UIrJ71YeAH2Vkzq6OyzG7ZaNFM0fUQlU02CdafHnq59w8sWhmWA9uQ6NvniZHW99gfnnMvSGGTjGjkTPSMfj8fL5d9/g9XhxajZcuh2lFPmeEoK2YMSSswAaZllxHs1lEH9UPTTbnrN0u4493sb4nin8OTeTPF8xXhVKKm2GC5sWnvTVMZz0bdqaP579gubDe5Darkn5Yy+//CYla3cywN0CQ9MxgMKAwdsb02mVUIjT5SGpV1faXT0REpMIBoJsX7aBzJWbSayfQov+HTFslX8kzs7NQ7nSibas1+a08+hT/+Oc0y+iIL8Ay7JQStHvmL6MOmYIUya/S8AXQCmFw+WkXuN6DBg9qNJ7TZ/+PddMvAXTNAkEArz26nv069eHF196sryQzpEqKzOLyQ8+i79iO5ggvP3yewwYejTNWzWr/MnikJKEUAghhBBVRtM0er0+iblj78EKBFEBE83QSezXgbSTBpCmayQmJ5Ll9aEsRQFBClQRlrLY4s+hqbNupftfku2x+JWJz2bRcEAHrnj0drY8/gk73/sRgntVu/QH6NanP9/uWk/urhy0oEIZOq4EF/Etm8LqDRHX1xVsCwbw6WWzYz747cdf2bl5BxldWnLG7Zfw5ojQfjFD03HoNkoxKWXPve0omq1dRYlWD11PodizC4/SWFYYw/IiN6H0VpGhx5GouykJ+OjhTqd5TB1ChUwVy/05bDQLWRHIoY+egaHr5VUw/wjYaaX7cKOVLxW1FBT7bHyJB+97X5cnhABGQhzOCSfChBPDXuvmjVswdJ2mrlTijD19Cz2mnzWOEjqQRLBCOxGFxhIzli5GMXH1Y1FBKywhBNAdOhltEmBeJj61p0qpx/QTZ3NhM0I98jo46tBcxWBszOevjT+w/KOf6Hj6EHr+dywA774zhT5GKva9lml6LRuL8pJYYIOrBx1PZomPydfdSuCPLcRrdnRdx+504Ixzc+6rN5GUkRoxxgBNmjdm8+ZCGtsSwpaCmijajulPRkY9vp35Ob/O/50dOzLp3KUDrVq3BKB5+xbM+Og7CnML6DmkD/1POAZHhSJPW7duZ8qHn5GZuYvefXpw26334vXuKfBUWuph3rxfmT79e0aNGhk1viPFnJnzos50BgIBfvx2liSEVUgSQiGEEEJUqYR2jen+w0Pk/vQngexC4ru1JK7Dnhmgm5+7nUeu/h85O7PRdR2v10dOoAjLplGs+YjDiV5h9kYpRUCZaGjE2J2MHj+cS26+BIB6pw1i15TZWBUSQgtFftDPZ598SwujDhfdcDbZxfk0b96UYccOQlu0lNI7HgXfnpnFgKYx12ex91yjbuisW76W+k0yaNS4IW+//RI33XQXGzZswsJCr7BY1UDx31g/dQ2FtX4TFmAonR0BJ8t8ewrIaJqGE50Yw0EXZxrN7HXKZsIU8Sh6OJLx+k12miX8oWUzsmNvVKGHus0b8MVf85m+fhs3J2XQ3qZjKY2VPvjA9FGgKfSikv0ao7ppKSRZLuIMF3qFpCjGcJDthG7njeKvt77Dm19MUtN6dLtkFJrLjvrrL6w/5hKtWaGyFDsK/ZRY/rLaqyEmFoVBD32696BeXCJJv28P9acoW7JregMseft7CkpK6Th2AF6vF7ce/SOtAhJjYunQrQMXnXgx8QVBGupxocROQdDrJ+D18dwZd/LfT+4nMSUp4hrX3HQVt/z3FhIsJwm6AwXoaCS2aUDPi04gc+cu3nn9fRb9vphGjRvSrm3r8ue27Nyalp1bR1wTYNasuVx6yUSCpknAH+Dzz78msFe1WwglhZ9/9tURnxBGmWAV1YQkhEIIIYSocrrLQerI6D3R0hqm8/DHT7Bl7WY8xaU0a9eczZu38fsvC4iNi2Xn4o388t08An4/KPArE7MswTCDJot+Xgg3h67lapRG4wcvYMV1L2ILWmhAphbke6MUnzf0nHkfzODJ6c/vmc3o3Q3v+afiff4t3ISSjJleP194o3+MSknfM9PUo2dXvv/hcwoLi/j+janMnvI9/rKZtM52ixR9T69ACBWXaW338affTaEq22+nFEUqgNf00ya+LjZNp43uo6fuRRHaD3mUEcdtxaX4bHDe89fjdDpQSnF3uzcJmkGe9HhxGxXaj5S9tGbtmu/X+CSnJJPqTEAFQ8toYzBoqsUQr9kwCxSlRaUk9GpF5sxFFG3cTu7db2IYBumdm9Pnupups/4TMIvRKxQQsoKKmVlOSgjg0GyYysIs213pinEx4eIJONbksPD3L9l7F6QVNFn60Sz++HIOJzTtxppVa0kxYrDr4csqDUPnjjceYN7M+XhKPbTUEyMKvmhoWCU+Hrzwbh749PGIWay+/Xvz6MuP8twTL1C4bieNU9MZfcF4Bo4fzrat2znrpAvwlHoIBoOsWrGGn3+axwOP380xQ46u9P0MBoNMvPomPJ49s4E+X+RS5t0cjspbxxwpBgzpzzMPPx9x3G6zM3jEwCqISOwmCaEQQgghqj1N02jcas+sYcvWzWnZuiyZOQnGXnIKV465nOBeDdIB/N7wD9rPvT6FjeQRb9MJovDs1W4hPyuPzas30qTNniVsN3w5jT92bCVBKYothdJ0WsXWD5st0w2dOnWTadutXUQMCQnxjPvvaWApZn/8AwDtbF6cUWZNLCDdCFIYNFBKYaHYEizGa4YSyYZagJ66N6wyaRPd4oakFBq/fB9O557kYXftwB2+XJq609AItXFQSuFyuzjn6nPJXr0Vd3I8sftoHWLTDQJYONHpqCVgEBoXA43Fr08nABjKwoGG6fFjAlvmLWP7glW467s5aVQsyck2UKDZbfxcmMqX86ahW2DXDezKIKhMcBi06dCa7n26sXzjT2iVtJBQShH0BYjfBYUxilIrQIwCu2ZgKYXNYWPoTWdSr3F9pn8W2v+oOSp5jQryduWw5s9VtO7aNuLh7r268sp7L0Qcf/7JlygpLikvKKOUwuv18sBdj3D0oH7oevQFzStXrMbvj5wNrEgre3+dTienTjjpb889EqSmpXLVTVcw+cFnUEqhrFBRmbMvPkOWi1YxSQiFEEIIccQIrttM6eufEFyxDqNRfWLOH4+9S1vccW5ccW6K88MrARqGQa9Bvct/3rU1k82rNoIGRRHzTiFKKZYvXE6TNs1YtnQFLz3/Or/9uhCA3PKTTDZ6smgSWxe3w4VlWbTq1Jqr/zep0oqQuqEzfuKZnHjZKRTlFeH+chrBj7+CvZJYw2HHqzkJFCmKtSDLfLtYF8hBiwnNJXbUfRFtKmwadLXZScnY06xe0zQGDOzH7J/mUmr6WVeaSV1HAm7DQUJyIh0T0vnx8qfR9NCC20KXYlWSnz6D+3HaeaeQkJQQdo8OfTrx59xFZChXeaXXPW8a2FCE5tvCgwv6g+RvKuS55wpITrbhjrXhsyfx2fpfyguMaGiggUO3M3L8SC67/lJ0XSejVUMalvqJMUNtNfJ0yLLpKA18u2eB/UH+O/4MdiYFWf/tQur67DRp15y+559AvY6hRKNZ6+a4Ylxk+TxkGHFhFUOVUvixKPV6mXzD4xx/1miGnTqifK9f3q5cpjz5LkvmLMLutDNg7BBOvOgk7A47v81fEFZddLeigiKys3JIS68b9c+C0+mM+jwAXddx2ezlRW1tms7WzduinnukGXPqKPoc3ZNZ3/+MaZocPaQ/jZs2quqwaj1JCIUQQghxRAiuWk/+ZXeFWiIohbUji4I/V8K15/Ofh5/FW1RKjHKUz6zYHXbik+I5/b9nll8jPztvn/dRSpGfl88tN9zF559+Vel5paaPTKOEzz97GYczlGTtD7vTQXK9FKxRxxL8bHp4Qqhp2BLiOPWD59HKqkru2LGTn3+eT1xsLPOe/JyY4uh97DSbgZVXiF4hkbvj7ps4bfx5FBcXU1rqIVf3kBrrILEE4gqLQ4lRWWuE2GKLjEIfH7w5he+//oE3PnuF2LjY8muded15rPlzNQnFRtiezX3R2NP4Ojc3CLlBdHsWCZqD7Cj9JQ107A47/qx81l35LLGmKr9GigWOoMUGu1aezisgLzcPf7ybLhOGMPKEY4mPDy+x339YP96Y/AbbMnNIUW4cGBhaqFehAnZYpQAUZufzweR3+PKtz3C2SKFjx7Ys/eI3SgqLsUwLT4mH7975mk0r1jPpmZtJTEokNyfyz5RlWcTGxkQc361lq+bUq5fGxo2bqdgBzu1207RhQ7Zu2YpZNi5m0OTxR56mWbMm9B/Qd//e9GqsXkY9Jpx7SlWHISqQxvRCCCGEOCIUP/MueH3h/QB9fooee52CgkJK/T5yg8WUWD68VoCgA5785GmSKhQKadSycdQZPEWoL5pSCpwGq9as+9tkEMButzPyhGNJrV93v5PBivSMerjvvh4S4sHtAqcDvXEDYp64pzwZBKhfvx6nnjqO408YzoALRrEGDTNKe2VN1zEa1gs7Vq9+Ot/M/Iw77rmZiy87nzvvvZmm8elkmI7yJuu7GZpOuh6D4bfIy81n6sdfhz2e3qgeD332JKmtGxHl9n8r4nxdw1nWWsKhGbg1O27NjlOzUZwXmuXd+d6PmF5fWOqpA/EW2JXCUfaIheL1b7/k6ade5MH7H2fIgBNY8ufSsNvZ7XaefPdJBhw3kGVGATtUKbnKxy7lZZ1ViK/ibLGlKMopZPHPC/n01U8oyCsI6ycY8AdYvWglW9Zs4uz/nIHL7Qq/l8POoKEDwpLpvWmaxssvTyYlJZm4uFjcbjdOl5Nhwwaxc8fO8mRwN6/Hy+uvvl35G3wACgoK2bUri1rQilzsJ5khFEIIIcQRIbh8bdTjbp8PR9DCQyg5KLVCs06ekiBer4/Y+D0fzN1xMZz4n5P47KWPyxNLhQIVaiMQ1BSxThfTf5rxt7HExLipm1aXKyZe8q9ek613N+I+eRVrw2Y0pxO9Ucbfnn/sqSN447e/aPfLHzhhT81Sp4OY/56FZo/8aOdyuThx7PEAFBcU8f79r+MkIeI8CCVuKbYYCgMBfv1hLicf1QutTgJGWgoACXUSGH3fhXx6zoN7tZlQBLFoqAVppAcIoLPBclKoDBQK/14poaagSAVwajb0sn2NEJpNXPTzH2zbuI3ipRtD1UWjxOiyQLeBZuis8GayvSQ0S+fxeACYeMWNzJj9Vfl1LV8Aa/pvnLyxlFM79cV5fB9e/+ln/pq7GF1pEV8SGJpOvOHCZhnoRuQXCJqus3XNZo49bgg/fDuTX+b8ht0WWjTbo3c3brvvpqjvb0UtWzVn/i/fM3v2PLKzcujVuzueUg+/zPkVny9y5nTXrux9XvPvZGflcO01t7Dgt0XoukZaehoPP3YvPXp2/VfXFUc+SQiFEEIIcUTQkxOxtnkjjlto5fvJwihwuZ0Rh8ddcgrpjevx0dPvk5+dh6kUQcsEXaNJ88ZcfPtljDvpzMjrlUmqk8Rtd17PsOFDcDjslZ63vzTDwGgZvaiGaZr8/vsfeDxeevXqTlxcLBc8cSPbFyyl8PVPid+6A1ej+sScPQZHny6V3sPv9TPt7S/5+cufMIKQTwA3RtheOgglZA7dwSjDwYnrdpBz8e0YGtg7tiL+gWvRE+JIbp7BCU9fyc8Pvk/u+h3odoNlJZmc6YSGho5DC/U6bKb7+C3oZI3lwKEZOBUEAeWy0fa4PrRtlcrLD7wYuecwEODrd6cyvHVDCn9fVb6ktWKMHg2yND+bUy3+WLk14vUWFBSyds06WrVuiQqabD7/QXxrtqLKkljPX+s5rmdzZlBMGnEYe8VglbUuCSoTU1kRlUlRYItxcvyx4ykqLMIKBGlor0OM7iSwOpfpb05l7MUnY4uSoFdkt9sZOnRPhU2v14uKsrfQbrcx4Jh+f3utv6OU4uwzLmbTxk0Ey1qubNm8lQvOuZzp339CRoP6//ja4sgnCaEQQgghjgjus8dQ8uSboWWjuzkd7GzTBMfvhXgrHLfZbPTs16PSZXv9jhtAv+MGlP9cmFuApRRJKUkopUhOrkN2dk7E8zRN48ZbJnL8qBEHFHvOzmw+fv5D/vplCbEJsRx/9miOGT2o0gI0AEuXruC8cy8ra1SuEQwGuefeWzj11HFk9OwIPTvu170ty+LBS+9h06oNBHwBNGA7XtJwkohJe8NLkmaSrwy+DypaGhpj7ODUNCjrixdYsorCmx8j6dk7AajfrRWnfngHpj/AosVLWX/5zdTT43GUvRxdCy3v7Gnzst3vZHefCztAUNH2xKOYN38BSqmI90BZii3rt1D/3lPY9dFsLM+ecbWAIg3yNIvNlgef7e/aMYSuWzTjD3zrtpUngwDK48P121rilcJSCp2941DkBopRKNIdSShUeeJq2AzSGqXz7kcfk52Vg25Bh7hGGGUFdUqLSvnmna/YuXkHVzx0zX6N0W4ul4trb7yaRx58Em9ZSwq73U5CQjznX3jWfl1DmRbeZRvAsnB1aIZmt/HHwj/ZsX1neTK4WzAY5IP3PmHS9VccUJyiZpE9hEIIIYQ4IrhGDyHmrBPB5YQYFzjsOEcMoPNTtzNoxEAcTgexcTG43C5atGnOrQ/cuN/XTkhOLN9rqGkak66/AqczcnZx+HFDOXHsCQcUd352HreccQNzps0mLyuXreu28OaDr/LB5HcqfY7fH+Dssy4mOzuH4uISiouL8Xq93HH7A6xcufqA7r/8t6VsXbuZgG9Pm4MAinwKGGIvooEeIF63aKAHONMR4HijLBmsKGgSXLYGc0dW2GHDYSfO5WaI5iYmaosFjXq6VeEnUEGTl/9zPwt+X0S0buUWipg6cTgzUmj14tVkakEUofYbWbpijs3LElWAbuicdPKJuFyuiGskJibQslWoLUnJvL9QpVF6/Okat51+BttUPgFMLGVhKougMtnkzS6bIbTYEMwmNiUB3dAxbAZdBnTn+hduY9ZPczBNk3RHYkTVVb/Pz6JZC8jenhV53304/cyTefbFxxkybACt27Tk7PNO4/NpH5CamrLP53r+XMf6odew9eJH2Xrp46wbNJGS+cvYsX0H0b57CAQCbNiw6YBjFDWLzBAKIYQQ4oigaRoxF5yM+4zRmDuz0FOT0eNClRxvfeAm/nPFeaxesZZ6Gem0btfqX91r7PjRxMTGMPmJ59m6ZTv1M9K55vorGT5iyAFf65v3vsZb4gkrTOLz+vj2/emMOncs8UnxrFq5hs2bttCqTUuaNm3M3DnzCQQi+9T5A37ef/8T7r775v2+//qla/F5IhOi0XaFvUKWoGvgRCNDr6TYiN2GlVeAUX9PK4Ufv5jBy/e+wLm6LTTTFmUJ6t6dIXU0kkyDzet3UGx6iDNc5f0clVIoTdHhqM4A1OnWktnN49i1aUeo7EuFy3fs3p6TJ4xj5oxZ/LHwT7xeLy6nE90weOrZh8sTNFvdJLAbEAifHSv1+EhqXJ+psz7lu+kzydy8g+bNm/Lu+1MIrssh1oglGAjS4+iePPzU/VjBIIbNVr4MVCtLgGMMZ1g/yt1sDjvbN2wjNSN664m/c1S/3pw4ZihZWUX7PrmMVeJh2yWPYpXsWVatgO1XT6b9C1dFzA5CqKpp7z498Hq9LPx9MTabje49u2Lfx1LX6m7xoiW8/+7HFBQUMvK4YRw/asRBWd5dU1Xr0f7iiy945ZVXWLduHbfccgtnnbV/U+VCCCGEqF6ylm5k06w/0e02WozoSWKT9H98Lc3lxNa0YcTxehn1qJdRL8oz/pnhI4cyfOTQ/TrXsiwW/PYHOTm5dOnWmYwKcSxfsJxgYO+0KJQwrF6yisefeZ6VK1ZhGAaBQJABxxzFwGHHRK0CaZkW+XkFB/Q6kuulYLPbCOzVCD2jkuWqdiCgwpNFAEwLW/NG/DBtJi898hL1skoYpSUxkRhKbEGCRpC9F3CaaGSryI+bXmXhLSil2PDjCwRItMWiaxqlQR8ltgBDRwwqP/eCWy/m0asfJOD3lzczdzgdnHXtudjtNl567WkW/r6IBQsWkZqSwsjjhxFXoe1E4tgBZL8+PWwu0lKKACZXPf8cX546jFNOH1f+2HEnH8eKZavYumUbrdu0pGnzJmVvTPjrGHncML6e+g0e01eW1O69FzJIeuOD9+dxX4p+WIiyoiTzpqLO0q0MPXYQM3+YVbYEGWx2G4lJCdSpk8jRvY9F13UUYDMMnn7hMXr26nbYYj+Y3njtXR5/9Bl8Xh9KKebP+4333/uYt997WZLCSlTrhLBdu3Y88cQTvPTSS1UdihBCCCH+AaUU8x/5kDVfzifo86PpBkve/JY+14yn3ckD932BI8CWzVs5/6xLKSgoBCAQDHLKhHHccvt1aJpGvUb1WL98bcSHdTMQ5J33PmTp0uVhydrPP8+nQcMGBIKRSWRMTAzDRww+oPja9+pIMBCM2KvnRRETZcmmF40gCk0pbLuf43ISe+lpvPfKFL569Qu6mTZO0FLKWz/EBe14/aA7ggRRoGm4E+NYldYMa9mWsD1KprLYpEqIiYvh5BHHMOX9T9lp5qMbBhjwv0fvCdv72aFXR+5+836+euMLtq7fQouOrRh97hjSGoa+VNA0jZ69u9Ozd/eor9/RsC4/dUym18Id6IRmKAtVkIeDW8gtsPHJW58SKPaSnJbCgJEDiE2Io33HtrTv2PZv39cbb53E0r+Wk7U9i1QUFacv7U477Xt1IL1ReEK44JeFfPHJ1/j9fkacMIxBw45Bj7rU9sBZBSWoKH9mlD9AMK+IR5+4j7ff/ID33p6Cx+vl2OGDOeXUcZx12n/C9t8CXPqfq5k1b/rfts6ojvLzC3js4clhVVo9pR5WrljNtK++ZexJo6owuuqrWieErVu3BjhovyhCCCGEOLx2LVkfSgbLCnoo08Q0TX59/GOaDOpKTOqB9++rbq649Fp27szEqpDwffrRl3Tv0YXjThjO8WeP5vcff8VfoaiJzW6jVdPGeH/bxvkxnfC6gyzy7uQv3y58Xh9fTf2GK664iOefexWPx4uh6bgdLlLrJJOemhq1GEtllv66BIfTgX+vVgY/BWGITeGqcJ2ggvWmiz91O8d0qkfjklKM1Dq4zxiNp3Uzph17IQYaI5SrPBmEUJLl9dtZFdRYbvcRsBvc+OWLHO3xsea0uzB3FZbPeK62iih2wIChfTnnyvMYe8qJzJk1D7fbxbARg0lOSY54DY1bNeHy+68q/9myLBbNW8SCn34jNiGWQaMHk9GkQaXvwV82H6/4V9NMc+FHsVmF+hs2JJFPnv+QgC+Aw+Xknclvc/dL99Cifct9vq+JiQl8/vUHzJvzK4vmLmTDLyvJ2ZqFzW5jwOhBnDHp3LDzn3nseT545+PyYjHzZs+nT//ePPL0A/s9ln/H3bsdmmGg9loaq7mdxPZtj81m4/z/nMX5/9mz4u7F51+L6Hm424zvf+LEcQe2X7aqLfjtD+x2e0TbDk+ph2+/mSEJYSWqdUJ4sKSkxO37JHHI1K0bX9UhiDIyFtWHjEX1IWNxaP05bylBX+ReON1mkL9kHU0mhGYJj9RxWLduI1u3bAtLBiHUD2/KB59wznnjqVu3M7c+dwtP3vgUpUUlWJaiR/cO2P7aSdAI7YGM1Rz0cTfApdn43budgoIC6iTE8fLLj/HEoy+wYdVGlFIU5ORz1SXXcdKE0Tz0+J37FaPTrker3cIME5xWgEEOBxahSoObLSdrLTdJLhdtbrqUxn3blZ//3ZTvsJQiAZ1oC+90NNItG+9YPtp2aEl+US5FRcVMnPEoD172AMvmLcHv0Ckp9VHs8fDep5/y5kdTOPeC07j93usqnQCwTIvNC1fjK/bQpGcb7LFObv3PnSyauwhPqRebzeCrd6Zy3cPXMGL8sVGvceK4ESxa+CdrSz3lxxJtsdiUXl5sx182S/bUzY/z3ty39jtJGzd+OOPGDwfADJrohh7x3M0bt/L+Wx/h8+2ZifN4vPw2/3dWL1/O0YP6Rr32/vxe/P7bIp6Z/CpbNm/j8oZpZGwrQnlCCZEe4ySxb3san9A76usJ+L1R96palokieMT9XjZsWDfqn3VN00hPT/lXr+dIey8ORJUmhOPGjWP79u1RH5s3bx6GYUR97EDl5BRH/EUtDo+6deMPaEO0OHRkLKoPGYvqQ8bi0PP5zbLSkuHHlYKSUj9ZWUXVbhz8/gCzZ80lOyub7j260rpN5bNFW7dkVZrI5OcVlr+ull07MHn6C+Rm5uCOi2HG7a+zybsFTYU+jOmAHYNurnQWeXcSDAR57OHn0HQNQ2lYFXrTlZZ6+PiDLxl+3HA6d91364nmndtF3VtmopjmC1JEKok6lCqdYNnizoDHx59fzMfdYs9ezeISP7qu4TUr/0wV1DQyDDcLN65k6MCTQp/lFNx5782cccN/eHnyq3w9/TtKvXsSs7de/xB3TBznX3x2xPVy1m7jiysn4y/1oWmhhCtjRDcWzlmEr2ymLRg0cQTh2euepG33zsSUFRqqaNCwwbz20nts3rgZr9eHpmkk2GMi9v0BZGXmsHTRGuo1Oni9+aZN/TFqlc/SEg9TP/+eNh06RDy2P78XX335DbfcdHf5frkrHHaGxKRxVfejcBg2Ek7sT8Koo8jOLo76/B69euKOeR9PhUQZQr+unTp3qVa/l/ujVZt2uJwuiotKwo47XU7GnTTmH7+e6vZ31IHSde1vJ8iqNCH87LPPqvL2QgghhDjEWozsxfIpP2HuNUuoLIvGx3Sqoqgqt37dRs45/SJ8Ph9B00RDY9DQATzy+H1Rv6hu3aYlNtuej1O2sl50utPOyOPDZ6t0XSe1rEJnztptaAp2N0zQ0NBRxGHQ3J7I6kAefr8fHQ2lR97X5/Ux87ufoiaEP/80jycffppNm7ZQr14al0+8hFHnj+XrN78k4PODUjTDTT3NieHUUECh2qs6qK5jc4WXiOk2oDs2w0bQCvKnFqCrsmOrMB0TBDbYbDTAwQ+bV+Oz9uxnu+OW+3h3yqt88/0MSj3hyYfX4+Wt196NSAgt0+LzK56iNKcw7Pjmr37H4TfxAfHY6GbUwYWOZml8PO5Ojnvyv9Tt0DTsOS6Xi7emvMyXn37ND9/+RFJSAgWrd5G9I0pbCKUOaLtSXm4+0776lvz8Anr36UGPXt0inh8bFxvaI7kXm80gPv6frWQLBoPcfcf/ypegAvj8Ab63dlKnscZd90Zvu7Lxp8UsfmUapVn51O3UnEFde/DT4oXlSaE7xs3Yk0bRvEXTfxRXVTIMg9feeo4Lzrkcj9eLBgQCQa69/kq6dKt+f99UF7ViyagQQgghqkZKm0Z0vfB4Fr/8NWgamq6hLMXAe87DmVC9ClYopbjq8uvIy8sPq/A5a+bPfPbxVE6eMDbiOTabjQcevosHJ97NCfamxGihxZQ+zWJkj+jLAAGSm9YjsDMPoLzh+e7/7+dqwOpA3t/GurvS5t7mzJrH9VfdXF4kZOuW7dx5031cff3l3PTiHcz9ahalM5ai5ZZi290qIUo1U91m0PL4PmHH4hLjuezeK5l80+NM132kKAeNrdBskgLW2gx2GQamMknWXeyw9sxK+f1+3nt7CkVF0WeqCgsiZ1+2L1pDIEq7DCxFfc1NqQrSx0jBjla+HDKQV8z0y59iwlf344wPnyl0uVycesZ4Tj1jPABfvv0F7z/zbtjeSk3TqJuRRlqDdEqKS/jwg0/5aebPpKamcNa5E+jeo2vYNX//dSGXXTQRy7KwBTVmvj4Nl2bHHRfDiAnHcdIlp2DYDI4Z3J8H7oh8nw2bjRPGjoz6nuzLpk1boi73DAZNfp49P+yYUoo/FixmyXszUL9sLN9nuHnWEjq7HAycNJHpc+dgd9gYf/IYjhnU/x/FVB20bdean3/5lt9/+4PiomJ69elBYmJCVYdVrVXrhPCrr77i4YcfprCwkBkzZvDSSy/x2muv0bLlvjf6CiGEEKJ66Hr+SFqM6MWWOX+h2200HdwVV1L129+/adMWtm/bGdHuwePx8uH7n0RNCAGO6tWDU91tUJYqny9zYTDjymc4/duHcNeJ3HvU+6JRfP3LymjbnaijuzDQMMuasUdjs9k4fvSIiONPPvJsRMXIQCDAow88xVXXXc5JE47n86l/Ylbom7c7mdJsBjanHStg0ueak0lqGtkyoe/wfnz/9QwWzV7IPN1ivc2JAw2fBqrsOjoapVZ4omJZFllZ2bRs3YK1q9dFXLdNu9ZhP+/cuYtfZv8StlS2PF7AZbORHnBFNISH0Mzi+m8X0O7kYyKeW9Fxpx3Porl/sOrPlQQDQewOO3a7neseuYHiomJOHnsWmZlZ+MqWmP4082duvPUaJpweSihN02TiFTdSWurBpdtpHpuBUfa+eopLmfbuVAryCrjwtkuIiY3hyRcfZdLlN6KUBWgEg0Fuu/cmGjaObKGyP5ISE6P2FgRITk4q/2+v18ul513FmpVrOMtohUOrMFOpFEGvn9gVOTz/8hP/KI7qyDAM+h7Vq6rDOGJU64Rw1KhRjBol1YCEEEKII118RgrtTx1U1WH8rYA/gK5HLyQSbSZmt4XPfQkVksHdlKVY9PI0+t0wIeI59bu0wJkQg7+wNOKx3YmgVjZnGJ8YT8DnD/WJU2BaJpNuvHJPf7wKtmzaGjVGpRTPP/0KzW2J6DYjYgkvQJ3m9el/+WiczRvw1x9L+ejZ92ncqgk9Bvcub8YOcOUdV3LN2ZPYmlNKsunEqpCQaYZOrr+UAis8KXW5XQwcdDQtWzXnyouuxefzlVdKdTqdXH/rRCCUOD58w/+YPf0nPLrJic6We2Yyy9jcDhp1b0Xp3D/RVeR4mV4/pVn5Ud+Hiux2O3c8fxcrF69g1Z+rSElLpveQvjhdTl5+8Q0yd2aVF4FRSuH1ennogScYPeZ4YmLcLFu6Ar8/NLuY7kxC3+tPgN/rZ85XszjtyjOIS4yne6+ufDd3Kgt/XUQgEKBH727/qq1DSmoyvfv24Nf5C8L+fLrdLv5z0TnlP7/6wpusWLYSpx+0aN/DKEXWXxv+cRziyFetE0IhhBBCiMOlRctmxMbFUrpXgQ2ny8kJJ1a+rC9n5ebKH1u9pdLHOp99LItenY5ZoR2FpcHKQC52fc9HNG+pl1NOH0eHTu0IBE0GDDyKlNSUqNes36AeG9dvivqY3+fn5z8X0SjKrJLusNFoQCdSe7Vk4uiJeEt9+DxenDEuPnrmfe54834S6oSW3SWlJPHyFy/x66xfWTXtVzy/rsew27CCJnVbN8Jq6cL9/no8ZXvbnE4n9eunM+akUcTEuHntvRd4+bnXWbN6HW3ateKiy86nbfvWePKKeOuc+3DsyGWIqwmGppMZKCbNHotN09HQsLkcpLRowPhHrmb1T38w/463Itos2NxO0jo3xzTNfRYo1DSNdt3a065b+7DjM7+fFVYRdDdDN3jt5bfIaFCflJQ65cfduiNqFU+bw0bWtl3EJYZmiR0OB0cN6BNx3j/1+FP/47+XTOKvJcuw2+34/QEuuuS8sP2rX376NT6fHwu9fFny3mLrRbb6ELWHJIRCCCGEEISKvjz6xP1ceuFETNPE7/cTE+OmWfOmnHXOaZU+L7VDM7KWboz6WHrn5pU+r9M5wynals3aab+iO+xY/gCN+3VgypypUCEnDQQCfPbRl/Qb0JejB/b729dwxTWXcPOkO8NmjJRSoYWnSlGg/PTu0ZodC1fvmSXUwHDYaX/KQCbfOJnCvMLyqqS+Ui+5vgC3X3gry/I3Ex8fx3nnncGJY46n/7D+9B/Wn6AvQM667bgSY0lskBp6bX268u7bH1JQUMjwkUM548xTiIlxA9C+Y1ueeO6hiNi/ufVVvDvzsWtGeeuANFssiz07SbK76d+7F51H96f1yN4Ydhtth/Vi0xe/sHPxuvKk2nDaKbSbjLvoUizLolef7tx27000OsBlmckVkr2KSkpKeP2Vt0HTME0TW1nC6TH9OHV7RNXSoD9IWsP0A7r3gUhKSuTdD19l86Yt7NqVTZs2LYlPCF+ibJqhhDmAxapAHq3tSaH3uIzhctD1P8cd8L0Xzf2DL978jLzsPLoe1Y2x559EndTo75uo3jS190L5GkjaTlSdI71Mb00iY1F9yFhUHzIW1UN1G4ddmVl8/ulXZO7cRZ+jejJ46EDs9sq/Q/fmF/PeiBtRezX41m0GZ854BEes+2/v58kpJH/jTuIbpLIhczuXnHcVpSWRS0kHDhnAUy88ss/4P/7gM+6746HyvZC7PwG5Y9zc++DtDBlyDAue/ZzVX8wj6PVTv3srjrphAvGN0riw31lYURqVm8piTs5KAGJi3Jxy6jjuvvvmfcayv0qy83n9hJtRptrTpaQst8oOlvBlYD3vfvgq7Tu0DXueFTRZ8fEsVn8xD8uymJe5njlZ6/CVJcS6rpGQmMBXMz4l7gCWZ86f9xtXXDKpfJazMg6HA13Xcep2mhjJ5XsIARwuJwNGDeSCWy6q9Plm0GTzvGWU5BSQ0a0VyRX2bR7I70XWrmymvP8Ja9asp0u3Tpx08onlhVQeeeBJprz3SWhJNBqDXA1pY09G0zVi4mPpNXE8bU78+y8a9vbVu1N57+l38JXtV7XZbcTGx/L4R0+RlJJ0QNc6ElS3v6MO1L7aTkhCKA6pI/0XqCaRsag+ZCyqDxmL6qEmjEP2qi38cO0LlOzMBSC+QSrDJ19BUpMDmx36/ZeFXHP5DRQXl0Q81qtPD15++9n9us4H73zMYw8+RSAQxLIsYmLcdOnemedeeaLSZZRm0Kw0IQxaJnNzV5X/7HQ6+GnW19SvH1l45p/4atKzbJ79FxXrplqADyi0fHxurWf+ghlhLT729uu837nm8hsilvy63C6uueFKJpw5/oBiev2Vt5n8xAvYHXb8Pj+BQCCi4JCu64w/dSydO7dn06qNbF+8kcxNO4hJiGXkGScw5vyxUdtNAORu3MmnlzxG0BcIfZmgFHW7tyQ7ycBb6uHY8UNp26sLhu3vl70uX7aSc8+4hEAggN/vx+VyERPj5qPP36Z+Rj2Kioo559QLydyRSWmpB7fbhdvuYPIzD9O+Zyf0fVx/bz6Pj/OHnINvrwqwNruNE84YzTnXnHtA1zsSHOl/R1XrPoRCCCGEEDVBaptGnPbV/VimhaZrUfeT7Y9OXTtErazpdrsYOerYKM+I7rSzTqZr9858MuVziotLOHbEEAYOOfpv99QZNoOeg3qy4KcFYUmhpSx2+cJ7AdrtdhYv+uugJIQFW7PYMn85Dgjb46ajcAKbzUIeeOSuv00GATZt3Fy+PLIir8cbtbLpvpx/4dmcPGEcS/9azpLFS3nphdcjGrhbloVlmow/dewBXVspxdfXPo8nr4iKhWS3zl/OBquYbOXnr1+W0LJza258+pZKk0oI9XgsKdnzBYLX68Xv9/PoQ5N57KkHiI+PY8qX7/DTjNks/XMZDRs3YOSo4f+4/+HmtZvQo/TGDAaCLJ73R41MCGs6SQiFEEIIIQ4S3dj/hubRuFwu7rj/Fu66+T4CgSCmaeJ2u2ndtiWjxx1/QNdq2741t951wwE956oHr2LimGsozi8m4PdjKYXH52N9aWbYeUop0tLqHtC1K5O1egtGlIVcGho6iovuu4qewwfu8zotWjWPmji5Y9y07dDmH8UWHx/HUf1606ZNK55/5pWIx2Ni3Iw4blj5z578Yha++S3rZy3GGRdDl9MG0+a4PhFfEORvyqR4Vx57dxUx0EjXXGQrP95SL2v+XM0fsxfSc3DvqPF5PF5WrVwTcdyyLGbPmlv+s91u49iRQzh25JADeflRJaYkEQwGoz6WnBa92JGo3iQhFEIIIYSoRkaecCxt2rbi04++JDc7h2OGDGDIsYP+dh/jwZKcnsxDnz7Jn3MWkbllB3qMnWtuuwNT7ZkxNAydtLS6dO/R5aDcM6F+CpqlolbANOw26qel7dd1uvfsSrPmTVizal15UR3DMIiNjeX4UcMrfZ5SitWr1lJUVEzHTu1wuVwR5ySn1OGGW67h0Qef3JOox7gZNGQA/Qf0BcBf7OGDs+6nNLcQq6zy6Y//e49dKzZxzLXhrUeC/iBaJS1OKrav8Hm8/D7z10oTQsMw0HU96syoy+ms9DX/G2kZabTq2IrVS1YRDOxJDJ0uJ2POG3dI7ikOLUkIhRBCCFErKaUoKCgkJiYGh8Ne1eGEadaiKdfedFWV3Ntmt9Fj8J6m3vY6MVx37W34fH5M06R1m5a8+OKT/3hZ7N7qtm2Ms04c/pyiKCmhRnLr/asQqmkaL735DC9d/gD25Vm4MPDF2Rhy2zm4Y6IX9tm8eSsXX3AlO7ZnYhg6lmVx5z03M2786IhzzzjrFHr17sYXn32Np9TL0OGDOKpf7/L3YdkXc/HmF5cngwBBr58lH8+m29nDiU/bU4EzpUUGNqeDQGn4PjylFG4MGmlutigPuq4Tm1B5MRyHw86QYQOZ+cOssMqyTqeTkyeM3a/37Z+44fGbePS6h1n150psdhtKKc6bdD6denU6ZPcUh44UlRGH1JG+CbcmkbGoPmQsqg8Zi+qhKsZh2rTvuPuuh8jNzcMwDCZMGMett11f7RLDw62ysTBNk7Vr1xMbG0vDhhkH/b55mzL57LR7sQJmeVJoOGy0O3UQfSbufzGYBc99wbL3ZhKs0NvRcNk54YVJ1O3YNOxcpRRDB45m+7YdYfs2XS4X7015lY6dwnsT7ssXVz3N5vnLIo77lEl+u0TufeuRsCR6868r+Pq65zEDJmqvGT5TWexSPnY4gtz95gM0bt2k0vsWFBRy4bn/Zf26jeh6qB1G7749mfzsIzicjkqfdzDkZGZTkFdIw2YND/m9qtKR/m/FvorK/LuF7kIIIYQQR5j583/n2km3kpm5i0AggNfr5cMPP+OO2++v6tCqLcMwaNOm1SFJBgHqNEnntKn303pMP2LSkkhu3ZD+t55F76tP2u9rBL3+iGQQwPQG+OOlryLOX7xoCbm5eRFFfPx+P+++PeWAX0NC/eSoy0A1Bb8sXhS2pw+gcZ92nP3x3cTXi+zdZ2g66bqLM64882+TQYDExASmfPYWb7z7AnfddwsffvoWL7zy1GFJ0FLSU2netnmNTgZrA1kyKoQQQoha5enJL0b0l/N6vXz22VRuufVaEvZq7C0Oj5jURI65/ex//PzSrHyoZBlr3tptkcdy8yMayUOoIEvWruwDvn+XCYNZNnUeWHtm+0xlUWT52Fycy9dffsPAQUeHPScuvU7UNh8AzhgXPft1j/qYUooVK1ZTXFhEpy4dcLvddOrcgU6dOxxw3ELIDKEQQgghapVNmzZHPW6z2cjOzjnM0YiDJaZuEipKyw6ApOb1I4517d45bN/dbm63iyHD9l3VdG/JzTNocFo/PCqI3zIJKoudwWI+L1iJpmmVzqKltWlElM2ToBRx9ZIjDm/etIURQ8dy+innc+nFE+nbYyiffPTFAccrxG6SEAohhBCiVunSpSO6HvkRSClFRsbBabReU/l9flauWM2uXVkH/NyNGzezcMFiSopL9n3yP2BzOWg/YRA2V3jiZTjtdLt4VMT5ycl1uOy/F+J276kq6nI5yWhQn3HjI8/fHyMvOon3vSuYUrCUt/IW82nBCkpVAJfLybjxJ0Z9Tu+LRmFz2LEpcJb9z2Gz0e/C47Hv9Vosy+Lcsy5l08YteEo9FBeV4PF4uPuOB/lrSeT+RSH2hySEQgghhKhVJl5zOc69SvK73W7+e8VFUVsOiJAP3vuYPj0Gc/op5zNkwCguOPdyCgv3XWgjNyeP008+n5NGnc5lF17NgL7DefWltyo9Pz+/gCkffMpbr7/Hpo3RZ3Mr0+uKsXS5YCSOhBgAEpvW49jHLiO9c/Oo519+5UU88/xjDBo8gK7dO3P1pMv5+PN3cLujVyXdF7fbzTPPP4bXAcplx+Vy4nQ6OO+Cs+jRs2vU56S2akD9Zhk4NB0DDQMNB5C/cmvEuYsXLSE/L5+9a0L+032PQoBUGRWH2JFelakmkbGoPmQsqg8Zi+qhKsZh2bKVPPTgEyxe/BepqSn894qLOOmk0QetlcKRqrKxmDvnFy6/+JqwvZcOh53efXrw2lvP/+01zzrtQpYsXhrWzNztdvH40w9G7Kn7cebPXH3FDWhoWJYJaJx/4VlMuu6KA34tyrLQoswEHw5FhUX88P1PeDwejj6mH40bV946Y9svK/jh+hcJesJbUNjdTo57fmJYddQfZ8zm2om3UBxllvWYgf155Y1nDtprACguLuHD9z7mx5k/k1o3lXPPP51u3Q9O/8kjyZH+b8W+qoxKURkhhBBC1DodOrTlrbdfrOowjhgvv/hGRCEevz/A77/9QWbmLtLTozeP3759J8v+WhGWDAJ4PF5ef+WdsISwuLiEiVfcgHev+7z52rsMGnw03Xt0PaCYqyoZBIhPiI/ayzCaHX+sjkgGAcxgkJ2L1oQlhF26dYq679HldjH02APf9/h3iouKGTv6DHZl7sLr9aFpGjN/mMWtd1zPhNP3v/qrqP5kyagQQgghhPhbmTt2RT1us9vJyc6t9Hn5efnY7NHnH3Jzwp83Z/Y8dN2IOM/r9fHFZ18fQLRHjoKCQuYsWECQyGI4hsOOq054xdvk5DpcdsVFYfseIbS382DPbr/91gdk7gwlgxDaY+v1enng3kfxeDwH9V6iaklCKIQQQggh/la/AX2jJnbKsmjeommlz2vZsjlE2bVjd9g5ZlD/sGOmZRHtZKVUxAxjTeDz+Thl3Nm8M+8HrCg7uHRdp+mQrhHHL7/iQrp27xxWGMmyLP5332PM/fmXgxbfjO9n4fNFzlwahs7yZasO2n1E1ZOEUAghhBBC/K2LLz2P+Lg4bLY9SaHb7eLaG67820I8DqeDm2+/FleFGS2Hw05SUiIXXHhO2LlHDziKYNDc+xK4Y9wcP2rEQXgV1cv0r79nV2YWhT4vUwpXUmz58VkmfmXiSI7j9Pdvxh4Tet9yc/OY/MTznHHqBVxz1c38/usfWHu12PB4vDz/7CsHLb7klDpRj5umSWJSwkG7j6h6sodQCCGEEEL8rfT0NL6Y9iEvPf8ac+f8Qnp6XS685DyOGdh/n8896eQTadK0MW+8+g6ZO3dx9DFHcfa5p1MnOSnsvMTEBO65/1buuO1+zKCJZVnomoYyLX6cMZtu3bsQE/PPqn9WRwsXLKa0NLT0cluwiGfz/iDNiMHucHDxuf+lXqdmZGUVkZm5i7EnnE5RcTF+nx9d1yOSwd1Wrlx90OI797wz+HX+72F7R3VDp3HjRqGZX1FjSEIohBBCCCH2qV69NO64+6Z/9NwePbtW2nahonHjR9OufRvOPPWC8kQkGAzy8Yefs3L5at7+4OUaUwm2cZOGOJ3OsGWZu8xSYnWNjAZ7+mE+9/TLFBQUlM+eVpYMAhQXlbBlyzYaNWrwr+PrP6AvV159KU898Tx2hx3TNMnIqM9Lr03+19cW1YssGRVCCCGEENXGgt/+iNhJ6Pf7WbF8JUv/Wl4lMR0KJ40/MWwJLoRm4BKTEjh6wFHlx376cU7UpbTRGIbBzB9mHbQYL7zkXOb+9j1PP/cI73/0OtO++5j6GfX2/cRaprTUw/PPvsKokacwfsxZfPLRF3+buFc3khAKIYQQQohqY+nS5RGtJwDQNNasXnf4AzpEUlKTeeu9F2nevCkOhwO73U63bp15f8prGMaeaquJiYn7fU3D0MOeezAkJMTT/+i+tG/fpsbMzh5Mfn+A004+j+eeeYXVq9by15Jl3HPng9x43R1VHdp+k4RQCCGEEKKa+/67Hzl28BjaNO/O0X2H88F7n6CiVKasCdq0bR21UI0GNGve5PAHdAh16tyBb2Z8xsyfv2LOr9/x/kevR8zAnf+fMyPaTNhstrAqo7spBceOGHxIYxbhvvvmBzZv2oLPu2fpr8fj5ZvpP7B27foqjGz/SUIohBBCCFGN/fTjz1x79S1s2rgZpRS7MrP4332P8s5bH1R1aIfEuPGjcTjtYbNRdrudps2a0LVb5yqM7NBJS6tLnTpJUR8be9IozjjrVJxOB3HxcbjcLjp1bs+k667A6XTgcjlxuV04nQ7uvu8W0tPTDm/wtdz8eb+VFweqSNc0Fi38swoiOnBSVEYIIYQQohp7/JFn8HrDl1B6PF6efvJFzjx7QtSZoiNZUlIi73/0Onfd/j8W/r4Iw9AZcdxQbrvrxlq5ZFHTNG685RouuuRcVqxYTXq9tPIqnyeOPZ4ZP8xC1zWGDR9M3bqpVRxt7VOvfjoOhx2/PxB2XNcNUo+Q8ZCEUAghhBCiGtu0aUvU48XFxZSWeoiLiz3MER16zZo35c13X8Q0TXRdr5WJ4N6SU5Lpf3TfsGP16qdz5tmnVlFE4TZv2kJxcQmtWrfAbrdXdTiHzcmnjOWVF98E9iSEmqYRE+NmwDFHVf7EaqRmfaUkhBBCCFHDNGnSKOrx2Li4GtWXLxrDMCQZrOZ2bN/JmBNOY9TIUzhzwoX07TmUb6f/UNVhHTb1M+rxwitPkZqaQkyMG5fLRcuWzXn3w1ciqshWV0dGlEIIIYQQtdSk66/gqstvCFs26na7uPLqS2rcclFxZFFKce5Zl7B581Ys0wJChVWun3Q7TZs1oU3bVlUb4GFyVL/ezPn1O9auWY/T6aBJ08ZVHdIBkb9FhBBCCCGqsUGDB/DYUw/QpEkjNE0jLb0uN992HWefe1pVh1Yldu7I5NnJL3H7Lfcx7avvCAQC+36SOCT+XPwXuzKzy5LBPQKBAO++/WEVRVU1dF2ndZuWR1wyCDJDKIQQQghR7R07fDDHDpd2AvPn/calF16NaVr4/X6mfjGdl154nfc/eg23u2Yvn62OsrNy0PXIJb2mabJje2YVRCT+CZkhFEIIIYQQ1Z5lWVx79S14PF78fj8ApaWlrF+3gbfeqJktOKq7zl07RlTXBHC5XQwY2K8KIhL/hCSEQgghhBCi2luzeh2lpaURx71eH1O/mFYFEYm0tLqcc97pYbOzTqeD9LS6jD9lTBVGdmht3bqdSVfdTJ/ugxk6cDRvvfE+lmXt+4nVlCwZFUIIIYQQ1Z7D4cCyVNTHcrJzOWHEyTRq3JBLLjufbt27HOboaq/rb7qaLl078ubr71NYWMiI44Zx3vlnEBsbU9WhHRLZWTmMG306RYXFWJZFXl4+jz08mTWr13HvA7dVdXj/iCSEQgghhBCi2mvarDEZDeqxYf0mlApPDPPy8snJyWXtmvXMm/Mrjzx+LyOOG1ZFkdYumqYx4rhhteb9fvvN9/GUesNmBD0eL599MpUrJ15CWlrdKozun5Elo0IIIYQQotrTNI3nXnyClJRkYuNicbld5W03dn84V0rh9Xq5+47/HdFL+ET19ftvi8r3sFbkdDpYvXJtFUT070lCKIQQQgghjgjNWzRl1rzpPPbE/dx6+/UkJMRHPa+4uITMnbsOc3SiNmjeoimGYUQcDwQCNGiYUQUR/XuSEAohhBBCiCOG3W5nyLCBTDj9JNLSoy/PsyxFfCXJohD/xnn/ORO7wx52zOGw06VrJ5o1b1JFUf07khAKIYQQQogj0sWXnh/Rf9DhcHDsiMHExcVWUVSiJmvZsjkvvPwkjRo1wOGw43DYGTJsEM+/9ERVh/aPSVEZIYQQQghxRBo95jg2bdzMSy+8gd1uIxAI0P/ovtz/4J1VHZqowfr178MPs6aSl5uHO8Yd8aXEkUYSQiGEEEIIcUTSNI0rJ17K+ReezYb1G0lLr0t6elpVhyVqAU3TSE5JruowDgpJCIUQQgghxBEtLi6WTp07VHUYQhyRZA+hEEIIIYQQQtRSMkMohBBCCCFEDbdu3QZmfj8Lh9PByOOHydJaUU4SQiGEEEIIIWqwxx95hjdee4egaWLoBo8+NJn7H7yDE8ceX9WhHZDSUg/5efmkpdfFZpM05mCRJaNCCCGEEELUUH8uXsobr72L1+sjGAji8/nw+XzcetM95OXlV3V4+8XvD3DbLffSp/sgRh57En17DOHD9z89bPcPBoMUFBSilDps9zycJCEUQgghhBCihvr6q2/w+XwRxw3D4KeZP1dBRAfunrse5MvPvsbn8+P1eCksLOL+ex/hxxmzD+l9TdPk0Ycm06RBd/r1Gkr/Psfy5efTDuk9q4IkhEIIIYQQQtRUKtQiIdoDiuo/41Va6uGLT7/C6w1Par0eL88+/dIhvfejD03m7Tffp7SklEAgSHZWDrfdci8//XhkJNL7SxJCIYQQQgghaqgTRo3A6XREHDdNi0GDB1RBRAcmLzcPXY+esuzYkXnI7uvz+Xj37Sl4PN6w416Pl2eeevGQ3bcqSEIohBBCCCFEDdWlWyfOPHsCLpcTwzBwOBw4nU7uuf9WkpPrHPL7K6Xwer3/eP9dWnpdbHZ7xHFN0+jStdO/Da9S+fkFUMkM6tYt2w/ZfauCJIRCCCGEEELUYDfcPJFPvniXq665jEnXX8F3Mz9n3PjRh/y+H77/Cf16DaNrh/707TmEd9764IATQ7vdzvU3XoXb7So/pmkabreLa67978EOuVxKSjJ2R+TMKkC79m0O2X2rgtRrFUIIIYQQooZr1boFrVq3OGz3+/TjL3ng3kfLl1zm5ebzyINPYbPZOe2M8Qd0rdPOOJm6dVN57pmX2bkjky5dOzHx2v8e0tdjs9m45trLeeTBp8KWjbpcLq657opDdt+qoKmaWj+1gpycYiyrxr/Maqlu3XiysoqqOgyBjEV1ImNRfchYVA8yDtWHjEX1caSPxcD+x7Fj+86I43XTUpn76/dVENE/89XUb3jhmZfZvj2Tdh3acMONE+nS7dAtVT0UdF0jJSWu0sdlhlAIIYQQQghxUO3K3BX1eNaubJRSlVQ+rX5GjR7J+RecckQn5/siewiFEEIIIYQQB1XDRg2jHm/QMOOISQZrC0kIhRBCCCGEEAfVjTdPxOVyhR1zuVxcf9PVVRSRqIwkhEIIIYQQQoiDatjwwTz1zEO0at0Cp9NBi5bNeOypBzj+hOFVHZrYi+whFEIIIYQQQhx0g4cew+Chx1R1GGIfZIZQCCGEEEIIIWopSQiFEEIIIYQQopaShFAIIYQQQgghailJCIUQQgghhBCilpKEUAghhBBCCCFqKUkIhRBCCCGEEKKWkoRQCCGEEEIIIWopSQiFEEIIIYQQopaShFAIIYQQQgghailbVQfwd+6++27mz5+Pw+EgJiaGW2+9lU6dOlV1WEIIIYQQQghRI1TrGcJjjjmGqVOn8uWXX3LJJZdwzTXXVHVIQgghhBBCCFFjVOsZwsGDB5f/d9euXdm5cyeWZaHrB5bH6rp2sEMTB0De/+pDxqL6kLGoPmQsqgcZh+pDxqL6kLGoPo7ksdhX7JpSSh2mWP6VZ555hpUrV/LMM89UdShCCCGEEEIIUSNU6QzhuHHj2L59e9TH5s2bh2EYAHz99ddMnTqVd99993CGJ4QQQgghhBA1WrWfIfz+++956KGHeOONN2jYsGFVhyOEEEIIIYQQNUa13kP4448/8r///Y/XX39dkkEhhBBCCCGEOMiq9Qxh3759sdvtJCcnlx974403qFOnThVGJYQQQgghhBA1Q7VOCIUQQgghhBBCHDrVug+hEEIIIYQQQohDRxJCIYQQQgghhKilJCEUQgghhBBCiFpKEkIhhBBCCCGEqKUkIRT/2oYNG5gwYQIjRoxgwoQJbNy4sdJz169fT5cuXXjooYcOX4C1yP6MxdNPP81RRx3FmDFjGDNmDHfffffhD7QW2N/fi2nTpjF69GhGjRrF6NGjyc7OPryB1gL7MxY33HBD+e/EmDFjaNu2LTNmzDj8wdZw+zMWOTk5XHzxxYwePZrjjjuOu+66i2AwePiDrcH2ZxyysrK47LLLysfhiy++OPyB1gIPPfQQQ4YMoU2bNqxevTrqOaZpcvfddzNs2DCOPfZYPvroo8McZe2wP2MxZ84cTjrpJDp27FizPssqIf6ls88+W33++edKKaU+//xzdfbZZ0c9LxgMqrPOOktNmjRJPfjgg4czxFpjf8Zi8uTJ8v4fBvszFkuWLFHHHXec2rVrl1JKqcLCQuX1eg9rnLXB/v4dtduKFStU7969lc/nOxzh1Sr7Mxb33Xdf+d9Rfr9fnXzyyerrr78+rHHWdPszDpMmTVLPPPOMUkqpnJwcNXDgQLV9+/bDGmdt8Pvvv6vt27erwYMHq1WrVkU957PPPlMXXHCBMk1T5eTkqAEDBqgtW7Yc5khrvv0Zi40bN6rly5erxx9/vEZ9lpIZQvGv5OTksHz5ckaNGgXAqFGjWL58Obm5uRHnvvTSSwwaNIimTZse5ihrhwMZC3Fo7e9YvPHGG1xwwQXUrVsXgPj4eJxO52GPtyb7J78XH3/8MaNHj8bhcByuMGuF/R0LTdMoKSnBsiz8fj+BQID09PSqCLlG2t9xWLlyJQMGDAAgOTmZtm3bMn369MMeb03Xs2dP6tev/7fnTJs2jVNOOQVd10lOTmbYsGF88803hynC2mN/xqJJkya0a9cOm812mKI6PCQhFP/Kjh07SE9PxzAMAAzDIC0tjR07doSdt3LlSubMmcN5551XBVHWDvs7FgBff/01o0eP5oILLmDRokWHO9Qab3/HYt26dWzZsoUzzzyTcePG8dxzz6GkNexBdSC/FwB+v5+pU6cyfvz4wxlmrbC/Y3H55ZezYcMGjj766PL/9ejRoypCrpH2dxw6dOjAtGnTUEqxZcsWFi1axPbt26si5Fpvx44dZGRklP9cv359du7cWYURiZpGEkJxyAUCAW6//Xbuvvvu8n+ARNU57bTTmDFjBlOnTuU///kPl19+OXl5eVUdVq1kmiarVq3i9ddf5+2332b27NmyT6eK/fDDD2RkZNCuXbuqDqXW+uabb2jTpg1z5sxh9uzZLFiwQGZDqsBNN91EdnY2Y8aM4f777+eoo46Sf8OFqKFq1nynOOzq169PZmYmpmliGAamabJr166wKfesrCw2b97MxRdfDEBhYSFKKYqLi7n33nurKvQaZ3/GAihfngjQv39/6tevz5o1a+jdu/fhDrnG2t+xyMjIYOTIkTgcDhwOB0OHDmXJkiWMHTu2agKvgfZ3LHb75JNPZHbwENnfsXjnnXd44IEH0HWd+Ph4hgwZwq+//srIkSOrKPKaZX/HITk5mUcffbT854suuoiWLVse7nAFoTHbvn07nTt3BiJnDIX4t2SGUPwrKSkptGvXjq+++gqAr776inbt2pGcnFx+TkZGBr/++iszZ85k5syZnHvuuZx66qmSDB5k+zMWAJmZmeX/vWLFCrZt20azZs0Oa6w13f6OxahRo5gzZw5KKQKBAL/88gtt27atipBrrP0dC4CdO3eycOFCRo8efbjDrBX2dywaNmzI7NmzgdAS3vnz59OqVavDHm9Ntb/jkJeXV17ddf78+axevbp836E4vEaOHMlHH32EZVnk5ubyww8/MGLEiKoOS9QgmpINK+JfWrduHTfddBOFhYUkJCTw0EMP0bx5cy666CKuuuoqOnXqFHb+008/TWlpKTfeeGMVRVxz7c9Y3HjjjSxbtgxd17Hb7Vx11VUMHDiwqkOvcfZnLCzL4qGHHmL27Nnous7RRx/NjTfeiK7Ld3UH0/7+HfX888+zevVqnnjiiSqOuOban7HYvHkzd955J9nZ2ZimSZ8+fbj11ltrXBGHqrQ/4zBr1izuv/9+dF2nTp063HHHHbKU+hC47777+O6778jOzqZOnTokJSXx9ddfh42FaZrcc889zJ07FwjN1k6YMKGKI6959mcsFixYwKRJkyguLkYpRXx8PPfff395AaYjlSSEQgghhBBCCFFLydfQQgghhBBCCFFLSUIohBBCCCGEELWUJIRCCCGEEEIIUUtJQiiEEEIIIYQQtZQkhEIIIYQQQghRS0lCKIQQQgghhBC1lCSEQgghhBBCCFFLSUIohBBCCCGEELWUJIRCCCGEEEIIUUtJQiiEEEL8S1u3bqVNmzbcdNNNbN68mauuuoo+ffrQrVs3LrjgAlavXg1Abm4ut99+O0cffTSdOnVi/Pjx/PLLL1UcvRBCiNpMU0qpqg5CCCGEOJJt3bqVoUOH0rt3b1avXk2LFi3o3Lkz27Zt4/vvvycxMZEPP/yQCy+8kLi4OHr16kVBQQHTpk1D0zS+/fZbMjIyqvplCCGEqIUkIRRCCCH+pd0JIcDEiRO57LLLyh979tlnmTx5MomJiYwcOZK77roLXQ8t0Pn888+58cYbOffcc7nllluqJHYhhBC1mywZFUIIIQ6SBg0acPHFF4cdGzduHAB+v58bbrihPBkEGD16NDabjRUrVhzWOIUQQojdJCEUQgghDpJ27dphGEbYsbS0NACaNm1KXFxc2GOGYZCSkkJmZuZhi1EIIYSoSBJCIYQQ4iCJj4+POGaz2Sp9bPfjwWDwkMYlhBBCVEYSQiGEEEIIIYSopSQhFEIIIYQQQohaShJCIYQQQgghhKilJCEUQgghhBBCiFpKEkIhhBBCCCGEqKWkMb0QQgghhBBC1FIyQyiEEEIIIYQQtZQkhEIIIYQQQghRS0lCKIQQQgghhBC1lCSEQgghhBBCCFFLSUIohBBCCCGEELWUJIRCCCGEEEIIUUtJQiiEEEIIIYQQtZQkhEIIIYQQQghRS0lCKIQQQgghhBC1lCSEQgghhBBCCFFL/R+FcVpSeTFz6gAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 1080x1080 with 2 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Get values from the simulated annealing\n", | |
"[params_m, params_c] = simulated_annealing(chi_square, x, y, err, 1, 1)\n", | |
"\n", | |
"# Plot results\n", | |
"fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(15, 15))\n", | |
"\n", | |
"ax1.scatter(x, y)\n", | |
"ax1.plot(x, linear(x, m_minimum, c_minimum), label = \"graphic minimum\")\n", | |
"ax1.plot(x, linear(x, params_m[-1], params_c[-1]), label = \"simulated annealing\")\n", | |
"\n", | |
"ax1.set_xlabel('x', fontsize=20)\n", | |
"ax1.set_ylabel('y', fontsize=20)\n", | |
"ax1.legend(fontsize=15)\n", | |
"\n", | |
"ax2.scatter(params_m, params_c, label = \"(m, c) estimate\", c = range(len(params_m)))\n", | |
"ax2.scatter(params_m[-1], params_c[-1], color = 'b', label = \"best guess\")\n", | |
"ax2.set_xlabel('m', fontsize=20)\n", | |
"ax2.set_ylabel('c', fontsize=20)\n", | |
"ax2.legend(fontsize=15)\n", | |
"\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## d) Ensemble Test\n", | |
"\n", | |
"Sie haben bis hierher die Werte der optimalen Parameter, oder kurz *Schätzer*, bestimmt. Im Folgenden bestimmen Sie die statistische Unsicherheit der Schätzer mithilfe eines Ensemble Tests. Blicken Sie hierfür gerne nochmal in die zweite Vorlesung Folien 29ff zurück.\n", | |
"\n", | |
"Gehen Sie davon aus, dass Sie die optimalen Schätzer gefunden haben (entweder durch das Minimum des $\\chi^2$ Gitters aus b), dem Optimierungsverfahren aus c) oder scharfes Hinsehen $m=0.71$ und $c=0.44$). Für den Ensemble Test nehmen Sie eine Normalverteilung der $y$-Werte an, samplen neue $y$ Werte $N$ Mal und bestimmen jedesmal wieder neue optimale Parameter. Diese können Sie dann histogrammieren und dessen Mittelwert und Standardabweichungen bestimmen.\n", | |
"\n", | |
"Führen Sie zunächst den Ensemble Test durch, indem sie folgende Schritte $N=10000$ Mal wiederholen:\n", | |
"* Bestimmen sie neue $y$-Werte durch normalverteilte Zufallszahlen. Nehmen Sie als Standardabweichung wieder 0.2 an. Für den Mittelwert nehmen Sie die erwartete Lage des $y$-Wertes an. Nutzen Sie dazu die lineare Funktion (die sie in der a) definiert haben), übergeben Sie dieser die $x$-Werte der Messung und die optimalen Schätzer als Parameter.\n", | |
"* Führen Sie die Anpassung durch. Sie müssen an dieser Stelle nicht Ihre eigene Anpassung verwenden, sondern können die *scipy* Methode *curve_fit()* nutzen. Der Methode übergeben Sie die gesuchte Funktion (linear), die $x$-Werte der Messung, die neuen $y$-Werte und die Standardabweichung 0.2. Übernehmen Sie die Ergbenis des Fits durch *par, _ = curve_fit(...)*.\n", | |
"* Speichern Sie sich die beiden Werte von *par* ab.\n", | |
"* Berechnen Sie ebenfalls mithilfe Ihrer eigenen $\\chi^2$ Funktion den $\\chi^2$ Wert der Anpassung unter der Annahme der gefunden Parameter *par*. Speichern Sie sich diesen Wert ebenfalls." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"m = []\n", | |
"c = []\n", | |
"chi = []\n", | |
"\n", | |
"for i in range(10000):\n", | |
" y_s = np.random.normal(linear(x, m_minimum, c_minimum), 0.2)\n", | |
" [m_s, c_s, _, _, _] = linregress(x, y_s)\n", | |
" chi.append(chi_square(x, y_s, err, m_s, c_s))\n", | |
" m.append(m_s)\n", | |
" c.append(c_s)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## e) Bestimmung der Schätzer\n", | |
"Histogrammieren Sie anschließend in zwei separaten Abbildungen die Schätzer und zeichnen Sie die zugrundeliegenden Normalverteilungen ein. Vergessen Sie den Faktor 100 nicht. <br>\n", | |
"Histogrammieren Sie ebenfalls die gespeicherten $\\chi^2$ Werte (hier keinen Faktor einbauen) und legen Sie eine $\\chi^2$ Verteilung darüber. Die $\\chi^2$ Verteilung erhalten Sie durch *chi2.pdf(x-Werte, d.o.f.)*. D.o.f. bedeutet *degrees of freedom*, dessen Bestimmung Sie der vierten Vorlesung entnehmen können.\n", | |
"\n", | |
"Hinweis: Damit das Histogrammieren der Schätzer aus dem Ensemble Test einfacher ausfällt, multiplizieren Sie alle Schätzerwerte mit dem Faktor 100, falls Sie *plt.hist(..., density=True)* verwenden." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"x_chi = np.linspace(0, 50, 100)\n", | |
"y_chi = chi2.pdf(x_chi, 18)\n", | |
"\n", | |
"x_m = np.linspace(0.6, 0.8, 100)\n", | |
"y_m = norm(x_m, np.mean(m), np.sqrt(np.var(m)))\n", | |
"\n", | |
"x_c = np.linspace(0, 1, 100)\n", | |
"y_c = norm(x_c, np.mean(c), np.sqrt(np.var(c)))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAHsCAYAAACOg7MYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACpsElEQVR4nOzdeZxcdZkv/s85tW9dW1d3KulOQsIWBERBFAVFiIQ7BIOGCJdxHAeB64jLz7kuKAybRCcMo6MOXBS9Og6MS+QOMZEBBpFhURFkN5AEOnvvtZ/a65zz+6OWELJVd1fV2T7v14sX6e7qqqfT6W+f5zzP9/sIqqqqICIiIiIiIssStQ6AiIiIiIiItMXEkIiIiIiIyOKYGBIREREREVkcE0MiIiIiIiKLY2JIRERERERkcUwMiYiIiIiILI6JIRERERERkcXZtQ6gl1KpPBTlyGMbo1E/EgmpBxHNHmPsDMbYGVrEKIoCwmFfT1+zW9pdmwBj/HuYC359xmbmr28mX5sV1ycjfu8Zc/cZLV7A3DEfaW2yVGKoKGrbF1/tPk5LjLEzGGNnGCFGvZrJ2tR8vJnx6zM2M399Zv7aDsVs105vxpi7z2jxAtaNma2kREREREREFsfEkIiIiIiIyOIs1UpKZGaqqiKVmkKlUgLQ2xaIyUkRiqJ06dkFOJ1uhMMxCILQpdcgol7Tcs2ajQPXOa5NRFah9/XqzeuTzWaH3x+CxzOzvc5MDIlMQpIyEAQBg4NDEITeNgPY7SJqte4khqqqIJ2ehiRlEAiEuvIaRNR7Wq5Zs/HmdY5rE5F16H29euP6pKoqqtUK0ukpAJhRcqi/r4yIZqVYlBAIhHS5YM2FIIgIBMIoFo11QhgRHZ7R1yyuTUTWYaT1ShAEOJ0uhEIxSFJ6Rp+r/6+OiNqiKDJsNnM2AdhsdiiKrHUYRNRBZlizuDYRWYMR1yuHwwlZrs3oc5gYEpmIWfe5mPXrIrI6o/9sGz1+Imqf0X7eZxMvE0Mi6qmLL74QIyOvHfRjX/jCZ7F3754eR0RERERExqqJEpGp3Xbbd7QOgYiIiMiSmBgSUde8/PKLuP32b6NQKAAArr76cwCARx55GOvWrUUiMY3/+T8/itWrLwFQrybeeuu3sGTJ0ZrFTETWdOaZp+HKK/8Wjz/+38hkMvjyl6/FM8/8EU899TvUajV8/eu3Ynh4sdZhEhEB2P8aSxCAT33qczj99HfN6TmZGBKZ0JMvjeGJF8e68txnnhzHe06KH/Fx2WwGX/3qF7F27a046aS3QpZl5PN5AECpVML3vvcjjI2N4mMfuwT/439cCK/X25V4iUj/9LBmAYDfH8APfvATPPLIw/jKV/43brzx6/jkJz+Ne+75V/z4xz/E3//917oSIxEZhx7WqzdfYwmCikwmN+fX5x5DIuqKl19+CYsXH4WTTnorAMBms6Gvrw8AsHz5eQCAeHw+AoE+TE1NahYnEVHTuefW16bjjjsegID3vOesxtvLsGfPbg0jIyLa53DXWHPBiiGRCb3npPbvkGvB6XS2/iyK4oyPUyYic9HLmtVcm0RRhNPpaL2/vk5xLAUR6We96gZWDImoK0488STs2LEdL7/8IgBAlmVks1mNoyIiIiIytm5dY7FiSERd0dcXxNq1t+K73/0WSqUiBEFsHT5DRERERLPz5mssURTxqU99Du94xzvn9LxMDImoa0466a343vd+tN/7fvnLjYd8+80fIyLqlSeeeKb153h8Pn7969+03n7720/Dj398D2o1RYvQiIgO8MZrLLtd7Mj6xFZSIiIiIiIii2NiSEREREREZHFsJaX9hINO2J2ug36sVikjlan0OCIiImt683rMNZiIDuZg125cL2g2mBjSfuxOF0bWrj7ox5Zcey8ALjJ6pqoqBEHQOoyOU1VV6xCIeu7N67EZ12Cjr1lcm0gPDnbtZsb1QmtGW69UVQEws3jZSkpkEna7E/l81nQXKqqqIp/Pwm53HvnBRGQYRl+zuDYRWYeR1itVVVGrVZFOT8PpdM/oc1kxJDKJcDiGVGoKkpTu+WuLoghF6d5pfXa7E+FwrGvPT0S9p+WaNRsHW+e4NhFZg97XqzevT6Jog8fjh98fnNHzMDEkMgmbzY7+/rgmrx2LBTA1ldPktYnImLRcs2aD6xyRdel9verU+sRWUiIiIiIiIotjYkhEREREZAIV1YbdtYgh9sKR/rCVlIiIiIjIwKZlP/5f4R3YWo2jCjvyv9+BdxzTr3VYZDBMDImIiAxAqVUQiwVab3NOGRE1bSy8Ha9V5+EM1zbsrPXjpw9uwUmLQnA7ealP7evZv5bt27fjmmuuQTqdRigUwrp167B48eL9HiPLMm655RY8/vjjEAQBV111FdasWQMA+NKXvoQtW7a0HrtlyxbcfvvtOPfcc3v1JRAREWlGtDtNP9eQiGYukSnixepCnO3ejFXeZ7Gj1o9vZWN48I+7serMo7QOjwykZ4nhDTfcgMsuuwyrVq3Chg0bcP311+MnP/nJfo/ZuHEjdu3ahYceegjpdBoXXXQRzjjjDAwNDeHWW29tPe7VV1/FX//1X+Oss87qVfhERERERLrz0B92QoWA97i2AgAW26fx7pPjeOCPu3D22xYg6OOsTWpPTw6fSSQS2Lx5M1auXAkAWLlyJTZv3oxkMrnf4+6//36sWbMGoigiEolg+fLleOCBBw54vl/+8pe48MIL4XTyHzoREZnbK5X5+Fn+DNTk7s0KJSJjqskKHvjDThzvGEW/TWq9/2N/cQKqVQUPP7Nbw+jIaHpSMRwbG8Pg4CBsNhsAwGazYWBgAGNjY4hEIvs9bv78+a234/E4xsfH93uuSqWCjRs34sc//vGM44hG/W0/9o37OPRKixhn+pr8e+wMxkhkTXtrIfxf6X2owIEHf78Dy7QOiIh05flt00hmS1jt37Lf+xfE/DhmKIiXR5JY/b6lGkVHRmO4HakPP/ww5s+fj2XLZv7rMZGQoChHPr7XCENsuxVjNOrHH8tL8FJlGHvkKC7x/R7HO8ZaH5/Ja1r577GTGOPBiaIwo5s9REaTkcr4gfR+eIQq5otp/PtDW/BVhwMesap1aESkE0+8NIb+kAcnCHsP+Njxi8L41RPbkS9V4XM7NIiOjKYnraTxeBwTExOQZRlA/ZCZyclJxOPxAx43OjraentsbAzz5s3b7zH33nsvVq9eDeqOTU+O4J78mdhZqx9x/GPpvZiUWQkiIuq17//HS8gqXnwi8Ftc7HsKuUIFD5dO1DosItIJRVWxbU8Gpx4/AFE4sPCxbFEYKoCtu9I9j42MqSeJYTQaxbJly7Bp0yYAwKZNm7Bs2bL92kgB4Pzzz8f69euhKAqSySQefvhhrFixovXx8fFx/OlPf8KFF17Yi7Atp1iu4RcPb8Ux9jHcFLoXnw48BBEqfpB7P4oK7zQREfWKoqj406sTeIdrBIvsCQzbk3j/qcN4tHQC0opX6/CISAfGEgUUyzUcvyhy0I8fFe+D0y7ilZ2pHkdGRtWTxBAAbrzxRtx9991YsWIF7r77btx0000AgCuvvBIvvfQSAGDVqlUYGhrCeeedh4985CO4+uqrMTw83HqO//iP/8D73/9+BIPBXoVtKQ89vRsZqYILvc9CEICoTcLf+P8bE0oIj5eP1zo8IiLL2DMlIV+qYal9ovW+i885BjXY8Epl/mE+k4is4vW9GQDA8YvDB/24wy7i6KEgXt3FxJDa07M9hkuXLsX69esPeP9dd93V+rPNZmsljAfzt3/7t12JjYBsoYIH/rgL7z45jkV7Eq33H+OYwNH2cTxVXor/pR55fyYREc3d1t1pANgvMRwa8MMrlLFT7scZeE2jyIhIL17bm4HPbceCmB/bD/GY4xeG8f8eG0G2UEGfl6f50+H1rGJI+vaHP0+gXJHxlysOrAy+y/UappU+/HkkcZDPJCKiTtu6J4P+kAcRW771PkEQsNA+jV2NPeBEZG2v781g6YIgBEE45GOWLapXE7dwnyG1gYkhAQBeHkkgHvVi4by+Az72VudOuFDBf/1xlwaRERFZi6qq2LY7jbccFT3gY4ts0xiVQyirhjtUnIg6SCpWMZYo4OgFh99etWheAC6nDa9ynyG1gYkhoVyV8equNE5acuBFCAA4BRmnunbgiRdGUSzXehwdEZG1TKaLyOQreMuSAw+UWGifhgoRe2oHP2yCiKxhZDQLAFh6hMTQbhNxzFCw1Z5OdDi85UjYsiuNmqzgxINchDS90/Uafpc9Fs+8Oomz3sqDD8h6UqkUvvSlL2HXrl1wOp1YtGgRbr75ZkQiERx33HE49thjIYr1e2233norjjvuOI0jJqNqXsCdsCQK+bf7f2yRvd7Sv5PtpESW9vreDERBwFHxI48UWzQYwCs7UqjJCuw21oTo0Pivg/DSSAJOu4jjhkOHfMwi2zQifW78eUeyd4ER6YggCLjiiivw4IMPYuPGjRgeHsZtt93W+vjPfvYzbNiwARs2bGBSSHOybXcGfo8DwwMHXvAFxBIiYg67ZCaGRFb22t4MhgZ8cDuPXONZ0O+DrKgYTxZ6EBkZGRNDwssjCRy/KAyH3XbIxwgCcPLSCLbsTqO/349YLLDff+EgT7oicwuFQnjnO9/ZevuUU07B6OiohhGRWW3dk8YxQ0GI4sEPlFhkT2Bn7eCt/0RkfoqqYvtY9ohtpE0LYn4AwN6p/BEeSVbHVlKLm0wVMJEq4txTh4742LceO4BHnxvFkzdfgfn29H4fW3LtvQAq3QmSSGcURcFPf/pTnHPOOa33/dVf/RVkWcZ73/tefOYzn4HTyZslNHPFcg2TqSLOOjl+yMcstE3jucpipHPlHkZGRHqRypZRqsgYbiR8RzIv4oUoCNg7zcSQDo+JocX9eUf9lKpDHTzzRicfHQMAbK3NOyAxJLKSr33ta/B6vfjoRz8KAHj00UcRj8chSRK++MUv4vbbb8fnP//5tp8vGm3vl3tTLHbkPSVGZuWv77XG/sJjFx96TV5knwYAbN2dwuknzOtobJ1g5u+fmb82Mo6xZD3Bi0e9bT3eYRcxGPFg75TUzbDIBJgYWtzO8Sx8bjsGwp4jPnYg4kW/mMW2ahxnu1/tQXRE+rNu3Trs3LkTd955Z+uwmXi8Xt3x+/1Ys2YNfvSjH83oORMJCYqitvXYWCyAqanczII2EKt/fa+O1JM+j+3Qc8mG7EkIULBtVxpHxXwdj3EuzPz9m8nXJorCjG/4ELVrbLq+VzAePfTPv1Kr7HcjY8mCEEZGMwgHnUhl2OFFB8fE0OJ2TkhYOBg47HDUNzrGMY7nKoshqwJsQnsXskRm8c1vfhMvv/wyvv/977daRTOZDFwuF9xuN2q1Gh588EEsW7ZM40jJqCZS9Qu+2GFu1rmEGiJiHqO8+09kOUqtgnShCr/HgSWLIoe8fhPtToysXd16O1A8GePFt6KGQ58nQcTE0MJqsoK9UxKWnzbc9uccax/H78vHYo8caR2bTmQF27Ztw/e+9z0sXrwYl156KQBgaGgIV1xxBa6//noIgoBarYa3ve1t+NznPqdxtGRUE8kiwgEXXI7DX7xFxRzGk9wvRGQ1ot2JbU//ATGI2P71iwE0z3k4vLgtDRUC9kxICLqZHNLBMTG0sNHpPGqyioWD7be7HO0YBwBsq85jYkiWcswxx2DLli0H/djGjRt7HA2Z1WSqgME2Wvv7bRJeTvDoeSIrmpCDOMGxZ0afE7elAQC7JrI4aVG4C1GRGXBchYXtmqi3IS0abH8zfZ9YQr+Y5XBlIqIumEgVMRg58oES/WIO2XwFxXKtB1ERkV5IhQpyqgeDtuyMPq9fzMEGGTvHzLkHmDqDiaGF7ZrIwekQMRhu71SrpmF7AntkztAiIuqkfKkKqVhta02O2uoXd1PpYrfDIiId2dPYWzzYqAC2yyaomGfLYOf4zBJKshYmhha2ayKH4QH/IYcoH8qwLYmk4oekuLoUGRGR9Uym6kleW62korTf5xCRNeyZqN8UmmnFEADm2dLYOc6KIR0aE0OLUlQVuybrJ5LO1MLGDK3dNVYNiYg6ZSJZ3zPYzvigqNioGGaYGFJ7/uVf/gXHHXcctm7dqnUoNAd7JiXYICMizvxU4rgtjel0kS3odEhMDC0oHHRCFkSUKjLesjSGWCzQ+q8dQ7YkAGA320mJiDpmIlWEgPYSQ49YRcDrwBQrhtSGP//5z3j++eexYMECrUOhOdozKWHAlp3VyLBYo8rIFnQ6FCaGFmR3uvD7714PAHA/eAtG1q5u/dcOj1hFTMxiFyuGREQdM5EqINLngsPe3lHy86I+XuDREVUqFdx888248cYbtQ6FOmD3RA6DYmZWnxttVBm5btChMDG0qFE5DBFK6/jimRq2J1gxJCLqoIlkEQMzOAxsXtSHSV7g0RF8+9vfxgc/+EEMDQ1pHQrNUbWmYDxZwMAs9hcCb2hBT5c6GRaZCOcYWtSU0oeIKMEuKLP6/GFbAs9WjkJOcSMgcoEhIpqryVQB71g22Pbj50W9ePKFUciKApvI+7x0oOeeew4vv/wyvvCFL8z6OaLR9mcdt7slRU+MFPOu8SwURcWgbXYVQ69Yhd/jQK5c6+nXbaS/4yarxszE0KIm5b5Wr/lsLGwMt99di+AE52inwiIisiSpWEW+VGvrRNKmeVEfFFVFIlvGQKj9zyPrePrpp/H666/j3HPPBQCMj4/jE5/4BL7xjW/gzDPPbOs5EgkJinLk/WyxWABTU8Y68dJoMb86Uj/8by7Xb/OiXuwez/bs6zba3zFg7phFUTjszR4mhhakqiqm5ACW2idm/RxD9n0H0JwAJoZERHMxkaqfSDqTubKDIScAoKrWLwpqlTJSmUpX4iNjuuqqq3DVVVe13j7nnHNw55134thjj9UwKpqt6Uy9Qys6ixNJmwYjPry2J92hiMhs2HtiQalcGRU45nTHyS1U0S9msbcW6WBkRETWlGhc8PUH3W1/TnwgCAB46d++iZG1q2F3crYskZklMiW4nDb4hPKsn2Ne1ItEpghFnfmppmR+rBha0N6p+p2mmDi3Mnnclsa4HOxESERElpbO1S/0QoH2k