Created
July 9, 2017 17:21
-
-
Save nramirezuy/9507aca8c78225e9ad459e89dd3b0355 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from sklearn.decomposition import NMF, LatentDirichletAllocation" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def display_topics(model, feature_names, no_top_words):\n", | |
" for topic_idx, topic in enumerate(model.components_):\n", | |
" print (\"Topic %d:\" % (topic_idx))\n", | |
" print (\" \".join([feature_names[i]\n", | |
" for i in topic.argsort()[:-no_top_words - 1:-1]]))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"dataset = pd.read_csv('C:/Users/xuanyu/Desktop/XY Personal/NUS/Capstone/Raw data/Posts-General.csv')\n", | |
"documents = dataset.status_message" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# NMF is able to use tf-idf\n", | |
"tfidf_vectorizer = TfidfVectorizer(max_df=1.0, min_df=1, stop_words='english')\n", | |
"tfidf = tfidf_vectorizer.fit_transform(documents)\n", | |
"tfidf_feature_names = tfidf_vectorizer.get_feature_names()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# LDA can only use raw term counts for LDA because it is a probabilistic graphical model\n", | |
"tf_vectorizer = CountVectorizer(max_df=1.0, min_df=1, stop_words='english')\n", | |
"tf = tf_vectorizer.fit_transform(documents)\n", | |
"tf_feature_names = tf_vectorizer.get_feature_names()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"no_topics = 5" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# Run NMF\n", | |
"nmf = NMF(n_components=no_topics, init='random', random_state=0).fit(tfidf)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# Run LDA\n", | |
"lda = LatentDirichletAllocation(n_topics=no_topics, max_iter=5, learning_method='online', learning_offset=50.,random_state=0).fit(tf)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Topic 0:\n", | |
"ly bit http mobile dash broadband enjoy plan\n", | |
"Topic 1:\n", | |
"enjoy thursday cineplex handy road rewards movies operator\n", | |
"Topic 2:\n", | |
"day visit lobang king broadcast andrew hall booth\n", | |
"Topic 3:\n", | |
"win winners contest chance lucky song avengers stand\n", | |
"Topic 4:\n", | |
"changi airport counters customers shops dear prepaid terminal\n", | |
"Topic 0:\n", | |
"eagle eddie getaway joern10 tjoe3 fathima7 ann jennifer\n", | |
"Topic 1:\n", | |
"bit ly http visit win enjoy com simply\n", | |
"Topic 2:\n", | |
"rewards spot points tag joined com screening friends\n", | |
"Topic 3:\n", | |
"social impact live futuremakers future makers singapore make\n", | |
"Topic 4:\n", | |
"changi airport customers thank counters 12 service inconvenience\n" | |
] | |
} | |
], | |
"source": [ | |
"no_top_words = 8\n", | |
"display_topics(nmf, tfidf_feature_names, no_top_words)\n", | |
"display_topics(lda, tf_feature_names, no_top_words)" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python [default]", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment