| layout | title |
|---|---|
post |
Another test post |
OK so here is my idea about How these post snippets could work. could work.
In this snippet we address the problem: ...
| ```{knitr_setup, include=FALSE} | |
| #================= | |
| # Load packages (load all the packages here at the beginning) | |
| #================= | |
| library(xtable) ## for making awesome tables | |
| library(psych) ## for the pca package 'principal'. | |
| library(ggplot2) ## for plotting | |
| library(mclust) ## for MClust. |
| # turn the data into a correlation matrix | |
| cor(mydata) | |
| # perform the PCA, using `principal` | |
| pca.fit <- principal(mydata, | |
| nfactors = ncol(mydata), # the number of factors = the number of columns in my data | |
| rotate = "varimax", # I want to perform varimax rotation on the factors | |
| residuals = TRUE, # report the residuals | |
| scores = TRUE) # find the component scores |
| mi:::.create.missing | |
| function (data, pct.mis = 10) | |
| { | |
| n <- nrow(data) | |
| J <- ncol(data) | |
| if (length(pct.mis) == 1) { | |
| n.mis <- rep((n * (pct.mis/100)), J) | |
| } | |
| else { | |
| if (length(pct.mis) < J) |
| ```{r global_options, include=FALSE, cache=FALSE} | |
| library(knitr) | |
| # Set basic options. You usually do not want your code, messages, warnings etc. | |
| # to show in your actual manuscript however for the first run or two these will | |
| # be set on. | |
| opts_chunk$set(echo=FALSE, | |
| warning=FALSE, | |
| message=FALSE, | |
| cache = TRUE, | |
| include = FALSE, |
| ```{r global_options, include=FALSE, cache=FALSE} | |
| library(knitr) | |
| # Set basic options. You usually do not want your code, messages, warnings etc. | |
| # to show in your actual manuscript however for the first run or two these will | |
| # be set on. | |
| opts_chunk$set(echo=FALSE, | |
| warning=FALSE, | |
| message=FALSE, | |
| cache = TRUE, | |
| include = FALSE, |
| Serial study of factors influencing changes in cardiac output during human pregnancy | 557 | 1989 | |
|---|---|---|---|
| Bayesian inference for a discretely observed stochastic kinetic model | 172 | 2008 | |
| 159 | 1992 | ||
| 151 | 1996 | ||
| 150 | 1987 | ||
| 127 | 1992 | ||
| 126 | 1992 | ||
| 97 | 1996 | ||
| 95 | 2003 | ||
| 94 | 1991 |
| # assuming data has columns named something like: "lat", "long", and "timestamp" | |
| library(ggmaps) | |
| library(ggplot2) | |
| ggplot(data = data, | |
| aes(x = lat, | |
| y = long)) + | |
| geom_point() + |
| #' meteo_distance | |
| #' | |
| #' @description | |
| #' | |
| #' @param data a dataframe. Expects col headers with names latName and longName | |
| #' @param lat Latitude to centre search at | |
| #' @param long Longitude to centre search at | |
| #' @param latName Name of latitude header name in data, Default = 'latitude' | |
| #' @param longName Name of longitude header name in data. Default = 'longitude' | |
| #' @param units Units of the latitude and longitude values: degrees 'deg', radians 'rad', d/m/s 'dms'. Default = 'deg' |
| context("Test names with spaces") | |
| messy_names <- data_frame(`Sepal Width` = iris$Sepal.Width, | |
| `Sepal Length` = iris$Sepal.Length, | |
| `Petal Length` = iris$Petal.Length, | |
| `Species Names` = iris$Species) | |
| test_that("vis_dat works on dataframes with irregular variable names", { | |
| expect_success( | |
| vis_dat(messy_names) |