7to0AMbZCQU4+2FIW088sgjWodAczCdKWEg7IVQnf1zDEZ9qMkq0rkyIn3t34gia2BiaEGjU3kAmPWpVk1xWxp/rg6hprLwTEQ0F8VqDU6HDYuHwxAEoa3PsYkCoqKEaZmJIZEVTGeKGIz4gNnvBMK8SL1dfSpdZGJIB2BiaEFj0xJskBEW83N6nnm2NBSImJD7wN0KRESzl8xV0SensP3rF7fet+Tae4/4eVGbhITS/qmRRGRciUwJJy7tn1NiOBhtJoYlHLewQ4GRabDUY0Gj03n0izmIwtz6y+c1ZiCOy6G5B0VEZGGJTBEhsTDjzwuJBWSU9g+sISJjKpRq9ZOLI3P7eY+FvBAEDrmng2NiaEF7pyTEbHM/hnfQloUIhYkhEdEcTWdKCM4iMewTCpBUN2S1vfZTIjKmRLZ+QNXAHBNDh11EJODGdIaJIR2IiaHFKKqK8en8nE4kbbILCmJiFmNMDImIZk1VVSQzpVlVDINiASoE5FTOMSQys2YiNzCDkTaHEgu5MZUuzfl5yHyYGFpMKltGpVZP6Dphni3DxJCIaA5yxSpqsjLLxLB+sZhRmBgSmVlzhuFcW0kBoD/kYSspHRQTQ4tpDlHuRCspUN9nmFACKFfljjwfEZHVpLL1URWzaSVtfg73GRKZWyJTgtMuos/nnPNzxUIeZPIVXrvRAZgYWsxEsn4RMddRFU1xWxoqBOyZ6EyiSURkNSmJiSERHd50poRo0N32OJvDiYXcreckeiMmhhYzkSrW7zgJM78AOZi4PQ0A2DnOxJCIaDZaw+1nMULIL5QhQmErKZHJTWeK6A925uc8Fqo/D9tJ6c2YGFpMIlvCQMQLsUMH2MXELGyQsWu8MxVIIiKrSebKEAUgIMz87r0oqAgIRVYMiUwukSmhP9iZgfT9jcH2ySwrhrQ/JoYWk8iUWneKOsEmqIjZctg9IXXsOYmIrCSdKyMUcMM2y9myIbGALBNDItNqzjDsVGIY8DlhEwWkGt0KRE1MDC0m2agYdtKAmMHoNBNDIqLZSOVK6A/N/oKvTywizXEVRKbVnGEY7UBiqNQqGBzoQzToRqEiIxYLIByc+4E2ZA5MDC2kUpWRLVQ7WjEE6iecjifykBWlo89LRGQFKamC6Bz2DgVZMSQyteYMw07sMRTtToysXQ1fbid2v/AMRtauht3pmvPzkjkwMbSQZKNlIBbubGI4YMuiJqtI8HQrIqIZS+XKc6oEBMUiCqqLR88TmVTz9NBOtZIC9cOu0ryhRG/CxNBCmq0IsXDnW0kBYDzZmZNOiYisolSpoViuzali2NcYWZHiQRJEppTMlmC3iQh4HR17zrBYQEbxQp3d1mYyKSaGFpJs3HHqdCtpcybieJLHHhMRzUTz8Ie5VAxDjcSQXRtE5pTKlREOODsyw7ApKOZRhR0FlW2ktA8TQwtJZEsQgDndmT4Yn1CGz+PABCuGREQz0pxhOJe9Q31C/aZckokhkSmlc2WEA51rIwX23VBiOym9ERNDC0lkSwj6nXDYO/ttFwRgQczHVlIiohlKdqBiGGxWDNlKSmRKKamMcKCzlb1mYphiYkhvwMTQQpLZuR1wcDgLYn5MpJgYEhHNRFqqJ4aROazNXqECO2QOqyYyIVVVkcpVEPZ3OjHMAwDSiq+jz0vGxsTQQhLZEqJ93UsMk9kyT8UjIpqBtFSBx2WH22mf9XMIQr1qyFZSIvORilXUZAWhDlcM+4QSRCjIsGJIb8DE0CIUVUUyW0KkS4nh/JgfADCZ4gE0RETtyuYr6PPNfbh0UCwgkeX6S2Q2zQOqOt1KKgoq+sQi9xjSfpgYWkQuX0FNVrtaMQQ4soKIaCZyhQr6OnAEfVAssmJIZELNdvNOt5IC9XbSFFtJ6Q2YGFpEIts44KBbFcP++sLCxJCIqH2ZDlUM+4QCktkSVA4lIzKVblUMgfoBNGwlpTdiYmgRzdPqIn3dmVfjdtkRDrg4soKIaAZyhSr6vJ1oJS2iVJFRqnCfN5GZpHJlCACC/rmvE28WEvNIK17eUKKWniWG27dvxyWXXIIVK1bgkksuwY4dOw54jCzLuOmmm7B8+XJ84AMfwPr16/f7+P33348LL7wQK1euxIUXXojp6ekeRW98zcHH/V06lRQABsMenkxKRNSmmqxAKlY7UjEMiPX9hdlCZc7PRUT6kcqVEfA5Ybd1/pI9JBZQgQP5YrXjz03GNPtj0GbohhtuwGWXXYZVq1Zhw4YNuP766/GTn/xkv8ds3LgRu3btwkMPPYR0Oo2LLroIZ5xxBoaGhvDSSy/hX/7lX/Cv//qviMViyOVycDo7f/fErJLZEtxOGzyu7n3LB8IePL+NyToRUTtyhfrFWEcSQ6F+8y+Xr2IwPOenIyKdSEnlruwvBPbNMpxKF+F3sImQelQxTCQS2Lx5M1auXAkAWLlyJTZv3oxkMrnf4+6//36sWbMGoigiEolg+fLleOCBBwAAP/7xj3H55ZcjFosBAAKBAFyu7vygmFEqVx+OKghC114jFvIgW6iiWK517TWIiMwi16judeLwGb9YTwxZMSQyl3Su88Ptm0JCfZZhggdXUUNPEsOxsTEMDg7CZrMBAGw2GwYGBjA2NnbA4+bPn996Ox6PY3x8HADw+uuvY/fu3fjLv/xLfOhDH8Idd9zBnugZSEvdW1iaYiEPgPqdJyIiOrxsvpEYdqSVlIkhkRmlupkYNiqG07xuo4aetZLOlSzL2LJlC370ox+hUqngiiuuwPz583HRRRe1/RzRqL/tx8ZigVlE2VsziTFbrOKk+cGufl3HHdUPACgr+2Iz29+jVhgjkflkmolhBw6f8bdaSZkYEplFpSojX6p1fLh9U59YhAAF0xkmhlTXk8QwHo9jYmICsizDZrNBlmVMTk4iHo8f8LjR0VGcfPLJAPavIM6fPx/nn38+nE4nnE4nzj33XLz44oszSgwTCQmKcuQqYywWwNRUrv0vUAMziVFRVSQzJbjtIqamcl27gHdAAQC8tiuJY+IB0/09aoUxHpwoCjO62UOkN53cY2gXFPjcdmQLPESCyCxSXZxhCAA2QUWfUEIizVZSqutJK2k0GsWyZcuwadMmAMCmTZuwbNkyRCKR/R53/vnnY/369VAUBclkEg8//DBWrFgBoL4v8YknnoCqqqhWq/jDH/6A448/vhfhG55UrEJW1K4cdfxGXrcDPrcdU1xgiIiOKJuvwGEX4XbaOvJ8Qb+rtW+RiIwv3cUZhk19YgHJHK/bqK5nraQ33ngjrrnmGtxxxx3o6+vDunXrAABXXnklPvvZz+Kkk07CqlWr8MILL+C8884DAFx99dUYHh4GAFxwwQV4+eWX8Rd/8RcQRRFnnnkmLr744l6Fb2ithaVLd5zeaCDswRRHVhARHVG2UEGf19GxQ8GCfldr3yIRGV9zuH23WkmBejtpKsvEkOp6lhguXbr0gLmEAHDXXXe1/myz2XDTTTcd9PNFUcRXvvIVfOUrX+lajGbV3McS6kFiGAt5sH0s2/XXISIyumy+0pE20qZQwIVdXH+JTKPbraRAPTHcmy137fnJWDi0xAKaFcNQl1tJgXrFMJEpoyYrXX8tIiIjy+YrCHTg4JmmoN/FU0mJTCSVK8PltMHj6ky7+cH0CUVk8mXICq/biImhJaQbd5yCPaoYKqqKJNsSiIgOK1vobMUw6HdCKlTbOmSNiPQvlasPt+/mDOo+sQhVBbJ5HlxFTAwtIS1V4Pc44LB3/9s90JhlOMmZOEREh6SoKnKFKoKdbCX1u6CifuAYERlfWip3vdsrKBZbr0VkmDmGNHtpqdz1E0mbWkPuU0wMiYgOpVCqQVbUjreSAp2vRBJR74WDTkjFGo5fFOnqnOC+xpD7jMQ2dGJiaAlpqdKTg2eA+uEHdpvIiiER0eGI9XbPoXl9Hbvoa55cmMtXgFhHnpKINGJzOJFMZiEWnsbI2q+33r/k2ns7+jp9QqNimGfFkNhKagm9aEVoEgUBsZAbk6wYEhEdklSqJ4aFX30DI2tXd+Q5Q62KIVtJiYyuUKqhCnsrceuWgFg/E4IVQwKYGJqeoqrI9LBiCNT3GXLIPRHRoTX38wSEzq2Vb2wlJSJjSzWGzveJ3U0M7YKCPp8TGe4xJDAxNL1coQpFVXuaGPaHPJjOFKGqPBmPiOhgmmOEOnnR5/c4IAoCckwMiQwv1ZgtGOhyYggAkT430qwYEpgYmt6+GYY9TAyDbpQqMnJsZyIiOqi0VIYABV6hcxdjoigg4HXw2HkiE2hVDLvcSgoA4YALGe4xJDAxNL3mD3qv9hgCQH+wMbIiWejZaxIRGUlGKsMvlCEKneusUGoVhPvcKNcUxGIBhIM8mZTIqFJd6Co4lDArhtTAxNDkmj/ovawYxkJuAMAEE0MiooNK58odbxET7U44p17FxJYXMbJ2NezO3q37RNRZqWwJNsgd7So4lEifG9l8BQq3AFkeE0OTa7aS9mqOIVBvJQWAiWS+Z69JRGQkaakMfwcPnmkKiCVIirvjz0tEvZXKlREQSxCE7r9WuM8FWVEhFdmGbnVMDE0uLZUR8Dpgt/XuW+11O+B12VkxJCI6hGy+Ar/Y+T09fqGEHBNDIsNLZUsICr25jor01dcMjqwgJoYml5YqCPp6307UH3IzMSQiOoRsFyuGZThRUW0df24i6p1mxbAXwoFmYsgDaKyOiaHJZfKVnraRNsWCHiaGREQHUZMV5Es1+LpRMWxcSLKdlMjYUrlSTw6eAfZVDHkADTExNLlsvoI+b+8Tw2jQjclkgbMMiYjeJN/Yx+MTOp8YBhpVyJzKxJDIqGqyUr9+68GoCqC+xxAAR1YQ7FoHQN0RDjphcziRK1QwL+ZHLBbo6usptcp+r3HUUAgPPb0bDrcTAbeAVIZ3oYiIACDXSAy70UrKiiGR8eUKVahqb4bbA4DbaYfHZWPFkJgYmpXd6cLmWy5BpXYZ5Kd+jpEX/9z62JJr7+3464l2J0bWrm69rVYWADgXz37zczj3xu8B4GJDRAQAUqFRMezS4TMAkFc5qoLIqJqVu2CPEkMACPpc3GNIbCU1s5xSHzTfqztObxS1SQCAhNLdSiURkdFIrVbSzlcMm+2prBgSGVfzdNBeXr+F/E6k87yJb3VMDE2seWR5oAsXH0cSFuszDJOKr+evTUSkZ61W0i5UDN1CFSIUVgyJDCzTSNB6tccQAIJ+VgyJiaGp5VTtKoYuoQa/UESSFUMiov1IhfpFXzcOnxGEejspE0Mi42omaL06lRQAgj4nsnkOuLc67jE0sVbFsEdzcN4sKkpIyH5NXpuISK9yxSo8LjvsgtKV5/eKZeQVJoZERpXJV+D3OLq2RryZUqsgPhBAuSoj0OeB22VHrVLmwYEWxIqhieUUDwSoXTn5rh1Rm4SEwsSQiOiNpGK1q/Nl/UIZeY6rIDKsTL7SGiHRC6LdieqjdwEAXlz3CYysXQ27kzeXrIiJoYnlVDe8Qhk2QZtZgmExj7TihaJwliERUZNUqKLP173E0CeU2UpKZGCZfAXhQG9v7gQa+xlzPLjK0pgYmlhOcWvWRgoAEVGCDBtSOe1iIOqUVCqFK6+8EitWrMCFF16IT3/600gmkwCA559/Hh/84AexYsUKXH755UgkEhpHS3qWK1bR5+te4uYTS5DYSkpkWBmp3PvEsHG92DyfgqyJiaGJ5VRP6w6QFiJifWTFZFK7GIg6RRAEXHHFFXjwwQexceNGDA8P47bbboOiKPjiF7+I66+/Hg8++CBOO+003HbbbVqHSzrWi4phQXWxW4PIgFRV7XkrKbDvoEJWDK2NiaGJaV4xtNVHVkykCprFQNQpoVAI73znO1tvn3LKKRgdHcXLL78Ml8uF0047DQBw6aWX4oEHHtAqTDIAqdjlxFAsQ4GIQoknDBIZTakio1JVEA70ODEUWDEknkpqajnFrWnFsDnLcCpVAIaDmsVB1GmKouCnP/0pzjnnHIyNjWH+/Pmtj0UiESiKgnQ6jVAo1NbzRaMzO6QpFjP3GBgzf33lqoxyVe5qYuhvjMHIFiqYr8HfpZm/f2b+2kgfso1xNqEeJ4Y2QYVXKLNiaHFMDE2qXJVRhlPTiqFLqMEnlDCRZMWQzOVrX/savF4vPvrRj+K//uu/5vx8iYTUdttfLBbA1FRuzq+pV2b/+gRH/dduNxNDbzMxzFfgUHv7d2nm799MvjZRFGZ8w4cIAHKNWYIhf+8TtIBQRE5hxdDK2EpqUplc/cJAy8QQqO8znEpxjyGZx7p167Bz50788z//M0RRRDwex+joaOvjyWQSoii2XS0ka8nm69WArlYMG+t+87WIyDgyjZ/bbo60OZSAWEKOo24sjYmhSaWlemLo17CVFAAiYh6T3GNIJvHNb34TL7/8Mm6//XY4nfVf2ieeeCJKpRKeeeYZAMDPfvYznH/++VqGSTqWzdfX5q6eStqsGEpMDImMRqtWUqB+AA0rhtbGVlKTSuukYhi2SXglVYSqqhAEQdNYiOZi27Zt+N73vofFixfj0ksvBQAMDQ3h9ttvx6233oobbrgB5XIZCxYswD/+4z9qHC3pVUbaVzHs1tEwfrG+/ucKTAyJjCbXqhi6kOnxawcEVgytjomhSaWaiaGgbWIYFfOolGTkunw8O1G3HXPMMdiyZctBP/b2t78dGzdu7HFEZERvbCXt1rRLF6oQobCVlMiAMoUKfG477LbeN/UFxCJKqhNVlQ2FVsXvvEmlpXpC2JxLo5VwY5bhdIZD7omIsvkKBAB+j6NrryEIgF8oMTEkMqBsvqLZjfTWkHu2k1oWE0OTSufK8AgVOARF0ziaQ+4TWSaGRETZfBletx22LlcDfGKZraREBpTLVxDUKjFsnEvBdlLrYmJoUhmpoukMw6ZIY5ZhghVDIiJk8xX4vd2/6PMJZVYMiQwoU6gi0IM14mBYMSQmhiaVzpVbR5ZrySNW4XPbMZ3RPkklItJaNl9BoIttpE31xLDc9dchos7StJVUaCaGrBhaFRNDk0pLZfg1PnimaSDiZcWQiAiNimEvEkORewyJjKZaU1As1zTcY9hsJWXF0KqYGJpUNq+PiiEADIS93GNIRIRGxdDb/cTQL5SRK1ShqGrXX4uIOqO5L7ivB2vEwTgEBR6hwoqhhTExNCFFVZHLV+AX9NFGFAt7MJ0pQeUFChFZmKqqjT2GvagYlqEoKorlWtdfi4g6I/OGcTZaCQhFZFkxtCwmhiZUKNWgqNBVxbBUkXmBQkSWVqrIqMlKb1pJGzcGpUK1669FRJ3RqhhqmRiKJVYMLYyJoQk1Fxbd7DEMewFwliERWVu+WE/S/O5eJIb19VYqMjEkMopWxVCjU0mBesWQp5JaFxNDE8o17hD7Rf20kgJAMquPeIiItCCVGmtzTw6fqa+3OSaGRIaR1UMrqVjiHEMLY2JoQs2KoU8nFcNmYsgDaIjIyvLFeju9j62kRHQQuUIVLqcNLodNsxgCYhFF1YVqTdYsBtKOXesAqPP2VQz1kYgFfS7YbSITQyKytGZbZy8Sw2bHCFtJifQvHHTC7nShXFMRDrgQiwU0i6U5yzCd47gbK2LF0IT27THUR+umKAqI9rk4y5CILK2ZpPWildSFKuw2gYkhkQHYnS6MrF2NsZeehjuzAyNrV2sWS7OokMnr4xqSeouJoQnlClV43XbYBUXrUFqiQTcrhkRkac3DZ3zu7jfrCAIQ8DohFXnXn8gocqq7VbHTSvP1MxITQytiYmhCuWIVQZ9L6zD2E+ljYkhE1iaVqvC47LDbevOrN+BztvY1EpH+5RQ3AhpvA2pVDJkYWlLP9hhu374d11xzDdLpNEKhENatW4fFixfv9xhZlnHLLbfg8ccfhyAIuOqqq7BmzRoAwHe/+138+7//OwYGBgAAb3/723HDDTf0KnxDyRUq6PM7gZzWkdQptQoWxoN44sUxhMJeOOz7NlXXKmWkMryjTUTmly9WEejhaYP1iiFbSYmMQFEF5FUXAkJR0ziaiSn3GFpTzxLDG264AZdddhlWrVqFDRs24Prrr8dPfvKT/R6zceNG7Nq1Cw899BDS6TQuuuginHHGGRgaGgIAXHTRRfjyl7/cq5ANSypUMa/fr5vEULQ7gSd+COA9eO7rl6PfJrU+tuTaewFw8SEi85OKNfR5u7+/sCngdWDPBDs1iIwgr7qgQtS8YuhCFXbIrBhaVE/6WRKJBDZv3oyVK1cCAFauXInNmzcjmUzu97j7778fa9asgSiKiEQiWL58OR544IFehGgquWJV0xk4BxMR68lgUvFrHAkRkTbypSoCPRxczYohkXHklPrsQK1PlBeEegxpJoaW1JPEcGxsDIODg7DZ6i2ENpsNAwMDGBsbO+Bx8+fPb70dj8cxPj7eevvXv/41LrzwQlx++eV47rnnehG64aiqilyhgqBfX4lhWMwDAFKKT+NIiIi0IRW1SAxrUFW1Z69JRLPTHCqvdStpMwZWDK3JMHMML730Unzyk5+Ew+HAk08+iU996lO4//77EQ6H236OaLT9apWWM2TadbAYC6UqarKKPp0dPhMSCxCgInmQxFDrv2utX78djJHI+Hq9x9DvdaAmK6jUFE0HZhPRkUmNiqHWraRAvWLIxNCaepIYxuNxTExMQJZl2Gw2yLKMyclJxOPxAx43OjqKk08+GcD+FcRYLNZ63Hve8x7E43Fs27YNp59+ettxJBISFOXId05jsQCmpnSyQe8QDhXjZKoAALqrGNoFBQGhiJR8YGKo5d+1kb/XeqJFjKIozOhmD5GWFEVFoVTracWwuaUgX6wyMbSwT33qU9izZw9EUYTX68Xf//3fY9myZVqHRW/SrBj6NR5XAdRHVoxIPP/BinrSShqNRrFs2TJs2rQJALBp0yYsW7YMkUhkv8edf/75WL9+PRRFQTKZxMMPP4wVK1YAACYmJlqPe+WVV7B3714cddRRvQjfUHKF+n6SoF9fFUMAiIh5pLjHkIgsyOEUoAII+Bw9q643k1DuM7S2devW4Ve/+hXuu+8+XH755fjqV7+qdUh0EJLihggFHkH7hKxZMWQbuvX0rJX0xhtvxDXXXIM77rgDfX19WLduHQDgyiuvxGc/+1mcdNJJWLVqFV544QWcd955AICrr74aw8PDAIBvfvOb+POf/wxRFOFwOHDrrbfuV0WkumZiqLfDZwAgbMtjTy1y5AcSEZlMsSbU//9f/wcjj21vnMjcXc3EMM/E0NICgX03IiRJgiAIGkZDhyKpHviFEkQdfHsCQgnVmoJSRYbHZZhdZ9QBPftuL126FOvXrz/g/XfddVfrzzabDTfddNNBP7+ZSNLh5Qr1O01Bvwt5jWN5s7Ao4SVlGIoKXSx8RES9ksvX12af0Lt9O839jPkSh9xb3bXXXosnn3wSqqriBz/4wYw+12znM7yZXmKWFJfmJ5I2NeOwux2I9c+900svf8czYdWYeRvAZHLFfRVDvSWGETGPGmyQVDf6dNBDT0TUK82bdj6xh4lhY2YiW0lp7dq1AID77rsPt95663435Y/ETOczvJleYo7FAsipbl3sLwTqFUMA2Lk7Dccc20n18nc8E2aO+UjnM/RkjyH1Tq5QgcMuwu3U30EDHFlBRFbVTAy9Pdw/5G+2kpaYGFLdRRddhKeeegqpVErrUOhNJMWtixNJgX0Vw2xB+/2O1FtMDE1GKlQR8Dp0uYeAiSERWVU2X0/OetlK6nLY4LSLrBhaWD6f329m9COPPIJgMIhQKKRdUHRQOUVHFUMmhpbFVlKTyRWrCHj0d/AM8IbE8CAjK4iIzCxXqECAAnePTxz0eRzIF7nH0KqKxSI+97nPoVgsQhRFBINB3Hnnnbq8eWxllaqMMpz62WPYSFCbe6PJOpgYmkyuUGntK9Ebj1CBC1VWDInIcnKFCrxCpecHb/ncDlYMLay/vx+/+MUvtA6DjiDTmBkY0EnF0C4o8LntrZPuyTrYSmoyuUIVfp0mhoIAhG0SE0MispxcvtLTNtImv8fOPYZEOpeR6muDXiqGQP10e7aSWg8TQ5ORilX4PfpMDIF6OykTQyKymlyhAm8PTyRt8nlYMSTSu3QzMdRJxRCoJ4asGFoPE0MTqcn1YaQBnSeGSWXuM3GIiIwkl69qVDF0cI4hkc41K4Z6OZUUAIJ+JyuGFsTE0ESad4X1XjHMq25UVP2N0yAi6pZcsdLTURVNPrcD+WIV6hxnkRFR9zT3GOqtlZSHz1hPW4nhq6++2u04qAOkRsm/ObtKjziygrTCdYy0pN0eQwdkRUWpIvf8tWnuuG5ZQ0Yqw4EaXNBPdT/kdyFXrEJReFPJStpKDD/+8Y/jgx/8IH74wx9icnKy2zHRLBmhYhhhYkga4TpGWqnW6m3+vh7vMVRqFcQH6q37Lq8L4aB+bxrSwXHdsoa0VIZPLENPU0SCfhdUFZB4eJWltJUYPvHEE/jsZz+LF154AStWrMDll1+ODRs2oFgsdjs+mgEjJIasGJJWuI6RVpqngnp7XDEU7U7kf/0tAMCr3/0c7E5XT1+f5o7rljVkpDICgr6+pyF/fb1gO6m1tJUY2u12LF++HN/5znfw2GOP4X/8j/+BH/zgB3j3u9+NL33pS/jTn/7U7TipDUZIDINiAQIUDrmnnuM6Rlpprs1atJI2k9G8yqTQiLhuWUMmX9HV/kIACAbqHQZZnkxqKTM6fCafz+Phhx/Gr3/9a0xMTOCCCy7AokWL8MUvfhE33XRTt2KkNuUMkBjaBBVBsciKIWmG6xj1Wr6xNmsyrqLxmgWFiaGRcd0yt3rFUGeJYbNiyJNJLcXezoMeffRRbNiwAY899hje/va3Y82aNVi+fDlcrvo/mr/8y7/E+9//ftxwww1dDZYOTypU4XLa4LDr+7BZzjIkLXAdI61IxfqBEj4NTiVlxdDYuG6Zn6qqyOTK8Nt7f+PocJqtpFm2klpKW4nhP/3TP2HVqlX4yle+goGBgQM+HgqF8NWvfrXjwdHMSMUq/G79VgubwmIeu2pRrcMgi+E6RlrRao9h/TXrF3UFlQfPGBHXLfMrVWRUagr8Dn1VDP1eJwSAQ+4tpq3EcOPGjUd8zJo1a+YcDM2NVKzC7zVGYviCshA8AZl6iesYaaXZStrrU0kBwC4ocKGCPFtJDYnrlvk1WzUDor4On7GJAvxeB1tJLaatnsNPf/rTeOaZZ/Z73zPPPIPPfvazXQmKZkcqVhHQ8f7CprCYhwwbcqpH61DIQriOkVakUhV2mwinRjPKfGIFBbaSGhLXLfNrVuT8OttjCAABr5MVQ4tpKzF8+umn8ba3vW2/951yyil46qmnuhIUzY5UrOj64JmmsCgB4MgK6i2uY6SVfLGGgNeh2Ywyr1DmHkOD4rplftlGRc6vQUfBkfR5Ha34yBraSgydTucBM3MKhQLs9rY6UalHpGLNIIkhZxlS73EdI63kS1X4vdrt8fMKZZ5KalBct8xPzxVDPyuGltNWYnjmmWfi+uuvhyTVKz2SJOHmm2/GWWed1dXgqH01WUGxbIzEMNJMDDnLkHqI6xhpJV+sIqDh/m+fyIqhUXHdMr/mqZ96m2MI1CuG3GNoLW0lhtdccw0kScLpp5+OM844A6effjokSeJJWDrSPNzACIfPeMQq3EKFFUPqKa5jpBWpWENA04phhaeSGhTXLfPLFarwuGxwCrLWoRwg4HUiX6qhJitah0I90lYvQjAYxPe//31MTU1hbGwM8XgcsVis27HRDEgGGG7/RpxlSL3GdYy0ki9VNU0MfUIZBdUJhUdBGw7XLfPLFSr1YfI6/PHsaxQbpGK1NdeQzG1Gk9BFUUQ4HEapVMLu3buxe/fubsVFM8TEkKg9XMeo1+p7DLVbm71iGSpEFMranIpKc8d1y7yyhQqCPn0mXc0bWtxnaB1tVQwfe+wxXHvttZiamtrv/YIg4JVXXulKYDQzRkwMd9R415N6h+sYaaFak1GpKppXDAFAKlRg0ywKmg2uW+aXK1QR7/cDktaRHKi5N5onk1pHW4nhzTffjE996lP40Ic+BLfb3e2YaBZyBkwMC6oLRd7Bph7hOkZayJfqa5yWh894hfpFXa5QQcjN0yyNhOuW+WULFRzv1+ce4H0VQyaGVtHWb4hsNotLL70UglZDmOiI8gZMDAFgOl2Ee0YNzUSzw3WMtLDvYDBtx1UA9coEE0Nj4bplbqqqQipU63sMdajP10gM82wltYq2LslXr16Ne++9t9ux0BzkClU4HSKcDmM0CjUTw8lUQeNIyCq4jpEWmm3+fVq2kjYGZ+fyvOtvNFy3zK1QrkFWVAR1WjH0uu0QBQG5ItcOq2jr1uELL7yAf/u3f8Ndd92F/v7+/T52zz33dCUwmhmpWEXAINVCAIiI9Wb6qVQRC6NejaMhK+A6RlpotpJqevhMo5VUYjuY4XDdMrfmoS56rRiKggC/14EsK4aW0VZiuGbNGqxZs6bbsdAcSMUq/B593nE6mD6xCBEKptJFrUMhi+A6RlpotpIGvE7NzpZotZIWeXFnNFy3zK053F6Pp5IqtQpisQAifW5UZAWxWAAAUKuUkcrwJpNZtZUYfuhDH+p2HDRH9cTQOHtHbIKKoFjAFFtJqUe4jpEW3lgx1CoxtAkqXKjwAAkD4rplbvsqhvq7sS/anRhZuxqO7AcwMWXDyNpbAQBLrr0XANcSs2prj6GqqvjFL36Bj33sY7jwwgsBAE8//TTuv//+rgZH7ZOKVU0PN5iNsJjHZIoVQ+oNrmOkhXypCpsowOPS9sadT6xA4iwyw+G6ZW7NmzV6bSUFgIBYgqTwRFyraCsx/Pa3v41f/vKXuOSSSzA2NgYAmDdvHn7wgx90NThqn1Sowu82zh5DoJ4YspWUeoXrGGlBKlbhc9s1P1XSK5RbbWtkHFy3zG1fYqjfG/t+oQRJZWJoFW0lhv/xH/+BO++8ExdccEHrl9vQ0BB2797d1eCoPbKioFCuwWegVlKgnhgm0kUoiqp1KGQBXMdIC/liFT4dHAzmFco8fMaAuG6ZW7ZQhcdlg8Ou3xPl/WIJRdWJmsrZYlbQ1ndZlmX4fD4AaC1M+XweXi9Pk9SD1h4WHVx8zERYzENWVKSlstahkAVwHSMt5Es1XSSGPrHS2s9ExsF1y9xyhUpriLxe+YUSAEBS9dvuSp3TVmL4vve9D9/4xjdQqdTvNqqqim9/+9t4//vf39XgqD1GG27f1JxlmMwyMaTu4zpGWsgX9dHm7xXKkDiLzHC4bplbrlBFQMNRNu3wi43EkPsMLaGtxPArX/kKpqamcOqppyKXy+Ftb3sbRkdH8YUvfKHb8VEb8sV6xVAPd6VnojnLcDrLfYbUfVzHSAv5Un2Poda8Qhm5QhWqytZ9I+G6ZW65QgV9uq8Y1m/ec5+hNbT128rv9+P222/H9PQ0RkdHEY/HEYvFuh0btUkyasXQVq8YJjIljSMhK+A6RlqQijppJRXKUBQVxbIMrw4SVWoP1y1zyxaqWDK/T+swDisg1m/es2JoDW39dlAUBQAQiUQQiUT2e58ocjOq1pqJoR4uPmbCLdTg9zjYSko9wXWMeq1aU1CuyrpYm71ivRUxX6oyMTQQrlvmpagqpELVAHsM69doOVYMLaGt3w4nnHDCIY/afuWVVzoaEM1cq2Kog30sMzUQ9iKRZcWQuo/rGPVaodRcm7VPxLyNi7t8qYoYPBpHQ+3iumVehVINiqrqPjH0CBWIUFgxtIi2flv95je/2e/tqakpfP/73+fmZ42Fg07YnS6oogCbKGDhUEjzWVkzFQt7sGcyp3UYZAFcx6jXpJJ+9n97hUbFsLEnnYyB65Z5NWcY9un88BlB4CxDK2krMVywYMEBb69btw4XX3wx1qxZ05XA6MjsThdG1q7G3vy74FGHsf3rF7c+tuTaezWMrH2xsAcvbJuCqqqGS2rJWLiOUa81T4z26aCbwyfuqxiScXDdMq9svp4Y6r1iCAABscSKoUXMukFdkiQkk8lOxkKzVFCc8AnG3Kc3EPaiVJFRKPMuNvUe1zHqpmYS5vPop5W0ufWAjIvrljk054rqfVwFAPgEJoZW0dZvqy9+8Yv7VXNKpRKefvppfPCDH+xaYNS+vOpqHSxgNAPh+pDeRKaki7vqZF5cx6jX9LT/e18rKRNDI+G6ZV7NVlKjVAx31vxah0E90FZiuGjRov3e9ng8uPTSS/Hud7+7K0HRzORVFyKNYfFGEwvXD0FIZEtYOBjQOBoyM65j1EvhoBOCzQYAWDQc1jgawC4o8LhsyJfYnWEkXLfMy0gVQ79QQo4VQ0toKzH89Kc/3e04aA7yigvDNmO2lbQSQ84ypC6b6zq2bt06PPjgg9i7dy82btyIY489FgBwzjnnwOl0wuVyAQC+8IUv4KyzzppzvGRsdqcLu//rpxBxIsZuuxRLr9N+37ff62TF0GB4/WVe2UIFXpcddpv+x474xRLKcKKq6j9Wmpu2EsNf/vKXbT3ZxRdffOQHUccVVFfrYAGjCfldsNtEzjKkrpvrOnbuuefiYx/7GP7yL//ygI995zvfaSWKRE0F1QWPUIFeztUKeJysGBoMr7/MK1eoIuDTfxspAASE+s177jM0v7YSww0bNuC5555DNBpFPB7H2NgYEokE3va2t7UeIwgCFyYNVFQbqrC3DhYwGkEQEO1zYZqzDKnL5rqOnXbaab0KlUwir7p0dTBYwOeAVGDF0Eh4/WVeuULFEG2kAOBvFB84ssL82koMjz32WJx77rn4+Mc/3nrfv/7rv2L37t247rrruhUbtSGv1NvX9HTxMVPRoBtJJobUZd1cx77whS9AVVWceuqp+Lu/+zv09fXN6POj0Zlt6o/FzL0f1yxfX0HRVzeH3+tEIlPq+t+vWb5/B9Prr43XX+aVK1Qx0NhOo3d+oQiAFUMraCsx/NWvfoU//OEP+73vox/9KN71rne1vTBt374d11xzDdLpNEKhENatW4fFixfv9xhZlnHLLbfg8ccfhyAIuOqqqw6Y0zMyMoIPfehDuOyyy/DlL3+5rdc2s4JaTwy9Orr4mKlonxsvvp7QOgwyuU6sYwdzzz33IB6Po1KpYO3atbj55ptx2223zeg5EgkJiqK29dhYLICpqdxsQjUEs3x9sVgABdWJoFjQOpSWgNeJrFTu6t+vWb5/BzOTr00UhRnf8DmYbq1bpL1soYJjhoJah9GWgFi/eZ9jxdD02tpF2t/fj0ceeWS/9/32t79FJBJp+4VuuOEGXHbZZXjwwQdx2WWX4frrrz/gMRs3bsSuXbvw0EMP4ec//zm++93vYs+ePa2Py7KMG264AcuXL2/7dc0ur5qgYtjnRiZfQbUmax0KmVgn1rGDicfjAACn04nLLrsMzz777Jyej8xDb62kfreIfKmG/n4/YrEAwkFj7G+ysm6tW6QtRVEhFauGGFUBvKGVlBVD02urYnjdddfhM5/5DH74wx9i3rx5GBsbw2uvvYZvf/vbbb1IIpHA5s2b8aMf/QgAsHLlSnzta19DMpncb3G7//77sWbNGoiiiEgkguXLl+OBBx7AFVdcAQD4/ve/j7PPPhuFQgGFgn7uwmrJFIlhsL7QJHNlDDbmGhJ12lzXsYMpFAqQZRmBQACqquL+++/HsmXLOhg1GVlBcbXmB+pBwOeBrKh4Ze2lcAs1LLn2XgD6iY8O1I11i7QnlapQVWOMqgAAF6qwQ+YeQwtoKzF8z3veg4cffhiPPfYYJicncfbZZ+N973sfwuH2ZjONjY1hcHAQtsZMJ5vNhoGBAYyNje2XGI6NjWH+/Pmtt+PxOMbHxwEAr776Kp544gn85Cc/wR133NH2F/hGM2nrMMoeidYeQwO3ki5dWP83IEPU5O/dCN9rxjh3c13HbrnlFjz00EOYnp7G3/zN3yAUCuHOO+/EZz7zGciyDEVRsHTpUtxwww1d/krICKo1BWU4dNXm3+erX4TmFRfcNp5OagRzXbdIn3L5+g2ZPoOcSioI9ZEVnGVofm0lhgAQiUTwzne+ExMTEzjllFO6GNKBqtUq/v7v/x7f+MY3WsnlbLS7j8cIeySaF+EFE1QMbaoCAHh9VxLzw71ddIzyvWaMB5rNHp65rGPXXXfdQff03HfffTN6HrIGqVC/8NPT2uxvtK0VVBeiyGscDbVLy+sv6o5sa7i9MRJDoD7knhVD82srMRwdHcXf/d3f4dVXX4UgCHjuuefwwAMP4PHHH8fatWuP+PnxeBwTExOQZRk2mw2yLGNycrK1N+eNjxsdHcXJJ58MYF8FcWpqCrt27cJVV10FAMhms1BVFZIk4Wtf+9pMv2ZTySsuOFGFXVC0DmXWwgEXBAGY5pB76qK5rmNEM5FrJIa6aiVtXIQ2tyCQ/nHdMqfm+mCUVlKgfgAN9xiaX1uHz1x//fU4++yz8eyzz8Jur+eS73nPe/C73/2urReJRqNYtmwZNm3aBADYtGkTli1bdsDm6fPPPx/r16+HoihIJpN4+OGHsWLFCsyfPx9PPfUUHnnkETzyyCP467/+a3zkIx+xfFIIAAXVaeg2UgCw20SEAy4kOLKCumiu6xjRTOQaFQE9tZI2L0ILChNDo+C6ZU7N9aGPFUPSmbYSw5deeglXXXUVRFGEIAgAgEAggFyu/daxG2+8EXfffTdWrFiBu+++GzfddBMA4Morr8RLL70EAFi1ahWGhoZw3nnn4SMf+QiuvvpqDA8Pz/RrspS8qq/DDWYr2udGghVD6qJOrGNE7crpsJWUFUPj4bplTtl8BQIAv8c4FUO/WILEm0qm11YraTQaxc6dO3HUUUe13vfaa68d0Ap6OEuXLsX69esPeP9dd93V+rPNZmsljIfzmc98pu3XNTu9HYc+W9GgG9t2Z7QOg0ysE+sYUbukViupftbnfXsMjVOlsDquW+aUK1bh9zogioLWobTNL5RQgQOlMg+uMrO2KoaXX345PvnJT+Lee+9FrVbDpk2b8PnPfx5XXnllt+OjIygoLsO3kgL1imEqV4asGHevJOkb1zHqpWy+3irmE/XT0eGwi3Ch2jrNmvSP65Y55fIVQx08A9QrhgCQlox/zUmH1lbF8OKLL0YoFMLPf/5zxONx3Hffffjc5z7HQfM6UG8lNf4PaX/QDUVVkc5VWnMNiTqJ6xj1klSsQIQCF6pah7Ifn1hunWZN+sd1y5yyhQr6DHTwDAAEhHpimM1XEPa0PdSADOaI31lZlvHxj38cP/zhD7kQ6YyiqPXDZ0yQGDaTwUS2xMSQOo7rGPVaNl+BVyhD0FmnmFcoc4+hQXDdMqdw0IlCWcZR8/t0P//3jd5YMWRiaF5HbCW12WzYs2cPFLb46U6hVIUK0TStpAAwnSlqHAmZEdcx6jWpUNXlTTuvUOYeQ4PgumVOdqcLqekEhFcfwcja1RhZu1rrkNrib1QMMzn9rWvUOW3tMbz66qtx4403Yu/evZBlGYqitP4j7WR1eLjBbDUTQ55MSt3CdYx6KVeowKuj/YVNPrHCcRUGwnXLfKo1BQXV1arAGYW/UYTI5PW3rlHntFULvu666wAAGzZsaL1PVVUIgoBXXnmlO5HREeXy+jsOfbacDhv6fE7OMqSu4TpGvZQrVHS5NrOV1Fi4bplPNl9fF5oVOKNwCTU4UUWGh8+YWluJ4W9+85tux0Gz0BqgrMOLj9mI9rkxzYohdQnXMeqlXKGKmA7XZl+jlVRRtY6E2sF1y3yyjZv6AYNVDIF61ZCJobkdspX0zDPPbP35X/7lX7BgwYKD/kfaaQ1QNsEeQ6B+AA1bSamTuI6RVqRCBV4drs1esQwVIkqqsU5EtBKuW+aWzhmzYgjUY85IbCU1s0MmhrVaDalUCgDw4IMP9iwgal8rMRTM8UPaH3QjkS1DUXkrmzqD6xhpoVpTUKrIulybm+2tHFmhX1y3zK1ZcTPaHkOgHjPnGJrbIVtJL7nkEpx99tkIh8MolUo4++yzD/q4Rx99tEuh0ZHk8lUIUOHR4cXHbET73KjJCnL5CoJ+XrTQ3HEdIy3kS/pt8/c2fl9wn6F+cd0yt+bhLQGDVgwnmBia2iETw89//vO49NJLsXfvXnziE5/Arbfe2su4qA25QgUeoQJRMEeFrTm/cDpTYmJIHcF1jLQgFeuJoR4Pn2lVDHkyqW5x3TK3jFSGCMWQN/UDYr2VtHkAEpnPYQ+ficfjiMfjuPPOO3H66af3KiZqU65Q0eUd6dnqf0NiuHRBUONoyCy4jlGv5RuJoV73GAKsGOod1y3zSufKCAglGDGvCghF1GQFxXINXjf3KZtRW3MMzzjjjG7HQbOQy+vzOPTZas0y5MgK6gKuY9Qr+VINgD73f+/bY8gh90bAdct8MlLFkPsLgX37IrONU/HJfNpKDEmfcjo99W62PC47/B4HptNFrUMhIpq1ZiupHjs6PNxjSKSpTL5syBNJgX0jNrIccm9abc0xJH3KFaoY1uGFx0wotQpisUDr7Xn9PmSLNcRiAdQqZaQyXHyIyFiah8/ocZSQTagfWMY9hkTayEhlLDBqxbCR0DZPxSfzYWJoYPU9hsb+4RTtToysXd162597L/bIYYysvQ1Lrr0XgLG/PiKynnyxBrtNgBM1rUM5KK9QZsWQSCMZqYzjWTEknWqrlbRSqeBb3/oWzj33XJx66qkAgCeeeAJ33313V4OjQ6vJCgqlmi7vSM9FxJZHSvGBowyp07iOUa9IxSr8XqduD5fwCmXuMTQIrlvmUqnKKJZl4+4xFLjH0OzaSgy//vWvY+vWrbjttttax9Mec8wx+OlPf9rV4OjQpIJ+j0Ofi4gooQo7sqpH61DIZLiOUa/kS1UEvPpNvHxsJTUMrlvmkm20YBo1MbQJKgJeR+vrIPNpq5X04YcfxkMPPQSv1wtRrOeSg4ODmJiY6GpwdGjN/m49Hm4wFxFRAgAkZZ/GkZDZcB2jXskXqwh4HUBG60gOziuWMV3zax0GtYHrlrnkGjf1A4JxD9kL+l3IsZXUtNqqGDocDsiyvN/7kskkQqFQN2KiNjT7u83WShq1NRJDhRct1Flcx6hXpGJN5xXDMgrcY2gIXLfMJdO4dgsYtGII1BNDtpKaV1uJ4fnnn48vf/nL2L17NwBgcnISN998My644IKuBkeHJjUqhmZrJQ2LeQBMDKnzuI5Rr+i9ldQrlFFUnZAVbubWO65b5tKstAUMevgMAIQCLh4+Y2JtJYaf//znMTQ0hA9+8IPIZrNYsWIFBgYGcPXVV3c7PjqEfa2k5vrhdAk1+IUiEkwMqcO4jlGvSMUqAj4dJ4ZiGSoE5Iu86693XLfMxeh7DAEg5HdxXIWJtbXH0Ol04qtf/Sq++tWvIplMIhwOtzZBkzayef3OyZqrqCghKTMxpM7iOka9UK7KqNaU+h5DnfI1bihKhQr0GyUBXLfMJpuvwuOywynIR36wTgX9LuRLNdRkBXZbW/UlMpC2vqOf+tSn8J//+Z+oVCqIRCJclHRAKlZgEwW4YL47vhFbnq2k1HFcx6gXmlW4Pj1XDBtbEHjXX/+4bplLrlBByG/s/b0hf31ty3GfoSm1lRiefvrp+OEPf4gzzjgDX/7yl/H4449DUZRux0aHkc1XENDxnKy5iIgSkooPCve/UAdxHaNeaF4s6TkxbHaa8MJO/7humUsmX0EoYOzEMNhIbLnP0JzaSgw//vGP45e//CXuvfdeDA8P4+tf/zrOOuss3HLLLd2Ojw5BKlQR8JmzCSgiSpBhQypn3B580h+uY9QLUqlxHL3OD58BeGFnBFy3zCVXqCDo1+/a0I5mYsuOA3OaUXPw4sWL8elPfxrf+ta3cNxxx+Gee+7pVlx0BLlCBX6PsReXQ4k2ZhlOJAsaR0JmxHWMuqnZSqrnw2d8bCU1HK5b5pDNV1oVN6NqtsJyyL05tXX4DADs2rULmzZtwq9//Wskk0mcf/75+NSnPtXN2OgwsvkKBiNeIKt1JJ0Xse1LDGMGv7NG+sJ1jLpNau4x9DqR0jiWQ/EIFQhQOKTaILhumYOiqMgVqyZqJWUruhm1lRiuXr0aO3bswLnnnosvfelLeM973gO7ve2ckrpAKlRw9FBI6zC6ojnLcCJZwIkLQ9oGQ6bBdYx6oZkY+nWcGIpCfdQR7/jrH9ct85CKVagqDH/4jNdth90msOPApNpaXT7xiU/gnHPOgdvt7nY81KZsoQq/jo9DnwunICMoFDCRYCspdQ7XMeoFqViF22mDw67vY9x9Qpl7DA2A65Z5NG/EGL1iKAgC+nxOrh8mdcjEUFXV1rHI559/PgAc9CQsUdT3Lz8zqlRlVKqyrk+9m6uITcJ4Mq91GGRwXMeo1/LFKvwe/d+084lltpLqFNctc2omUkbfYwjUD9fK8lRjUzpkYnjqqafi2WefBQCccMIJB8zOaS5cr7zySncjpAM0W5X0fOrdXPWLOezg4TM0R1zHqNekYg0+IySGQpmtYDrFdcucWhVDv/EnUPd5nWxFN6lDJoa//vWvW3/+zW9+05NgqD35Ug2AuRPDiCjhmXQRNVmB3ca7ojQ7XMeo16RixRgVQ6GMMVYMdamT61YqlcKXvvQl7Nq1C06nE4sWLcLNN9+MSCQy1zBphpqHtYQCLkxpHMtc9Xkd2DstaR0GdcEhr7jj8Xjrzw888AAWLFhwwH8PPfRQT4Kk/bUqhiadYwgA/bYcVBVIZDnLkGaP6xj1mlSsImCExJCtpLrVyXVLEARcccUVePDBB7Fx40YMDw/jtttu61bodBi5QgU2UTDEjaMjCTT2GKqqqnUo1GFtlWJuv/32g77///yf/9PRYKg9eQu0kkYaswyn0kWNIyGz4DpGvWCUVlKvUEalpqBclbUOhQ5jrutWKBTCO9/5ztbbp5xyCkZHRzsSG81MJl9BwOs4oDXYiPq8TtRkFcUy1w+zOeyppL///e8B1Dc9/+EPf9jvzsCePXvg8/m6Gx0dVGtOls+JjMaxdEt/Y5bhdJoVQ5obrmPUK7KioFiuGaIi0Bxyny9W4XLYNI6G3qwb65aiKPjpT3+Kc845Z0afF436235sLBaYaVia61XM5ZqCSNDTk9fqtgXz+gAAdrcDsdiR/33w30VvdCLmwyaG1157LQCgXC7jq1/9auv9giAgFovhuuuum3MANHNvPHzGrIlhn1CA3SayYkhzxnWMeiVfrO//NkRiKNZvuuUKVUT6OApBb7qxbn3ta1+D1+vFRz/60Rl9XiIhQVGO3DIYiwUwNZWbcVxa6mXM06kCfG79rw3tEJR6pXDH7hScOPy/Df676I12YxZF4bA3ew6bGD7yyCMAgC996Uu49dZbZxgidYtUrMLltMFp4ru8ogAMRjxMDGnOuI5RrzRv2vk8+h9A3qwYSiWjn49oTp1et9atW4edO3fizjvv5JgLjWTzVcSj5uhQ6WtsZeIsQ/Np67cXL6b0JV8yxuEGczUY9TExpI7hOkbd1kwMDVExfEMrKelXJ9atb37zm3j55Zfx/e9/H06nec8m0DNVVZErVFoJldEFG3O0M0wMTaetxFCSJHz3u9/F008/jVQqtV+v+6OPPtqt2OgQ8sUaAiYebt80GPFiy46k1mGQSXAdo27LGykxFOuJYY5DqnVtruvWtm3b8L3vfQ+LFy/GpZdeCgAYGho65KE21B2lioxKTUGfSa7d/F4HBLBiaEZt9RPceOON2Lx5Mz71qU8hnU7juuuuQzwex8c//vEuh0cHIxWrpj6RtGlexId8qYYCW52oA7iOUbe1KoYG2EfEiqExzHXdOuaYY7BlyxY8+OCD2LBhAzZs2MCkUAO5xjD4gFf/a0M7bKKIgNfBIfcm1FbF8Mknn8T999+PcDgMm82G5cuX46STTsInP/lJXlRpQCpWMdhvjj71wxmMegEAU+kSFs0zx2JK2uE6Rt22b4+h/tcrm6DC67a3YiZ94rplDs3h9mapGAKNk/ElJoZm01bFUFEUBAL1I1C9Xi9yuRxisRh27tzZ1eDo4KRi1TR96oczL1JPDKcz3GdIc8d1jLpNKlZhtwlwO41xMFjA6+ThMzrHdcu4wkEnYrFAfYSAvX65vWhBSNugOqjP52TF0ITaqhgef/zxePrpp3HGGWfgtNNOw4033gifz4fFixd3OTx6M0VV64fPmOiu06HMa5zeNcVZhtQBXMeo26RiFT6PcQZY9/mckLjHUNe4bhmX3enCyNrVAIBtpWMBvAvZH30a+Pu7tQ2sQ4I+JyZTZh2aZl1tVQxvueUWLFiwAEB9to7b7UY2m+UpfxoolWtQVfP0qR+Oz+OAz23HJE8mpQ7gOkbdJhWrhjh4pingc7KVVOe4bplDTvFAgAq/YJ4b3X0+JzL5yn4HIpHxtVUxHB4ebv05Go1i7dq1XQuIDu+Nw+2tYCDswVSqoHUYZAJcx6jb8sWqIQ6eaerzOrFrLKt1GHQYXLfMIae64RNKsAnGT6KUWgWxWADzBwKo1hT4+zxwigpSGbaVmsEhE8Nf/vKXbT3BxRdf3LFg6MikYg0ALNFKCgCxkAfbeeFCs8R1jHpJKtUQb+yNNoI+Vgx1ieuW+WQVDwKiOaqFot2JkbWrUS0vAXAmXrz1Srzr+h8DYGJoBodMDDds2HDETxYEgQtTjzV/iVvh8BmgXjF85tUp1GQFdltbnc9ELVzHqJeaewyNIuBzolSRub7qDNct88kpHgQEc22LCYj1ryeneDSOhDrpkInhv/3bv3X0hbZv345rrrkG6XQaoVAI69atO2DztCzLuOWWW/D4449DEARcddVVWLNmDQDg3nvvxY9//GOIoghFUbBmzRp87GMf62iMRtCcOWWViuFAyAtFVZHIljAYNs6deNKHTq9jRIeiqmq9ldRIiWHjBmO+WEXQ79I4GmriumU+OdWNo2zm6n4KNPZL5lS3xpFQJ7W1xxAAUqkU/vu//xvT09O44oorMDExAVVVMW/evLY+/4YbbsBll12GVatWYcOGDbj++uvxk5/8ZL/HbNy4Ebt27cJDDz2EdDqNiy66CGeccQaGhoawYsUKfPjDH4YgCJAkCRdeeCFOP/10HH/88TP7ig3OinsMAWAqVWRiSHM213WM6FBKFRmyohoqMWx2nkhMDHWN65axqaq5WkmbWDE0p7Z6R/74xz/i/PPPx8aNG3H77bcDAHbu3Ikbb7yxrRdJJBLYvHkzVq5cCQBYuXIlNm/ejGQyud/j7r//fqxZswaiKCISiWD58uV44IEHAAB+v791BHipVEK1WjXMkeCdlC9VIcAYA5Q7IRaqLzg8mZTmaq7rGNHh5Bo37QyVGPr2JYakT1y3jK8MB6qwo89kraR+oQwBCnIKK4Zm0lZi+PWvfx3//M//jB/+8Iew2+tFxre+9a148cUX23qRsbExDA4OwmarD/212WwYGBjA2NjYAY+bP39+6+14PI7x8fHW27/5zW9wwQUX4P3vfz+uuOIKHHfccW29vplIxSq8bjtsojWS4pDfCaddxGTKXAsq9d5c1zGiw2nOAzTSKKEAE0Pd47plfNlG4mS2iqEoqPAJZeRUVgzNpK1W0r179+KMM84AgFaVzuFwQJbl7kV2EOeeey7OPfdcjI6O4uqrr8Z73/teLFmypO3Pj0b9bT82FgvMJsSuqylAn4VafgYG+jCv34dModq174lev9dvxBjnTi/rGJlTrlA/kc9vpMTQy8RQ77huGV+z1bLZemkmAbGELFtJTaWtxHDp0qV4/PHHcdZZZ7Xe97vf/Q7HHntsWy8Sj8cxMTEBWZZhs9kgyzImJycRj8cPeNzo6ChOPvlkAAdWEJvmz5+Pk046CY8++uiMEsNEQoKiHHmGTCwWwNRUru3n7aVEugCP06Z1GD0zNZVDxO/CnslcV74nev5eNzHGgxNFYUY3e+a6jhEdjhH3fwd89SSWiaF+cd0yvmyjoma2VlKg/jWxldRc2koMr7nmGvyv//W/cPbZZ6NUKuH666/HI488gjvuuKOtF4lGo1i2bBk2bdqEVatWYdOmTVi2bBkikch+jzv//POxfv16nHfeeUin03j44Ydxzz33AABef/11LF26FACQTCbx1FNP4bzzzpvJ12oKUrGGoN84Fx6dMBD2YPPOJFRVteS+UuqMua5jRIeTa7aSGmiPodtph9MuMjHUMa5bxrevYmiuVlKgXgWdqum7W4hmpq3E8JRTTsGvfvUr/OpXv8Lq1asRj8fxy1/+ckYnYt1444245pprcMcdd6Cvrw/r1q0DAFx55ZX47Gc/i5NOOgmrVq3CCy+80Er4rr76agwPDwMAfv7zn+PJJ5+E3W6Hqqr46Ec/ijPPPHOmX6/hScUq5vf7tA6jJ5RaBbFYAEuGQnjo6d2wu52I9NXvTNUqZaQyHKZK7evEOkZ0KLliBXabALfBOjp8HkdrfyTpD9ct48spbohQ4BPKWofScQGxhJzigaoeuRuPjKHtcRWDg4O48sorW29v2bIFX//61/Gd73ynrc9funQp1q9ff8D777rrrtafbTYbbrrppoN+/le/+tV2QzW1fKkKn6ftb5uhiXYnRtauBirzASzHn775eSx1TAIAllx7LwAmhjQzc13HiA4lV6jPMDRaV0PA62idqEr6xHXL2LKqB36hBFEwX/LUJxRRhR3Fck3rUKhDDpthFItFfO9738Orr76KRYsW4TOf+QxSqRT+4R/+Ab/73e9w0UUX9ShMAoCarKBUkQ11HHonRG31vWsJxY+lmNQ4GjIarmPUC1KhCr/HeG3+Aa+z1QZL+sF1yzzMOMOwqfl1pXNlWOvK1LwOmxjefPPN2Lx5M84880w89thj2Lp1K0ZGRnDRRRfha1/72gF7BKm78gack9UJETEPEQqm5D6tQyED4jpGvSAVq4YaVdEU8DgwkSxoHQa9Cdct88gpbvSZ8ERSYN9Jq6lcGQMB490YowMdNjF8/PHHsWHDBkSjUfzVX/0Vzj77bNx999047bTTehUfvYFk0cTQLigIi3lMK9zgTDPHdYx6IVeoYNE8461Rfq+Dh8/oENct88ipHsSFtNZhdEWgcdJqmomhaRx2wH2hUEA0GgUAzJs3D16vl4uShqyaGAJAzJbFlGy8iy7SHtcx6gWpWEXAoK2kpYqMak3ROhR6A65b5qCq9Yqh+VtJzfn1WdFhK4ayLOMPf/jDfqcNvfnt5uBV6j5LJ4ZiDjtqMagqYLCzHUhjXMeo22qygnypZqjh9k3N9tdcodI69Zm0x3XLHAqqEzJspm0l9QtlCFCQzJnvxFWrOmxiGI1G9zsNNBQK7fe2IAj4zW9+073oaD85CyeG/bYsSqoTkupGQOCdKWof1zHqtnypfiKfUfcYAvVTVZkY6gfXLXPImXi4PQCIgoqAUEIqy+syszhsYvjII4/0Kg5qg1UPnwHqFUMAmJIDpm3JoO7gOkbdlivUR+cYcW0OeOvtr7kix//oCdctc8i2htubMzEEgD6xiCQTQ9M47B5D0pdcoQqnQ4TTYawByp0Qs2UBAFMKTyYlbaxbtw7nnHMOjjvuOGzdurX1/u3bt+OSSy7BihUrcMkll2DHjh3aBUmaaA6IbyZZRtKscnLIPVHn5ZR6Fd7MN7T7xCJSWbaSmgUTQwPJF6utth+riYpSY2QFD6AhbZx77rm45557sGDBgv3ef8MNN+Cyyy7Dgw8+iMsuuwzXX3+9RhGSVpr7v424PrcqhkwMiToua/JWUgAIikWkePiMaTAxNJBcsQqfAS88OsEmqIiIEiuGpJnTTjsN8Xh8v/clEgls3rwZK1euBACsXLkSmzdvRjKZ1CJE0kizldRoewyVWgWLhsIQBUAWBISDxqt4EulZTvHABhkewbyt2n1CARmpDEVRj/xg0j0mhgZi5Yoh0BxZwcSQ9GNsbAyDg4Ow2ert3TabDQMDAxgbG9M4Muql5sFgRrtxJ9qd2PGNi+FFEXse3wS706V1SESmklU8CIglU5+m3icWoahAtmDe5NdKDnv4DOlLrlhFNGjdU+NiYg6vVweh8qYUmUw06p/R42Mxc7dUG+3rq6mAz21HfF5Q61BmxS+WISn1pLATf/dG+/7NhJm/Nuq8jOJBUChoHUZXNUdxZKQKQn7eXDI6JoYGkjfoAOVOidmyqMDR6tkn0lo8HsfExARkWYbNZoMsy5icnDyg5fRIEgmp7TacWCyAqancbMI1BCN+fVPJAvr8LoysXd1635Jr79UwopnxCyXk1fpNx7n+3Rvx+9eumXxtoijM+IYPmU9W9bROVTerZmKYlspYBN44MTq2khqErNQHKPs81s3l3ziygkgPotEoli1bhk2bNgEANm3ahGXLliESiWgcGfVSrlBBn8+4N+38QqlVMSSizskqXgRFk1cMGwfrZPJsJTUDJoYGkS82Bygb9+JjrjiygrR0yy234L3vfS/Gx8fxN3/zN7jgggsAADfeeCPuvvturFixAnfffTduuukmjSOlXpMKVQR9xk2sfGIZkmrdbQpE3VCpyiiorlZFzazeWDEk47Nu+ckgwkEn7E4XSkq9WhYfCFh2j0NYzMMGmQfQkCauu+46XHfddQe8f+nSpVi/fr0GEZFe5IpVHGvwimFBdUHmqYJEHdMc+m72xNAuKAh4HchIrBiaARNDnbM76/tWXq8OADgf+V/9A0b+s37ioZH2sHSCTVDRL+bYSkpEuqGqKnKFKoJ+AyeGYhkqBEg8VZCoY5pD381++AwAhPvcrBiaBFtJDSKv1tuUfIK1f/AGbFlMKsY8+Y+IzKdclVGTFcPvMQSADC/siDommbNGxRAAIgE39xiaBBNDg8grTAyBemI4JQcgy4rWoRCRhYWDTsRiATjc9YSwz9B7DBuJIS/siDomman/XAUtkBiG+1y8sWQSbCU1iGbF0N/4BW5VA7YsZNgwkSrAWKOkichMmm3+O2tRABegz8itpI0bjlmpgnl9xk1wifQklStBhAKfYP7rtkhfvWKoqioEQdA6HJoDVgwNIq+64UANTkHWOhRNDYgZAMDeSUnjSIiIAEmpn+YZNHIraatiyDv+RJ2SyJTQJxYhWiBPCve5UZNV5Es1rUOhOWJiaBB5xQWfyF/ag42RFXunmBgSkfaa3RyGbiVtVgzZSkrUMalsqTXjz+wigfoNMraTGh8TQ4PIqy7L7y8E6vO2fEIJe1gxJCIdyCkeAEAoYNzE0C4o8AgVXtQRdVAqVzb9cPumcKMFPc2bS4bHPYYGwcRwnwFblhVDItKFXKPN3+20aR3KnPiEErKcQ0bUMYlMCQsscPAMAIR89fVPEcTWrO1apYxUhmuK0TAxNIi84sICe0rrMHRhQMxiKyuGRKQDkuJGQCwa/sAFv1DmHkOiDqnWFOQKFfR5rJEYRsP1ZPD1++7C4gf/DKA5a5uJodGwldQgJNVtiZOt2jFgyyCVK6PATc5EpLGc6kbABGuzXywhw4ohUUc0b7JYYbg9AHhcdjhRRabRWk/GxcTQABRVQFF1spW0oXkAzXjSGgsuEelXTvEgYIIxQj6hhCwrhkQd0bzJYoXh9k19YhFZlYmh0TExNICC6oQKgaeSNgzY6iMrxpN5jSMhIquTFLcp5ssGxBLSUgWKqmodCpHhpRuJoRWG2zcFxQKyilfrMGiOmBgaQPM4dFYM66KiBFEUWDEkIk0parOV1PgXfwGxCEVRkS9WtQ6FyPDSjRN++yxyKikAhMQC0kwMDY+JoQHkFSaGb2QXFMyLeDGWsM6CS0T6U1SdUCCaomLY19gnmS0wMSSaq0y+DFEU4LfQdVtQLCCjeMGmA2NjYmgAklofHGqGi49OGR4MMDEkIk3lGvtp+kxw+Eyg0fLGIfdEc5fOVRDyuyAK1smSgmIBNdhaXW5kTEwMDUBSGomhCS4+OmXhvAAmkgXUZEXrUIjIolprswlu2jUP0GFiSDR36XwZkaBb6zB6KtRom82wndTQmBgagNS4+2KGi49OGR4MQFZUTKWNv7eHiIwp10gMTbHHUGBiSNQp6VwFkYC1EsPmaA7uMzQ2JoYGICluuFCFQ2B1rGl4oD5MdXSaJ5MSkTZyjTZ/M4yr8Ahl2EQB2QITQ6K5SktlRC1WMWyewMqKobExMTQASXXDZ4ILj04aGvADYGJIRNrJKR4IUOAVjJ9MiQIQ9DuRYcWQaE6qNRlSsYpoyGqJYQECVCaGBsfE0ADyqstSJ1u1w+2yoz/oxigPoCEijUiqG36hbJoDJkJ+N1tJieYolatfr/UHrTXs3Sao8AslZFQmhkbGxNAAzDJAudPm9/swxoohEWkkZ7K1ORRwMTEkmqNmYmi1VlKgXjVMK9ZKiM2GiaEB1O9Km+fio1PiUS/GkgUoijnu1hORsZhluH1TKODiHkOiOUq2EkPrJUihxixDMi4mhjqnqiryigt+ka2kbzY/6kO1pmA6Y54LMyIyjpziMcXBM00hf71iqHJCNdGsWb1iyMTQ2JgY6lypIqMKOyuGBzG/3wcAGJ3mPkMi6j1JcbfGPJhBKOBCTVZRLNe0DoXIsFLZMjwuO7xuh9ah9FxILCCvulFVmV4YFb9zOtfc7+FjxfAA8Wg9MRxLcJ8hEfVWqVJDGQ7T7TEEwJNJieYgJZURafwsWU2QQ+4Nj4mhzmWkekLIiuGBvG47Qn4nR1YQUc9lpHryFBDN08oe8tcvZnkADdHspXIlhC2eGHLIvXExMdS55i9oM92V7qQF/T7sYWJIRD2WztXXZLO1kgJArlDVOBIi40rmyq2fJasJsWJoeEwMdY4Vw8NbEPNjbDrPk0mJqKf2VQzNszazlZRobmqygqxUsW4rqcDE0OiYGOpc8+KDp5Ie3IKYD5Wagqm0edq5iEj/micPmummXZ/PBUFgKynRbGWkClTAsq2kbqEKJ6psJTUwJoY6l82XYYMMF9jaczBDMT8AYM8U20mJqHea3Rxm2mNoEwUEPA7OMiSapeYNo3DAeqMqAEAQGrMMVSaGRsXEUOey+Qr8QgmCoHUk+jS/3wcBwN4pSetQiMhC0lIZbqECh6BoHUpH9fmcrBgSzVKqccPIqq2kAGcZGh0TQ53LSBW2kR6Gy2FDLOzBHiaGRNRDqWzJVAfPNDExJJq9VLa+Jlj18BmgUTFkYmhYPUsMt2/fjksuuQQrVqzAJZdcgh07dhzwGFmWcdNNN2H58uX4wAc+gPXr17c+dvvtt+OCCy7AhRdeiA9/+MN4/PHHexW6pjL5MnwmvPjopAX9PuzlyaRE1EOpXLl1NLuZ9PmcPHyGaJaSuTKcdhE+t13rUDQTFAtIK17IPBTQkHr2L/eGG27AZZddhlWrVmHDhg24/vrr8ZOf/GS/x2zcuBG7du3CQw89hHQ6jYsuughnnHEGhoaGcPLJJ+Pyyy+Hx+PBq6++io9+9KN44okn4Habu487K1UQZ8XwsIZifrzwWgLVmgyH3aZ1OERkAclsCXET7S9s6vM6uceQaJZSuTLCARcEC+//CYt5KBBbI33IWHpSMUwkEti8eTNWrlwJAFi5ciU2b96MZDK53+Puv/9+rFmzBqIoIhKJYPny5XjggQcAAGeddRY8Hg8A4LjjjoOqqkin070IX1OZfNlUp951w4KYD4qqYnTafHfviUh/VFVFMltCn2C+xDDoc6JSVVCq1LQOhchwmomhlYXFegcXT4s3pp4khmNjYxgcHITNVq/m2Gw2DAwMYGxs7IDHzZ8/v/V2PB7H+Pj4Ac933333YeHChZg3b153A9dYTVZQKNU43P4ImieT7p3mPkMi6r5SRUa5Ipu2lRTgyAqi2UjlSpY9kbSplRimmBgakeGaoP/4xz/i29/+Nv7v//2/M/7caNTf9mNjscCMn7/TEpn6DxUrhgfX/B5FIj7YbSKSUnVW3zc9fK+PhDES6Ue6cfJgnwlbSYP+emKYlioYCPMACaJ2KaqKtFRBpM/aFcOIbV9iePyCPo2joZnqSWIYj8cxMTEBWZZhs9kgyzImJycRj8cPeNzo6ChOPvlkAAdWEJ977jl88YtfxB133IElS5bMOI5EQoLSxmbYWCyAqancjJ+/03ZN1GPgqaQH98bvUTzqxdZdyRl/3/TyvT4cxnhwoijM6GYPUaekpXo1zYyJYchfv6htJr9E1J5svgJZUVs/Q1blFqrwCBVMpc3XUWEFPWkljUajWLZsGTZt2gQA2LRpE5YtW4ZIJLLf484//3ysX78eiqIgmUzi4YcfxooVKwAAL774Ij7/+c/jO9/5Dt7ylrf0ImzN5Yr1ofY8lfTIhmJ+7JlkKykRdV9zuL0ZW0n3JYZsJSVqVzjohCLWL6mXDIct30ETEvNsJTWono2ruPHGG3H33XdjxYoVuPvuu3HTTTcBAK688kq89NJLAIBVq1ZhaGgI5513Hj7ykY/g6quvxvDwMADgpptuQqlUwvXXX49Vq1Zh1apV2LJlS6/C10Rzj0eAewyPaOGgH2mpwn0xRNR1rYqhCQ+f8bntsNtEVgyJZsDudOHlH94CACj/8lqMrF2tcUTaCot5Hj5jUD3bY7h06dL95hI23XXXXa0/22y2VsL4Zvfee2/XYtOrXDMxNOHFR6ctHKzfnds9KeEtR0WO8GgiotnL5MtwOmxwC1WtQ+k4QRAQ8juZGBLNUFKpb22IiJyrHBbzeJEVQ0My3OEzVpIpVGC3ifCY8OJjrpRaZb9WDbev3v6UkCoIB51IZVg5JKLuaB4wIZhsfnNzXY2FvSiUZa6lRDOQUnzwCBV4RF6zhcU8coUKyhVZ61BohpgY6lg2X0HI74SF56Qekmh3HtCqERY/jBf/69dYfc7/B4AXM0TUHRmpjEifG8hoHUlnNddVl/RejNbCsDvfA66lRO1JKj6ERZ51AOwbWZHMlTCkcSw0Mz3bY0gzl81XEbL4oNSZWGBLYW8trHUYRGRyaamCcJ95Z5UFhQIyikfrMIgMJan42Uba0EwME1mekWE0TAx1LJuvIGTxQakzscCWxKTSh1KlpnUoRGRi6WbF0KSCYhFlOFEosSWOqF0pxddKiKyuVTHMcq+y0TAx1LFsoWL5eTgzscCehAoRu8b1PfOPiIyrXJFRqsgIm7ibo68xhiOV40UdUTukYhUl1YkIW0kB1Ef5iAKQyLBiaDRMDHVKVVXkChUE/U6tQzGMIVsKADCy12Qbf4hIN9L5erIUDZq7YggASV7UEbVlKlW/mRK2sWIIADZBRSToQZKtpIbDxFCnCuUaarLKVtIZiIgS3EIFI6NMDImoO9KNKlrYxGtzsFEx5P4govZMJus/M6wY7hMLebiGGBATQ51qDmrn4TPtE4T6PkNWDImoWzKNtdnsewwBVgyJ2jXZmNnHPYb7xMIe7jE0ICaGOtVMDMPcYzgjQ7Ykto9mISuK1qEQkQmlpUZiaOJWUheqcKLKNjCiNk2li7BDhl/gz0xTLORBMleCophs4KvJMTHUqWyhfhocK4Yzs9CeQKUqY2y6oHUoRGRCGakMu02E3+PQOpSuEYR61ZCJIVF7JlMFhMU8RM6dbomFvajJKjISq4ZGwsRQp5oVwyArhjMybE8AALaPZzWOhIjMKC2VEfQ5IQjmvgIMigUmhkRtmkoVONz+TWLh+izUiRRv1BsJE0OdyuQrEAQg4OOppDMRE7PwuOzYwZEVRNQFaamCkAVOi+4Ti9xjSNSmyVQREZ5Iup/BiBcAMJFgYmgkTAx1KpuvIOB1wsa+hBkRBeDooRB2MjEkoi7I5CuW6OQIigUksiWoKvcHGd26detwzjnn4LjjjsPWrVu1Dsd0qjUZ6VyZJ5K+SSsxTDIxNBImhjqVzVfQ5zX/XeluOHo4hF0TEmoyD6Ahos5K5UqmHm7fFBQKqFRlFMs1rUOhOTr33HNxzz33YMGCBVqHYkqJxsmbPJF0f05RQTjgwngij1gs0PovHOS1rZ7ZtQ6ADi5bqCDoM+/hBt10zFAINVnB6HQeCwcDWodDRCZRKNVQLMuI9FkgMWyMrEhJFXjd/F1kZKeddprWIZhaotFyHWFiuB/R7kSouBs7nt2Bkdduab1/ybX3AqhoFxgdFiuGOpXNV7i/cJaOHg4BAPcZElFHJXONC0ATD7dv6msMuU/zREGiw5rONGcYspX0zSKihITCG/RGwoqhTmULbCWdrXlRL7wuO3aMZfHet87XOhwiMonmsOaoiYfbNzUrhukcE0Ori0b9bT82FjNeEjDXmKWyDLtNQFjkXro36xdzeFZZDFkVYBP27Vc2wr8TI8T4Zp2ImYmhDpUqNVSqCoKsGM6KIAhYHA9gOyuGRNRBrYqhJVpJ6xe5SSaGlpdISG0NKY/FApiaMtbv3U7EvHM0g4GwFyIHuR8gapOgQkRK8aHftq+iqvd/J2b+tyyKwmFv9rCVVIeaMwz7mBjOilKr4IQl/dgzKaEv5OWmZyLqiGS2XB/+boFxFU5BRtDv5CxDoiOYTBcxr9+ndRi6FBXrico020kNgxVDHcrmqwCYGM6WaHci9MfvQ1bej8fXXo0ljqnWx7jpmYhmK5ktIeR3wSZa455qLORBgomh4d1yyy146KGHMD09jb/5m79BKBTCr3/9a63DMgVVVTGVLuKko2PApNbR6E+0se8yIfsBnmFlCEwMdShbaFQMucdw1hbZ68ngjlpsv8SQiGi2ktmSJfYXNsXCXuwcy2odBs3Rddddh+uuu07rMExJKlZRLMuYF2XF8GCCYhE2yDyAxkCscdvTYDKNU+Cs0K7ULX1iCVExhx21mNahEJFJJHNlS+wvbGpWDDnknujgJtP1Q5riUa/GkeiTKKiIihISSvsHGJG2mBjqUEqqQBBYMZyrxfYp7Kj1ax0GEZmAqqpIZsuWGFXRFAt7UK7IKHDIPdFBTaXqiSH3GB5a1CbVW0nJEJgY6lBGKiPoc0IUBa1DMbTF9mlkVB9SMu/kEdHc5ApV1GQFYUtVDOtrZ3OANxHtb6pRMWQr6aFxlqGxMDHUobRUQdBvnYuPblnc3Gcos52UiOamOarCWnsMPQD2zW8kov1NposI+Z1wOWxah6Jb/WIOBdWFgsLTZ4yAiaEOpaUywkwM52y+LQUHathRZWJIRHPTTI6stscQAE8mJTqEqVQRA42fEzq4aGN+YZJVQ0NgYqhDaamMEA+emTO7oGDYnsAOmfsMiWhumvP8rLTHMOh3wW4TOMuQ6BAm08VWZZ0Obt8sQ+4zNAImhjpTkxXkClWEWDHsiMX2aeyuRVFV+U+diGYvmS3DbhMR8FqnHUoUBUQCblYMiQ6iUpWRliqsGB7BvlmGrBgaAecY6kw2X59hGAowMeyEJfZJPIK3YFetH0sdnD5L3XPOOefA6XTC5ar/7H7hC1/AWWedpXFU1CnJXAmRPhcEwVqHgkWDbu4xJDqI5sEzrBgenkeswi8UMaX0aR0KtYGJoc6kmjMMfWwl7YQl9noy+HptgIkhdd13vvMdHHvssVqHQV1QH1VhvRt2kT4XNu9IaR0Gke40ZxgOhHjy+ZEM2LKYlJkYGgH763QmnWtUDNlK2hE+sYx5thRGaoNah0JEBlavGFpnf2FTtM+NtFRGTVa0DoVIV5ozDAdYMTyiAVsWE0wMDYEVQ53J5OsVQ7aSds5S+ySeKR8FRbVWCxj13he+8AWoqopTTz0Vf/d3f4e+Pv4iNANZUZDOVSx1ImlTpM8NVQXSuTL6uZeKqGUyXYTHZYfPzUvpIxkQs5BUD0dWGAD/NetMWipDFARLHXDQbUvtE3iyfBz2ymEcrXUwZFr33HMP4vE4KpUK1q5di5tvvhm33XZbW58bjc7stLZYzNyb+PX29U2lilBUFQvnh3QXW7ctGQ4DAGRRbPtrN/PfkZm/NpqZiWQBg2GP5fYdz8aALQsA3GdoAEwMdSadqyDod0LkQtMxzb2Fr9cG8T6NYyHzisfjAACn04nLLrsMf/u3f9v25yYSEhRFbeuxsVgAU1O5WcVoBHr8+rbsqu+xc9vQis0qCYJNrbeQjuxKYbCNiqkev3+dMpOvTRSFGd/wIWMZTRRw/MKw1mEYwoAtAwCYlIMaR0JHwsRQZzjDsPNCYgFRMYfXqwNah0ImVSgUIMsyAoEAVFXF/fffj2XLlmkdFnVI85CJ45fEEOv3aRxNbzX3VXJkBdE+xXINqVwZ8SgPnmlHVJQgQuEBNAbAxFBn0lIZMe7j6Lil9glsri6AqrZXlSGaiUQigc985jOQZRmKomDp0qW44YYbtA6LOmQqXYIoCpDu/GuMCPU1ZMm192ocVfcptQqG5ofQ53OiUFUQiwVQq5SRylS0Do1IUxOpAgAwMWyTXVAQESVMspVU95gY6kxaquCYoZDWYZjOUsck/lg5GrsmcvDa2KZLnTU8PIz77rtP6zCoS6bSRcRCHthgrRtLot2JkbWrESz9BXY8vQMjW25uJMRMDMnaxhL1xHBe1FodBHPBkRXGwHEVOlKtKZCKVQTZStpxx9rHAAAvbJvSOBIiMpqpdBHzLFwZ6LflMK1wvxxR01iiAFEQMMhRFW0bELOYkvva3k9P2mBiqCOtURWcYdhxEVse/WIWL26b1joUIjKYemJo3cpATMwhqfghc+QPEQBgPJFHLOyB3cbL6HYN2DKowo7pTFHrUOgw2EqqA+GgE3anC4l8FQCwaIH1jkTvhWMdY3j+9QhkRYFN5GJOREdWLNeQK1QtnRhGbTkoEJFSrPt3QPRGY4kC4hHrdhHMRnNkxeiUhAWstOoWE0MdsDtdGFm7Gq9UFgI4G8VfXIsRe/14dCsccNArxzrG8TvpOOwYy2HpAh6ZTERHNtU4kdTKraQxsT6iYYr7g4jQ57djIlXEu06K8yb+DDQTw72TTAz1jGUTHcko9QuPPpFl9m44xj4OANi8M6VxJERkFPsSQ+tWy/pt9cRwWuFFMFEiL6MmK3D98V8xsnY1Rtau1jokQ+gTinChij1Tktah0GEwMdSRlOKFHTL8AudFdYNfLGPJ/CBe2ZHUOhQiMoipdH09tnJi2CcU4UQV0zITQ6I9k/XEZrAxtJ3aIwj1fYbNvz/SJyaGOpJSfAiLeQjc3981bz02htf2ZlCuylqHQkQGMJkuwue2w+9xaB2KZgQBiNokVgyJAOyZqCc2A2JW40iMZ54tg13jOa3DoMNgYqgjzcSQuueUY2OoySq27EprHQoRGUBzhqHVxcQsplgxJMKeyRwCQhFekfM8ZypuSyOZLUEqVrUOhQ6BiaGOpGQ/E8MuO3FJFE6HiJdeT2gdChEZwFSqiAEelIB+m4SEEuAMMrK8PZMS20hnab6tfsbDXu4z1C0mhjpRU0VkVQ8Twy5zOmw4YVEEL45MQ1V5gUNEhyYrChLZEiuGAPrFLGqwIZHhHniyLlVVsWsix8RwluKNE/f3TPFaV6+YGOpERvFChYCwjT8s3XbS0iim0iWMJwtah0JEOpbKliErKhND7DuZdDzB31FkXclsGflitVX5opkJCkX4PQ6eTKpjTAx1ojk4mBXD7jtpSQQA2E5KRIc12RhVwcQQ6G/MMhyd5u8osq7djRM1FzAxnBVBABbF+5gY6ljPEsPt27fjkksuwYoVK3DJJZdgx44dBzxGlmXcdNNNWL58OT7wgQ9g/fr1rY898cQT+PCHP4wTTzwR69at61XYPbMvMeQPS7f1Bz1Y0O/DiyNMDIno0PYlhm6NI9FeWCzABhlj0/wdRda1e7J+g6TZEkkztzjeh71TeW7n0ameJYY33HADLrvsMjz44IO47LLLcP311x/wmI0bN2LXrl146KGH8POf/xzf/e53sWfPHgDA8PAw1q5di0984hO9CrmnmolhSGR7Yy+ctDSKLbvSKJZrWodCRDo1Nl2A0yEi0sfEUBRUREUJ4wn+jiLr2j0pIR71wS3w2mG2FsX7UKrI3K+sUz1JDBOJBDZv3oyVK1cCAFauXInNmzcjmdx/0Pj999+PNWvWQBRFRCIRLF++HA888AAAYNGiRVi2bBnsdnsvQu65lOKDXyjCKXC+XjcptQpisQDe+/ZhyIqKZ7dMIhYLIBYLIBx0ah0eEenIaCKPeMQHkcNlAdT3GY6xlZQsbPekhMXz+7QOw9AWz6v//e3hWqJLPcmyxsbGMDg4CJvNBgCw2WwYGBjA2NgYIpHIfo+bP39+6+14PI7x8fGOxRGN+tt+bCzW23lNnGHYG6LdiZG1q+FWBfiENfivn/4c8Y1PAACWXHsvYjGXxhEeXK//Pc6GEWIkmomxRB7HDYe0DkM3YmIWT01LUFSVyTJZTrkiYzJVxLnvWAjs1Toa41oUr18r7J2ScMrR/RpHQ29mzvLbISQSUlszmGKxAKamcj2IaN/rpRQfBkQef9wrNkHFiY49eLG6EDVVhF1QAKCn3/d29frf42xoEaMoCjO62UM0E8VyDclsGfP7fVqHohvzbBmUCjKSmRL6eSAPWcyeaQkqgMXzg1qHYmhetwPRPjdHVuhUT1pJ4/E4JiYmIMv1NklZljE5OYl4PH7A40ZHR1tvj42NYd68eb0IUVOqqiIls2LYayc7d6KoOrGtav5/Y0Q0M81xNvEoE8OmebY0AECqKmzBJ8tpnkh6FFtJ52wo5uPJpDrVk8QwGo1i2bJl2LRpEwBg06ZNWLZs2X5tpABw/vnnY/369VAUBclkEg8//DBWrFjRixA1lS9WUYaDiWGPHecYgwtVvFhdqHUoRKQzzbEMrBju00wMn//3OzCydjVG1q6G3anP9nuiTts9KcHjsmEw4tU6FMMbGvBjPFFAtcZzNfSmZ6eS3njjjbj77ruxYsUK3H333bjpppsAAFdeeSVeeuklAMCqVaswNDSE8847Dx/5yEdw9dVXY3h4GADwzDPP4L3vfS9+9KMf4Wc/+xne+9734vHHH+9V+F011TgSncPte8shKDjBuRcvVYahqNwvQ0T7JKUS7DYRJxwd4/7ZBq9YRaTPjTE5pHUoRD23e1LCUMwPgftr50SpVXDSsQOQFRVSVWXngc70bI/h0qVL95tL2HTXXXe1/myz2VoJ45uddtppeOyxx7oWn5amUo3EkBXDnjvZsQvPVRZjey2Go7UOhoh0Y+9UETEksPMf1gCoH05FwMJ5AYy/zj1WZC2KqmLPpIQzTuTWk7kS7U647rsGwGr8/q5/hN29pbG+VrQOjdDDiiEd2lSqvpeFiWHvneDcAwdqeLayWOtQiEhHdk/mMGjjgWBvtnBeAONyCG2c40ZkGtPpIkoVGcMDPPCsE8JiHn6hiF21qNah0JswMdSB8WQBDtTgFzjss9fcQg0nOnfjucpi1GRF63CISAeqNRkTiTzm8aToAyya14cq7EgqvEAm6xgZywIAjprHg2c6QRCAhfYEdslMDPWGiaEOjE3nEbXlILJtXROnOrcjr7rx/NYprUMhIh0YTxahqPsOW6F9Fs6r77fkPkOykpHRLJx2EUMDPIyqUxbapzEhB1FWLTU5T/eYGOrA6HQeMVHfc+rMbJljFF6hjP9+bo/WoRCRDjRPJGUr6YEWDtYTw3EmhmQhI6NZLJ4XgE3kZXOnLLQloELE7lrkyA+mnuG/cI0pqorxRB4xGxNDrdgFBac4d+IPL42hXOHRyURWN5bIQxSAAVtW61B0x+t2ICTmWTEky6jWFOyayGHJAh661EkL7QkAwK5av8aR0BsxMdRYKltGtaagX+QFiJZOdW5HqSLjuW1sJyWyur1TecT7fbAL3Hd8MHFbmhVDsoxdkznUZBVL4txf2EkBsYSwKHGfoc4wMdTYZONEUlYMtbXEPoGBiBePvzimdShEpLEd4zksWRDSOgzdmmdLY0IOcv4rWcLIaP3G/VJWDDtuoS3BiqHOMDHU2ERjhmE/9xhqShSA805fiFd2pjCZLmodDhFpRCpWkciWcPQQLwIPZZ4tjRpsmFICWodC1HUjo1mEAy6EAy6tQzGdhfZpJJQAsnnOMNQLJoYam0wV4bCLCHGGoebOfcdCCALwxIujWodCRBrZMV6vDhw9HNI2EB0bsiUBALs5g4xMLhx0YudEDsuOiiAWCyAW482QTlpknwYAbN2V0jgSamJiqLGJVAHzoj6OqtCB/pAHJy2J4okXxyAr3FtEZEU7xurdG0vZSnpIcVsaDtQ4nJpML18BxhMFxLZtxMja1RhZu1rrkExlkX0aNsh4+fVprUOhBiaGGptMFTG/n3Nx9OJ9b52PtFTBi68ntA6FiDSwczyHgbAHPo9D61B0yyaoGLInsUvm3iAyty2NSlazskWd5RRkLLQn8PIIr7n0gomhhhRVxWS6iDgTQ11QahWc867FiAbdePyl8VbbSCwWQDjo1Do8