# import csv file
tt <- read.delim("~/Downloads/vanished_v2.csv", sep = ";")
# table dimensions
dim(tt)
#> [1] 807 61
# empty rows at bottom like row 635
tt[635,]
#> Source If.Identified.by.second.source Journal.Name ISSN E.ISSN URL
#> 635
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| library(tidyverse) | |
| my_df <- readr::read_csv("data/u4_13_17.csv") | |
| no_group <- my_df %>% | |
| filter(is.na(CA)) | |
| no_group %>% | |
| select(PY, UT, C1) %>% | |
| mutate(adresses = strsplit(C1, "; \\[")) -> tt | |
| tt %>% | |
| unnest() %>% | |
| tidyr::separate(adresses, sep ="] ", c("authors", "address"), fill = "left") %>% |
library(europepmc)
library(tidyverse)
library(cowplot)
#>
#> ********************************************************
#> Note: As of version 1.0.0, cowplot does not change the
#> default ggplot2 theme anymore. To recover the previous
#> behavior, execute:
#> theme_set(theme_cowplot())
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| --- | |
| output: github_document | |
| --- | |
| ```{r, echo = FALSE} | |
| knitr::opts_chunk$set( | |
| comment = "#>", | |
| collapse = TRUE, | |
| warning = FALSE, | |
| message = FALSE |
select
pk_items,
count,
wos_b_2019.d_percentiles.c_max,
wos_b_2019.classifications.classification,
wos_b_2019.items.pubyear,
wos_b_2019.items.doctype,
wos_b_2019.items.pubtype,
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| library(tidyverse) | |
| library(rcrossref) | |
| library(janitor) | |
| library(crminer) | |
| my_dois <- readxl::read_xlsx("dois_elsevier.xlsx") %>% | |
| clean_names() | |
| # call Crossref | |
| cr_df <- cr_works(my_dois$digital_object_identifier_doi, .progress = "text") | |
| # get CC licensed articles | |
| cc_df <- cr_df$data %>% |
library(tidyverse)
library(jsonlite)
#>
#> Attaching package: 'jsonlite'
#> The following object is masked from 'package:purrr':
#>
#> flatten
base_df <- jsonlite::stream_in(file("~/Downloads/base_dois.json"), verbose = FALSE)
#> Warning in readLines(con, n = pagesize, encoding = "UTF-8"): incompletelibrary(rcrossref)
cr_works(filter = c(
issn = "1099-1255",
from_pub_date = "2013-01-01",
until_pub_date = "2019-12-31",
type = "journal-article"
),
limit = 500)my_query <-
'(TITLE:"older adult" or TITLE:elderly) and (TITLE:falls or TITLE:trauma)'
europepmc::epmc_hits_trend(query = my_query,
period = 2008:2018,
data_src = 'med')
#> # A tibble: 11 x 3
#> year all_hits query_hits
#> <int> <dbl> <dbl>
#> 1 2008 761217 72