IuqBHeM5LJ7HdrEjWWibxp5aBLLM7goyrz+/noANMobtTFy65Wj7OLbtTqNUqWkdCoGJoabSufqoClYM9UG0O7HrH9bgXZXf4fmtU/jdzZe3WkfsTm46JzK7XKGCRLaERUwMj2ihPYEq7Ng1wYPTyLxeeG0KR9mn4BQ447hbjnZMQFFUvLY3o3UoBCaGmmqeSMqKob6827UNDtTw36XjtQ6FiHpo53g9yVk8yMTwSBby0AgyOalYxcjeDI5xjGsdiqkdZZ+CTRSwZVda61AITAw11ZxhGO/3axwJvZFfLONU13Y8XV6KvMIWUiKr2NFIDFkxPLKYmINHKGPb7rTWoRB1xZZdKagqcKyd8427ySXUcPRwiImhTjAx1NBEsgi7TUB/yKN1KPQm73O9girs+F35WK1DIaIeaR4843Xz4JkjEYT6cOptvJgjk9q8MwW308aDZ3rgpKX92D6WRbnCll2tMTHU0J5pCfGoDzbOqtCd+fY0jnfsxaOlZaioNq3DIaIe2DGe5cEzM7DQPo0d41mUq7yYI/N5dWcKb1kShU1QtQ7F9E5cGoWsqHhtlPsMtcbEUEN7p/IYinF/oV6d534Jkuph1ZDIAqbTRSSyZRy9IKh1KIaxyJ6AoqjYPSFpHQpRR6VyZYwlCnjrMTGtQ7GEZYsjEAUBr+7knmWtMTHUiFSsIpUrY2iA+wv1aqljEkfbx/FI8S2o8I44kam92miJPH5hWNtADKR5AM3rvMtPJvPKziQA4OSjOauzF7xuB44ZCuKF1zgWRGtMDDWyZ7J+h3U4xsRQz87zvIiM6sXDT+/SOhQi6pJw0IkdkxICXifeumweYjG2k7YjKNbn8PIuP5nN5h0p+Nx2HDWfHQS98taj+7FnSsJ0pqh1KJbGxFAju6fqiSErhvp2rH0cR9kn8fP/2sJN0UQmZXe68Pyzr2BJdRt2fONijKxdrXVIhnHKMTG8ujuNGgfdk0nIioIXX0/gpKVRiDwDomdOOaZenWXVUFtMDDWyZ1KC3+NA0MdxCHomCMAHPX9CMlvGQ8/s1jocIuqC8UQeScWPozmvbMbeekwM5YqMHWMcdE/msHV3BlKxirdzf2FPzYt4MRj24IXXeAqslpgYamTPVB7DA34IAu9G6d0SxxTe+ZZ5+M8/7ES2UNE6HCLqsJdfr1+IHG2f0DgS4znp6H4IADY39mQRGd2zW6fgsIs4aUlU61As561H9+PVXSkUyzWtQ7EsJoYaUBQVe6clDHF/oWH89QUnoFyV8asntmsdChF12IuvTcMnlBC3pbUOxXD6fE4sHAzglR3cZ0jGp6oqnt06hROPisDl5KiqXlFqFcRiAZx92kLUZBV7kkWEg+yo0wITQw1MpYuoVBUMDXBUhVEMDwZw9tsW4LfP7cXOcbZMEZmFqqp46fUEjrGPgw0cs3PC4jBe25vhPmwyvB3jOaRyZbz9WLaR9pJod2Jk7Wq4f/ZJeIQyfvPTn8LudGkdliUxMdTA7saJpKwYGsuH37sEAY8D//bQFigqB94SmcFkuojpdBFHO9hGOlvLFochKyq27UlrHQrRnDy7dQqiIOCtHFOhCZug4kTHHrxUHeaYMI0wMdTAnikJggDM72fF0Eh8bgfWvP9ojIxm8fgLo1qHQ0SzFA46EYsFEIsFsHVvvQPgBMdejaMyrmOGQrDbBGzm2AoyqHDQif5+P55/LYETl0Zx1MIIx9Zo5DTXCIqqC0/9mYeBaYGJoQZ2jOcwL+KFy8H+daNo9r+vev8xOHFpFOsffR2w2xGLBdgHT2QwdqcLI2tXY2Ttavz2Px/FkgVBRG2S1mEZlsthwzFDIbzw2jRUdlOQAdmdLvz25k9i75SEZaMbW+sD9d6x9nEEhTwe4UnwmmBi2GOKquK1PRkcM8ShqUbS7H/f/vWL8aHpu1ArFfEP//BjvHbLavbBExlUWvFghxzDu0+Oax2K4b3j+AGMJQrYMZbVOhSiWfl9+Rg4UcXbXTxkTkuioOI013Y8u2USmTxPgu81JoY9NjqVR6FcwzFDIa1DoVnqt0m4yPsMttbm44nycVqHQ0Sz9GJlIQDg3SfN1zgS43v7cTGIgoDHnt3datNlRwUZRaFUxbPlxXi7awfcAkclaO101+tQFBV/YDtpz9m1DsBqtjY25x87HNI0Dpqbd7u24aXqMDYUTsOZe9IIutgWTGQ0L1QWYVBMY3gwgBGtgzGoZpt9DMDJx/TjyRfHcebzN7ROeF1y7b0AeNef9O3x5/eiAgfOcG3TOhQCMM+WwTHDITz50jhWnL5Q63AshRXDHtu2J4NwwIX+oFvrUGgOBAH4qO9J+MUS/uFfn0a+VNU6JCKaAUlx4fXaAN7q3KV1KIbWbLMfWbsax+/dgLFEHnvkiNZhEc3IQ0/tRNyWwiLbtNahUMPy0xdiz5SErbvTWodiKUwMe6R54tXrezM4cWk/Bgb6Wq02ZEx+sYyP+/4b0+ki7tq4GYrCQxeIjOKFykKoEPFW506tQzGNkx27YBMFPFtZrHUoRG3bMZ7F1l1pvMu1jbNMdeScU4fh9zjwwFO8eddLTAx7xO504Zmv/TWmMyUMbv1/rTusPPXK2I5yTOOqD52EF19P4KcPb+OJfEQGoKoqniwfh/m2JBbYOGKhU3xiBaccG8NzlcVQVF5hkzFsfHIHfB4H3ul8XetQ6A3cLjvOPXUIz782jb3Tea3DsQwmhj00UhsAACyxc5CymfzFu4/Cee8Yxm+e3YMH/8jjlYn0bvP2JPbKEZzl2sIKQYctP30hUoofL1eHtA6F6Ii2j2bw3LZprDprCTwit4TozTlvXwCnXcSDrBr2DBPDHhqpDcIjVBC3ZbQOhTrsI+ccjdOOi+EXv30Njz7PQdlEevbrJ7fDI5RxKo+l77gzTowjIkp4tHSC1qEQHdHPH94Kj8uGC89aonUodBABrxNnnTwfv//zOJLZktbhWAITwx5RFBV/rgzhGPsYRIHthmai1CoYHOjDVy9/J05bNoifPLAFz76e5FHtRDqUypXxuxdH8U7Xa3DxWPqOs9lEvNf9Cl6vDWJnLap1OEQHCAediMUCKMgqfvfiKD541lL4vfxdrVcrTh+GIAD/7zGeHd0LTAx75NWdSWRUL0/AM6HmqXy7130El47/E5Y59uJf1j+PH1z397A5+MuGSE8efW4vFFXFma6tWodiWme4XoNbqLBqSLpkd7rw+i2r8Z1v3QMXKnjrM1/TOiQ6jP6QBytOX4jfvTyO1/ay467bmBj2yJMvjsIOGSc692gdCnWRQ1Bwhf+3eJtzBzYUT8MPNrzM00qJdCKbr+C/ntmN00+Yh5gtp3U4puUWqjjDtQ3PVxZhPMFDI0h//lQ5Cltr87HS8xx8YlnrcOgILjhjEUJ+J+75r61QeMhfVzEx7AFFVfG7F0ZxvGMUboGbm83OLij4mO8xvM+1Gb96fATf+sXzyBU44JlIa/c9PoJqTcHHV7KS1W1nu1+BHTL+78Y/ax0K0X5yhQr+o3AaFtmm8B52DuiWUqu0xroNLwjjEx88ETvHc3js+VGtQzM1JoY9MDKaxXSmhFOcO7QOhXpEFIAP+57BZz9yCrbszuDmHz+NLbt4LD6RVvZMSvjvF0bx/rctwNAA58d2W0gs4AOel/D7l8bw8khC63CIANRH1Xz/vpdQUF24xPcHnvmgY81tOs3/hv/z/8PJS6P42SOvoSCrraSR5zl0FhPDHnjm1UnYbSJOdLCN1Go+8M5F+MpH3w6bKOLWf38Ov3jkNZSrstZhEVmKqqr42SPb4HXZ8cEzj9I6HMs4x70Z8/t9uOfhbajWFK3DIcIjz+7Fo3/ag/PcL2GBnTdrjUQQgP/90dPgqkn42j/9B1655ZJW0mh3urQOzzSYGHZZqVLD714ex2nLBjgjx6KOivfhxsvfgfe9bQEe+OMu/P0PnsLz26ahsk+eqCcee3EUm3ek8Fd/cQKOWhjROhzLsAsKrvrQSZhIFvCrJzkahLT16s4UfvrwNpx+wjys8LygdTg0C5E+N/7K/zgmlSB+lj8DPMKh85gYdtlvn9sLqVjF6nOO0ToU0pDbacfHVhyHL/3Pt8HpsOE7976If/zpc3h9lCdsEXXTll0p/NuDW3GKYweO/+0XMLJ2tdYhWcrbjg7jvHcuwq9/vxNbRrNs+SJN7BzP4Y77XsZgxIP//ZdvhyhoHRHN1nGOcVzgeQ7PVo7C+sK7mBx2GBPDLipXZDzw1C685agIjl/Eu9QEHL8ojBv/5h34n8uPwd7pPNb+5E/4p58/j807kqwgEnXYdLqIO3/1Z8SjXvxP/+8h8GKw50S7Eyu2rsVR9kl88yd/wM7JotYhkYWEg05MS1Xc9rPn4HHb///27j0uqjL/A/hn7lwVuUOUlzAhjWzll3lrE1HQGCDUtZfpL39ee5Htru3mZStTzJJuu1ma22WtNbeL6281L7mm6A81NTNdIlQSRUyGOyg4MNfn9wc5gRccYppzBj7v18sXzHmG4/d5nvN8OV/OzBksnT0UPl4aqcOiDkr0ysdorzx8aboDG433wsbq0GVYGP6C9h6/gHqjBWnD+J4W+olapcTo+FuR/dgQjP91H5yvaMArHx/Hs+99hS++Po+GRr7kmKijSqsu48X138BisWPRo/fyjtASUivsmO63F75KExa/fZCvlCC32f9tBZ55Mwc+5ho8bl+Hxr/+t9QhkQsoFMCD3seR4JWP/aYYZL17iOdOLqKWOoDOqqLWiC0HihHbsweio7pLHQ5J5Mrtlq/HajbhwSG9MOa/bsWh78qx93gpPtr1PT7NOY2BfYMxfGAU/uvOMABotQ+r2YTai/z4C6IbMdQ04KWPjkOpVGDF3OHoGdENZ6QOqovrpmzC4/478Z76Ebz8j2OYpe+PQf1CpA6LOiljkwXrvyjEwe/K0Vtdi+l+e9FN2SR1WORCCgWQ6v0NgpX1+N/Tw7B07UVMGxuL/r35Cr2OYGHoQj26a6HW6tBosmLp+0egUinw5CODEBLkK3VoJJErt1u+nj5PbwRghkatwoi7IzHi7kiUlNfjcEE5vi6sxOufHIMCArepqtBXU4a+mjL0Ulfhzmc+BsDCkOiKK7m3yWTFus9PYMv+MwhSXMJj/rsh1r4DPL1R6hAJQKiqHi8/cT8W//VLrPrXtxg2IBwTE6LRzYfvOyTXsFht2H30ArYdLIbRZMXkpBjEf7UOKn4sRaekUADDvL7H4FkLkP3BEbz6yXEMjA7G+Aduxy3BPPf+OdxWGJ49exYLFy5EXV0dAgICkJ2djV69erV6js1mw/PPP499+/ZBoVBg9uzZmDhx4k3b5EKt1eHE85OwrmE4SixReMx/N4xr3sMZXCkCiH5yvauJISH+GDQgEkII7MuajW8tUThliUROU3/saroLCgjc+nIOooJ9cVuoHyJDfBEZ5Ise/joo+AYqSTmT4+iX0WRVYH3Wc8htisEl4YOUYb1xf8Fy6BRWqUOjqwT467Bg8j3Y8mUxdhwuwfHTVRj5q1sw8p4o9PDnLed/CZ09NwkhUFptxP68Uhz4tgwNjRYM6B2I8b++HfF3ReLMERaFnV10pC/WLBqFzbln8OmuU3j23cO4OzoIwwZE4K4+QdBpVVKH6DHcVhg+99xzmDx5MtLS0rB582YsXrwYf//731s9Z8uWLSgpKcHOnTtRV1eH9PR0DBkyBFFRUW22ycXJ4hq8dDEF1XZ/PORzBDEag9QhkYzd7GpilLoGUeoajPXOQ5NQo9gagrOWUFQGJKLgXC2+zC9zPF+nVSEiyBchAV7o7qNFj2469PDTobufDt18tfD30cDPSwMlb8X2i3Emx5Fr2IVAWbUR3/9Qh+PfV6HgXC0s1l8hRnMB/+P1f0jMWIMzJ1gUypHdasYtkQF4bMJAjBveB+9v/Q7bvjyHzw+VIKZnD8T1CUJszx6ICPaBSsnbILhCZ8tNdrtAea0RxYZ6nL5wEd+eqUbVxSaolAoMjA7GqEFRiOnZQ+owyY2Uai2Kl4/HrwDc4a3DQWVfHKwcitWb8qFRKxHbswfuuDUAt0d2w62hfrwBURvcUhhWV1ejoKAAa9euBQCkpKRg2bJlqKmpQWDgT68F3r59OyZOnAilUonAwEAkJiZix44dmDlzZpttrtZksqLRdO1JhRDNJyR2u4DJYkOjyYrKukZcqLqMo6cqcb6iAT2USsz134loTbnL46Kuy0thRYzGgBiNAX1mLcaZ5eNRH+CFMlt3lNkCUGnzR1WVPypELPLPVKPRZLtmHwoF4OOlgZ+3Br7eGvh6aeCtU8Nbp4ZWDUAooNUooVUroVGroFEroVEroVIqfvyqhEqlgFqpgEqpgLLlP23XflW6szmuo6w2O4xNluvmJ7n66Wa7AqLFY7sQEHYBu2g+0bMJAZvNjgaLHeWV9bBY7Gg0N+diq92O+kYbKusaYai6jB8q6h3HeGigD8YO6YWY/7zOD6z2AFf/QeyZBR+h4qIFOw4W4/B3Zfho9/cAAI1aichgX4QEeCO4mxe6+Wqbc5eXGl5aFbRaFbRqFdQqBVQqJVSKH3ORAlAoFFD8+BVozn0/ftehO9NarNfmVblzV24SQsDYZIGxyQqgeZG3XO9CCAjRvM1uFxA/nkvZhYDNLmC1CVhtdlisdpitNjSZbGgy22BssqChyYKLDWbUNZhRdbERlXWNsNqad+ylVSEuOgTjHwhEzK090N2PV527Oj+lCaO98zH9j4tQUFKPQ/kGHD1ZgbyiIsdzuvtqEdLDG4H+OgT46eDn3Xxu5KVTwUurRtjFJhgbTI5zIJWq+auyjTwDtM41Vx57GreczRkMBoSFhUGlar6Uq1KpEBoaCoPB0CoxGQwGREZGOh5HRESgrKzspm3OcuZqyXfFNfj7joNo7ycH9Azzx0Mjo9Hz0CvwUtoBXPumenX3G7/Rnm1sa29bDwA9YEcsagDUAABumzsXJW8+BpPQ4JLdCw1Chwa7FxqFDur4DJQf3olGoYXJoobJrEGT0OCiUMHuEwST2Qaz1Qb7z7jts7dOjTefSmi1zWo24WL99e8S1t1fA7X2+r/A2/q5luR09dPZHHcjzvbllfXHUddg6lCsnkoFO7opGxGovIxB9w+Cf8Em3KKqQbCyHj3T16DkBzVa5t2r1097H7tiH50hhl86JqVaC/NHv0UCgARfwPuZ13D8VDkuVF5GeY0RNfUm/OdMNWw2+zVxuJuXVo2nJt8Df++bX22QS37qaG4CnOtLztEL2PFVSYdivRGFAvDz0aKbtxaxPQMxZrA/tP/ZiAhlLYJV9VA1CkQNXQml+vrvVXXmGL7Rto7+/C+xz67+887uU6PzQo9//x5jAYz1By77atE0ZhHKappgqL6Mqrom1NY3ofRcLcwWz/ujz9UmJd6BQX2Db/q8m61nhXDDh6fl5+djwYIF2LZtm2PbuHHj8PLLL6N///6ObXq9HsuXL0dcXBwA4J133kF5eTmeeeaZNtuIiKTkbI4jInIn5iYiag+3vIA/IiIC5eXlsNmaK3KbzYaKigpERERc87zS0lLHY4PBgPDw8Ju2ERFJydkcR0TkTsxNRNQebikMg4KCEBsbi61btwIAtm7ditjY2GtexpCcnIwNGzbAbrejpqYGu3btQlJS0k3biIik5GyOIyJyJ+YmImoPt7yUFACKioqwcOFCXLp0Cd26dUN2djb69OmDWbNm4be//S3uuusu2Gw2ZGVl4cCBAwCAWbNmYdKkSQDQZhsRkdRulOOIiKTE3EREznJbYUhERERERETyxA8JIiIiIiIi6uJYGBIREREREXVxLAyJiIiIiIi6OBaGREREREREXRwLQyIiIiIioi6OheFVzp49i0mTJiEpKQmTJk1CcXGxpPFkZ2cjISEB/fr1Q2FhoWO7nOKsra3FrFmzkJSUBL1ej7lz56KmpgYAcPz4caSmpiIpKQnTp09HdXW1ZHFmZmYiNTUV6enpmDx5Mk6cOAFAXmN5xZtvvtlqzuU0jgkJCUhOTkZaWhrS0tKwb98+2cXoaZw9Brdv3w69Xo+UlBTo9XpUVVUBaP44n6VLlyIxMRGjR4/Ghg0b3Bj9zXW0f2+88QaGDBniOOaWLl3qxuhvzpn+zZ8/3xF/WloaYmJisHv3bgCdY/7a6l9nmL/q6mrMnj0ber0eY8eOxZIlS2C1WgHIf/5cyZmxktt4OBPzqlWr8OCDD0Kv1yMjI8Pxe00q7TkvOXPmDO6++25kZ2e7L8CrdDTHS6Gj697dblQPtOSStSeolalTp4pNmzYJIYTYtGmTmDp1qqTxHDlyRJSWloqRI0eKU6dOObbLKc7a2lpx6NAhx+MVK1aIRYsWCZvNJhITE8WRI0eEEEKsWrVKLFy4UKowxaVLlxzff/HFFyI9PV0IIa+xFEKI/Px8MWPGDMecy20crz4WhRCyi9HTOHMM5uXlibFjx4qKigohRPPx3NTUJIQQ4l//+peYPn26sNlsorq6WowYMUKcP3/efR24iY72b+XKlWLFihXuC7id2ptDTpw4Ie69915hMpmEEJ1j/lq6un+dYf6ef/55Rx/MZrOYMGGC2LZtmxBC/vPnSs6MldzGw5mYc3NzhdFoFEI0H7+DBg0SjY2Nbo2zJWfXnNVqFVOmTBFPPvmkpGusozleCh1d9+52o3qgJVesPV4xbKG6uhoFBQVISUkBAKSkpKCgoMBx9UsK8fHxiIiIaLVNbnEGBARg8ODBjscDBw5EaWkp8vPzodPpEB8fDwB4+OGHsWPHDkliBAB/f3/H9w0NDVAoFLIbS7PZjKysLCxZssSxTW7jeD2eEKNcOXsMvv/++5g+fTpCQkIANB/POp0OQPNfYSdOnAilUonAwEAkJibKZvxd0T85+zk55J///Cf0ej20Wi2AzjF/LV3dPzlztn8KhQKXL1+G3W6H2WyGxWJBWFgYAHnPnys5O1ZyGg9nYx4xYgS8vb0BAP369YMQAnV1de4OF0D71tzbb7+NBx54AL169XJzlD/xxBzvinXvbterB67mirXHwrAFg8GAsLAwqFQqAIBKpUJoaCgMBoPEkbUm5zjtdjs++ugjJCQkwGAwIDIy0tEWGBgIu90uWbIFgKeffhoPPPAA/vznPyM7O1t2Y/n6668jNTUVUVFRjm1yHMc//vGP0Ov1WLJkCS5duiTLGD2Fs8dgUVERzp8/j0ceeQQPPfQQVq9eDSGEYx8txz8iIgJlZWXu60QbXNE/ANi2bRv0ej2mT5+OY8eOubUPbWlvDjGbzdiyZQvGjx/fah+ePn9XXK9/gOfPX2ZmJs6ePYvhw4c7/g0aNMixD7nOnys5O1ZyGo+f8zt+06ZNuO222xAeHu6uMFtxNuaTJ09i//79mDZtmgRR/sRVOd6dXLHu5cgVa4+FIbnUsmXL4OPjgylTpkgdynUtX74ce/fuxbx58/DSSy9JHU4rx44dQ35+PiZPnix1KG1av349PvvsM2zcuBFCCGRlZUkdUpdgs9lw6tQprF27FuvWrUNubi42b94sdVgu01b/Hn74YezevRtbtmzBjBkzkJmZidraWokj/nl27dqFyMhIxMbGSh3KL+J6/esM87djxw7069cP+/fvR25uLr7++utOeVWwq/vqq6/w+uuv49VXX5U6lDZZLBY8++yzWLp0qaO4kTtP/B3WFdc9C8MWIiIiUF5eDpvNBqD5IK6oqLjppVt3k2uc2dnZOHfuHP7yl79AqVQiIiICpaWljvaamhoolUoEBARIF+SP0tPTcfjwYYSHh8tmLI8cOYKioiKMGjUKCQkJKCsrw4wZM3Du3DlZjeOVsdFqtZg8eTK++eYbWc+13Dm7niMjI5GcnAytVgs/Pz+MGjUKeXl5jn20HH+DwSDZX7uv5or+hYSEQKPRAACGDRuGiIgIfP/99+7tyA20Nx9v3LjxmqtpnWH+rrhe/zrD/H344YdITU2FUqmEv78/EhIScPjwYcc+5Dp/ruTsWMlpPNpz/B47dgxPPfUUVq1ahT59+rg7VAdnYq6srERJSQlmz56NhIQEfPDBB/j000/x7LPPyjJeoO0c726uWPdy5Iq1x8KwhaCgIMTGxmLr1q0AgK1btyI2NhaBgYESR9aaHON87bXXkJ+fj1WrVjneVzJgwAA0NTXh66+/BgB8/PHHSE5OliS+y5cvt3qJQE5ODrp37y6rsZw9ezb279+PnJwc5OTkIDw8HO+99x5mzpwpm3E0Go2or68HAAghsH37dsTGxspqrj2Ns8dgSkoK9u/fDyEELBYLDh06hJiYGABAcnIyNmzYALvdjpqaGuzatQtJSUlu78v1uKJ/5eXljuedOHECFy5cQO/evd3XiTa0J4eUlZXh6NGj0Ov1rbZ3hvkDbty/zjB/UVFRyM3NBdD8ctmDBw+ib9++AOQ9f67k7FjJaTycjTkvLw/z5s3DypUr0b9/fylCdXAm5sjISBw+fNhxvvDoo4/iN7/5DZYtWybLeIG2c7y7uWLdy5FL1l4HbpDTKZ0+fVpMmDBBjBkzRkyYMEEUFRVJGs+yZcvEiBEjRGxsrBg6dKgYN26c7OIsLCwUd9xxhxgzZoxITU0VqampIjMzUwghxNGjR0VKSooYPXq0mDZtmqisrJQkxsrKSjFx4kSRkpIiUlNTxdSpU0V+fr4QQl5j2VLLO0/JZRxLSkpEWlqaSElJEePGjRNPPPGEKC8vl1WMnuhGx+DMmTNFXl6eEKL5zq8vvPCCSE5OFuPGjRMvvPCCsNlsQojmO9MtXrxYjBo1SowaNUp8/PHHkvXlejrav/nz54sHH3xQ6PV6kZGRIfbu3StZX67Hmf4JIcTq1avF73//+2t+vjPMnxA37l9nmL9z586JadOmiZSUFDF27FixZMkSYbFYhBDynz9Xcmas5DYezsSckZEhBg8e7DiHSU1NFSdPnpR1zC1JfeffjuZ4ucbc1rp3txvVA65eewohJHrnJxEREREREckCX0pKRERERETUxbEwJCIiIiIi6uJYGBIREREREXVxLAyJiIiIiIi6OBaGREREREREXZxa6gCIfil5eXlYvnw51Go1wsLCkJ2d7fiQZSIiIiIi+gmvGFKnFR4ejg8++ADr16/HLbfcgt27d0sdEhF5iA8//BAZGRkYMGAAFi5c2Kqtrq4Ojz/+OAYOHIiRI0diy5Yt7WonInIF5ilyNV4xpE4rNDTU8b1Go4FSyb+DEJFzQkNDkZmZiX379sFkMrVqy8rKgkajwYEDB3DixAnMmTMHMTEx6Nu3r1PtRESuwDxFrsYzZer0Lly4gAMHDmDkyJFSh0JEHmLMmDFITExEQEBAq+1GoxE7d+7E7373O/j6+iI+Ph4JCQnYvHmzU+3tlZCQgHfffRd6vR4DBw7En/70J1RVVWHmzJm45557MG3aNFy8eLGj3SUiDySXPGUwGDB37lzcd999GDx4MLKysjraNZIIC0Pq1BoaGjB//ny8+OKLfH8hEXVYcXExVCoVevfu7dgWExOD06dPO9X+c+zcuRNr167Fv//9b+zZswezZs3Ck08+iUOHDsFut2PdunU/v0NE1Om4M0/ZbDbMmTMHkZGRyMnJQW5uLsaNG9fxTpAkWBiSR0tOToZer0dlZSUAoLCwEIMGDcLp06dhtVoxb948zJ07F3369JE4UiLqDIxGI/z8/Fpt8/f3x+XLl51qv9q0adPwxhtvtPl/TpkyBcHBwQgLC0N8fDzi4uJw5513QqfTYfTo0SgoKOhAj4ios3FnnsrLy0NFRQXmz58PHx8f6HQ6xMfHu6AXJAUWhuTRNm3aBB8fH+zZswcWiwULFizAnDlzEB0dja1btyIvLw+rV6/G1KlTsX37dqnDJSIP5+Pjg4aGhlbbGhoa4Ovr61T71TIyMnDfffe1+X8GBwc7vtfpdK0ee3l5wWg0tqsPRNS5uTNPGQwGREZGQq3mbUs6A84ieTQvLy8MHz4chYWFWLNmDdRqNWbMmAEASE9PR3p6urQBElGn0qtXL9hsNhQXF6NXr14AgJMnTyI6Otqp9qulpqa6I2wi6kLcmaciIiJgMBhgtVpZHHYCvGJIHq9v377Ys2cP/va3v2HFihVQqVRSh0REHs5qtcJkMsFut8Nms8FkMsFqtcLHxwejR4/GypUrYTQacfToUezevRtpaWkAcNN2IiJXkUOeiouLQ0hICF599VUYjUaYTCYcPXrU1V0lN2FhSB4vOjoaP/zwAzIzM3H77bdLHQ4RdQJvvfUW4uLi8Pbbb+Ozzz5DXFwc3nrrLQDAc889h6amJgwdOhR/+MMfsGTJkla3eL9ZOxGRK8ghT6lUKqxZswbnzp3DyJEjcf/99+Pzzz93WR/JvRRCCCF1EEQd8corr+Cdd97BwYMHERgYKHU4REREREQeh1cMyaPl5eXhH//4B8LDw1FUVCR1OEREREREHomFIXkss9mMRYsWYd68ebj33ntRWFgodUhERERERB6JhSF5rJUrVyIoKAhTpkxBv379sHfvXpjNZqnDIiIiIiLyOCwMySPl5eXhk08+wYsvvgiFQoGkpCSUlJRg6tSpUodGRERERORxePMZIiIiIiKiLo5XDImIiIiIiLo4FoZERERERERdHAtDIiIiIiKiLo6FIRERERERURfHwpCIiIiIiKiLY2FIRERERETUxbEwJCIiIiIi6uJYGBIREREREXVxLAyJiIiIiIi6OBaGREREREREXdz/A0x7tuiUzue8AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 1080x576 with 3 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Plot results\n", | |
"plt.figure(figsize=(15, 8))\n", | |
"\n", | |
"# Plot hist and pdf for chi^2 values\n", | |
"plt.subplot(1, 3, 1)\n", | |
"plt.plot(x_chi, y_chi, label = \"chi\")\n", | |
"plt.hist(chi, bins = 30, density = True)\n", | |
"\n", | |
"plt.xlabel('$\\chi^2$')\n", | |
"plt.ylabel('Relative frequency')\n", | |
"plt.legend(loc='upper right')\n", | |
"\n", | |
"# Plot hist and pdf for slope values\n", | |
"plt.subplot(1, 3, 2)\n", | |
"plt.plot(x_m, y_m, label = \"m\")\n", | |
"plt.hist(m, bins = 30, density = True)\n", | |
"\n", | |
"plt.xlabel('100 $\\cdot$ m')\n", | |
"plt.ylabel('Relative frequency')\n", | |
"plt.legend(loc='upper right')\n", | |
"\n", | |
"# Plot hist and pdf for intercept values\n", | |
"plt.subplot(1, 3, 3)\n", | |
"plt.plot(x_c, y_c, label = \"c\")\n", | |
"plt.hist(c, bins = 30, density = True)\n", | |
"\n", | |
"plt.xlabel('100 $\\cdot$ c')\n", | |
"plt.ylabel('Relative frequency')\n", | |
"plt.legend(loc='upper right')\n", | |
"\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## f) Darstellung des Ergebnisses\n", | |
"Stellen Sie als letzten Schritt ihr Ergebnis geeignet dar. Die Darstellung soll den folgenden Inhalt haben:\n", | |
"* Die Messwerte inklusive der Fehlerbalken für die $y$-Werte (Hinweis: *plt.errorbar()*)\n", | |
"* Die Fitgerade, die Sie durch die lineare Funktion und die Mittelwerte für $m$ und $c$ aus Aufgabenteil e) erhalten.\n", | |
"* Das Ergebnis des Fits: $m=\\text{Mittelwert}\\pm\\text{Standardabweichung}$, analog für $c$\n", | |
"* Ein Fehlerband\n", | |
"\n", | |
"Schreiben Sie sich eine Funktion, die das Fehlerband plottet. Plotten Sie dafür 2 Linien, die die Werte $f(x;m,c)\\pm \\sigma_f(x;m,c)$ darstellen. $f$ ist hierbei Ihre lineare Funktion und $\\sigma_f$ die gesamte Abweichung, die Sie aus der Gauß'schen Fehlerfortpflanzung erhalten. Betrachten Sie die Größe der Varianzen und machen Sie eine berechtigte Annahme darüber, welcher Fehler dominiert. Es genügt für das Fehlerband, wenn Sie nur diesen berücksichtigen.<br>\n", | |
"> Tutorium: Wie würde das vollständige Fehlerband aussehen?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAJYCAYAAAA0QJTxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACwt0lEQVR4nOz9Z2BV55nvf3933+pdSIiO6L333jHVpuOWuPfYsZOZyZlMe5IZJ2daZub8MyfJ5ExCr6I3G2xjejXGFNE7qHdpt7WeFzieEKOyhWBL4vd5BdK673XfZhntH+ta67KYpmkiIiIiIiIijYY11AsQERERERGRuqWgJyIiIiIi0sgo6ImIiIiIiDQyCnoiIiIiIiKNjIKeiIiIiIhII6OgJyIiIiIi0sgo6ImIiIiIiDQy9lAv4EHl55diGGoFKI9OQkIkubkloV6GPKZ0/Uko6fqTUNL1J6FWH69Bq9VCXFzEfb/X4IOeYZgKevLI6ZqTUNL1J6Gk609CSdefhFpDugZVuikiIiIiItLIhPyO3q5du/jXf/1XTNPENE3efPNNxo8fH+pliYiIiIiINFghDXqmafKDH/yAxYsX0759e86cOcP8+fMZO3YsVqtuNoqIiIiIiNRGyNOU1WqluLgYgOLiYpKTkxXyREREREREHkBI7+hZLBb+5V/+hddff53w8HBKS0v5v//3/9bZ/OXlpZSUFBAI+OtsTgmezWYnMjKWsLD7vxFIRERERETqlsU0zZC9Osbv9/Piiy/y1ltv0adPH44cOcL3v/99Nm3aRETEg4WCwsJCbt26TWxsIk6nC4vFUkerlmCYponX66GgIIfU1BRiYmJCvSQRERERkUYvpHf0Tp8+TVZWFn369AGgT58+hIWFceHCBbp3716jOXJzS+77mtPs7FvExCRiszkJBEyg4bwKtbGx2ZxERSVw48YtvN6GX5ablBRFdnZxqJchjyldfxJKuv4klHT9SajVx2vQarWQkBB5/+894rXcIyUlhdu3b3Px4kUALly4QG5uLi1atHjguQMBPw6H84HnkbrhcDhVQisiIiIi8oiE9I5eUlISf/3Xf80777zzTWnlT3/6U2JjY+tkfpVr1h/6sxAREREReXRC3kdv2rRpTJs2LdTLEBERERERaTQa/gNTIiIiIiIicg8FvQbgt7/9FTNmTGLYsH7MmjWVoUP7cvHieQB8Ph+/+c1/cu7c2RCvUkRERERE6ouQl25K1c6cOcVvfvOfvPLKG/Tq1QeXy43H4yEtrRlwN+j99re/IjW1Ke3adQjxakVEREREpD5Q0Kvnrly5DMCTT84mIuL+r04VERERERH5YyrdrMd+8pO/5u/+7scATJgwkqFD+3L06OF7SjfHjx8OwE9/+jcMHdqXoUP7cuvWzZCtWUREREREQk939Oqx559/keTkJvz3f/+GX/zilzidLgoK8u455he/+CVvv/0qzz33AoMGDQUgISExFMsVEREREZF64rEKer7MPfjOfhaSczs6DMfRfkhQY9LSmn3zLF7Hjp0JDw/n6NHD9xzTsWPnb47t2rVb3SxWREREREQaNJVuioiIiIiINDKP1R09R/shQd9VExERERERaWh0R09ERERERKSRUdBr4BwOBwBeryfEKxERERERaXwM0+BS4RX8AX+olxKUx6p0szFyOBykpqaxc+dHtG6djsvlpG3bdt8EQBERERERqZ1rxTdZkbmWi4VX+HHUOzSxpoV6STWmO3qNwAcf/DmFhQW8++7rvPjis+TkZId6SSIiIiIiDVaZr5wVmRl8eOhfySrL4elOc+iS3CHUywqKxTRNM9SLeBC5uSUYxre3cPv2FVJSWoZgRVKZxvJnkpQURXZ2caiXIY8pXX8SSrr+JJR0/cmjYJgGB28fJeP8Zkp8pQxLG8TUNuMJd4TXy2vQarWQkBB53++pdFNERERERB5714tvsjwzg4uFl2kd3YLXe36XFlHNQr2sWlPQExERERGRx1a5v5yNF7fz6fW9RDjCWdhxNgNT+2C1NOyn3BT0RERERETksWOaJgdvH2XthU2UeEsZljaQKW0mEOEID/XS6oSCnoiIiIiIPFZulNxi+dm1XCi8TKvoFrze/bu0iG64ZZr3o6AnIiIiIiKPhXJ/OZsu7eDT63sJs7tZ2HEWA1P7NvgyzftR0BMRERERkUbNNE0O3TnG2vObKPaWMCRtANPaTGw0ZZr3o6AnIiIiIiKN1s2S2yzPXMv5gku0jGrOq92fp2V081Av66FT0BMRERERkUan3F/B5ks7+OT6HsJsbhZ0eIpBTfs1yjLN+1HQExERERGRRsM0TQ7fOc6a8xsp9pYwuGl/prWdSKQjonbzGQECN05hxPap45U+XAp69dxvf/sr1q1bQ25uDhMnPsGkSVN4++1X+d3vltGmTTo+n4/f/e6/GD58JO3adQj1ckVEREREQuZmyW1WZGZwruAiLaKa8Ur352gV3aLW8/lvnsazZzFG/nU8CX8D4S3rcLUPl4JePXbmzCl+85v/5JVX3qBXrz7ExcUTGxvLL3/5W9LS7r7+1efz8dvf/orU1KYKeiIiIiLyWKrwV7D50kfsuv45YTY38zs8yeCm/WtdpmmU5OLZvxz/xYNYohJxj38Ld4sulOSU1PHKHx4FvXrsypXLADz55GwiIiK/+XrXrt3q7BxDh/blF7/4Jb17962zOUVEREREHgXTNDmS9QVrzm2k0FvEkKb9mdZmEpHOWpZp+r14T2zFe3wjmCbOPjNx9piExe7EYrHU8eofLgW9euonP/lrtmzZCMCECSMB+MUvfglwT+nm+PHDAfjpT/+Gn/70bwBYuXI9qalNH9rasrOz+Nd//UeOHDlEcXHRPd/r2bM3//7v//ehnVtEREREBOBW6R1WnM0gs+ACLaLSeKnbs7SOeYAyzSvHqdi3BLMoC3vrvrgGzsMalViHK360FPTqqeeff5Hk5Cb893//hl/84pc4nS5at27N2bNn7jnuF7/4JW+//SrPPfcCgwYNBSAh4eFekH/zN/+Lc+fO8uqrb5Ga2pStWzfx0UfbGDZsBEOGDHuo5xYRERGRx1uFv4Itlz9m57XduG0u5nWYyZCmA2pfpll4m4q9SwhcO4E1tinuyR9gb9aljlf96D1WQe/ArSPsu3UoJOcelNqPAak1f1NPWlqzb57D69ixM+Hh92/m2LFj52+Or0lJp9/v/9bXDMO45+s2m63SW9OnTp3k+PGj/OVf/i0TJkwGYODAwVy5cgmwMGXKjGrXICIiIiISLNM0OZr1BWvOb6LAU8jg1H5MazuJKGdk9YPvN5+vAu+xDXhPbAObHdfA+Ti6jsFibRwRqXHsQmrk1q2bzJ497Vtf/973Xr/n91U9s3fx4nkARo4cfc/XR4wYzYoVS+topSIiIiIi/+N26R2WZ64jM/88zSOb8mLXp2kdU7s3YJqmif/CATwHlmOW5mNvPwRX/9lYw2PrdtEh9lgFvQGpfYK6q9bYJCYm8etf/+6er7344rO8//6f07Fjp2++1qJF5f/TFBQUEBYWjsvlvufrsbFxFBUV4vf7sdsfq8tKRERERB6SCr+HrZc/5uNrn+GyuZjbfgZD0wbWukwzkHsNz95FBG6dxZrYirCxb2Brkl7Hq64f9In8MeJwOL4p9fxjLVq0vO/X7yc5uQnl5WWUlZXdU06am5tDfHyCQp6IiIiIPDDTNDmW/SWrz22gwFPIwNS+zGg7ufZlmp5SPIfX4Du1E4szAtew53F0GI7FWrvA2BDoU3kD53A4APB6PY/kfJ07d8VqtfLJJx8zefJU4O4zfrt2fUyXLl0fyRpEREREpPG6XZrFysx1nMk/R7PIprzQ9Wna1LZM0zDwnf0M76HVmJ4SHJ1G4+o7E4u7doGxIVHQa+AcDgepqWns3PkRrVun43I5adu23TcBsK41a9aciROf4J//+eeUl5fRtGkzNmzI4Nq1K/z4x3/7UM4pIiIiIo2fJ+C9W6Z59TOcNgdz2s9g2IOUad45T8WeRRg5l7GltMc15GlsCbVvv9DQKOg1Ah988Of8x3/8C++++zper/eh99H7/vd/SEREJP/v//2GkpJi2rRJ52c/+xfat+/40M4pIiIiIo2TaZoczz7J6nMbyPcUMDClL9PTJxHtjKrVfEZZAZ6DK/Fn7sESHot79KvY2w6odcNzw+ul9IvjxI8aXKvxoWIxTdMM9SIeRG5uCYbx7S3cvn2FlJTa3eKVh6Ox/JkkJUWRnV0c6mXIY0rXn4SSrj8JJV1/jdOdsmxWZq7jdF4maZGpzG0/k7axrWo1l2n48Z38GM+RDAh4cXafiLPXVCwOd7Vj7zufaVJy5DDZK5fhz82l60//Dm9y81rN9bBYrRYSEu5fhqo7eiIiIiIi8kh5Al62Xd7JR1c/xWF1MKvdNIanDcJmtdVqPv+NU3j2LsLIv4mteXfcgxZgjU2p/fquXSVr2RLKz57B2aw5zd5/kZgunRvUPzYo6ImIiIiIyCNhmiZfZJ9k1ddlmgNS+jAjfXLtyzSLc/DsX4b/0mEsUUmETXgHW4uetS7TDBQXk5OxhsLPPsEaEUHy088SM2wEP1v2BY4vP+e92T1qNW8oKOiJiIiIiMhDl1WWzYqvyzSbRqTwfJfXSI9tXau5TL8X74kteI9tAsDZ90mc3SdisTtrOZ+fgk92krs+A6OigtgxY0mYOgNbRESt5qsPFPREREREROSh8f5Rmab9Acs0TdPEf+UYnn1LMYuzsbfpj2vgXKyRCbVeX+lXJ8letgTvrZuEd+5C0rwFuJqm1Xq++kJBT0RERERE6pxpmpzI+YqVmevJ9xTQP6U3M9o+QYyrlmWaBbeo2LuYwPWTWOPScE/5IfamnWq9Pu+dO2SvXEbp8WM4kpJp+uY7RPSofdlnfaOgJyIiIiIidSqrLIeV59ZxKvcsTSNSeK7zq7SLa1OruUxvOZ6j6/Gd3A52J65BC3B0GY3FWrsoY1SUk7txA/k7tmGxO0h8ag6xY8dhfUh9qENFQU9EREREROqEN+Bl+5Vd7LjyCXarnafaTWVE2uDal2me34fnwArMsgIcHYbh7D8ba1h0rdZmGgZF+/aQs2YVgcJCogcPJfHJWdhjY2s1X32noCciIiIiIg/kbpnmKVadW09eRT79mvRiZvoTxLhqF8oCOVfw7F1M4HYm1qTWhI1/C1ty21qvr/zCebKWLsZz+RLuNm1Je/Md3K1rd4exoVDQExERERGRWssuy2XluXV8lXuG1IgmfK/XK7SLq10oMytK8Bxeg+/0LiyuSFzDv4OjwzAsFmut5vPl55OzegXF+/dhi40l5YWXiRowEIu1dvM1JAp6IiIiIiISNG/Ad7dM8+on2CxWnkyfwshmQ2pXpmkY+M58gufQavCW4+gyFlefGVhctWtvYPi85G/fRt7mjRAIED95CvGTp2B1u2s1X0OkoFfP/fa3v2LdujXk5uYwceITTJo0hbfffpXf/W4Zbdqk4/P5+N3v/ovhw0fSrl2HUC9XRERERB4DX+acYmXmOnIr8unbpCcz058g1hVTq7kCt89RsWcRRu4VbKkdcQ1ZiC2+ea3mMk2TkqNHyF65DH9ODpG9+5A4ey7OpORazdeQKejVY2fOnOI3v/lPXnnlDXr16kNcXDyxsbH88pe/JS2tGQA+n4/f/vZXpKY2VdATERERkYcqpzyXlZnrOZl7mpSIJrzT6xXa17JM0ygrwHNgBf5ze7FExOMe8zr2Nv1q3d7Ac/0aWcuWUH7mNM60ZjT7/g8I79S5VnM1Bgp69diVK5cBePLJ2URERH7z9a5du4VoRSIiIiLyOPIGfOy4+gnbr+zCZrEyM/0JRjUbWrsyzYAf38kdeI6ug4AfZ88pOHtNxeJw1WptgZISctatpfCTnVjDwkle8DQxI0ZhsQW/tsqUe/wUlHo5f6OQ9LTa3bl81CymaZqhXsSDyM0twTC+vYXbt6+QktIyBCuqGz/5yV+zZcvGe772i1/8EuCe0s2hQ/t+a+zKletJTW36QOe/dOki//7v/8KXX35BWVnpPd+bNGkKP/rRXwc9Z0P/M/mDpKQosrOLQ70MeUzp+pNQ0vUnoaTrL3TulmmuJ7cijz7JPXiy3ZRal2n6r5/Es2cRRuFtbC164B60AGtMk1rNZQYCFHy6i9yMtRgV5cSOHEXCtJnYIiOrHxyE8zcK+ftFRzBNcNitfDC/V70Je1arhYSE++9Xd/Tqqeeff5Hk5Cb893//hl/84pc4nS5at27N2bNn7jnuF7/4JW+//SrPPfcCgwYNBSAhIfGBzu33+/nzP/8+FRUVvPvuB0RHx7Bq1TIOHTrApElTGDp0+APNLyIiIiL1X055HqvOrePLnNOkhCfzds+X6RCfXqu5jKJsPPuX4r98FEt0E8Imvou9RY9ar63s9Cmyli7Ge/MGYR07kTx/Ia6vH22qa2ev5vOHW2OBgMHZq/n1JuhV5bEKekV791D4+WchOXfM0OFEDx5S4+PT0pp98xxex46dCQ8Pv+9xHTt2/ub4uirp/PTTXVy/fo3/+I9f06NHTwD69RvArFlTiYqKYsSI0XVyHhERERGpf3x/VKZpsViZ0XYyo5oPxW4NPjqYfi/e45vwfrEZLBac/Wfh7DYBi81Rq7V5s7PIXrGM0mNHcSQm0fSNt4jo2bvWz/XVRIcWcVgsYJpgs1np0CLuoZ2rLj1WQe9x5/f77/m93X7/P/6LF88TFxf/TcgDcDqdDBo0hOPHjz3MJYqIiIhICJ3MOc3KzHXkVOTRO7k7T6ZPIc4dG/Q8pmniv3wEz76lmCW52NsOwDVgLtbI+Fqty6ioIG/zRvK3bwWbjcQnZxE7bjxWh7NW8wUjPS2G5kmRePwGLzzRqUHczYPHLOhFDx4S1F21xmbkyIH3/P7zzw/f97jCwgLi4r79LxVxcfEUFOQ/lLWJiIiISOjcLdNcz5c5p2gSnsRbPV+iY3y7Ws0VyL+JZ+9iAje+whrfDPeUP8PetGOt5jINg+ID+8hetZJAYQFRgwaT+ORsHPf5rPowhbnsREfZGkzIg8cs6D3ufv3r39XouKSkZPLycr/19dzcHBITk+p6WSIiIiISIr6Aj4+ufsq2KzuxYGF620mMbj6sdmWa3nI8RzLwnfwIHC5cgxfi6DwaSy3ezAlQfvEC2csWU3HxIu7WbWj6+puEta3dM4KPIwW9Bs7huFvf7PV6qj32D8/zVadr1+786lf/H0ePHqZ377tv9SwvL2fv3t2MHz+59osVERERkXrjq9wzrMhcR055Lr2Su/NUrcs0Dfzn9uE5sByzvBhHx2E4+83CGhZdq3X5CwrIWbOSor17sMXE0OQ7LxI9aDAWq7VW8z2uFPQaOIfDQWpqGjt3fkTr1um4XE7atm33TQCsjT59+tGrVx/++q9/xKuvvkl0dAxLl/4er9fHwoXP1uHqRURERORRyy3PY/W5DXyR8xXJ4Ym82fNFOsW3r9VcgZzLVOxZhHHnPNbkNoRN+B625Da1msvw+SjYsY3cTRsh4Cdu4mQSpkzF6g6r1XyPOwW9RuCDD/6c//iPf+Hdd1/H6/XWSR+9n/zkZ/zbv/0z//Zv/4zH46Fz5y7827/9UqWbIiIiIg2Uz/Dz8dVP2Xp5JxZgeptJjGoxDEctyjSNimK8B1fjO/MplrAo3CNewN5+CBZL8HfdTNPk9/+6iq4XPieyvJCInr1Imj0PZ5Pa9deTu0LaMP369eu88cYb3/y+uLiYkpISDh48WOM5GmvD9MaosfyZqGGrhJKuPwklXX8SSrr+Hsyp3LOsyMwguzyXnkndeKrdFOLdwb/QxDQC+E7vwnN4LXjLcXQZi6vvDCzO+7cCq47nxg2yly+h7NRXFIXH0+mV7xLRpWut5nqYPlx8FIfTxnuza9/772Gotw3TmzVrxrp16775/U9+8hMCgUAIVyQiIiIi0njkluez+vwGvsg+id0fxRt9XqBzQodazeW/dRbP3kUYudewNe2Ea/DT2OLTajVXoLSU3HVrKfhkJ1a3my/aDedS0270rYchr6GqN6WbXq+XDRs28Jvf/CbUSxERERERadDulml+xtbLHwMQU9yN6JKOtQp5Rmk+nv3L8V/YjyUiHvfYN7C37lurJuVmIEDhZ5+Ss24NRmkpMSNGkTh9JqvXnwt6LqlavQl6O3fupEmTJnTp0iWocZXdqszKsmK368089YnVaiUpKSrUy6gTjWUf0jDp+pNQ0vUnoaTrr2aO3zrFb48u51ZJFv2b9eS5nrP4p/8+Dc7g/huafh+FBzeS//kqMALEDp1F7OAnsTpctVpXwYkvufSb31J2+QrRXbvQ5qXvEtGqFQAO50Wg/v4ZO5x3W0TU1/XdT70JeqtXr+app54Kelxlz+gZhoHfb9TF0qSOGIbRKGrr9YyAhJKuPwklXX8SSrr+qpdXkc/qcxs5nv0lSWEJvN7jBbokdIAy8HnvPh5V0/+G/qsnqNi3GLPwDvaWvXANmk8gOpncAi/gDWpdvpxsslcup+TIYewJCaS+9gaRvftSZrFQ9vV6gl3fo+bzBnA4bfVuffX2Gb0/uHPnDocOHeJnP/tZqJciIiIiItKg+A0/O6/uZsvljzCBqW0mMKbFiNq9TbMoi4q9SwhcPY4lJoWwSe9hb969VusyPB7ytmwkf+sWsFpJmPEkceMnYnU6azVfKP1wYe8G948N9SLorV27lhEjRhAXF/ybf0REREREHlen8zJZmbmOO2XZ9EjqylPpU0kIq8XbNP0evMc24j2xBSw2nP3n4Ow2Host+LhgmibFB/eTs2oF/vx8ogYMJPGpOTji44OeS2qv3gS9H/3oR6FehoiIiIhIg5BfUcDqcxs4lv0liWEJvN7ju3RJ6Bj0PKZp4r90CM++ZZiledjTB+IaMBdrRO1uwFRcvkzW0kVUXDiPq2UrUl9+nbB27Wo1lzyYehH0tm3bFuoliIiIiIjUe37Dz85ru9ly6SNMTKa0nsDYFsNx2BxBzxXIu4Fn7yICN09jTWiOe/Qr2FNr2XqhsICctasp2vM5tsgomjz/XaIHD8Vi1csRQ6VeBL2G4MPFR4G79bkiIiIiIo/ambxzrMjM4E5ZNt0TuzCr3VQSwoIvhzQ9pXiOZOD76mNwhuEa8gyOTiOxWG3Bz+X3k//xDvI2rMPw+YgbP4H4KdOxhYUFPZfULQW9BujixfM8++w8fvGLX9K7d98ajVm3bg1xcfEMHz7y4S5OREREROpUfkUBa85v5GjWCRLDEnit+3fomtgp+IlME9+Zz/AcWoVZXoyj0wic/Z7C6g6+ZYBpmpR++QXZy5fiu3OHiO49SJozH2dKSvDrAso9fso8fs7fKCQ9LaZWc8i9FPQeE+vXr6VNm7YKeiIiIiINhN/ws+va52y+/BGmaTCl9XjGthhRqzLN5MAdhnk/oeKzO1ibpBM28T1sSa1qtS7vrZtkLV9K2ckvcaSkkPa994joWrs3cwKcv1HItewSTBN+vvQYH8zvpbBXBxT0RERERETqmbtlmuu4U5ZFt8TOzGo3jcRalGka5UV4D66id/EpjgSa06PfFDoMHILFEvyzc4GyUnI3rKdg50dYnU6S5swndvQYLPYHixRnr+Zjft0WOxAwOHs1X0GvDijoNQBr1qxk0aL/R1FRIb1792P27Ln3fH/p0kV8/PF2rl27gtPpolOnLrz99ns0a9YcgDfffJmzZ09z9uxptmzZCMBf/MVfMXnyVLZs2cj69Wu5fPkSpmnSrl173njjHTp27PzI9ykiIiLyuCvwFLLm3EaOZH1BgjueV7s/T7fE4D+XmUYA36mdeA6v4VJZNP9ePJEAVnbuCfBBi+KggpRpGBR+/hm5a1cTKCkhZthwEmY8hT06Ouh13U+HFnFYLGCaYLNZ6dBCLdfqgoJeDYWqbnj37k/4p3/6kBkznmLYsJEcP36Uv//7v7vnmOzsOzz11ByaNEmhrKyUjIzVvPrqd1m2bC2RkZF8//t/xv/6Xz+gadM0nnvuRQDS0poBcPv2LSZOfIK0tGb4fD4++mgbr7/+Er///fJvjhERERGRh+uPyzQN02By63GMazESZy3KNP03T+PZsxgj/zq2tC5cCZtI4GA2EPwds7LMs2QvXYzn2lXC2rUnaf5C3C1aBr2mqqSnxdA8KZIyj5+Xp3XR3bw6oqBXA6GsG/7d7/6LAQMG8/77fw7AgAGDKCjIZ8OGjG+Oefvt73/z60AgQL9+A5gyZTy7d3/CpElTaN26DW53GLGxcXTt2u2e+b/znZe++bVhGPTrN4DTp79i+/Yt93xPRERERB6Os3nnWZGZwe2yLLomdGJ2+2kkhiUEPY9Rkotn/3L8Fw9iiUzAPe5N7K360OlmERmHsoO6Y+bLzSVn1XKKDx3EHh9P6suvEdmvPxaLpTZbrFaYy06Yy66QV4cU9GogVHXDfr+fzMyzvPvuB/d8ffjwUfcEvZMnv+TXv/7/yMw8S1FR4Tdfv3btarXnuHz5Ev/5n//ByZMnyM/PC2qsiIiIiNRenZVpBnx4T2zFe2wDmCbO3tNx9pyMxe4CgrtjZng85G/bQt7WzWCaxE+dTvzEyVhdrlrvU0JDQa8GQlU3XFhYQCAQIC7u3gdv//j3t2/f5r333qRTpy588MGfk5iYhMPh4IMPvofX661y/rKyUt57703i4uJ56613adIkFZfLyT/8w/8Pr9fzUPYkIiIi8rgLGAF2Xf+czZd2EDANJrcay7iWo2pXpnnlOBX7lmAWZWFv1QfXoHlYo5K+dVx1d8xM06Tk8CGyVy7Hn5dLVL/+JM6aiyMh+DuLUj8o6NVAqOqGY2Jisdls99xpA+75/YEDe/F4KviHf/hHwr5uTOn3+++5s1eZkye/JCvrDv/8z/9By5atvvl6aWlJ3WxARERERO6RmX+B5ZkZ3C69Q5eEjsxuN52k8FqUaRbepmLvEgLXTmCNScE9+X3szbrWak0VV6+QvXQx5ecycTVvQcqLLxPevkOt5pL6Q0GvhkJRN2y322nXrgO7d3/GjBmzvvn6Z5/t+ubXHo8Hi8WCzWb75ms7d35EIBC4Zy6Hw/Gtu3QeT8U33/uDL7/8glu3btKhQ8c63YuIiIjI46zAU8ja85s4fOc4Ce44Xun2HN0SOwf9zJvpq8B7bCPeE1vBZsc1YC6OruOw2IL/WO8vLiJ37RoKd3+KLSKS5GefJ2bocCzW4FsvSP2joFfPPfPMd/jRjz7gf//vv2f48FEcO3aEAwf2ffP9Pn36YRgGP/3p3zBlynQuXbrI0qW/JzIy6p55WrRoycGD+zlwYB8xMTGkpjalS5duhIWF8+GHP2HhwmfJyrrDf/3X/yUpKflRb1NERESkUQoYAT65vofNl3bgNwNMajWW8bUo0zRNE/+FA3gOLMcszcfebjCuAXOwhscGvSbT76dg18fkrs/A8HqJHTuehKnTsIVHBD2X1F8KevXciBGjePfdD1i06L/ZsmUjvXr14c/+7C957703AWjbNp2/+Iu/4r/+6//y2WefkJ7ejr/7uw/5q7/683vmee65F7hz5w4//vGfUVpa+k0fvb/7u3/gP/7jX/izP/s+zZs354MP/pzFi38Xiq2KiIiINCrnvi7TvFV6h84JHZjdbjrJ4YlBzxPIvYZn7yICt85iTWiJe8zr2FPa1WpNpSdPkL1sKd7btwjv2o3kufNxpjat1VxSv1lM8w/vk2yYcnNLMIxvb+H27SukpNRdj48PFx8F4IcLe9fZnI+buv4zCZWkpCiys4tDvQx5TOn6k1DS9Seh1JCuv0JPEWvPb+LQnWPEu+OY1W4a3WtTpukpxXN4Db5TO8EZjqvfLBwdR9SqtPLff7WT7uc/IyX3Mo4mTUiaO5+Ibj0eWruEYDWEz9r18Rq0Wi0kJETe93u6oyciIiIiUgcCRoBPb+xl08Xt+A0/E1uNYULLUThtzqDmMU0D39ndeA+uwvSU4Og0ClffJ7G47/+Bvso1lZeTt3E9Yw9uI2C1kTh7LnFjxmGxKwY0dvoTrqH6/K8LIiIiIhJa5wsusfzsWm6W3qZzfAdmt59Gcvi32xxUJ5B1gYo9izCyL2FLaY9r8EJsicFXRJmGQdHez8lZvYpASTHXmnTiqzaD+N6EYUHPJQ2Tgp6IiIiISC0Veoq/LtM8Spwrlpe7PUv3xC5Bl0QaZYV4Dq7En/k5lvBY3KNexp4+qFalleXnz5G1dDGeK5dxt00n7Z13WbsnP+h5HiXdVKl7CnoiIiIiIkEKGAE+u7GPjRe34zd8TGg5momtRgdfpmn48X31MZ7DGRDw4uwxGWevqVicYUGvyZeXR87qFRQf2I89Lo6Ul14hqv/Au2Gxngc9qXsKeiIiIiIiQfjjMs1O8e2Z0356rco0/TdO4dm7CCP/Jrbm3XAPWoA1NjXoeQyvl/ztW8nbvBEMg/gpU4mfNAWryxX0XNJ4NOqgZ5pmvXmT0OOugb/cVURERIRCTzEZFzZx8PbdMs2Xuj1Lj9qUaZbk4tm3FP+lw1iikggb/w62lj2DfyunaVJy9DDZK5fjz8khsk9fkmbNxZH07dCp0sjHT6MNejabHZ/Pi9Opf8moD3w+LzZbo73cREREpBH70zLNiS1HM6E2ZZp+L94TW/Ae2wSAs+9MnN0nYbEHNw+A59o1spYvofzMaZxpzWj2/R8Q3qlz0PNI49VoP3lHRsZSUJBNbGwSDodTd/ZCxDRNfD4vBQXZREXFhXo5IiIiIkE5X3CJFZkZ3Ci5Raf49sxuP50mQZZpmqZJ4MpxKvYtwSzOxt66L66B87BG1aJ5ekkJOevWUPjJLqzh4SQvfJaY4SOw2GxBzyWNW6MNemFhEQAUFuYQCPhDvJrHm81mJyoq7ps/ExEREZH6rshbTMb5zRy4feRumWbXZ+iR1DX4Ms2C21TsW0zg2pdY45rifuIH2NOCv/NmBgIUfLqL3Iy1GBXlxI4aQ8K0Gdgig++tJ4+HRhv04G7YU7gQERERkZoKGAF239jPhovb8Bk+xrccxcRWY3AFW6bpLcd7bAPeL7eBzYlr4HwcXcdgsQb/8bv01FdkL1uC9+YNwjt1JmneAlxpzYKeRx4vjTroiYiIiIjU1IWCyyzPXPs/ZZrtptEkIjmoOUzTxH9+H54DKzDLCrC3H4qr/2ys4TFBr8eblUX2ymWUHjuKIymJpm+8RUTP3nokSWpEQU9EREREHmt/Wqb5Ytdn6FmLMs1AzhU8excTuJ2JNak1YePexNYkPej1GBUV5G3eSP72rWCzkfjkLGLHjcfqCP6lLfL4UtATERERkcdSwAiw++Z+Nl7chjfwAGWaFSXsW/KfdPGfxOaOxDX8Ozg6DMNisQY3j2FQfGAf2atWEigsIHrQEBKfmoU9Vi+0k+Ap6ImIiIjIY+di4WWWn83geslNOsa1Y0776cGXaRoGvjOf4j20mi7+Uk7auzN47stYXMG/I6L84kWyly2i4uJF3K3b0PT1NwlrG/zdQJE/UNATERERkcdGsbeEjPOb2X/7MLGuGF7o+jS9kroFX6Z5+xwVexdh5FzBltqBZQV9yLUmMiTIkOcvKCBnzUqK9u7BFhNDk++8SPSgwViswd0NFPlTCnoiIiIi0ugZpvHN2zS9AS/jW45iQsvRuO2u4OYpK8BzYCX+c3uwRMThHv0q9rYDyF1yLLh5fD4KPtpO7sYNEPATN3EyCVOmYnWHBTWPSGUU9ERERESkUfvTMs3Z7aeTEmyZZsCP76sdeI6sg4AfZ88pOHtNweJwBzePaVL6xXGyly/Fl51FRM9eJM2eh7NJk6DmEamOgp6IiIiINErF3hIyLmxm/60HK9P0Xz+JZ+9ijIJb2Fr0wD1oPtaYlKDX47l5g+xlSyg79RXO1Kakvfs+EV26Bj2PSE0o6ImIiIhIo2KYBp/f2M/6i9vwBDyMazGSia3GBF+mWZyNZ98y/JePYIlOJmzC97C37Bn0egKlpeSuz6Bg18dY3W6S5i0kduQoLHZ9FJeHR1eXiIiIiDQaFwuvsOLsWq6V3KRDXDpz2k8nJSK4skjT78X7xWa8xzeBxYKz31M4u03AYg+y7YJhUPjZJ+RkrMEoLSVm+EgSZzyJLSoqqHlEakNBT0REREQavGJvCesubGHfrUPEumL4bpeF9E7uHlSZpmma+C8fxbN/KWZxDvY2/XENnIs1MiHo9ZSdOU3WsiV4r18jrH0HkucvxNW8RdDziNSWgp6IiIiINFh3yzQPsP7i1gcq0wwU3MSzZzGBG19hjWuGe8oPsTftFPR6fLk5ZK9YRsmRw9gTEkh99Q0i+/QN+rlAkQeloCciIiIi9dqHi4/icNp4b3aPe75+qfAqyzPXcq34Bu3j0plbmzJNbzmeo+vwfbkDHE5cgxfi6Dwai9UW1Dy2gI/2V45w+X/9f2CxkDB9JnETJmF1BlfuKVJXFPREREREpEEp9paw/sIW9t46RIwzupZlmgb+c/vwHFiBWV6Eo8MwnP1nYQ2LDmotpmlSfPAAXY5tJsseTV7XIfSePxVHfPDlniJ1SUFPRERERBqEP5Rpbri4lYqAh7EtRjCp1Rjc9uB62QVyLlOxZxHGnfNYk9oQNuEdbMltgl5PxeXLZC1bzIXr+axJm0DAYmVvuY2EcjvpQc8mUrcU9ERERESk3quw5/Czw/92t0wzti1zOswgNdgyzYoSPIdW4Tv9KRZ3JO4RL2BvPwSLxRrUPP6iInLWrKJoz25skVHkDZlJ4IoJQCBgcPZqPulpMUHNKVLXFPREREREpN4q8ZaSG3OQ0rCLxHii+W6XBfRO7hFcmaZh4Du9C8/hNeAtx9F1LK4+M7C4IoJai+n3k//xDvI2rsfweokbN4H4KdMw831sXnQE0wSbzUqHFnHBblOkzinoiYiIiEi9Y5gGe24eZP2FLZSFVRBT0Ykfj5gfdJmm/3Ymnj2/x8i9hq1pJ1yDF2KLbxb0ekpOfEH28qX47twmvGt3kufNx5mSCkB6ODRPiqTM4+flaV10N0/qBQU9EREREalXLhddZfnZtVz9ukyz+Fx7wq3xQYU8ozQfz4EV+M/vwxIRj3vs69hb9wu6zYH39i2yly+l9MsTOJqk0PTtd4ns3uNbx4W57IS57Ap5Um8o6ImIiIhIvVDiLWX9xS3svXmIaGck3+mygD7JPfjZ6WNQwy4FZsCP98vteI+th4AfZ6+pOHtOweIIsq9eWRl5G9eT//EOrE4nibPnEjdmHBa7Pj5Lw6ArVURERERC6g9lmhsubKU8UMHo5sOY3Hps8GWa105QsXcJZuFtbC164h68AGt0clBzmIZB0Z7d5KxZTaCkmOghw0ic+RT2GN2pk4ZFQU9EREREQuZumWYGV4uv0y62DXPaz6BpZEpQcxhFWXj2LcV/5RiWmCaETXwPe4vuQa+l/Nw5spYtxnPlMu626aS98x7uVq2CnkekPlDQExEREZFH7ltlmp3n06dJz+Depun34D2+Ce8Xm8Fiw9l/Ns5u47HYHEGtxZeXR86qFRQf3I89Lo6Ul14lqv+AoJ/nE6lPFPRERERE5JExTIO9Nw+y/usyzVHNhzK59TjCqijTLPf4KSj1cv5GIelpMZimif/SYTz7l2GW5GJvOxDXwLlYI4Jra2B4veRv30re5o1gGMRPmUb8pCewuoJ7nk+kPlLQExEREZFH4krRNZadXRtUmeb5G4Vcyy7BNOHnS4/x/Sea0ezCagI3T2ONb4576svYUzsEtQ7TNCk5epjslcvx5+QQ2acvSbPn4khMepDtidQrCnoiIiIi8lCV+EpZf2Ere28eJMoZyfOd59O3hmWaZ6/mY5p3fx3wBzi5Yx2p0VdwDXkaR6dRWKy2oNbiuXaNrGWLKT97BmdaM5q9/0PCO3aqzbZE6jUFPRERERF5KGpTpvmn2jePwYqBCdgw6Ng2lYgxL2N1RwW1lkBJCTkZayj8dBfW8HCSFz5LzPARWGzBBUWRhkJBT0RERETq3JWiayw/m8GV4mukx7ZmbvuZQb9NM5B9iaaHF/F2VCHHjXYMHDWC9l3HBzWH6fdT8OkuctdlYFSUEztqDAnTZmCLjAxqHpGGRkFPREREROrMn5ZpPtd5Hv2a9ArqDZZGeRHeQ6vwndmNJSyKixEDyAnvQvuuHYNaS+mpr8hethjvzZuEd+pC0rwFuNLSgt2SSIOkoCciIiIiD8wwDfbdPMS6C1tqXaZpGgF8p3bhObwGfB4c3cbj6jOdsyvP4AgiKHqzsshesZTS48dwJCXR9I23iegZXNgM1g8X9n5oc4vUhoKeiIiIiDyQK0XXWJ6ZwZWia7SNac3cDjNIi0wNag7/zTN49i7CyLuOLa0LrsELscU1DWoOo6KcvM2byN++FWw2Ep+cRey48VgdzqDmEWkMFPREREREpFZKfKVsuLCVPTcPEumMqF2ZZkkengPL8V84gCUyAffYN7C37htc43TDoHj/PrJXryRQWED0oCEkPjULe2xwffVEGhMFPREREREJimEa7Lv1dZmmv4KRzYfwROtxhNnDajyHGfDhPbEN77ENYAZw9p6Os+dkLPbgmpWXX7xI9rJFVFy8iLt1G5q+/iZhbdOD3ZJIoxPyoOfxePjpT3/Kvn37cLlc9OzZk7/7u78L9bJERERE5D6uFl1nWebar8s0WzG3w8zgyzSvHqdi71LMojvYW/XGNXA+1ujgmpX7CwrIWbOSor17sMXE0OQ7LxI9aDAWqzWoeUQaq5AHvZ///Oe4XC62bduGxWIhJycn1EsSERERkT9R6itj/cWt7LlxoPZlmoV3qNi3hMDVL7DGpOCe/D72Zl2DWofh81Hw0XZyN26AgJ+4iZNJmDIVq7vmdxNFHgchDXqlpaVkZGTw6aeffvOXRGJiYiiXJCIiIiJ/5I/LNMt85YxsNoQn2gRZpunz4D22Ae+JrWCz4xowF0fXcVhsQXwUNU1Kjh8je/lSfNlZRPTsRdLseTibNKnFrkQav5AGvWvXrhEbG8u///u/c+DAASIiInjnnXfo27dvKJclIiIiItwt01yemcHloqu1KtM0TRP/xYN49i/HLM3Dnj4I14A5WCOCe0lKVGku3S98zs3tV3CmNiXt3feJ6BLcnUCRx01Ig14gEODatWt07tyZH/7wh3zxxRe8+uqr7Nixg8jIyBrNkZBQs+NE6lJSUlSolyCPMV1/Ekq6/h4PJZ5Sln65jo8ufE60K5I3BzzPsJb9gyrT9GZdIWf7b6i48hXOJq1JfOr7uJsH1/DcX1LC1WUrGH1oMwGbk9YvfoeUSROx2kP+9JE8phrS34Eh/b8kNTUVu93OlClTAOjRowdxcXFcunSJbt261WiO3NwSDMN8mMsUuUdSUhTZ2cWhXoY8pnT9SSjp+mu8Plx8FIAPFvRk/63DZFzYTJmvnBHNBvNE6/GEO8LIySmp0VympxTP4bX4Tu0EZxiuoc/i6DiSYquV4hpeP6ZhUPjZJ+RkrMEoLSVu+Eg6vPAMBV4rufnltd6nyIOoj38HWq2WSm98hTToxcfHM2DAAPbs2cPQoUO5dOkSubm5tGzZMpTLEhEREXnseO15/OOR/8Ploqu0iWnF3PYzaBZV84blpmngO7sb78FVmBUlODqNxNXvKSzu4Kqvys6eIXvZYjzXrhHWvgNJ8xbgbtESR0wU1LMP2SL1Wcjve//N3/wNf/EXf8GHH36I3W7nZz/7GdHR0aFeloiIiEid+cMdsx8u7B3ilXxbqa+MvOjDlISfJ6o8kmc7zaV/Su+gyjQDWRep2PN7jOxL2Jq0wzX5aWyJwf3DvS83h+yVyyk5fAh7fAKpr75OZJ9+Qa1DRP5HyINe8+bN+f3vfx/qZYiIiIg8VgzTYP+tw6y7sIWS8DIiy9rx4+FPE+6o+ds0jfIivAdX4ju7G0t4LO5RL2NPHxRcywWPh7ytm8nfuhksFhKmzyRu/ESsruAap4vIvUIe9ERERETk0bpafJ3lZzO+KdOMvNkBpz+uxiHPNPz4vtqJ58ha8HlxdJ+Eq/c0LM4gWi6YJiWHDpK9ajn+vDyi+vUncdZcHAkJtd2WiPwRBT0RERGRx0SZr4wNF7ex+8Z+Ih0RPNNpDv1TevPzM8drPIf/5mk8exZh5N/A1qwrrsELsMXW/Fk+gIqrV8heupjyc5m4mrcg5cVXCG/fIcjdiEhVFPREREREGrm7ZZpHWHdhM6W+MoY3G8yUr9+mWeM5SnLx7F+G/+IhLFGJuMe/hb1lcM/y+YuLyF27msLdn2GLiCT52eeJGToci9Vam22JSBUU9EREREQasavF11lxNoNLRVdpE9OSOe1n0jyYt2n6vXhPbMV7bCNg4uwzE2ePSVjsziDm8FOw82NyN2RgeL3EjhlHwrTp2MIjarEjEakJBT0RERGRRuiPyzQjHOHflGlaLTW7e2aaJoGrx6nYuwSzOBt76764Bs7DGpUY1DpKT54ge9lSvLdvEd6lK0lzF+BqGlypp4gET0FPREREpBExTIMDt46Q8SBlmgW3qdi3hMC1E1hjm+Ke/AH2Zl2CWof3zm2yly+l9MQXOJKb0PSt7xHRvYfaJYg8Igp6IiIiIo3EA5dp+irwHl2P98ttYHPgGjgPR9exWKw1/8gYKC8nb+N68j/ajtXhIHHWHGLHjMPqcNRmSyJSSwp6IiIiIg3c3TLN7ey+sa9WZZqYJumBTEpX/B6zNB97+yG4+s/GGh5b4zWYhkHR3j3krFlJoKiI6CHDSHzyKewxNZ9DROqOgp6IiIhIA/XtMs1BTGk9IagyzUDuVfoWf0Sh18blxGZ0mv4GtibpQa2j/MJ5spYuxnP5Eu42bUl763u4W7cJdjsiUocU9EREREQaoGvFN1h+NoNLRVdqV6ZZUYLn8FoyT5xgRdE4fNhw3LLxgT+JmsY8X34+OatXULx/H7bYWFJeeJmoAQPVLkGkHlDQExEREXnIyj1+yjx+zt8oJD0t5oHm+tMyzac7zWFAMG/TNAx8Zz/De3AVpreUi3HT8BXd/UgYCBicvZpf7RoNn5f87dvI27wRAgHiJ08hfvIUrG73A+1NROqOgp6IiIjIQ3T+RiHXskswTfj50mN8ML9XrcJenZRp3jlPxZ5FGDmXsaW0xzXkabpWxLBh0RFME2w2Kx1axFU63jRNSo4dJWfFMnw52UT06k3SnHk4k5KD3o+IPFwKeiIiIiIP0dmr+Zjm3V/X9I7Zn3rQMk2jrADPwZX4M/dgCY/FPfpV7G0HYLFYSAeaJ0VS5vHz8rQula7Nc+M62cuWUHb6FM6maaS99wERnYNruSAij46CnoiIiMhD1KFFHBYLNbpj9qcevEzTj+/kR3iOZEDAh7PHZJy9p2Fx3FtiGeayE+ay3zfkBUpKyFm3lsJPdmINCydpwdPEjhiFxWar8T5E5NFT0BMRERF5iNLTYmp0x+yPGabBgdtHyTi/6Y/KNMcT7giv8Xn917/Cs3cxRsFNbM274x60AGtsSo3Hm4EAhZ99Qk7GGoyyMmJGjCJx+kxsUVE1nkNEQkdBT0REROQhq+qO2Z+6VnyTFZlruVh4hdbRLXmz5wyaR6XV+FxGcQ6e/cvwXzqMJSqJsAnvYGvRE4vFUuM5ys6cJmvpYrw3rhPWoSPJ8xbiat68xuNFJPQU9ERERETqgTJfORsvbeOz67Us0/R78X6xBe/xTQA4+z6Js/tELHZnjdfgy84me+UySo4ewZ6QQOprbxDZu29QIVFE6gcFPREREZEQ+tMyzWFpg5japuZlmqZp4r9yFM++pZjFOdjb9MM1cB7WyIQar8EW8NH+ymEu/+X/AauVhBlPEjd+IlZnzUOiiNQvCnoiIiIiIfLAZZoFt6jYu5jA9ZNY49JwP/ED7GmdazzeNE2KD+5n3IFFhHlKiRwwkMSn5uCIj6/NdkSkHlHQExEREXnEvlWm2XE2A1L71LxM01uO5+h6fCe3g82Ja9ACHF1GY7HW/KNdxeXLZC1dRMWF81REJnGo8yRefGlKbbckIvWMgp6IiIjII2KYBgdvHyXj/GZKfKW1K9M8vw/PgRWYZQU4OgzD2X821rDoGq/BX1hIztrVFO3ZjS0yiibPfYe1VyKghiFTRBoGBT0RERGRR8Brz+efj/6Si4WXaR3dkjd6vhBUmWYg5wqePYsI3DmHNak1YePfwpbctsbjTb+f/I93kLdxPYbXS9y4CcRPmYYtPByuHq3NlkSkHlPQExEREXmIynzl5EUfoST8PJFltSjTrCjBc3gNvtO7sLgicQ3/Do4Ow7AEcQeu5MQXZC9fiu/ObcK7did53nycKam13ZKINAAKeiIiIiIPwT1lmuGlRJa15a+GP13zMk3DwHfmEzyHVoO3HEeXsbj6zMDiiqjxGry3b5G9fCmlX57A0SSFpm+/S2T3Ht867ocLe9d4ThFpGBT0REREpMH7cPHd0sP6EliuF99keWbGN2WaETeH4PTH1Tjk+W+fw7NnEUbuFWypHXENWYgtvuYNywNlZeRtXE/+xzuwOhwkzp5L3JhxWOz66CfyuND/7SIiIiJ15O7bNLfz2fW9975Ns2/NyiyNsgI8+5fjP78PS0Q87jGvYW/Tv8YNy03DoGjPbnLWrCZQUkz0kKEkzpyFPSbmQbYlIg2Qgp6IiIjIA3rgt2kG/PhObsdzdD0E/Dh7TsHZayoWh6vGayg/d46sZYvxXLmMu206ae+8i7tV69puSUQaOAU9ERERkQfwp2Wawb5N03/95N0yzcLb2Fr0wD1oAdaYJjUe78vLI2f1CooP7MceF0fKS68Q1X9gje8CikjjpKAnIiIiUguVlmnW8G2YRlE2nv1L8V8+iiW6CWET38Xe4tsvSql0vNdL/vat5G3eCIZB/BNTiZ/0BFa3u7ZbEpFGREFPREREJAgPXKbp9+A9vhnvF5vBYsHZfxbObhOw2Bw1G2+alBw9TPbK5fhzcojs3Yek2fNwJCU9yLZEpJFR0BMRERGpoQcp0zRNE//lI3j2LcUsycXedgCuAXOxRsbX+Pye69fIWraE8jOncaY1o9n3f0B4p8613Y6INGIKeiIiIiLVeNAyzUD+TTx7FxO48RXW+Ga4p/wZ9qYda3z+QEkJOevWUPjJLqxh4SQveJqYEaOw2Gy13ZKINHIKeiIiIiKVeOAyTW85niMZ+E5+BA4XrsELcXQejcVas4BmBgIUfrqLnIy1GBXlxI4aTcK0mdgiIx9kWyLyGFDQExEREbmPByvTNPCf24vnwArM8mIcHYfh7DcLa1h0jc9fdvoUWcuW4L1xnbCOnUievxBXWrPabkdEHjMKeiIiIiJ/5IHLNHMuU7FnEcad81iT2xA28V1sSTXvZ+fLziZ75TJKjh7BkZhE6utvEdmrt9oliEhQFPREREREePAyTaOiGO/B1fjOfIolLAr3iBewtx+CpabtFjwe8jZvJH/bFrBaSZj5FHHjJ2B1OB9kWyLymFLQExERkQav3OOnzOPn/I1C0tNigh7/QGWaRgDf6V14Dq8FbzmObuNx9ZmOxVnD5/hMk+ID+8hZvRJ/fj5RAwaROGsOjri4oPchIvIHCnoiIiLSoJ2/Uci17BJME36+9BgfzO9V47D3oGWa/ltn8exdhJF7DVtaZ1yDF2KLq1lABKi4fImspYupuHAeV6vWpL7yOmHp7Wo8XkSkMgp6IiIi0qCdvZqPad79dSBgcPZqfrVB74HLNEvz8exfjv/CfiyRCbjHvoG9dd8aP0fnLywkZ+0qivZ8ji0qiibPv0D04CFYrDULmCIi1VHQExERkQatQ4s4LBYwTbDZrHRoUXXJ4wOVaQZ8eL/cjvfoejADOHtPw9nzCSx2V83G+/3kf7yDvA3rMHw+4sZPIH7KdGxhYTUaLyJSUwp6IiIi0qClp8XQPCmSMo+fl6d1qfRu3gOXaV49QcW+xZiFd7C37IVr0Hys0ck1XmfJieNkL1+K784dIrr3IGnOfJwpKTUeLyISDAU9ERERafDCXHbCXPb7hrwHLtMsyqJi7xICV49jiUkhbNJ72Jt3r/HavLdvkbVsKWUnT+BISSHtnfeI6Fbz8SIitaGgJyIiIo3WA5Vp+j14j23Ee2ILWO24BszB0XU8FlvNPj4FysrI27CO/J0fYXU6SZozj9jRY7HY9fFLRB4+/U0jIiIijc6DlGmapon/0iE8+5ZhluZhTx+Ea8AcrBE1a3dgGgZFe3aTs2Y1gZJioocOI3HmLOzR0Q+6LRGRGlPQExERkUbjQcs0A3k38OxdRODmaawJLXCPeRV7Svsan7/83Dmyli3Gc+Uy7vR2pL3zHu5WrWq5GxGR2lPQExERkUbBa8/nn4/+snZlmp5SPEcy8H31MTjDcA19FkfHkTVud+DLyyNn9QqKD+zHHhdHykuvEtV/QI3bLYiI1DUFPREREWnQynzl5EUfoST8PJFlwZZpGvgz9+A5uBKzvBhHpxE4+z2F1R1Vo3MbXi/527eSt3kjGAbxU6YRP+kJrK6atVsQEXlYFPRERESkQbqnTDO8lMiytvzV8KdrXqaZdZGKvYswsi5ibZJO2KT3sCW2qtFY0zQpOXqE7JXL8OfkENmnL0mz5+JITHqAHYmI1B0FPREREWlwrhXfZEXmWi4WXqF1dEsibg7B6Y+rUcgzyovwHlyF7+xuLGHRuEe+hL3d4BqXWXquXyNr2RLKz5zGmdaMZu//kPCOnR50SyIidUpBT0RERBqMu2/T3MZn1/fd8zbNn589Xu1Y0wjgO7UTz+E14PPi6D4BV+/pWJxhNTp3oKSEnHVrKfxkJ9bwcJIXPkPM8JFYbLYH3JWISN1T0BMREZF6zzANDtw+Ssb5TZT6yoJ+m6b/5mk8exZj5F/HltYF15CF2GKb1misGQhQ+OkuctatxSgvJ3bUaBKmzcQWGfkgWxIReagU9ERERKRe+9MyzTd7zvjW2zR/uLD3fccaJXl49i/Df/EglqhE3OPewt6qd43LNMtOnyJr2RK8N64T1rETyfMX4kpr9sB7EhF52BT0REREpF76VplmpzkMSOlds7dpBnx4T2zFe2wDmCbOPjNw9piMxe6s0bl92dlkr1xGydEj2BMTSX3tTSJ791G7BBFpMBT0REREpF750zLN4c0GMaV1EGWaV49TsXcJZlEW9lZ9cA2ahzWqZm/DNDwe8rZsJH/rFrBaSZjxJHETJmJ11CwgiojUFwp6IiIiUm9cK77B8rMZXCq6QpuYlsxpP5PmUTV7ls4ovEPFviUErn6BNTYV9+T3sTfrWqOxpmlSfHA/OatW4M/PJ2rAIBJnzcERF/cg2xERCRkFPREREQm5Ml8ZGy5uZ/eNWpRp+irwHtuI98RWsNlxDZyHo+tYLNaafcypuHyZrKWLqLhwHlfLVqS+8jph6e0edEsiIiGloCciIiLV+nDxURxOG+/N7lGn8xqmwYFbR8i4sPmPyjQnEO6ovuWBaZr4LxzAc2A5Zmk+9nZDcA2YjTU8tkbn9hcVkbNmFUV7dmOLjKLJ898levBQLNbqw6WISH0X8qA3evRonE4nLpcLgPfff59hw4aFeFUiIiLysD1ImWYg9xqevYsI3DqLNbElYWNex5ZSs7twpt9P/sc7yNu4HsPrJW7cBOKnTMMWXrNnAEVEGoKQBz2AX/ziF7Rv3z7UyxAREZFH4E/LNJ/pNIf+NS3T9JTiObwW36mPsTgjcA17HkeH4TW+C1f65Qmyli/Bd/s2Ed26kzR3Ps6U1AfdkohIvVMvgp6IiIg0ft8u0xz89ds0a1KmaeA7uxvvwVWYnhIcnUbh6vskFnfNmpZ7b98me/kSSr88gaNJCk3ffpfI7nVbhioiUp/Ui6D3/vvvY5omffr04b333iM6OjrUSxIREZE69EBlmlkXqNizCCP7EraU9riGPI0toUXNxpaXk7dxHfkf7cDqcJA4ey5xY8ZhsdeLj0AiIg+NxTRNM5QLuHXrFqmpqXi9Xn7yk59QWlrK//7f/zuUSxIREZE/8ef/53MA/v71oUGNK/GWsvzLDWy/8BlRzgie7vEkw1sNqFGZpr+kgLxdiyk5sRNbZDwJY54losvQGjUtNw2DrJ27uPK7xfiKikgeM4qWzyzEGRsb1PpFRBqqkP9zVmrq3bp4p9PJggULeO2114Ian5tbgmGENKvKYyYpKYrs7OJQL0MeU7r+JFR83gAOp63G119VZZq5OaVVjjUNP76vPsZzOAMCXpw9JuPsNZVyZxjlOSXVnrv8/Dmyli7Gc+Uy7rbppL71PdytWlPoA/T/T4Olv/8k1OrjNWi1WkhIuH8Je0iDXllZGYFAgKioKEzTZPPmzXTq1CmUSxIREZEHdLX4OivOZnCp6CptYloxp/2MGpdp+m+cwrN3EUb+TWzNu+EetBBrbEqNxvry88lZtYLiA/uwxcaS8uLLRA0YVKM7gCIijU1Ig15ubi5vvfUWgUAAwzBo27Ytf/VXfxXKJYmIiEgt3X2b5jZ239hPpCOCZzvNpX9K7xoFLaMkF8++pfgvHcYSlUTY+HewtexZs7E+L/nbt5G3eSMEAsQ/MZX4SU9gdbvrYlsiIg1SSINe8+bNycjICOUSRERE6oUPFx8F4IcLe4d4JcEzTIP9t46w7usyzRHNBvNETd+m6ffiPbEV77GNADj7Pomz+0Qsdmf1Y02TkmNHyVmxDF9ONpG9+pA4Zy7OpOQH3pOISEMX8mf0REREpOH60zLNue1n0KwGZZqmaRK4cpyKfUswi7Oxt+mHa+A8rJEJNTqv58YNspctpuz0KZxN02j2/R8Q3qnzg25HRKTRUNATERGRapV7/BSUejl/o5D0tJgHK9MsuE3FvsUErn2JNS4N9xM/wJ5Ws5AWKCkhd/1aCj7ZhdUdRtKCp4kdMQqLzfagWxQRaVQU9ERERKRK528Uci27BNOEny89xsRxbvYXbQu+TNNbjvfYBrxfbgObE9eg+Ti6jMFirf7jiGkYFH76CTnr1mCUlhIzYhSJ02dii4qqiy2KiDQ6CnoiIiJSpbNX8/lD112fP8CWL4/TsVMSc4Io0/Sf34fnwArMsgLs7Yfh6j8La3hMjc5fdvYMWUsX471+jbAOHUmetxBX8+YPsiURkUZPQU9ERESq1LJpGFgMMAGryRPdejGte/8alWkGcq/i2bOIwO1MrEmtCRv/FrbktjU6ry83h+yVyyk5fAh7QgKpr75BZJ++apcgIlIDCnoiIiJyX3ffpnmYdVe34OzowJnXnpdHD6dry+rfamlWlOA5vAbf6V1YXJG4hn8HR4dhWCzW6s/r8ZC3dTP5WzeDxULC9JnETZiE1Vn9mzhFROQuBT0RERH5lqtF11memcHloqu0jWlF5M2OREQmVBvyTMPAd+ZTvIdWY3rLcHQeg6vvTCyuiGrPaZomJYcOkr1qOf68PKL69Sdx1lwcCTV7E6eIiPwPBT0RERH5RqmvjPUXt7LnxgEinf/zNs2fnTkG1dxQC9w+R8XeRRg5V7CldsA15Gls8TV7lq7i6hWyly6m/FwmruYtSHnxFcLbd6iDHYmIPJ4U9ERERATDNNh36xDrLmyh3F/ByGZDeKLNOMLs1b9N0ygrwHNgJf5ze7BExOMe8xr2NjV7hs9fXETu2jUU7v4UW0Qkyc88T8yw4Vis1Zd4iohI5RT0REREHnN/WqY5t8NM0iJTqx1nGn58J3fgObIOAn6cPafg7DUVi8NV/Vi/n4JdH5O7PgPD6yV2zDgSpk7HFlF9iaeIiFRPQU9EROQxVeIrZcOFrey5eZAoZyTPdZ5Hvya9anYn7vpJPHsXYxTcwtaiB+5BC7DGNKnReUu/Okn2siV4b90kvEtXkuYuwNW0+jYNIiJScwp6IiIi9UC5x0+Zx8/5G4Wkp9Wsv1xtGabBvpuHWHfxbpnmqOZDmdx6HGF2d/Vji7Px7FuG//IRLNFNCJv4PewtetbovN6sLLJXLKX0+DEcSck0ffMdInr0VLsEEZGHQEFPREQkxM7fKORadgmmCT9feowP5vd6aGHvStE1lmdmcKXoGumxrZnTfkaNyjRtpp/e5QcpXXEELBac/Wbh7D4Bi81R7VijopzcTRsp2LENbHYSn5pN7NjxWB3VjxURkdpR0BMREQmxs1fzMc27vw4EDM5eza/zoFfbMk3TNPFfPsr88kVEm0XY2/THNXAu1sjqWx6YhkHx/n1kr15JoLCA6EFDSHxqFvbYuLraloiIVEJBT0REJMQ6tIjDYgHTBJvNSocWdReEvinTvLCF8kBwZZqBgpt49iwmcOMrfJYENkbOYv7YKTU6b/nFi2QvW0TFxYu4W7eh6etvEtY2/UG3IyIiNaSgJyIiEmLpaTE0T4qkzOPn5Wld6uxu3pWiayw/m8GV4rtlmnPbz6RpZEq140xvOZ6j6/B9uQMcLlyDF7LieBz2GpRa+gsLyFm9iqK9n2OLiaHJd14ketBgtUsQEXnEFPRERETqgTCXnTCXvU5CXomvlPUXtrL35kGinZE833k+fZtU/9IT0zTxn9uL58AKzPIiHB2H4ew3C2tYNOYXR6sca/h8FHy8g7yN6zF8PuImTib+ianYwqrvwyciInVPQU9ERKSRMEyDPTcPsuHC1uDLNHMuU7FnEcad81iT2hA24R1syW2++f4PF/YmKSmK7Ozie8aZpknpiS/IXr4UX9YdIrr3IGnufJxNqr9zKCIiD4+CnoiISCNwuegqy89mcLX4Ou1i2zCn/YyalWlWlOA5tArf6U+xhEXhHvEC9vZDsFiqL7X03rpJ1vKllJ38EmdKKmnfe4+Irt3rYjsiIvKAFPREREQasBJvKesvbmHvzUNEOyP5Tuf59KlJmaZh4DvzCZ5Dq8FbjqPrOFx9pmNxRVR7zkBZGbkb1lGw8yOsTidJc+YTO3oMFrs+VoiI1Bf6G1lERKQB+tMyzdHNhzGp9dgalWn6b2fi2bMII/cqtqadcA1+Glt8WrXjzECAws8+JWftKgIlJUQPHUbizFnYo6PrYksiIlKHFPREREQamLtlmmu5WnwjqDJNozQfz4EV+M/vwxIRj3vs69hb96v27h9A+blzfLFqKaUXLuJOb0fa9xbibtmqDnYjIiIPg4KeiIhIA1HiLWXdhS3su3WIaGcU3+mygD7JPaov0wz48X65He+x9WD4cfaairPnFCwOV7Xn9OXlkbNqBcUH9+NMiCflpVeJ6j+gRuFQRERCR0FPRESknrtbpnmA9Re2UhHwMLrFMCa3Gou7JmWa105QsXcJZuFtbC164h68AGt0cvXn9HnJ37aVvM0bwTCInzKV9s/MI6/YVxdbEhGRh0xBT0REpB67VHiV5ZlruVZ8g/axbZnTYQapEU2qHWcUZeHZtxT/lWNYYpoQNvE97C2qfyOmaZqUHD1C9spl+HNyiOzTl6RZc3EkJWFzu0FBT0SkQVDQExERqYeKvSWsv7CFvbcOEeOM5rtdFtC7JmWafg/e45vwfrEZLDac/Wfj7DYei81R7Tk916+RtWwJ5WdO40xrRrPv/4DwTp3raksiIvIIKeiJiIjUAz9c2Bu4W6b5+Y0DbLh4t0xzbIsRTGo1ptoyTdM08V86jGf/MsySXOzpA3ENmIs1Iq7acwdKSshZt5bCT3ZiDQsnecHTxIwYhcVmq5O9iYjIo6egJyIiUk9cKrzC8syMu2WacenMaT+9RmWagfwbePYuJnDjFNb45rinvow9tUO14+62S/iEnIw1GGVlxIwcReL0J7FFRtbFdkREJIQU9EREREKs2Fvyzds0Y10xNS/T9JbhOZyB76uPwBmGa8jTODqNwmKt/k5c2ZnTZC1bgvf6NcI6dCR53kJczZvX1ZZERCTEFPRERERC5G6Z5n7WX9yG55syzbG47VW3PTBNA3/mHjwHV2KWF+PoOAJn/6ewuqOqPacvN4fsFcsoOXIYe0ICqa+9QWTvvmqXICLSyCjoiYiIhMDFwiusOLuWayU36fB1mWZKTco0sy9RsWcRRtYFrE3SCZv4HrakVtWOMzwe8rZsIn/bFrBYSJg+k7gJk7A6nXWwGxERqW8U9ERERB6hYm8JGRc2s//WYWJdMbzQ9Wl6JXWr9o6aUV6E99AqfGd2YwmLwj3yJeztBmGxWKscZ5omxYcOkLNyBf78PKL6DyBx1hwc8Ql1uS0REalnFPREROSx8OHio8D/vN3yUQsYAXbf3M/Gi9vxBryMazGSia3GVF+maQTwndqF5/Aa8HlwdBuPq890LM7was9ZcfUK2UsXU34uE1fzFqS89Arh7at/SYuIiDR8CnoiIiIP2YWCyyzPXMuNklt0jGvH7PbTSYlIrnac/9ZZPHt+j5F3HVtaF1yDF2KLa1r9uOIicteuoXD3p9giIkl+9nlihg7HYq367p+IiDQeCnoiIiIPSZG3mIzzmzlw+0hwZZoleXgOLMd/4QCWyATcY9/A3rr6F6aYfj8Fn+wkd30GhsdD7JhxJEybji08oi63JSIiDYCCnoiISB0LGAF239jPxkvb8AZ8jG85iomtxuCyVf3iEzPgw3tiG95jG8AM4Ow9HWfPyViqKe8EKP3qJNnLluC9dZPwLl1JmrsAV9Pq7/6JiEjjpKAnIiJSh84XXGJFZgY3Sm7RKb49s9tNo0lNyjSvfkHF3iWYRXewt+qNa+B8rNFJ1Y7zZmWRvWIppceP4UhKpumb7xDRo6faJYiIPOYU9EREROrAH5dpxrlieanrM/RI6lp9mWbhHSr2LSFw9QssMSmETfo+9ubdqj2fUVFB7qYNFOzYBjYbiU/OInbcBKwOR11tSUREGjAFPRERkQcQMAJ8dmMfGy9ux2/4mNByNBNaja6+TNPnwXtsA94TW8FmxzVgDo6u47HYqv7RbBoGxQf2kb1qJYHCAqIHDSHxqVnYY+PqclsiItLAKeiJiIjU0vmCSyw/u5abpbfvlmm2n06T8KrLLU3TxH/xIJ79yzFL87CnD8I1YA7WiOqDWsWli2QtXUzFxQu4WrWm6etvEtY2va62IyIijYiCnoiISJAKPUWsPb+ZQ3eO3i3T7PYsPRK7VFumGci7hmfPYgK3zmBNaIF7zGvYU9pVez5/YQE5q1dRtPdzbNHRNPnOC0QPGqJ2CSIiUikFPRERkRoKGAE+vbGXTRe34zf8TPy6TNNZXZmmpxTPkQx8X30MzjBcQ5/F0XFktUHN9PvJ/2g7eRvXY/h8xE2YRPyUadjCwupyWyIi0ggp6ImIiNTAufyLrMjM4GbpbTondGB2u2kkV1umaeA7uxvvwVWYFSU4Oo3E1e8pLO7Ias9XcuI42cuX4rtzh4juPUiaMx9nSkpdbUdERBo5BT0REXkslHv8lHn8nL9RSHpaTI3H3S3T3MShO8eId8fxcrfn6J7YufoyzayLVOz5PUb2JWxN2uGa/DS2xJbVns97+xZZy5ZSdvIEjpQU0t55j4hu3Wu8XhEREVDQExGRx8D5G4Vcyy7BNOHnS4/xwfxe1Ya9gBHgk+t72HxpB34zwKRWYxjfclS1ZZpGeRHegyvxnd2NJSwG96iXsacPqj4YlpWRt3E9+R/vwOp0kjRnHrGjx2Kx60e1iIgETz89RESk0Tt7NR/TvPvrQMDg7NX8KoNeZv4FVmRmcKv0Dl0SOjKr3TSSwxOrPIdp+PF9tRPPkbXg8+LoPhFX7+lYnFU/T2caBkV7dpOzZjWBkmKihwwjceZT2GNqftdRRETkTynoiYhIo9ehRRwWC5gm2GxWOrS4fyuDAk8ha89v4vCd4yS443il23N0q0GZpv/maTx7FmHk38DWrCuuwQuwxTatdl3l58+RtXQxniuXcbdNJ+2dd3G3al2rPYqIiPwxBT0REWn00tNiaJ4USZnHz8vTunzrbl7ACLDr+udsvrSDgGkwqdXYr8s0HVXOa5Tk4tm/DP/FQ1iiEnGPfwt7y97VB8OCfLJXraB4/z5ssbGkvPgyUQOqL+8UERGpKQU9ERF5LIS57IS57N8KeZn551meuY7bpXfomtCRWe2mkxSeUOVcpt+L98RWvMc2AibOPjNx9piExV7N83s+LwU7tpO7aQMEAsRPnkL85ClY3e4H3Z6IiMg9FPREROSxVOApZM25jRzJ+oIEdzyvdn+ebomdqxxjmiaBq8ep2LsEszgbe+u+uAbOwxpVzfN7pknp8aNkr1iGLzubiF69SZozD2dScl1uSURE5BsKeiIi8ljxG352XfucLZc/ImAaTG49jnEtRlZfpllwm4p9SwhcO4E1tinuyR9gb9al2vN5bt4ge9kSyk59hbNpU9Le+4CIztWPExEReRAKeiIi8tiocN7mpwd3cqcsi26JnZjVbhqJYdWUafoq8B5dj/fLbWBz4Bo4D0fXsVisVf8IDZSWkrs+g4JdH2N1u0mat5DYkaPULkFERB4J/bQREZE68eHiowD8cGHvEK/k2/IrCsiJ3UNZ2DUSjZqXafov7MezfzlmWQH29kNw9Z+NNTy26nGGQeHuT8ldu4ZAaQkxw0eQMONJ7FHRdbgjERGRqinoiYhIo+U3/Oy8tpstlz/G5w4QU9yV/zViPo5qyjQDuVfx7F1M4NZZrImtCBv3JrYm6dWeryzzLNlLF+O5dpWwdu1Jmr8Qd4uWdbUdERGRGlPQExGRRul0XiYrM9dxpyyb7oldyDnVGnsgssqQZ1aU4Dm8Ft/pnVicEbiGPY+jw3AsVmuV5/Ll5ZKzcjnFhw5ij48n9eXXiOzXX+0SREQkZIIKejk5OSQmVv1mMRERkVDKryhg9bkNHMv+ksSwBF7r/h26Jnbiwy+PVjrGNAx8Zz/De3AVprcUR6fRuPrOxOKOrPJchtdL/rYt5G3ZBKZJ/NTpxE+cjNXlquttiYiIBCWooDdy5EjGjh3L3LlzGTRo0MNak4iISNB8hp+dVz9j6+WPMYEprScwtsXw6ss075ynYs8ijJzL2FLa4xryNLaEFlWOMU2TkiOHyV65DH9uLpF9+pI0ey6OxKQ63JGIiEjtBRX0WrduzdatW9m2bRstWrRg7ty5zJw5k7i4uIe1PhERkWqdzs1kxbkMsspy6JHYhafaTSUhLL7KMUZZAZ6DK/Fn7sESHot79CvY2w6sttzSc/0aWcuWUH7mNM60ZjR7/4eEd+xUl9sRERF5YEEFvQ0bNnD06FFWrFjB1q1b+dnPfsa//Mu/MG7cOObNm0e/fv1qvZB///d/59/+7d/YsGED7du3r/U8IiLy+MiryGf1uQ0czz5JUlgCr/d4gS4JHaocYxp+fCc/wnMkAwI+nD0m4+w9DYvDXeW4QEkJOevWUPjJLqzh4SQvfIaY4SOx2Gx1uCMREZG6EfTLWHr37k3v3r350Y9+REZGBitWrGDTpk1s3ryZ1q1bM3fuXGbMmEFMTEyN5/zqq684fvw4aWlpwS5HREQeQz7Dz8dXP2Xr5Z0ATG0zkTEthuOoorfdDxf2xn/9K8pW/Rij4Ca25t1xD1qANTalynOZgQCFn+4iZ91ajLIyYkaOJnH6TGyRVT+/JyIiEkq1futmVFQUzzzzDM888wxHjx5l5cqVbNmyhX/4h3/gn//5n5k4cSILFy6kW7duVc7j9Xr527/9W/7xH/+RZ599trbLERGRx8RXuWdYmbmO7PJceiZ146l2U4h3V/0IgVGcg2ffUvyXj2CJSiJswjvYWvSstkyz7MxpspYuxnvjOmEdO5E8bwGuZs3rcjsiIiIPRZ20V4iLiyM6OhqXy0VFRQVer5eMjAzWrVvHqFGj+OlPf0psbOx9x/7rv/4r06ZNo1mzZrU6d0KC/kVVHr2kpKhQL0EeY/X1+nM475YwPqz1ZZXm8v+OreTwjS9IjUrmRyPeokdK1U3PDZ+Hwn3rKNi3FoC4EfOJGTgNq91Z5biKO1lc/u1/k7tvP67kJDr88H0SBlX//N7joL5ef/J40PUnodaQrsFaBz2fz8f27dtZtmwZhw8fxjRNWrVqxWuvvcaTTz7J6dOn+fWvf83OnTv527/9W/7pn/7pW3McO3aMkydP8v7779d6A7m5JRiGWevxIsFKSooiO7s41MuQx1R9vv583gBAna/PF/Dx0dVP2XZlJxYsTG8ziVEthuGw2is9l2ma+C8fxbN/KWZxDvY2/XANnIc/MoHcfA/gue84w+Mhb8sm8rdtAYuFhOkziZswCdPpJCenpE731RDV5+tPGj9dfxJq9fEatFotld74CjroXblyheXLl7N27VoKCgqwWq2MHTuWBQsW3NNyYcCAAQwYMIC3336b3bt333euQ4cOceHCBcaMGQPA7du3eeGFF/j7v/97hg4dGuzSREQkhMo9fso8fs7fKCQ9rebPaVflZM5pVp5bT055Lr2Su/NU+hTi3LFVjgkU3MSzdwmB6yexxqXhfuIH2NOqvvNnmibFhw6Qs3IF/vw8ovoPIHHWHBzxCXWyDxERkUctqKD33HPPcfDgQUzTJCkpiddff505c+bQpEmTSsd06dKFHTt23Pd7L7/8Mi+//PI3vx89ejS//OUv9dZNEZEG5vyNQq5ll2Ca8POlx/hgfq8HCns55XmsOreeL3NO0SQ8ibd6vkTH+HZVjjG95XiOrsP35Q6wO3ENWoCjy2gsVbygBaDi6hWyly6m/FwmruYtSHnpFcLbV/3mThERkfouqKB34MABBgwYwIIFCxg7diy2GrxSetSoUSQnJ9d6gSIiUv+dvZqP+XUVfSBgcPZqfq2CnjfgY8fVT9hxZRcWi5UZbSczqvlQ7FWENdM08Z/fh2f/cszyQhwdhuHsPxtrWHSV5/IXF5G7dg2Fuz/FFhFJ8jPPEzNsOBarNeh1i4iI1DdBBb3NmzfTpk2boE7Qvn37Gt+h27lzZ1Bzi4hI/dChRRwWC5gm2GxWOrSo+i2Y9/NlzilWZq4ntyKPPsk9mJn+RPVlmjlX8OxZRODOOaxJrQmb8Da25LZVjjH9fgo+2Unu+gyMigpix4wlYeoMbBERQa9ZRESkvgoq6AUb8kRE5PGQnhZD86RIyjx+Xp7WJai7edlluaw6t46TuWdICU/m7Z4v0yE+vcoxZkUJnkOr8Z3+BIs7Etfw7+DoMAyLpeq7caVfnSR7+RK8N28S3rkLSfMW4GqqHq4iItL41El7BRERkTCXnTCXvcYhzxvwsv3KLnZc/RSbxcrM9CcY2WxI1WWahoHvzCd4Dq0GbzmOrmNx9ZmBxVX13ThvVhbZK5ZSevwYjqQkmr7xNhE9e6ldgoiINFoKeiIi8kiZpsmJnFOsPree3Ip8+jbpycz0J4h1VR0Q/bcz8exZhJF7FVtqR1xDFmKLr7p5uVFRQd7mjeRv3wo2G4lPziJ23Hisjqr76ImIiDR0CnoiIvLIZJXlsPLcOk7lniU1ognv9HqF9nFVP1NnlBXg2b8c//l9WCLicY95DXub/lXejTNNk+L9+8hevYJAQQFRAweR+NQcHHHBPzsoIiLSECnoiYjIQ+cNeNl2ZRcfXfkEu9XOk+lTGNlsCDZr5W9vNgN+fCe34zm6HgJ+nD2n4Ow1FYvDVeW5Ki5fImvpYiounMfVshVNX3uTsLZVP/MnIiLS2CjoiYjIQ2OaJl/kfMXqcxvIq8inX5NezEx/ghhXNa0Prn2JZ+9ijMLb2Fr0wD1oAdaYynu2AviLishZs4qiPbuxRUbR5PnvEj14qNoliIjIY0lBT0REHoo7ZdmszFzH6bxMmkak8L1er9Iuruq3NxtF2Xj2LcF/5RiW6CaETXwXe4seVY4x/X4Kdn5E7oZ1GF4vceMmED9lGrbw8LrcjoiISIOioCciInXKE/Cy9fLH7Lz6GXarg1ntpjE8bVDVZZp+D97jm/B+sRksNpz9Z+HsNgGLzVHluUpPniBr2RJ8t28T3rUbyXPn40xtWtdbEhERaXAU9EREpE6YmJS7r/N3+7eS7ymgf0pvZrR9ghhXVOVjTBP/pcN49i/DLMnF3nYArgFzsUbGV3ku7507ZC9fQumJL3AkN6HpW98jonsPtUsQERH5moKeiEgD8eHiozicNt6bXXUpYyjcKc0iO/4TKlx3SHOk8nyX+aTHtq5yTCD/Bp69iwncOIU1vhnuKX+GvWnHKscYFeXkbtxA/o5tWOwOEp+aQ+zYcVgdVd/5ExERedwo6ImISK1V+D13yzSv7cZwWIkr7M0PR86uukzTW4bnyDp8Jz8ChwvX4KdxdB6FpaoxhvE/7RIKC4kePITEJ2djj419CLsSERFp+BT0REQkaKZpcjTrBGvOb6TAU8iAlD7MSJ9MtLOqMk0D/7m9eA6swCwvxtFxGM5+s7CGVf0GzvKLF8letoiKixdxt25D0zfeJqxN1b33REREHncKeiIiEpTbpXdYkbmOs/nnaRbZlBe6LqRNTKsqxwSyL1Ox5/cYWRewJrchbOK72JKqLu30FxaQs3oVRXs/xxYTQ5PvvEj0oMFqlyAiIlIDCnoiIlIjFf4KNl/+iF3XPsdlczGn/QyGpQ3Eaqk8eBkVxXgPrsJ35jMsYVG4R7yAvf0QLFWMMf1+8j/aTt7G9Rg+H3ETJxP/xFRsYWEPY1siIiKNkoKeiIhUyTRNjtw5zprzmyj0FjEotR/T204iyhlZ+RgjgO/ULjyH14CvAke38bj6TMfirLq3XcmJ42QvX4rvzh0iuvcgac58nCkpdb0lERGRRk9BT0REKnWz5DYrMjM4V3CR5lFpvNTtGVrHtKxyjP/WWTx7FmHkXcOW1hnX4IXY4tKqHOO9fYusZUspO3kCR5MU0t55j4hu3etyKyIiIo8VBT0REfmWcn8Fmy/t4JPre3DbXMzrMJMhTQdUXaZZmo9n/3L8F/ZjiUzAPfYN7K37VtnbLlBeTt7GdeR/tAOrw0Hi7LnEjRmHxa4fTyIiIg9CP0lFROQbpmly6M4x1p7fRLG3hMFN+zGtzSQinRGVjwn48H65De/RDWAGcPaehrPnE1jsrsrHGAZFe/eQs2YlgeJioocMJXHmLOwxMQ9jWyIiIo8dBT0REQHgRsktlp/N4ELhJVpGNefV7s/TMrp5lWP8V7+gYt8SzMI72Fv2wjVoPtbo5CrHlF84T9bSxXguX8LdNp20t9/F3arqN3CKiIhIcBT0REQec+X+cjZd3MGnN/YSZnezoMNTDGrar+oyzaIsKvYuJnD1CywxKYRNeg9786qfqfMX5JO9eiXF+/Zii4kl5YWXiRowUO0SREREHgIFPRGRx5Rpmhy8fZS1FzZR4i1lSNoApraZQKSjijJNnwfv8Y14v9gCNjuuAXNwdB2PxVb5jxPD56NgxzZyN22EgJ/4yVOInzwFq9v9MLYlIiIiKOiJiDQY5R4/BaVezt8oJD3twZ5lu158k+WZGVwsvEyr6Ba81v07VZZpmqaJ/+IhPPuXYZbmYU8fhGvAHKwRcVWOKf3i63YJ2VlE9Ox1t11CctWlnSIiIvLgFPRERBqA8zcKuZZdgmnCz5ce44P5vWoV9sp85Wy8tI3Pru8jwhHOwo6zGZjap8oyzUDedTx7FxO4eRprQgvcY17FntK+yvN4b90ka9kSyr46iTO1KWnvvk9El65Br1dERERqR0FPRKQBOHs1H9O8++tAwODs1fyggp5hGhy4dYSMC5sp9ZUxLG0QU9uMJ9xReQNz01OK50gGvq8+BmcYrqHP4ug4sspn6gJlZeRuWEfBzo+wOp0kzZ1P7KgxapcgIiLyiOknr4hIA9ChRRwWC5gm2GxWOrSovGTyT10tvs6KsxlcKrpK6+iWvNlzBs2jKm9gbpoG/rOf4zm4ErOiBEenETj7PYXVHVX5GMOg6PPd5KxdRaCkhJhhw0mY8RT26Oig9ikiIiJ1Q0FPRKQBSE+LoXlSJB6/wQtPdKrR3bxSXxkbLm7j8xv7iXCE83SnOQxI6V11mWbWRSr2LMLIvoi1STphk7+PLbFVlecpP3eOrKWL8Fy9gju9HWnfW4i7ZdVjRERE5OFS0BMRaSDCXHaio2zVhjzDNNh36xDrL2yl1FfG8GaDmdJ6POGOsMrHlBfhPbgS39ndWMJicI98CXu7wVgslkrH+PLzyVm1guID+7DHxZHy0itE9R9Y5RgRERF5NBT0REQakStF11iemcGVomu0jWnFnPYzaBbVtNLjTSOA79ROPIfXgM+Lo/tEXL2nY3FWEQp9XvK3byNv80YIBIh/Yurddgku18PYkoiIiNSCgp6ISCNQ4itl/YWt7L15kEhnBM92mkv/lN5V3l3z3zyNZ89ijPzr2NK64BqyEFtsFaHQNCk9fozsFUvxZWcT2asPiXPm4kxSuwQREZH6RkFPRKQBM0yDPTcPsuHCVsoDFYxsPoQnWo8jzF7FHbmSXDz7l+O/eBBLVCLucW9hb1V1KPTcvEn2ssWUnfoKZ9OmpL33ARGduzyMLYmIiEgdUNATEWmgLhddZfnZDK4WXyc9tjVz2s8gLTK10uNNvxfvia14j28E08TZZwbOHpOx2J2VjgmUlZK7fh0Fuz7G6nKRNG8hsSNHqV2CiIhIPaef1CIiDUyxt4T1F7ay79Yhop2RPN95Pn2b9Ky6TPPKcSr2LcEsysLeqg+uQfOwRiVVerxpGBR+/hm5a1d/3S5hBAkzn8QepXYJIiIiDYGCnohIA2FiUOi6wN/uX0NFwMPo5sOY1HosYXZ3pWOMwttU7F1C4NoJrLGpuCe/j71Z1yrP88ftEsLatSdp/kLcLVrW9XZERETkIVLQExFpAC4WXuF24g58jnzaR7ZlTocZpEY0qfR401eB99gGvCe2gc2Oa+BcHF3GYbFV/tf+3XYJyyk+sP9uu4SXXyWq3wC1SxAREWmAFPREROqxYm8JGRc2s//WYWzWMJKLh/D2qGmVhi/TNPFfOIDnwHLM0nzs7YbgGjAba3hspef4VruEKVOJn6R2CSIiIg2Zgp6ISD0UMALsvrGfjZe24Ql4GddiJKcPJuByuCsNeYHca3j2LiJw6yzWxJaEjXkdW0q7Ss9xt13CUbJXLPumXULSnHk4kip/dk9EREQaBgU9EZF65nzBJVZkZnCj5BYd49oxu/10UiKSmZEOSUlRZGcX33O86SnFc3gNvlM7sTgjcA19DkfHEVis1krP4bl5g+xlS75ul5BGs+//gPBOnR/21kREROQRUdATEaknCj3FZFzYxMHbR4lzxfJC16fpldSt8jJNw8B39jO8h1ZjekpwdBqFq++TWNyRlZ7jbruEDAp2fozV7SZp/kJiR47GYrM9rG2JiIhICCjoiYiEWMAI8OmNvWy6uAOf4WN8y1FMbDUGl62K/nZ3zlOxZxFGzmVsKe1xDXkaW0KLSo//pl3CmtUESkuIGT6SxBlPYouKehhbEhERkRBT0BMRCaFz+RdYkbmOm6W36RzfgVntp9EkvPJn5PwlBZR/8lv8mZ9jCY/FPfoV7G0HVvlmTLVLEBERefwo6ImIhECBp5C15zdx+M5x4t1xvNztWbondqmiTNOP7+THXDu2DtPnwdljMs5eU7E4wyo9hy8vj5zVK75ulxBP6suvEdmvv9oliIiIPAYU9EREHqGAEWDX9c/ZfGkHAdNgUqsxjG85CmcVZZr+G6fw7F2EkX+TsDa9sPadgzU2tdLjDZ+X/G1b77ZLMAzip0wjftITapcgIiLyGFHQExF5RM7mnWdFZga3y7LomtCRWe2mkxSeUOnxRkkunn1L8V86jCUqibDx75DSdxg5OSX3Pf6bdgnLl+HLySayT1+SZs/Fkah2CSIiIo8bBT0RkYcsv6KANec3cjTrBAnueF7t/jzdEitvZWD6vXhPbMF7bBMAzr5P4uw+EYvdWWnZpefmDbKXLqHstNoliIiIiIKeiMhD4zf87Ly2my2XP8Y0DZ5oPY6xLUbitDnue7xpmvivHMOzbylmcTb2Nv1wDZyHNbLyu37fapew4GliR4xSuwQREZHHnIKeiMhDcDo3kxXnMsgqy6F7YheeajeVxLD4So83Cm5RsXcxgesnscY1xf3ED7CnVXHXzzAo3P0ZuWvVLkFERES+TUFPRKQO5VXks/rcBo5nnyQpLIHXun+HromdKj3e9JbjPbYB75fbwObENWg+ji5jsFgr/+u5/FwmWUsX322X0L4DSfMWqF2CiIiI3ENBT0SkDvgMPx9f/ZStl3cCMLXNBMY0H46jqjLN8/vwHFiBWVaAvf0wXP1nYQ2PqfwceXmc/d2vyfnsc+zx8aS+8jqRffupXYKIiIh8i4KeiMgD+ir3DCsz15FdnkvPpK48mT6VhLC4So8P5FzBs3cxgduZWJNaEzb+LWzJbSs9/o/bJViA+KnTiZ84We0SREREpFIKeiIitZRbnseqcxs4kfMVyeGJvNnjRToltK/0eLOiBM/hNfhO78LiisQ1/Ds4OgzDYrHe/3jTpOTYUXJW/E+7hA6vvECxtfIm6SIiIiKgoCciEjRfwMeOq5+w/couLBYr09tOYnTzYdgrea7ONAx8Zz7Fe2g1prcUR+cxuPrOxOKKqPQc97RLSGv2TbsEd1IUxdnFD2trIiIi0kgo6ImIBOHLnFOsylxPTkUevZO782T6FOLcsZUeH7h9joq9izByrmBL7YBryNPY4ptXfvw97RLC1C5BREREakVBT0SkBrLLcll1bh0nc8+QEp7MWz1fomN8u0qPN8oK8BxYgf/cXiwRcbjHvIa9Tf9KX5zyrXYJI0aROH2m2iWIiIhIrSjoiYhUwRvwsv3KLnZc/RSbxcrM9CcY2WxI5WWaAT++r3bgObIOAn6cPafg7DUFi8Nd6TnKz50ja+kitUsQERGROqOgJyJyH6ZpciLnK1ad20BeRT59m/RkZvoTxLoqb3/gv34Sz97FGAW3sLXogXvQAqwxTSo93peXR87qFRQf2I89Lp7Ul18jsl/ld/1EREREakpBT0TkT2SVZbMycz2n8s6SGtGEd3q9Qvu4KtofFGfj2bcM/+UjWKKTCZv4PewtelZ+/B+1S8AwiJ8yjfhJT6hdgoiIiNQZBT0Rka95Al62Xd7Jx1c/xW6181S7qYxIG4zNev8XoZh+L94vNuM9vgksFpz9nsLZbQIWu/P+x5smpcePkr38f9olJM2eiyMx6WFuS0RERB5DIQ96r7/+OtevX8dqtRIeHs5f/uVf0qlTp1AvS0QeI6Zpciz7S9ac20i+p4D+Kb2Z0fYJYlz3fxGKaZr4Lx/Fs38pZnEO9jb9cQ2cizUyodJzeG7eIHvZEspOfYWzado37RJEREREHoaQB70PP/yQqK/fKvfRRx/xF3/xF6xduzbEqxKRx8Xt0ixWZq7jTP450iJTeb7LfNJjW1d6fKDgJp49iwnc+AprXDPcU36IvWnl/zh1b7sEN0nzFxI7crTaJYiIiMhDFfKgF/VHrw4vKSnRSwhE5JGo8Few5fLH7Ly2G5fNyez20xnWdGDlZZrecjxH1+H7cgc4XLgGL8TReTSWyo43DAo//4zcNV+3Sxg+gsQZT6ldgoiIiDwSFtM0zVAv4kc/+hF79uzBNE1+/etf065d5b2pREQehGma7L12mN8dX01+eSEjWw9iYfcZxLijKz2+5OSn5H38ewKlhUT1HEP8yAXYIip/+2bR6TNc/NVvKL1wkejOnWj90neJbNPmYW1JRERE5FvqRdD7g4yMDDZt2sSvfvWrGo/JzS3BMOrNFuQxkJQURXZ2caiXIbVws+Q2KzPXkVlwgeZRacxpP4M2MZX3qwvkXKZizyKMO+exJrXBPeRpbMmVBzZffj45q5Z/3S4hjsTZc4nqN6BOKxV0/Uko6fqTUNL1J6FWH69Bq9VCQkLkfb8X8tLNPzZjxgx+/OMfk5+fT1xcXKiXIyKNRLm/gs2XdvDJ9T24bS7mdZjJkKYDsFqs9xz34eKjAPzgqfZ4Dq3Cd/pTLGFRuEe8gL39ECx/cvwfGD4v+du33W2XEAgQP2Uq8ZOmqF2CiIiIhExIg15paSlFRUWkpqYCsHPnTmJiYoiNjQ3lskSkkTBNk4O3j7L2wiZKvKUMbtqfaW0mEumMuO/xFtOgs/8kJct/A95yHF3H4eozHYvr/sffbZdwjOwVS/FlZxPZqw9Jc+bhSFK7BBEREQmtkAa98vJy3nnnHcrLy7FarcTExPDLX/5SL2QRkQd2vfgmKzIzuFB4mZbRzXmt+3doGd280uP9tzOZVbGMJCMHW9NOuAY/jS0+rdLjPTdvkr1s8dftEpqS9t4HRHTu8jC2IiIiIhK0kAa9xMREVqxYEcoliEgjU+YrZ+Ol7Xx2fS/hjjAWdHyKQan9vlWm+QdGaT6eAyvwn9+H2xLJNtcknnpiTqX/4HS3XcI6CnZ9jNXlImneQmJHjsJir1eV8CIiIvKY0ycTEWkUDNPgwK0jZFzYTKmvjGFpA5nSZgIRjvD7Hm8G/Hi/3I732How/Dh7TWXp2Wb4LY77hjzTMCj6fDc5a1cRKCkhZtgIEmY+iT3q/m/rFBEREQklBT0RafCuFl9nxdkMLhVdpXV0S97sOYPmUZWXXfqvfUnF3sWYhbext+yFa9B8rNHJ+DOP3vf48nPnyFq6CM/VK7jT25H2vYW4W7Z6SLsREREReXAKeiLSYJX6ylh/cSt7bhwg0hHBM53m0D+ld+VlmkVZePYtxX/lGJaYJoRNfA97i+6Vzn+3XcIKig/swx4XR8pLrxLVv27bJYiIiIg8DAp6ItLgGKbBvpuHWHdxC+X+CkY2G8Lk1uMId4Td93jT78F7fBPeLzaDxYaz/2yc3cZjsTnuP7/PS8GO7eRu2nC3XcITU4mfrHYJIiIi0nAo6IlIg3K56Corzq7jSvE12sa0Zm6HGaRFpt73WNM08V86jGf/MsySXOzpA3ENmIs1opI+naZJSu4lrvz4bruEiF69SZozD2dS8kPckYiIiEjdU9ATkQah2FvC+gtb2XfrEFHOSJ7rPI9+TXpV/nbM/Bt49i4mcOMU1oTmuEe9jD21Q6Xze27eZPAX62iSfxVLalPS3n2fiC5dH9Z2RERERB4qBT0RqdcM0+DzG/vZcHEbFQEPo5sPY1LrsYTZ3fc93vSW4Tmcge+rj8AZhmvIMzg6jcRitd33+EBZGbkb1lGw8yPiLDZOpA/jqfefU7sEERERadD0SUZE6q2LhVdYcXYt10pu0j62LXM6zCA1osl9jzVNA3/mHjwHV2KWF+PoOAJn/6ewuqPuf7xhULT3c3JWryJQUkzMsOEsCbTD6wxXyBMREZEGT59mROSR+XDx3fYFP1zYu8rjirzFZJzfzIHbR4h1xfDdLgvpndy98jLN7EtU7FmEkXUBa5N0wia+hy2pVaXzl184T9bSxXguX8LdNp20d97D3aoVhf91kLKiCs7fKCQ9LabW+xQREREJNQU9Eak3AkaAz27sY9Ol7XgDPsa3HMWElqNx2+//tkujvAjvoVX4zuzGEhaFe+RL2NsNwlJJewV/QQE5q1dStG8PtthYUl58magBg7BYLJy/Uci17BJME36+9BgfzO+lsCciIiINloKeiNQL5/IvsiIzg5ult+kU357Z7abRJOL+b7s0jQC+U7vwHF4DPg+O7hNw9Z6OxXn/9gqGz0fBRzvI3bgeAn7iJ0+52y7B/T/P+Z29mo9p3v11IGBw9mq+gp6IiIg0WAp6IhJShZ4i1p7fxKE7x4hzxfJS12fokdS10jJN/80zePYuwsi7ji2tC67BC7HFNa10/pITx8lethRf1h0ievYiafY8nE2+/ZxfhxZxWCxgmmCzWenQopIWDCIiIiINgIKeiIREwAjwyfU9bL60A7/hZ2KrMUxoOQqnzXnf442SPDwHluO/cABLZALucW9ib9Wn0kDovX2LrGVLKTt5AkdKCmnf+z4RXbtVup70tBiaJ0VS5vHz8rQuupsnIiIiDZqCnog8cpn551meuY7bpXfoktCRWe2mkRyeeN9jzYAP74lteI9tANPA2Xs6zp6TsVTy3F6gvJy8jevI/2gHVqeTpDnziB09tkZv0gxz2Qlz2RXyREREpMFT0BORR8ZvLaMg+jj/euwqCe74/3979xle1Xnm//63uyrqDRWaEKZXU23TDNggmo3BgGMnLiRx3JKTxLlyZZJMJjPXIW0y54ozSeaa82IGEL13MLggugFjDJaEKBJNvZfd1jovMpf//5y9nT/YSFtsfT+vMNxeum9YEvqxnvU8+tawr2tI0sAvXqZZdk7tRwtkNlbI3nuUXOOXytojJWitaRhqPHZU1ZvWy9/YqB6PPKrkhYtkjyO0AQCA7oegB6DD+QyfDpV/qNspBySLqTl9ZujxnCly2hxB642GCrUfWyN/2ceyxqUrYvb3Zc8a8oXXb7tyRVUFq9R+9Yoi+vZT5utvKaJP344aBwAAoMsj6AHoUJdqirW+ZKsqW6sV6clUQuNIzZ7+WNBa0+uW5+wOec7vlWx2ucYtkWPIDFlswb9U+RrqVb15kxoLP5QtLk7pL76i2PETZLEGP14BAACguyDoAegQNW112nx5h85VXVBKZJJeHf6idu5tDVprmqZ8V07KfXydzJZa2ftPlGvcYlmj4oPX+3yqe/eAandsk+H1KuGJ2UrKnytrRPDjFQAAALobgh6A+8rr9+pg2fvad/2wLJLm9X1C03Iek8Nq106dCaj315bLXbha/tufyZqUo4jp35Y9vf8XXr/lwnlVrl0j7507ih42XCmLl8qZnt6BEwEAADx4CHoA7psL1Ze0oWS7qttqNDJlqJ7qn6/EiODn0ZnuFrlPb5H34iHJGSnXI8/L8dCUL1x26amoUNX6ArV8fE6OtDT1fOO7ihk2vCPHAQAAeGAR9AB8ZVWtNdpYsl0Xai4pLSpVr494RQ8lBj6Va3P71Nru1WdH31PW5U0y3c1yDJwq15inZImICXpto71NNTt3qP7gfslmV/KixUp4fOZdHZcAAADQXfGdEoAvzeP3aP/1wzpQ9r5sFqsW5s7RlKxJslsDv7RcvtmgG5VNMmXqXz8w9HqvXA2cvUC25F5Br22appqOH1PVxvXyN9Srx8RJSn7qGdnj4zt4KgAAgAcfQQ/APTNNUx9Xf6pNJTtU216nMWkjtDB3juJdwc+sM1obdOG9AzIVL1NW+WXVtV7zNeQLQl77tauqLFit9tLLcvXuo57feV2Rfft15EgAAABhhaAH4J5UtFZpQ/E2XaotVs/odL018pvqnxA8hJmGT95PD8l9eov6tveQVTPkl2SzW/VQr8B393yNjarevPGvxyXExCrt6y+px8RJnXZcwtvLR3XKxwEAAOhoBD0Ad6Xd59a+64f0btkHclgdWtR/nh7LnCCb1Ra03nfrktyFq2TU3ZQta4iGTFyuzM3lanX7tGLeYOVm/q+nf6bPp/rD76pm+1YZHo8SZsxSYv482aKiOms8AACAsELQA/B3maapM5XntfnyTtW7GzQufbQW5M5WD2ds0HqjuUbu42vlu3JKltgURcx8Q/ZeI2WxWBTpuq1Il/1vQl7LpxdUtXaNPLdvKWrIUKUuWSpnRs/OGg8AACAsEfQAfKHbLRVaX7xNxXWXlR3TUy8NWa6+cb2D1po+jzzn98pzdqckU87RC+Uc/qQsdmfQek9VparWr1XL2TNypKSq5+tvKXrYcFkslo4bCAAAoJsg6AEI0OZr1+6rB/TejUJF2FxakrdQj2SOk9US+K6caZryXz+n9mNrZDZVyd5njFzjn5U1NjnotW1+r6q3bFLdvj2SzabkpxYpfsYsWR2Ojh4LAACg2yDoAWFk5eozkr78piKmaepUxVltubxLTZ5mTez5sOb1fVIxzuig9Ub9HbUfWyN/+XlZ43sqYvYPZM8a/IXXzqoo0pDSI6p1tyh2/ASlLFose3zwA9UBAADw5RH0AEiSbjbf1rqirSptuKpesdn61rCvq1eP7KC1prddnjPb5flkn2RzyjV+qRxDpssS5Pw8SWovu66qgtV6uKRYdTEpyvvuW4rMDTxQHQAAAPcHQQ/o5lq9bdp5db8+uHFUUY5ILXvoaU3IePgLl2n6So/LfXydzNZ62fMekWvsIlmj4oNe29/UpOqtm9TwwfuyxcTozIBpup4xSOMIeQAAAB2KoAd0U4Zp6MTtj7S1dLdavK16NHO88vvOUrQj+JEG/poyuY+ulv92kazJvRU54zXZ0nKD1pp+v+rfP6yarZtltLcrfvoMJc2br41bijpyJAAAAPwPgh7QDZU13tD64q262limvnG9tDhvgbJjM4PWmu3Ncp/eIu+lQ7I4o+V69OtyDHjsCw8xb710UZVr18hz84aiBg5WytJlcvUMfm0AAAB0DIIe0I00e1u048o+Fd48oRhntJ4fuEQPp48MvkzTMOQt+kCekxtlelrkGDRNrjFPyeIKvjGLt6ZaVevXqvmj07InJ6vnd15X9IhRHJcAAAAQAgQ9oBswTEOFt05qR+letfnbNSV7kub0maFIe2TQen/FZbUXrpJRfU229Dy5Jj0nW1JO8Gu73ardu1t1e3dLFouSFjylhJlPyOoMfn4eAAAAOh5BDwhzVxvKtL54i8qabio3vo8W5y1QZkxG0FqjtV7ukxvkKy6UJSpeEdO+JXu/cUGfypmmqeaPTqtq/Vr5amsU+/BYJT+zRI7EpC/s5cse+wAAAIB7Q9ADwlSTp1nbSvfo2O1TinP20DcGLdXotBHBQ5vhk/fCQbk/2ir5vXKOmCPnyLmyOCKCXtt9o1yVa9eo7bNLcmZlK+ulVxQ14KEOnggAAAB3i6AHhBlTht67UaidV/bL7Xfr8ZzJerL3dEXYg4c2341P5T66Wkb9LdmyhyliwjJZ49OD1vpbWlSzbYvq3zska2SkUpc/r7jHJstis3XkSAAAALhHBD0gjLQ7qlQX95E2FNfroYT+eiZvvtKjU4PWGk3Vch8rkO/aR7LEpihy1puy5XzREz9DDR++r+otm2S0tChuyjQlz18oW0xMR48EAACAL4GgB4SBBnejtpbu1m3XFakiTXNHzdLswcF3vDR9Hnk+3i3PuV2SLHKOeUrOYU/IYg++eUpbSbEq16ySu7xMkXkDlLr0Obmyszt4IgAAAHwVBD3gAeY3/HrvRqF2Xz0gd0O0PJ+NlUyrtlc2aUBCo3Iz4z6vNU1Tvutn5D5WILOpWva+Y+Uav0TWmOCbp3hra1W9cb2aTh6XPTFRGd98VTFjHua4BAAAgAcAQQ94QBXVXtb6km2601KhQUkDlKzx2mdWSJL8fkNFZXWfBz1//S25j66R/8YFWRMyFZH/tuw9Bwa9ruH1qG7/PtXu2iEZhhLnzlfiE7Nldbk6bTYAAAB8NQQ94AFT116vzZd36kzleSVFJOpbw76uIUkDVXqrUfuPV8g0JZvNqgE5CTI9bXKf2SbvJwckh1OuCcvkGDxNFmvgp75pmmr5+Jyq1q2Rt6pKMaNGK+WZZ+VISQnBlAAAAPgqCHrAA8Jr+HS47EPtuXZQpkzN6TNDj+dMkdPmkCTlZsYpOyVGrW6fXpk7SL1aP1XL+vUyW+vlGPConGOfkTWyR9Bru2/dUtW6NWr99IKcPXsq83s/UPSgwZ05HgAAAO4jgh7wAPi0pkgbi7epsq1aw1OG6OncfCVFJgbURbrsyrbXKvOjd9ReUSJrSh9FznxdttR+Qa/rb21V7Y5tqjt0UFanUynPLlf8lKmy2PnSAAAA8CDjuzmgC6tuq9Wmkh06X/2pUiOT9Z3hL2lQ0oCgtWZ7sx5zH9Zg3ycyFCvXY9+QY8CjslisgbWGocajR1S9aaP8zU2Ke/QxJS18WvbY4E/8AAAA8GAh6AFdkMfv1YGy93Tg+mFZLFbN7/ekpmY/Kkewd+sMQ97P3pP71CYN8rXqE/twTVyyQhZXdNBrt5VeVmXBarmvXVVEv1xlvvk9RfTu3cETAQAAoDMR9IAuxDRNfVJ9URtLdqimvVajU4drYe4cJUTEB6333SmRu/C/ZdSUyZbxkNbWj1KtNVmTgoQ8X329qjdvUOPRQtni4pX+8grFjpvAcQkAAABhiKAHdBGVrVXaULJdF2uKlB6dpjdHrlBeQm7QWqO1Xu7j6+S7fEyW6ERFTH9V9r4Pq3bN2YBa0+dT3cH9qtmxXfL7lPDkHCXNyZc1IrKjRwIAAECIEPSAEHP7Pdp37ZDeLXtfdqtdT+fma3LWJNmstoBa0++T98J+uc/8NbQ5R+TLOXKuLI7gZ9y1fHJelWvXyFtxR9HDRyhl8VI509I6eiQAAACEGEEPCBHTNHW26hNtKtmheneDxqWP1vx+sxXnig1a7yv/RO6jq2U03JEtZ7giJiyTNS54aPNU3FHVugK1nP9YjrR0Zb75PUUPHdaR4wAAAKALIegBIXC7pUIbirepqO6ysmJ66sXBy9UvvnfQWqOxSu5ja+S7flaWHmmKfOK7sucMD1pr93k04PopXfvgnKwOh5KfWaKE6TM4LgEAAKCb4bs/oBO1+dq15+pBHb5xRC6bS0vyFuiRzPGyBjsCweeW59xueT7eJVlsco5dJOfQWbL8zwHpf1Nrmmo6fkyPn1itSE+Lekx8RMlPL5I9Lr4TpgIAAEBXQ9ADOoFpmjpVcVZbL+9So6dZEzIe1rx+TyjWGRO01nf1tNzH18psrpG93zi5xi2RNSbwgHRJar92TZUFq9ReelltsWk6MWSOVrw4u6NHAgAAQBdG0AM62I2mW1pfvFWlDdfUKzZbK4a9oN49coLW+utuyn10tfw3L8qamKWI/B/J3vOhoLW+pkbVbNmkhg8/kC0mVmlff0n9J07SeGvg00EAAAB0LwQ9oIO0elu18+p+fXDjmKIckVr20NOakPFw8GWanja5P9oq74WDksMl18Tn5Bg0VZZgO2/6fKp/77Bqtm2W4fEo4fGZSpw7X7aoqM4YCwAAAA8Agh5wnxmmoeO3P9K20t1q8bbq0czxyu87S9GOwCBmmoZ8JUflPrFeZluTHA89KufDi2SN7BH02q2XLqqyYLU8t24qavAQpSxZJlfPnh09EgAAAB4wIQ16dXV1+uEPf6iysjI5nU716tVLv/jFL5SYGPxdJKCru95YrnXFW3W9sVx943ppcd4CZcdmBq31V11Te+F/y6gslTW1ryKf+K5sKX2C1nqrq1S1YZ2aPzotR3KKen7nDUWPGCmLxdKR4wAAAOABFdKgZ7FY9PLLL2vcuHGSpJUrV+o3v/mN/uVf/iWUbQH3rNnTou1X9urorZOKcUbr+YFLNDZ9VNAgZrQ3yXNyo7yffSBLZKwiJr8ke94kWYIs6TTcbtXu3a26vbsli0VJC55SwqwnZHU4O2MsAAAAPKBCGvTi4+M/D3mSNGLECBUUFISwI+DeGKahIzdPaMeVvWr3uzU1+xHN7vO4Iu2RAbWm4Zf30mG5T22WvO1yDJ0p1+j5sjiDLek01fzRaVWtXytfbY1ix45X8qLFcvC0GwAAAHehy7yjZxiGCgoKNG3atFC3AtyVKw3Xtb5oi8qbbykvvp+eyZuvnjHpQWt9t4vkLlwlo7ZctsxBck1cLltC8CWd7hvlqly7Rm2fXZIrO1vpL69QVN6AjhwFAAAAYcZimqYZ6iYk6R//8R9VUVGhP/zhD7KyPTy6sPr2Rq3+eIvev3ZciZHxen7E05qQPTroMk1fY41qDv2XWj49InuPZCU+/nVFPzQ+eG1zs8rWrNPtPXtlj45SzvKlSp85QxZb4M6bAAAAwN/TJYLeypUrVVRUpD/96U9yOu/t3aOammYZRshHQDfgN/z64OYx7bq2Xx6fV9NzHtOsXtMUYXcF1Jp+rzyf7JPnzA7J9Ms5fLacI+bIEqzWMNTw4Qeq3rJRRkuL4qZMVfL8p2SLCTxMHUhJiVVVVVOo20A3xf2HUOL+Q6h1xXvQarUoKSn494whX7r5u9/9ThcuXNBf/vKXew55QGcprivVhuJtutVyR8PTB2p+rzlKi04NWusr+1jtx9bIbKiQvddIuSYslbVH8Nq2khJVFqySu+y6IvMGKHXpcrmygx+mDgAAANytkAa9kpIS/fnPf1bv3r317LPPSpKysrL0zjvvhLIt4HN17fXacnmXPqr8WIkRCVox9HlNHzhe1dXNAbVGY6Xaj66Rv+ycLHHpinzye7JnDwt6XW9dnao3rlPTieOyJyQqY8W3FfPwWI5LAAAAwH0R0qDXv39/FRUVhbIFICif4dOh8g+159q7MkxDs3s/rhm9psppcwSEMdPrlufcTnnO75GsdrnGLZZjyExZbIGfXobXq/oD+1Sza4fk9ysxf64Sn8yX1RW4pBMAAAD4skK+dBPoai7WFGlDyTZVtlZrWPJgPd0/X8mRSQF1pmnKd/WU3MfWymyplT13glzjFssanRC0tuXjc6paVyBvVaWiR45SyuJn5UwJvqQTAAAA+CoIesD/qGmr1aaSHfq4+lOlRibr1eEvanDSQ0Fr/bU35T66Sv5bl2RNylbE9G/Jnp4XtNZz57Yq165R64VP5EzPUOZ3v6/owUM6chQAAAB0cwQ9dHsev1cHy97T/uuHZZFF8/s+qak5j8phDfz0MN0tqt6/Qa2n90jOSLkmfU2OgVNlCXIkiL+tTbU7t6vu4H5ZnU6lLF6q+GnTZbHzaQcAAICOxXec6LZM09Qn1Re1sWSHatprNTp1uBbmzlFCRHyQWkO+oiOq/aBAkWqTc+AUOR9+WtaI2MBaw1DT8WOq2rRe/sZG9Zj0iJIXLpI9Lq4TpgIAAAAIeuimKlurtKFkuy7WFCk9Ok1vjlyhvITcoLX+yitqL1wlo+qKGqwZ2hu9UC88OjNobfvVK6osWK32K6WK6NtXma+9qYg+fTtyFAAAACAAQQ/ditvv0d5r7+pQ2QeyWx16uv9cTc6cKJvVFlBrtDXKc3KjvEUfyBIZp4gpr2jLyQg5giy99DU2qnrzRjUWfihbbKzSX3xFseMnBF3SCQAAAHQ0gh66BdM0dabyvDZf3ql6d4PGpY/W/H6zFecKtvTSL+/FQ3Kf3ix5PXIMe0KuUfNlcUZKp878ba3Pp/rD76pm+1YZHo8SZs5SYv582SIjO2s0AAAAIABBD2HvVvMdbSjepuL6UmXF9NSLg5erX3zvoLW+W5fkLlwto+6GbJmD5Zq4XLaEnkFrWz69oKq1a+S5fUtRg4co9dllcmYErwUAAAA6E0EPYavN16bdVw/qvRuFirC5tCRvoR7JHCerJXA5pdFcI/fxdfJdOSlLbLIiZrwue+9RAYejS1JUa71uvvP/qOXsGTlSUtTztTcVPXxE0FoAAAAgFAh6CDuGaejUnbPaUrpLzZ4WTew5VvP6PqEYZ3RArenzyHN+rzzndkqmKefoBXIOny2L3Rl4XbdbA68cV//yj9Rqtyn5qUWKnzFTVkdgLQAAABBKBD2ElfKmm1pfvFVXGq6rd48cfXvYN9SrR3bQWt/1c2o/tkZmY6XsvUfLNeFZWWNTAupM01Tz6VOq2rBWD9XW6mb6AD3yvW/KkZjY0eMAAAAAXwpBD2GhxduqHVf26cjN44p2ROm5h57RuIzRwZdpNtxR+9E18peflzU+QxGzvy971pCg13WXl6uyYJXaiovkys7RoV7T1JiaramEPAAAAHRhBD080AzT0NFbJ7X9yl61ets0OWui5vSZqShH4K6XprddnrM75Dm/T7LZ5Rq/RI7BM2SxBX4a+JubVbN9i+oPH5I1Kkqpzz2vuMemqKbgnBydMRgAAADwFRD08MC62lCm9cVbVdZ0Q7nxfbQ4b4EyYzIC6kzTlK/0hNwn1slsqZO9/yS5xj0ja1R8YK1hqOHD91W9ZZOMlhbFTZmm5PkLZYuJ6YSJAAAAgPuDoIcHTpOnWdtK9+jY7VOKc/bQNwYt1ei04Lte+mvK5T66Sv7bRbIm91Lk9FdlS+8f9LptJSWqLFgld9l1ReYNUOrS5+TKDv5+HwAAANCVEfTwwPAbfn1487h2Xt0nt9+jGTlT9ETvaYqwRwTUmu4WuU9vlvfiIVmc0XI98oIcD02WxRr4zp63rk7VG9er6cQx2RMSlbHi24p5eGzQ4Njm9qm+xaPLNxuUmxnXIXMCAAAAXxVBDw+EkrorWl+8Vbda7uihhP56Jm++0qNTA+pMw5C36AN5Tm2S6W6WY+BUucY8JUtE4NJLw+tV/YF9qtm1Q/L7lZg/V4lP5svqcgXt4fLNBpVXNcs0pV8XnNUPlo4k7AEAAKBLIuihS6t3N2jr5d06VXFWCa54vTL0eQ1PHhx8mWZlqdoLV8mouipbep5cE5fLltwr6HWbz59T1doCeSsrFD1ipFKWLJUzJTA4/u+Kyupkmv/zsfyGisrqCHoAAADokgh66JJ8hk/v3SjU7qsH5DcNPdl7umb2miqnLchB5q0Ncp/cIF/xEVmi4hUx7Zuy9xsfNAx67txR1bo1avnkvBzp6cp86/9S9JChd9XTgJwEWSySaUo2m1UDchK+8pwAAABARyDoocu5VFusDcXbVdFaqaHJA/V07jylRCUF1JmGT94L78r90VbJ75Fz+Gw5R86VxRl4tILR3qaanTtUd2CfrA6HUhY/q/hpj8tiv/tPgdzMOGWnxMjtM/TSnIE8zQMAAECXRdBDl1HTVqfNl3fqXNUnSo5M0reHfUNDkgcGrfXdvCj30VUy6m7Jlj1UEROWyRof/GiFpuPHVLVxvfwN9eox8RElP71I9rj4L9VjpMuuHrE2Qh4AAAC6NIIeQs7r9+pg2fvad/2wfH5Dcc1D9ZPJz8phCzya3GiukftYgXxXT8sSm6LImW/K1iv40Qrt16+pcs0qtZdelqt3H/X8zuuK7NuvM0YCAAAAQoqgh5AxTVMXai5pY/F2VbfXamTqMFV80kt2Izog5Jk+jzzn98hzdpckyTnmKTmHPSGLPfCdPV9To2q2bFbDh+/LFhOjtK+/qB4THwl6tAIAAAAQjgh6CInK1iptLNmhT2s+U3p0mt4YsUIDEnO18uMzf1NnmqZ818/KfaxAZlOV7H3GyDVhqawxQd7Z8/tV/94h1WzbIqO9XfGPz1TS3HmyRUV31lgAAABAl0DQQ6dy+z3ae+1dHSr7QHarXU/n5mty1iTZrLaAWqP+ttqPrpb/xgVZE3oqYs4PZc8cFPS6rZ9dUmXBanlu3lDUwEFKWbpcrp6ZHT0OAAAA0CUR9NApTNPUmcrz2nx5p+rdDRqXPlrz+81WnCs2oNZheuQ+sV6eT/ZJNqdcE5bKMXi6LNbA29VbU6OqDWvVfPqU7MnJynj1dcWMHBX0nT0AAACguyDoocPdar6jDcXbVFxfqqyYnnpx8HL1i+8dUGeapvr7PtNET6E8H7fInveoXGMXyRoVuMOl4fGobt8e1e756zt7SfMXKmHWk7I6A9/ZAwAAALobgh46TJuvTbuvHtR7NwoVYXNpSd5CPZI5TlZL4KYo/urrch9drRnuYlVaU5Uy77uypeUG1JmmqeazZ1S1vkC+6mrFjHlYKc8skSMpuTNGAgAAAB4IBD3cd4Zp6OSdM9paulvNnhZN6jlWc/s+oRhn4KYoZnuz3Kc3y3vpsCyuGB12TtMl+2C9HSTkuW/dUlXBarVe+lTOzCxlff9tRT0U/Jw9AAAAoDsj6OG+Kmu6ofVF23S18br69MjRq8NeVE6PrIA60zDk/ew9uU9tkjytcgyaLteYhbq0sSig1t/aqpod21R/6KCsLpdSli5X/JRpstgCN3ABAAAAQNDDfdLsbdGOK/tUePOEYhzRem7gYo1LHxV8meadErUXrpJRc122jAFyTXpOtsTsgDrTMNR49IiqN22Uv7lJcY9OVtLCp2SP7dEZIwX19vJRSkmJVVVVU8h6AAAAAP5PCHr4SgzTUOGtE9pRuk9t/nZNyZ6kOX1mKNIeGVjbWi/3ifXylRyVJTpBEdO/LXvfsUF3yGy7UqrKNavkvnZVEf1ylfnW9xTRq3cnTAQAAAA8+Ah6+NKuNFzT+qKtKm++pf7xfbU4b4F6xqQH1Jl+n7wXDsh9Zpvk98k5Il/OkfmyOCICan3NTYq+c13Hj51Xjsun9JdWKHb8BI5LAAAAAO4BQQ/3rMHdpG2lu3XizkeKd8XpxcHLNCp1eNAw5rtxQe7CVTIa7siWM1wRE5bJGpcWUGf6fDq3/V1dr7HI7+ypS9mZ+v4zQ9Wjb2pnjAQAAACEFYIe7prf8Ov9G4XadfWgvIZXM3tN1axe0xRhdwXUGk1Vch9bK9+1j2TpkarIWW/J3mtE0Ou2fHpBVQWrdd6dJF/iSMlikV9ScUWr+vft2JkAAACAcETQw10pqr2s9SXbdKelQoMSB2hR3jylRaUE1Jk+jzzndsnz8W7JYpHz4aflHDpLFnvgQebeqipVri9Qy9kzcqSkatScyfrgRJNMU7LZrBqQk9AZowEAAABhh6CHv6uuvV6bL+/UmcrzSopI1DeHvqChyYMClmmapinftY/kPlYgs7lG9r5j5Rq/RNaYpIBrGm63avfsUt3e3ZLVquSnFil+xixZHQ5lXzmpVrdPK+YNVm5mXGeNCQAAAIQVgh6C8ho+vVv2gfZde1emTOX3manpOZPltDkCav11t+Q+ulr+m5/KmpCliPy3Ze8ZeJC5aZpq/uiUqtavla+2VrHjxiv56cVyJCZ+XhPpsivSZSfkAQAAAF8BQQ8BLlRf0saS7apqq9GIlCF6KjdfSZGJAXWmp03uM9vk/eSA5HDKNXG5HIOmyWINPMjcffOGKgtWq+2zS3JlZyv95W8qKm9AZ4wDAAAAdDsEPXyuqrVGmy5v1yfVl5QWlaLXhr+sgUl5AXWmachXckzuE+tltjXKMeBROccukjUy8CBzf0uLarZtUf17h2SNjFTq8ucVN3mKLNbAg9QBAAAA3B8EPcjj92j/9cM6UPa+bBarFubO0ZSsSbJbA28Pf/U1tReuklFxWdaUvoqc9aZsqYFbY5qGoYYjH6hm8yb5W5oVN3mqkhc8JVtMTGeMBAAAAHRrBL1uzDRNnau6oE0lO1TnrtfDaSO1IHe24l2B78cZ7U3ynNwk72fvyxIZq4jJL8meN0kWS+CTubbSy6pcs0ru69cU2T9PKUuXKyKnV2eMBAAAAEAEvW7rTkuFNhRv12d1JcqMydALg55V/4RgT+b88l46LPfpLZKnTY4hM+QaPV8WV3RAra++XtWbNqjxWKFs8fFKf+Vbih07LuhB6gAAAAA6DkGvm2nztWvPtYM6XH5ELptLz+TN16M9x8sWZAMV3+0iuY+uklFTLlvPgXJNfE62xMyAOtPnU927B1S7Y5tMn0+Js/OVODtf1oiIzhgJAAAAwP8PQa+bME1TpyrOauvlXWr0NGtCxsOa1+8JxToD35kzWurkPrFOvsvHZYlOVMTjr8re5+GgT+ZaLnyiyrWr5b1zR9HDhitlyTI509I6YyQAAAAAX4Cg1w2UN93S+uKtutJwTb1is7Vi2Avq3SMnoM70e+X5ZL88Z7ZLpl/OkXPlHJEvi8MVUOupqlTVugK1nDsrR1qaer7xXcUMG94Z4wAAAAD4PyDohbEWb6t2XtmnD28eV7QjSssfWqTxGWNkDbKBiq/8vNqPrpbZUCFbzghFTFwma4/UgDrD7Vbt7p2q27dHstmV/PRixT8+Q1ZH4EHqAAAAAEKDoBeGDNNQ4a2T2nFlr1q9bZqcNVFz+sxUlCMysLaxUu5jBfJdPytLXJoin/ie7DnDAupM01TzqZOq2rBOvrpaxY6foJRFi2WPT7ivvb+9fNR9vR4AAADQHRH0wsyVhutaX7xV5U03lRvfR4vzFigzJiOgzvS55Tm7U57zeySLTc6xz8g5dKYstsAnc+7yclUWrFJbcZFcOb2UseLbiuzfvzPGAQAAAPAlEPTCRIO7SdtKd+vEnY8U5+yhbwxaqtFpIwI2UDFNU76rp+Q+tlZmS63suePlGrdE1ujAJ3P+5mbVbN+i+sOHZI2OVurXXlDco5NlsQYu/QQAAADQdRD0HnB+w6/3bxRq19WD8hpezew1VbN6TVOEPXADFX/tTbmPrpL/1iVZE7MVMe2bsmcMCKgzDUMNH76v6i2bZLS0KG7KNCXPXyhbTOAOnQAAAAC6HoLeA6yo9rLWl2zTnZYKDUocoEV585QWlRJQZ3pa5T69Vd5PD0rOSLkmPSfHwKmyBDk7r62kRJUFq+Quu67IvAFKXfqcXNnZnTEOAAAAgPuEoPcAqm2v0+bLu3S28rySIhL1zaEvaGjyoCDLNA35igvlPrlBZluTHA9NlnPs07JGxAZc01dfp6qN69V0/JjsCYnKWPFtxTw8NujZeQAAAAC6NoLeA8Tr9+rd8g+079ohmTKV32empudMljPIBir+yitqP7pKRuUVWdNyFfnE92RL6R1QZ3i9qj+4XzU7t0t+vxLnzFXi7HxZXYFLPwEAAAA8GAh6D4hPqi9qY8kOVbfVaETKUD2Vm6+kyMANVIy2RnlObpS36ENZImMVMeUV2ftPkCXI2Xktn5xX5drV8lZUKHrESKUsXipnauDZeQAAAAAeLAS9Lq6ytVqbSrbrQs1nSotK1WsjXtbAxLyAOtPwy3vxkNynt0hetxxDZ8o1eoEszr89O2/l6jOKbq3XwraP1XL+YznS0pX51vcUPSTw7DwAAAAADyaCXhfl9nu079ohvVv2vmxWmxbmztGUrEmyWwP/yHy3PpP76CoZtTdkyxws18TlsiX0DKgz2ts1qPSocsvPqNXpVPIzS5QwfYYsdm4DAAAAIJzwHX4XY5qmzlSe1+bLO1XvbtDY9FFa0G+24lw9AmqN5lq5j6+V78pJWWKSFDHjNdl7jw56dl7TyROq3rhOA+rqVJb2kKb84Fuyx8d30lQAAAAAOlNIg97KlSu1b98+3bx5Uzt27FBeXuCSxO7kVvMdbSjepuL6UmXF9NSLg5erX3zvgDrT75Xn/D55zm6XTFPOUfPlHDFbliBn57nLy1RZsFptxUVy5fTSu30eV21chh4n5AEAAABhK6RBb/r06Xr++ee1fPnyULYRcm2+Nu26ekDv3ziqCJtLS/IW6pHMcbIG2UDFV3ZO7UcLZDZWyN57lFzjl8raI/DsPH9zs6q3bVbDe4dljY5W6vNfV9wjj6m24FwnTAQAAAAglEIa9MaMGRPKDx9yhmnoxJ0z2nZ5t5q9LZrUc6zm9n1CMc7owNqGCrUfWyN/2ceyxqUrYvb3Zc8aElBnGoYaPnxf1Vs2yWhpUfzUaUqa/5Rs0YHXBAAAABCeHvh39JKSYkLdwpdSWntd/++ZdSqpuar+SX300qjX1DexV0Cd4WlXfeEmNZ3YLovNrsTpzyvu4dmyBDk7r/HSZ7ryH/+pltIr6jFksPq+8qKie/f+mxqH0yZJSkkJPDQdd4/fP4QS9x9CifsPocT9h1B7kO7BBz7o1dQ0yzDMULdx15o9Ldp+ZY+O3jqlGGe0vjZwscamj5LVb1VVVdPndaZpynflpNzH18lsqZW9/0S5xi2WNype1bXtkto/r/XV16tq4zo1HT8me0KiMlZ8WzEPj1WrxaLW/+2akuT1+CXpbz4W7k1KSiy/fwgZ7j+EEvcfQon7D6HWFe9Bq9XyhQ++Hvig96DwG34duXVCO6/sU7vfranZj2h2n8cVaY8MrK0tl7twtfy3P5M1KUcR078te3r/gDrT51Pdwf2q2bFd8vuUODtfiXPmyuoK3JQFAAAAQPdB0OsEl+uvan3xVt1svq28hFw903+eesakB9SZ7ha5T2+R9+IhyRkp1yPPy/HQFFmsgZuytFw4r8qCNfJW3FH08BFKWbJMztTUzhgHAAAAQBcX0qD3y1/+Uvv371d1dbW+8Y1vKD4+Xrt27QplS/dVvbtBWy/v1qmKs0pwxeulIc9pZMrQIOfcGfIWfSjPyY0y3c1yDJwq15inZIkIfAzrqapU1boCtZw7K0damjLf/J6ihw7rrJEAAAAAPABCGvR+8pOf6Cc/+UkoW+gQPsOnw+VHtOfaQfkNv57oNU0ze0+Ty+YMqPVXXlF74X/LqLoqW1p/uSY9J1tykE1Z3G7V7tmpur17JJtdyU8vVsKMmbLY7+2PsM3tU6vbp8s3G5SbGfelZwQAAADQdbF08z4rrivV2qLNqmit0pCkgXq6/1ylRiUH1BmtDXKf3Chf8YeyRMUrYuoK2XMnBHnaZ6r59ClVbVgrX22tYsdNUMozi2WPT7jn3i7fbFB5VbNMU/p1wVn9YOlIwh4AAAAQhgh695Fpmlr92UZJ0reHfUNDkgcG1hg+eT89JPfpLZLfI+fw2XKOnCuLM3BTFveNclUWrFZb0WdyZeco45VvKbJ/3pfur6isTub/bFDq9xsqKqsj6AEAAABhiKB3H1ksFv1gzGuKsLlktwb+1vpuXZK7cJWMupuyZQ1RxMTlssZnBNT5W1pUs22L6t87JGtkpFKfe15xjwXflOVeDMhJkMUimaZks1k1IOfenwoCAAAA6PoIevdZjCM64OeM5hq5j6+V78opWWJTFDHzDdl7jQxcpmkYajzyoao3b5S/pVlxU6Yqef5TssXcn0PhczPjlJ0So1a3TyvmDeZpHgAAABCmCHodyPR55Dm/V56zOyVJzjEL5Rz2pCz2wE1Z2kovq3LNKrmvX1Nk/zylLF2uiJzATVm+qkiXXZEuOyEPAAAACGMEvQ5gmqb8ZefUfnSNzKYq2fuMkWv8s7LGBm7K4muoV/WmDWo8WihbfLzSX/mmYseOD3jaBwAAAAB3i6B3nxkNd9R+dI385edlje+piDk/lD1zUECd6fOp7t0Dqt2xTYbXq4Qn5yhpzlxZIyJC0DUAAACAcELQu49M01Trnn+V2dYo1/ilcgyZLkuQTVlaPr2gqoLV8ty5reihw5Ty7DI509JD0DEAAACAcETQu48sFosiZ3xHlsg4WaMC34HzVlWpav1aNZ/9SI6UVPV8/S3FDB/R+Y0CAAAACGsEvfvMlpQT8HOG263avbtVt3e3ZLEo+alFip8xS1aHIwQdAgAAAAh3BL0OZJqmmj86rar1a+WrrVHs2PFKXrRYjsTEULcGAAAAIIwR9DqI++ZNVRasUttnl+TMylbWyysUlTcg1G0BAAAA6AYIeveZv7VFNdu3qf7QQVkjIpW67DnFTZ4qi80W6tYAAAAAdBMEvfvINE2V/+r/lufmDcU9NlnJC56WLTY21G0BAAAA6GYIeveRxWLRB/HD1Jo+Sd/62hOhbgcAAABAN0XQu89up/QLdQt/19vLR4W6BQAAAAAdzBrqBgAAAAAA9xdBDwAAAADCDEEPAAAAAMIMQQ8AAAAAwgxBDwAAAADCDEEPAAAAAMIMQQ8AAAAAwgxBDwAAAADCDEEPAAAAAMIMQe8+a3P7VNPYrss3G0LdCgAAAIBuiqB3H12+2aDyqmZVN7Tr1wVnCXsAAAAAQoKgdx8VldXJNP/6Y7/fUFFZXWgbAgAAANAtEfTuowE5CbJY/vpjm82qATkJoW0IAAAAQLdkD3UD4SQ3M07ZKTFqdfu0Yt5g5WbGhbolAAAAAN0QQe8+i3TZFemyE/IAAAAAhAxLNwEAAAAgzBD0AAAAACDMEPQAAAAAIMwQ9AAAAAAgzBD0AAAAACDMEPQAAAAAIMwQ9AAAAAAgzBD0AAAAACDMEPQAAAAAIMwQ9AAAAAAgzNhD3UC4eXv5qFC3AAAAAKCb44keAAAAAIQZgh4AAAAAhBmCHgAAAACEGYIeAAAAAIQZgh4AAAAAhBmCHgAAAACEGYIeAAAAAIQZgh4AAAAAhBmCHgAAAACEGYIeAAAAAIQZgh4AAAAAhBmCHgAAAACEGYIeAAAAAIQZgh4AAAAAhBmCHgAAAACEmZAHvatXr2rJkiWaNWuWlixZomvXroW6JQAAAAB4oIU86P3sZz/TsmXLtG/fPi1btkw//elPQ90SAAAAADzQQhr0ampqdPHiReXn50uS8vPzdfHiRdXW1oayLQAAAAB4oNlD+cFv376ttLQ02Ww2SZLNZlNqaqpu376txMTEu7pGUlJMR7YIBJWSEhvqFtCNcf8hlLj/EErcfwi1B+keDGnQux9qapplGGao20A3kpISq6qqplC3gW6K+w+hxP2HUOL+Q6h1xXvQarV84YOvkC7dzMjIUEVFhfx+vyTJ7/ersrJSGRkZoWwLAAAAAB5oIQ16SUlJGjhwoHbu3ClJ2rlzpwYOHHjXyzYBAAAAAIFCvnTz5z//uX70ox/pj3/8o3r06KGVK1fe0/9vtVo6qDPgi3HfIZS4/xBK3H8IJe4/hFpXuwf/Xj8W0zR5wQ0AAAAAwkjIz9EDAAAAANxfBD0AAAAACDMEPQAAAAAIMwQ9AAAAAAgzBD0AAAAACDMEPQAAAAAIMwQ9AAAAAAgzBD0AAAAACDMEPQAAAAAIMwQ94C7U1dXplVde0axZszR37ly99tprqq2tDXVb6Ib+8Ic/aMCAASouLg51K+hm3G63fvazn2nmzJmaO3eu/uEf/iHULaEbOXz4sBYsWKD58+dr3rx52r9/f6hbQhhbuXKlpk2bFvD37dWrV7VkyRLNmjVLS5Ys0bVr10LX5F0g6AF3wWKx6OWXX9a+ffu0Y8cOZWdn6ze/+U2o20I38+mnn+rcuXPKzMwMdSvohn7961/L5XJ9/nXwzTffDHVL6CZM09QPf/hD/epXv9K2bdv0q1/9Sm+//bYMwwh1awhT06dP1+rVqwP+vv3Zz36mZcuWad++fVq2bJl++tOfhqjDu0PQA+5CfHy8xo0b9/l/jxgxQrdu3QphR+huPB6PfvGLX+jnP/95qFtBN9TS0qKtW7fqzTfflMVikSQlJyeHuCt0J1arVU1NTZKkpqYmpaamymrl21h0jDFjxigjI+Nvfq6mpkYXL15Ufn6+JCk/P18XL17s0iu87KFuAHjQGIahgoICTZs2LdStoBv5t3/7N82bN09ZWVmhbgXdUHl5ueLj4/WHP/xBJ06cUHR0tN58802NGTMm1K2hG7BYLPr973+vV199VVFRUWppadFf/vKXULeFbub27dtKS0uTzWaTJNlsNqWmpur27dtKTEwMcXfB8U8hwD36p3/6J0VFRem5554LdSvoJs6ePasLFy5o2bJloW4F3ZTf71d5ebkGDRqkzZs36/vf/75ef/11NTc3h7o1dAM+n09//vOf9cc//lGHDx/Wv//7v+utt95SS0tLqFsDujSCHnAPVq5cqevXr+v3v/89S0bQaU6dOqXS0lJNnz5d06ZN0507d/TSSy/pyJEjoW4N3URGRobsdvvnS5aGDx+uhIQEXb16NcSdoTu4dOmSKisrNXr0aEnS6NGjFRkZqdLS0hB3hu4kIyNDFRUV8vv9kv76D2CVlZUBSzy7Er5TBe7S7373O124cEHvvPOOnE5nqNtBN7JixQodOXJEhw4d0qFDh5Senq7//M//1COPPBLq1tBNJCYmaty4cSosLJT0153nampq1KtXrxB3hu4gPT1dd+7c0ZUrVyRJpaWlqqmpUU5OTog7Q3eSlJSkgQMHaufOnZKknTt3auDAgV122aYkWUzTNEPdBNDVlZSUKD8/X71791ZERIQkKSsrS++8806IO0N3NG3aNP3pT39SXl5eqFtBN1JeXq4f//jHqq+vl91u11tvvaXJkyeHui10E9u3b9d//Md/fL4Z0BtvvKHHH388xF0hXP3yl7/U/v37VV1drYSEBMXHx2vXrl0qLS3Vj370IzU2NqpHjx5auXKl+vbtG+p2vxBBDwAAAADCDEs3AQAAACDMEPQAAAAAIMwQ9AAAAAAgzBD0AAAAACDMEPQAAAAAIMwQ9AAAAAAgzBD0AAAAACDMEPQAAAAAIMwQ9AAAAAAgzBD0AAC4S6+++qoGDBig//qv/wr4td///vcaMGCAfvzjH4egMwAA/pbFNE0z1E0AAPAgqK+v18KFC1VdXa1169Zp0KBBkqRjx47pxRdfVN++fbVx40ZFRkaGuFMAQHdH0AMA4B6cOXNGX/va15SVlaXNmzerra1NCxYsUFNTkzZu3Kj+/fuHukUAAAh6AADcq7/85S/67W9/q/z8fNXV1amwsFC//OUv9cwzz4S6NQAAJBH0AAC4Z6Zp6uWXX9aRI0ckSfn5+frtb38b4q4AAPhf2IwFAIB7ZLFYNGPGjM//+4UXXghhNwAABOKJHgAA9+jatWtauHChHA6HmpqalJubq40bN8rlcoW6NQAAJPFEDwCAe+LxePTd735XbW1t+td//VetWLFCxcXF+ud//udQtwYAwOcIegAA3IOVK1fq4sWLevnllzVp0iS98cYbGjVqlNatW6c9e/aEuj0AACSxdBMAgLt24MABvfbaaxo+fLjWrFkju90uSbp9+7YWLFggn8+nrVu3Kjs7O8SdAgC6O4IeAAB34datW1qwYIEMw9DWrVuVlZX1N79+8OBBfec739HQoUO1Zs0aOZ3OEHUKAABBDwAAAADCDu/oAQAAAECYIegBAAAAQJgh6AEAAABAmCHoAQAAAECYIegBAAAAQJgh6AEAAABAmCHoAQAAAECYIegBAAAAQJgh6AEAAABAmCHoAQAAAECY+f8ALHZOa6K8NbMAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 1080x720 with 1 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Define function to construct error band\n", | |
"def errorband(x, m, c, merr, cerr):\n", | |
" return np.sqrt((merr * x)**2 + cerr**2)\n", | |
" \n", | |
"# Compute paramter means and stds\n", | |
"mm = np.mean(m)\n", | |
"cm = np.mean(c)\n", | |
"merr = np.sqrt(np.var(m))\n", | |
"cerr = np.sqrt(np.var(c))\n", | |
"\n", | |
"# Compute fit result\n", | |
"\n", | |
"fit = linear(x, mm, cm)\n", | |
"error = errorband(x, mm, cm, merr, cerr)\n", | |
"\n", | |
"# Plot fit result\n", | |
"plt.figure(figsize=(15, 10))\n", | |
"\n", | |
"plt.errorbar(x, y, yerr = 0.2, fmt='.', label = \"data\")\n", | |
"plt.plot(x, fit, label = \"fit\")\n", | |
"plt.plot(x, fit + error, label = \"fit + σ\")\n", | |
"plt.plot(x, fit - error, label = \"fit - σ\")\n", | |
"\n", | |
"plt.xlabel('x', fontsize=20)\n", | |
"plt.ylabel('y', fontsize=20)\n", | |
"plt.legend(fontsize=15)\n", | |
"\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.4" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment