Created
June 30, 2014 21:59
-
-
Save nvictus/a81a72b77960d63a2416 to your computer and use it in GitHub Desktop.
rs1421085
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:0fac6bcd828247368a59cbeb1535dafa60ce6e07d5f68ec90ca218c1962d9dcf" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import sys\n", | |
"sys.path.insert(1, '/Users/nezar/Research/dev/hictools')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 70 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%pylab --no-import-all inline" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"Populating the interactive namespace from numpy and matplotlib\n" | |
] | |
} | |
], | |
"prompt_number": 71 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"cd ~/Research/projects/2014-07-08_melina-gwas/src/adipose-variant/" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"/Users/nezar/Research/projects/2014-07-08_melina-gwas/src/adipose-variant\n" | |
] | |
} | |
], | |
"prompt_number": 72 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"# Set up some better defaults for matplotlib \n", | |
"#(adapted from http://nbviewer.ipython.org/github/cs109/content/blob/master/lec_03_statistical_graphs.ipynb)\n", | |
"import brewer2mpl\n", | |
"from matplotlib import rcParams\n", | |
"#colorbrewer2 Dark2 qualitative color table\n", | |
"dark2_colors = brewer2mpl.get_map('Dark2', 'Qualitative', 8).mpl_colors\n", | |
"rcParams['figure.figsize'] = (10, 10)\n", | |
"rcParams['figure.dpi'] = 200\n", | |
"rcParams['axes.color_cycle'] = dark2_colors\n", | |
"rcParams['lines.linewidth'] = 2\n", | |
"rcParams['axes.facecolor'] = 'white'\n", | |
"rcParams['font.size'] = 14\n", | |
"rcParams['patch.edgecolor'] = 'white'\n", | |
"rcParams['patch.facecolor'] = dark2_colors[0]\n", | |
"rcParams['font.family'] = 'StixGeneral'" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 73 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from data import IMR90\n", | |
"chr16 = IMR90['15 15'] #zero-based!\n", | |
"chr16 = IMR90['15 15'] #zero-based!\n", | |
"\n", | |
"# normalize\n", | |
"nz_mask = chr16.sum(axis=0) > 0\n", | |
"chr16 /= chr16.sum(axis=0)\n", | |
"chr16[nz_mask][:,nz_mask] = 0\n", | |
"\n", | |
"hic = np.log(chr16)\n", | |
"hic_region = hic[1320:1399, 1320:1399]\n", | |
"\n", | |
"r2 = np.loadtxt('./pearson/pmatrix-binned-mean.txt.gz')\n", | |
"r2_masked = np.ma.masked_where(np.triu(np.ones(r2.shape)), r2)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stderr", | |
"text": [ | |
"-c:7: RuntimeWarning: invalid value encountered in divide\n", | |
"-c:10: RuntimeWarning: divide by zero encountered in log\n" | |
] | |
} | |
], | |
"prompt_number": 74 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from hictools.binning import Binner\n", | |
"binner = Binner(52800000, 56000000, binsize=40000)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 75 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"names = [\n", | |
" 'rs1421085',\n", | |
" 'IRX5',\n", | |
" 'IRX3',\n", | |
" 'FTO',\n", | |
" 'RPGRIP1L',\n", | |
" 'RBL2',\n", | |
" 'CHD9',\n", | |
" 'IRX6',\n", | |
" 'CRNDE',\n", | |
"]\n", | |
"\n", | |
"locations = [\n", | |
" '53800954',\n", | |
" '54964200-54965302',\n", | |
" '54319016-54319016',\n", | |
" '53737375-53738194',\n", | |
" '53737375-53738194',\n", | |
" '53467832-53468474',\n", | |
" '53088445-53089051',\n", | |
" '55357172-55357772',\n", | |
" '54973696-54974296',\n", | |
"]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 76 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from matplotlib.ticker import MaxNLocator, FuncFormatter\n", | |
"\n", | |
"# plot hic\n", | |
"fig, ax = plt.subplots(3,1, figsize=(20,50));\n", | |
"ax[0].matshow(hic_region, cmap=plt.cm.PuBu)\n", | |
"\n", | |
"# plot r2\n", | |
"ax[0].imshow(r2_masked, cmap=plt.cm.Reds, interpolation='none')\n", | |
"ax[0].set_xlim([0, len(hic_region)])\n", | |
"ax[0].set_ylim([len(hic_region),0])\n", | |
"bbox = ax[0].get_position()\n", | |
"\n", | |
"# colorbars\n", | |
"ax[1].set_position([\n", | |
" bbox.x0+bbox.width-0.07, \n", | |
" bbox.y0, \n", | |
" 0.015, \n", | |
" bbox.height,\n", | |
"])\n", | |
"cbar = fig.colorbar(ax[0].images[0], cax=ax[1])\n", | |
"cmin, cmax = cbar.get_clim()\n", | |
"cticks = np.linspace(cmin, cmax, 5)\n", | |
"cbar.set_ticks(cticks)\n", | |
"cbar.set_ticklabels(['{:0.3f}'.format(np.exp(t)) for t in cticks])\n", | |
"\n", | |
"ax[2].set_position([\n", | |
" bbox.x0+box.width,\n", | |
" bbox.y0,\n", | |
" 0.015,\n", | |
" bbox.height,\n", | |
"])\n", | |
"cbar = fig.colorbar(ax[0].images[1], cax=ax[2])\n", | |
"cmin, cmax = cbar.get_clim()\n", | |
"cticks = np.linspace(cmin, cmax, 5)\n", | |
"cbar.set_ticks(cticks)\n", | |
"\n", | |
"# relabel axes\n", | |
"tick_locator = MaxNLocator(4)\n", | |
"tick_formatter = FuncFormatter( lambda x, pos: '{:7.0f}'.format(52800000+x*40000) )\n", | |
"ax[0].xaxis.set_major_locator(tick_locator)\n", | |
"ax[0].xaxis.set_major_formatter(tick_formatter)\n", | |
"ax[0].yaxis.set_major_locator(tick_locator)\n", | |
"ax[0].yaxis.set_major_formatter(tick_formatter)\n", | |
"\n", | |
"#loci\n", | |
"for i in xrange(len(names)):\n", | |
" sel = binner.select(locations[i])\n", | |
" kw = {}\n", | |
" if i==0:\n", | |
" kw['marker'] = '.'\n", | |
" kw['markeredgecolor'] = 'k'\n", | |
" else:\n", | |
" kw['marker'] = 'o'\n", | |
" kw['markerfacecolor'] = 'none'\n", | |
" kw['markeredgecolor'] = 'k'\n", | |
" kw['markeredgewidth'] = 1\n", | |
" ax[0].plot(sel, sel, **kw)\n", | |
"\n", | |
"p = 7; d = 20\n", | |
"ax[0].plot([p,p], [p, p+d], 'k--', linewidth=1)\n", | |
"ax[0].text(p, p+d+2, 'CHD9')\n", | |
"\n", | |
"p = 16; d = 20\n", | |
"ax[0].plot([p,p], [p, p+d], 'k--', linewidth=1)\n", | |
"ax[0].text(p, p+d+2, 'RBL2')\n", | |
"\n", | |
"p = 23; d = 40\n", | |
"ax[0].plot([p,p], [p, p+d], 'k--', linewidth=1)\n", | |
"ax[0].text(p, p+d+4, 'FTO5\\nRFGRIP1L')\n", | |
"\n", | |
"p = 25; d = 20\n", | |
"ax[0].plot([p,p], [p, p+d], 'k--', linewidth=1)\n", | |
"ax[0].text(p, p+d+2, 'rs1421085')\n", | |
"\n", | |
"p = 37; d = 20\n", | |
"ax[0].plot([p,p], [p, p+d], 'k--', linewidth=1)\n", | |
"ax[0].text(p, p+d+2, 'IRX3')\n", | |
"\n", | |
"p = 54; d = 20\n", | |
"ax[0].plot([p,p], [p, p+d], 'k--', linewidth=1)\n", | |
"ax[0].text(p, p+d+4, 'IRX5\\nCRNDE')\n", | |
"\n", | |
"p = 63; d = 10\n", | |
"ax[0].plot([p,p], [p, p+d], 'k--', linewidth=1)\n", | |
"ax[0].text(p, p+d+2, 'IRX6');\n", | |
"\n", | |
"plt.savefig('figs/new.png', bbox_inches='tight', pad_inches=0)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAABF8AAANbCAYAAACU7DD8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8XFd99/HvaDQzGu2W5FV2VjsOWQiQBBoISaC0pYUU\nKNBC4SmhfUgXIA+FkA3HKA7ZgbZJgTYtW0rbUKClhZalBQJJIDQhoQ2QxdkcW7blRfs66/PHHcXy\nWMt3rBndkfR5v17zsjX3p3POveece2eOzrlXAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAQEiiYRfgKLRJikhKh10QYBEqpf8cJ+liSZskdUsarVyxgKrHtQc4ejP1\nH/oVAABV5h5JucLr0cJ750v6H0mDkr4lacOU+HMlbZP0PklfkLR5yrZOSZ+U9EeSPi/p1BC3AQth\nuv7zQkn3SuqT9J+S2ot+57cl/VDS8UXv03+wnEzXdybVSPqegmtRsem20Xew3MzUf2Z6f7bPdfQf\nAAAWwJmSrpb0osJrVeH1eUmnSfo1Sc8o+AIpBbN5nlDw4VcKLuaT2yKSfiLpVYWfnyfpqULsQm5b\njDOOsDhN13/ikq6XlJTUIOlHkq6b8jsXSNonaV1RWvQfLCfT9Z2p3i3poKTzpvnd4m30HSw3M/Wf\nmd6f7XMd/QcAgAXyd5I+qGDpw6S3SGqa8vNFksYK/1+pYHlEY+HnMyQ9UPj/rxS21U753cckvTGE\nbcBCmK7/rFYwADPpRgUzxaTgQ+cjkrZMkxb9B8vJdH1n0rmSfkPS0zpy8GW6bfQdLDcz9Z+Z3p/t\ncx39BwCwJNTMHRKqqIL1wB9QcOG7U1Ks8O/QlLgeSc8W/r9fwV8s7pDULOm9Cv7KIkkvU/DXi8yU\n331c0islvVTBh+WF2gZU2kz9p0dSqhCTUDAY82eFn89RsEzvOElfVjAQ8+7CNvoPlouZ+o4ULNF7\nqaT/mOb3ZtpG38FyMlP/ma1fTfe5bkfh//QfAMCSUO2DL1lJr5G0VtLvFf5//TRxL5L0qSk/v1nS\nyZJ2S/qOpG8U3l+jYC3xVP2S1he2DSzAtoHCNqDS5uo/F0r6sYKp1acV3jtTwQfgKyS9SdLbJP2F\npJeI/oPlY7a+8z5Jfz7D7820jb6D5WSm/uN+ppOCz3V/Vfg//QcAsCRU++DLpLyCG+f+qaS3F21r\nkHS6pFunvLdG0n8p+Ovj5xQMxkjBXzGK76g/ub53IbcBC2mm/vM1Sa+X9IPCdilYrveYpAOFnx9U\nsGzvtQraMv0Hy0lx3/m/kv5eh2aOSUFblaR3zbKNaw+Wo5muPbN9ppOO/FxH/wEALAmL7WLyr5Ja\ni967VMHSolzh53oFM122KXhiyy2SPq1gCdIeSS1Fv9+q4DG6C70NWGjT9Z9nJP2BpA4FSyZ6FHzw\nnWqngqni9B8sV19V0PYulvSQgntRjEk6VtK3JX1RweDLTNt2i76D5Wu6a89s7xd/rqP/AAAQgjWS\nfjrl53dJOnHKzzFJL1bwBXJSVMFU0jMV3M+ieOrqkwoGaRZ6G7DQivvPVM8q+IvfyQqWHcWmbPu6\ngjX69B8sVzP1neluuDvdtpeKvoPla6b+M937032u49oDAMACOFvBNO/JGTrX6dASoosUTFc9ufA6\nX9I7FPx1ok/BmmIpeJzubgV30Y9IeljSKwrbTpa0txCzUNv2FLYBlTZT/2lTcL+XSedL+siUn++S\n9IbC/+MKbnq4WvQfLB+zXXummmvw5fzC/+k7WE5m6j9nzfD+pIs0/ec6if4DAFim2hQs7VkIFyq4\n4N0l6UpJv1l4/9UK1uPmpryykjYWtv+ypH+Q9H4FT3GZeof6ExTcB+ZPCv+eGeI2oJJm6j9nKfiQ\n+X0FU7vfqUP3ppCCmwp+UcFNd/9S0q9O2Ub/wXIwU98p5s58keg7WD5m6j+z9au5PtfRfwAA1Sii\nYGbkpZIuKFei9+jQxfDRwnvnS/ofBVMzvyVpw5T4cxXcc+V9Cm6qtnnKtk5Jn5T0R5I+L+nUELcB\nAAAAAJYX9zvixZK2SvqwpGunvB+RdLOCpfu7FfwxczqvUvAgGMxuvvUx17ZJs9VH8ba/1eF/FMhJ\nunPK9uZC/KUzpHdUzpR0tYLH/r1I0qrC6/MKHk/7awpu2vmfhfiopCd0aFrp+VO2RST9RMGOSdLz\nJD2lQ3eYX6ht0aM5EAAAAACARc39jvg6SfdO+fmLCh5UIUm/q2DCgSS9UcHTDouXJ66SdLek75al\n1EtXOepjtm2TZquP4m31kv5CwX3IjlHwIIWP69BT+moUjHHcNOueHYW/k/RBSZumvPcWBfdQmXSR\ngqc7SNJKSaMKHlkrSWcoeFStJP1KYVvtlN99TEGDXehtAAAAAIDlxf2OeK+kLVN+fquCe0JJwRfy\nSUkF34Wn3pojIukaBfe6+t78i7yklaM+ZtsmzV4f021rllQ3Tf4rpqQ/LCkxwz5Na65HTUcV3OPl\nAwoOwJ0K7jx/p4InokzqUTDlSpL2Kxi5uqNQ6PcqmDkjSS9TMIqVmfK7jyu4J8tLFayRX6htAAAA\nAIDlZbbvpJPiCu6T+OiU97YrWA7ToUPffaXgnlbvUTCAMOliBfeMmpoHpjff+lg5y7aOws+z1cd0\n2wYljU/5uVPB7Ka+ws/vVLDc7CZJ9yu4DUvnTDs4aa7Bl6yk1yh4ctDvFf5//TRxL5L0qSk/v1nB\n3eF3S/qOpG8U3l+jIx/f16/gBp9rJA0swLaBwjYAAAAAwPIy3XfS4u+IbQomHUz9Ltlf+HcyrkPB\nUpQ7FAwgTC6TebGkAwomAWBu862PjbNsW6/Z68Otq9dJ+tqUn8+U9CUF97g9W9KIgnvEzGquwZdJ\neQU3zv1THVrnNKlB0umSbp3y3hoFN5/5DwWjSJOPEswouJt9cRkiC7wNAAAAALD8ON8RJ2dBpKeJ\nmXxK6AFJV0n6HQVfzt+hYOXHqyV9pVyFXQbmWx/ZWbbNVh8ts2wr9puS/m3Kzw0KHko06XYFy6em\nLp06QqkDEf8qqbXovUsVLC3KFX6uVzDTZZuCxy7dIunTCnZ8j4KdnKpVUncI2wAAAAAAy8tuzf0d\n8aCCL/MtRTEqihtX8B35VgWrQc5XMCAzVnjdLuk8BUuSTitP8Zec+dbHs7NsO1bT18eYgpU9Tl01\nK5hc8sSU93oUDMBM2qVgbKV4rOQwpQ6+RBXc+2XSuxTMiNlf+DlWKGiNgpFAKXjUU07BDXu/K+mE\nojRPVnBjm+8t0LbNku6abudOPPHEvIJZPrx48eLFixcvXrx48eK12F4/1WIVjVfqmBQvafme5v6O\nmC/8PPWhMydLekTSvmlKf1DBF/CvKbhRa7Lwepek7yuYoPCz2Q9A9UksjvrYO8u2v9P09ZGUdNsM\n24rr6jWSvllUvh9KOmnKz3UKlh4d0CxmnRajYP3SGZI+o2AA5b2Sritsu0jBCFGssHOrJR2nYOQv\nruA+MXsK/x9VcNOcYUk7JL1CwUE+WcGI0dcUjBouxLZ6Hb5e6zlPPvmk8vn8HIdkZrF3fMILTDab\nCRbfYHlmtXHvRsvxWn+87dwTVswdJCle46U5msnOHVTQ2eDtz8Hx4hlq00vW+k8X7xlLWXG9Y17e\nkuQ2K7d+1tbH7bxf0TnrAOxznh0enzuoYDidO+znB//5dr3oty4+Iu6M9oYj3ptOfQntMhn1Yje1\n1c8dVHD/3qG5gySd0OL1yacG/GN5bJPX1lM5/9z0WN/o3EGSViVjVtyGJv9ctHPI2/f+lH8+2DPq\n9cmseYwyJZzn3b6WNvPeNTJxxHs/+efbdeY0/Wd10ss7VhOZO6jg2eEj85/O8Wa73G+egyXp+W3e\n+eCHPV5/DNL0+vlusw09YvYdSfr1Y9qsuDrznCVJT5v9Z715jSxlf3onvHtCbmj0H+zgfqYazeTm\nDpK0d5rr88Nf/Rud/vp3HfF+W2Kuj7iBxpj/+cCty40txU+bnd4TA2NzBxU0x739SZjng4tfXvw9\nZ2YPbZ/1u8RzPvnwbjvNE5q968oxZnsr5Vi+7sSOuYMk3bWrf+6gglTWa8NNZntz+8Tqljq984KN\nh70XiUTOsH65GmVTqvmlt5Q92dx9dzYVvXWfpv+O+HVJH1HwmOKHFdzD4z2SPlr4vd9Q8L1YCh6L\n/JiknQqWIZ1XiC0W0aFlSovOhKQ/VPHhm5+/1lAl6mO2bVPNVh8zbXu9gsdOH74b0p/p0P1wz5P0\nNzOk+5y5zuRrJF2r4D4v35L0YwVrnV5dSHzqGSSvYISqX9KbJH1MwSOmNxR+f/LT1OskbVXw/O4X\nKxhJGlvAba+dsg0AAAAAsHzkNf13xFEF33MfVPBl/0sKlq18RMH3xx0KbrArBd9vL1Twpb9bwWOO\np5sRMznbAzMrR33Mtq04r5nqY7ptcQXLyX5Y9P5dCm6tcrukJxXc2PeDc+znnIMvX1Mwg6XYNxXM\neJnJdwqv6TylYNaMJH0y5G0AAAAAgGoQWbBno8z0HfGsoriPanoXzfB+sc8XXovWAtXIfOtjrm2T\nZquP6baldPhypqn+0sjvMN4cRljSn3+3FRf7Q7P/jRU/JXtmmaw3nVtJM07S4we86cpnrPGmorlT\nKCXpR7u9fW+q85pwzFwaJUmNMS92eNyboi1JMXOq8tpGb5nBgQl/qv8vzGnnx5Ywlbw2cvi+bzr9\nbLXGj5xKO5jyjlFzzM+7z5wa/9N9w3aaWXNqvLtaZaW5nEeS7t7jtfXXHNdup5nJeVPenx70ljik\ncv5kQTfNzgZ/6Zy7PMqdbj9SwrkoYy4nGjennHfUHbkvJ5/x4mnf39zq1eMucymRJJ1kLofoNc8x\nTTH/Y8RTZttwlzxJ0jND3r67S83ap6mHmew3l56656wgf+94fmNnrxV39kp/qnjU7D8lrHJT2jxn\nvrCj0Yr7hyeO/KNy8sQzpj3Gv2wuuZ3I+n+Qdvf9P5716sfdb8lfrtJvXnc/c+/Tdt6uX9vgLVeX\n/GU6j/R7n2FazGVZkvTl7fvnDpL0B2d02mne/N87rDh3Kat7fJIlLOEFED4GX4pktj9w2M+1m4oH\n2wAU23Aq/QQ4WseeenbYRQAWrfaTXhR2EQAAsDD4AgAAAAAIX2TR3pt2yaopd50s4zvgLNiiOgAA\nAAAAgOWIwRcAAAAAAIAKYvAFAAAAAACggrjnCwAAAAAgfAv3qGmYqJHy4VgCAAAAAABUEIMvAAAA\nAAAAFcSyIwAAAABA+Fh2VHVqyv30bx41DQAAAAAAgEpg5kuRmprDx6Myv/ih9Xu1p7zUziP91++w\n4mIXf85OU/mcH2uK13pjc90jE1bcpuaknXcm7w2JdiRiVtye0ZSdd5253+7xkaT9g94xippDy+ub\nE3bevRNpK+74Jj/NVM6rn3jUO0b7xr0yStJ4xmvr7XVe25CkmHncd5tt3S2jJF3Q2WrF/aC7307T\n3fdz17VYcT/ZN2Tn7e75xtZ6O033Ly737R204toS/qUvYbbhR/pHrbgXtjfaeT8xMGbFrSyhra9M\nerGPmvuzodE/b5y8osGK+04JbX00k7XiOhu8cg6mvPQk/w93uRL+xOeeW9+2cZUV93DviJ13Uyxq\nxQ2mMnaaJ5jX/fGsd+Z4/XHtdt7dI951P1nCtXznsHcNWFcft+Lcz0+SNJL22uYvb1hhxe0a8vNO\nRL2T8BMD43aaE2adt8a98/WYmV4pPnDXdjv2rRtXWnEHJ7z+02z2x7YSPrsBCB+DLwAAAACA8EXK\nvcYF88VSmfLhWAIAAAAAAFQQgy8AAAAAAAAVxLIjAAAAAED4eNpR1alhKVjZ0LoBAAAAAAAqiMEX\nAAAAAACACmLZEQAAAAAgfCw7qjrUSPlwLAEAAAAAACqIwRcAAAAAAIAKYtlRkUhDy2E/RxNJ6/fG\ntvwfRWvmvhN0fNsddlnSt19kx8b+z61WXCabttM85wXrrLj9Yykr7hd9o3berv5UxopbkfCb+s6B\ncS/vUf9Ybl7TZMXtH56w4obTOTvvM1d6eT/c69dPR513PLtHvP2J1fjjwKetqLfiVtXH7TT7xr26\nTOXyVtx41q+fkVTWinuhWY+S9L8Hhq24n+wbsuJO72iw8x5Oe/vzSO+InebzOxqtuM2tXtu4d++A\nnff6hoQVN2jW48Ml7HdL3Oxno945WJKeHPTOb+esbrbiGmr9vvtYv3eOqYv6T1UYNk/Dbjl/9aRV\ndt7b+8esuNZ41E5z35i3Q6MZ7xzzY7OPS9KZZj/b2OJ9LpKktHnO3DfiteGnzPYrSauSMSsulfXb\n8Knm9ef+/d45OJf3jo8knWVeA35q5n1Mo3duk6Qh87y+tpTr7oTX1ifMNpRO+8ey1fxM+AKzT0h+\nW3/IvD43m+eN9bmsLrQiAVQDBl8AAAAAAKGLGH/MxsKiSsqHZUcAAAAAAAAVxOALAAAAAABABbHs\nCAAAAAAQPh41XXWokfLhWAIAAAAAAFQQgy8AAAAAAAAVxLIjAAAAAED4WHZUdSIRHndULrRuAAAA\nAACACmLwBQAAAAAAoIJYdlRG2Vx+zpjYxZ9T+vaLyp53+u8useJiv3+7nebXHttnxa1uqbPi+kZS\ndt77BiesuJPXNVlxj/eP23lHa7ypdbGoPwVvYDxtxaUyOSsunfPiJOnrTx+04o4361GSDpiH8+Vr\nmq24ZK0/Drx9YMyKe3bYa0OSlMnP3XclaV193IrrLqGt96eyVtzvnrLaTjOd9drHQbNdbu/zjrkk\ntcS9y0rKLKMk/fsOrw0f0+i14YtPX2fn/Zmf77HiXtXZasU1JfzL7tee8fZ7VV3MTvP57Q1W3M/7\nRq24hhL67lOD3oljtdnPJKkx5vXdEfPc+tlH99p5x2u8fV+Z9OsnZl5/nhnyjuUrzXYpSU+a59ZR\n81hKUty8Th7X5PXdRNRvb/vHvPObvzfSDvO6YlajOhsSdt7Dae9aETWXBzxp9kdJWmv2yQMT3jGX\npAHz2tdunt9ev3mVnfcPnum14v7hif12mie1JK04t63/ZP+QFReJRa24RYUlLlWH2Rrlw+BLsca2\no/q1usv+zIob3vO0MtsfsGJrN511VGUBAAAAAADVg4EsAAAAAACACmLmCwAAAAAgfDztqOq4Sykx\nN1o3AAAAAABABTH4AgAAAAAAUEEMvgAAAAAAAFQQ93wBAAAAAISPe75UHWqkfDiWAAAAAAAAFcTg\nCwAAAAAAQAWx7AgAAAAAEL4IzzWuNjXUSdkw+LLA4h1r7dj0j//Diou95Df8ND9zsR27bus3rLhn\n9o9YcROZnJ33xtWNVtyBoZQVlyoh73Q2b8W11MfsNB/b2WvFHb+21YpL1kbtvBtiXmws6k+Ey+S9\nY/Rwr9c2NrUk7bwH01kr7rg6v342NCasuEf6Rq24l61ptvPe1F5vxX39iQN2mjuGxq2409sarLjd\no14/k6T1Dd6xHMt4bUiSfm1DmxV3954BL25nv533pmavbT54YNiKqyuhn62Il/8S/ezwhBU3lMpY\ncQfH/XqMm/u+Jun33VVm7IGxtBV3QlOdnXe/eYwaav063zXi9bXOhrgVd3Dc229JajHb29p6L2/J\nP1+7/ad3wjvmknSiWZe9IR6jnWZ/lKRszutrKxJeGd26kaSV5vW0p4RrRYeb5piX5jdLuEYeMOv8\nhe3eNVKS+ia8NLPm56cXr2qy4la3+OcsAOFj2REAAAAAAEAFMfMFAAAAABA+nnZUdaiR8uFYAgAA\nAAAAVBCDLwAAAAAAABXEsiMAAAAAQPhYdlR1anjYUdnQugEAAAAAACqIwRcAAAAAAIAKYvAFAAAA\nAACggrjnCwAAAAAgfBFuMFJtmK1RPgy+VLFsLm/F1f/+7Up/5uKy5797269bcbHfu81LsCZq5/3Y\nzj4rLtLY4SUYLaGpx+utsH0DE3aSNY0rrLjdfeNW3PB4xs67NuqdMs88eZWdpuvnfaNW3CP9Y3aa\nrz22zYrrGU3ZaT4z5B338WzOihtM+fVzYDxtxY2ks3aajTGvrw2kvDQHStifU1Z4/WddQ9xO86cH\nhq24NcmYFZfNe+dWSXp22Ovnr9rg9fEdg15bk6QJs72dZB5zSdo55O1PstY7b4xlvDJKUsrcn/1m\nn5CkGvNDulvKBrPvSFLEzLs57l9/Tqr18nfPWSvNPiFJHXVebL3ZNiSp3zx3HNuYsOI2NiftvHeP\nem394tPW2Wl+a0evFZcxP7+1m8dckhLmtXzvmNd/NjbX2XnHo15bX5Hw2/qYeT5oMPvEw70jdt6v\n6my14u7rGbLTNKvcvkY+uN+77jWm/XMwgPAx+FIuNeaHkRLu4J04ZqMVN/SGXUp//XYrNvba8g/S\nAAAAAACAmTH4AgAAAAAIH4+arjo1YilYudC6AQAAAAAAKojBFwAAAAAAgApi2REAAAAAIHwsO6o6\nNaw6KhtaNwAAAAAAQAUx+AIAAAAAAFBBLDsCAAAAAIQvwhqXasNsjfLhWAIAAAAAAFQQgy8AAAAA\nAAAVxLKjYkc71S2X8+LidX6aZmzigjfZSWb37bDioquOtdNM3/FeL82Xvd1OU3VNVli+f48VF4kn\n7awjrWu9wPZj7DQ7mhJW3NBY2oqLVGBK5q6RlB3bHI9acbVmOcezZv+R9PPeUSuuMeaPLR8Yz1hx\nfRNe/TTEvOMjSalc3oprS/ina/cYndpWb8U1xfy8H9w/bMWtKGF/3Nbe2eD1s7ZkzM7bTXOv2X8e\nOuAdH0k6tsm7Bqwzzy+SFDX75KqGuBV3b/eAnXdHnVfnyRL6z8CE13ePbfaOZbLWP2/81c+8688L\nOxrsNPeb14BjGr06b6/z23q7WT+/9RL/88GO3YNW3Dcf32fFveF08/os6fvbD1hx/2uesyTptHav\nLn+019vvN27ssPP+6T6vnIPprBX3/T1+343XeP1ig9kuJanV/Bzhft556epmO+8TWr3PhKV8Lmoq\n8+ci93NEKeesRYOnHVUdnnZUPrRuAAAAAACACmLwBXPasmWLWlpaFIlE1NLSoquvvjrsIgEAAAAA\nsGiw7Aiz2rJli6677jrt2rVLnZ2d6u7u1vr16yVJ1157bcilAwAAAACg+jHzBbO67bbbnht4kaTO\nzk7t2rVLt956a8glAwAAALCkRGrK/8K81ChS1tdyRmvErAYHB58beOnq6pIUDMAMDno3kwMAAAAA\nYLlj8AWzam5uVnd3tyTpmmuukSR1d3erudm/qzwAAAAAAMsZ93zBrC655BKtX79eu3btkqTn7vmy\nZcuWkEsGAAAAYEnhucZVhyopHwZfMKvJm+qecsopz/27ZcsWbrYLAAAAAICJwRfM6dprr9W1116r\nSCSigYGBsIsDAAAAAMCiwuBLudh30s77aebN2Ig/F6wmXmfFjX/3TkVrjtyn9F3/dNjPsQt+2847\ne+8X7NjoOW/1ApPmvWfq19p5K17vxWXSdpLNSa+rNSSiVtzgWMbOu70xbsWtqY/ZaV5y1jFW3Fcf\n3WfF3b3HH9Rb1+Dtz496yn9T6Bqzrx0c9+vnl9e1WnG9E36aDTGvHR3f5J0PHukftfNek/TqZ9fI\nhJ3m81q9Prl9YMyKax33+27MnGt7xspGK27vaMrOu77Wu648emDETnNlvVc/qWzOiouWMBU5avaf\nVMbLW5JWm/szYe7P7mG/Xf7ahhVWXF2t1x8laSLr5e9+kuhI+uf1Xea+f/uhbjvNl528yopba57X\nP/HjHXbeL+jw+uT+Es4HZ6zy0mzt9a75T/R55yxJ6mxMWHHPmvWYyfmfR1+8ssGKO63Di5OkH+/1\nrtGvOb7dirtvj3/NT2W9fX/lBu/6LEl1Ca/O3c8R7jlrhdkuFpMITyeqOtRI+XAsYdvyjjeFXQQA\nAAAAABYdBl9g23rRm8MuAgAAAAAAiw7LjgAAAAAA4WPZUdXhaUflQ+sGAAAAAACoIAZfAAAAAAAA\nKohlRwAAAACA8JXwFFcsjBpRJ+XCzBfYtn3uS2EXAQAAAACARYfBF9g+8vkvh10EAAAAAAAWHQZf\nAAAAAAAAKoh7vmBG2VxuzvfqXvZ2Ze/9Qvnz/tE/WnHR895pxeUH9/uZ18assPbOY+wkdx4cs+Im\nRoatuJbWZjvvA0MTVtyukZSd5mXff8KKa45FrbhMLm/nncoe2S6nj/PTfMW6Fivu2WHvWHolDNzb\nM2jFPa+13k5zKJ2x4r61q8+KO7Oj0c573KyfVcm4neaqei92ZHDciouWsJ5831jaivtJz5AVd2JL\n0s77+WuarLh/eWyfneZpq700v/hojxW3wzy/SNJxTQkrbq1Z35L0aP+oFfc7p6yx4ib2eedgSdpp\nng9OW+33n24zzd2j3vl64wr/vHFsc50Vt8csoyR94u6nrLhVSe+6+4YTO+y8H+v12sbGEvrkIwdG\nrLh1DV4b7pvwztWS1GEeoycGvM8bp5TQNu7b553fSrn2rW/wzgfffKbXiquv9f+e3FrvHcvhcb9+\n7nx4txW3zjy/nW5edxvNdrGo8KjpqsOjpsuHwZdyyZuXnFJOKJW44ZQ5sJA485XW+6OfOUGZ7Q94\nWW86y4oDAAAAAGApYWgRAAAAAACggpj5AtvWyy8NuwgAAAAAliqWHVUdVh2VD60btq4rPxh2EQAA\nAAAAWHQYfAEAAAAAAKgglh0BAAAAAMJXiQeOYF542lH5MPMFAAAAAACgghh8AQAAAAAAqCAGX2Dr\nuuGWsIsAAAAAYKmK1JT/hXmpUaSsr+WM1gjbtps+GnYRAAAAAABYdLjhbrF8/vCf3Zs+5XNeXEVu\nIlVCmsX7N2PcDPtT9H7tcJ+d9Zfa11pxbz64x04z+4PPWnHRX73ETlPZrBXWOzRmJ9nSUGfFxZqb\nrLjBsYydd3PS6+YHx9N2mqeuqLfidg5PWHEvX9ti5/1o/6gVtyoZs9NMRL1x6D2jKSvuJau8epSk\nhljUitsxNG6neWJz0orbN+bVefeIt9+S9PoTOqy4b+7otdNMZ73za3/K6xelnIYnzLwHUt55Y31j\nws77nx4+6GQpAAAgAElEQVTpseLWNcTtNO/b1W/F7Tfbxpp6v5+trPNi3f4oSYPmcf/WEwesuKx7\njZT0quParbjuAb/vtsS984HbxzM587OJpMd6vXPrye3e+V+SjlvhlfOenV67vLt7wM7b7WunrvbP\n1197fJ8V9yLzGhAv4S6W9/cMWXHrG7z9/v4e/1ie2dFoxbUn/K8VnU1eOc85ZoUV9/1n/GtKNuv1\n8wfMYy5Jp7U1WHHPX+Udy0cOjFhxKe6ECiwqDL4AAAAAAMLHMqGqwxhf+dC6AQAAAAAAKojBFwAA\nAAAAgApi8AW2rZd/IOwiAAAAAACw6HDPF9i6rrg07CIAAAAAWKoq8nASzAezNcqHYwkAAAAAAFBB\nDL4AAAAAAABUEMuOAAAAAADhY9lR1aFGyoeZLwAAAAAAABXEzBfYum786LxuupvL5ay46HnvVPYH\nnz3qfKaT/fatdmz0FRdbcZHmlXaagzVebD6T8hKsKWXc1Ovmm1uSdoqjGa8uf+dEb78//ViPnXcq\n6+XdlvBPbztHJqy4l6xqsuIeOjhs553K5q24lhL2J17j/Y2iLuq1o3PXNNt5P9o7YsWNm/UoSSvq\nYl6aZrtMJP2/4bQ3Jqy4XSNe331mcNzP29zvczpb7TQf3Dtoxf3u5lVW3O4hr+9I0kAqa8WtTHr7\nLUlPDnpt+Hjz/Dacyvh5941acT8/6PUJSWqIRa24h81+1l/C/vzyhhVW3A+7B+w0/8cs55vMa8W9\ne/y8e0a9Prmy3m9va+vjVtxw2mvr2wfG7LzfaPbJLT98yopzzy+S9JDZhje31ttpdrbUWXHrVzVa\ncT/68TN23juGvPPwgfG0neYm8xxzcNRL8wmzbayW9xkCQHVg8KXYUp/qZu/fkXHbbvqYuq744OFR\nce+LiSStjXkX+t+/+yv6o+i/WLF/le238wcAAABQzZb4d7FFqGapfz9eQCw7AgAAAAAAqCAGXwAA\nAAAAACqIZUcAAAAAgPCxxKXqUCPlw8wXAAAAAACACmLwBbatl38g7CIAAAAAALDosOwItuInHQEA\nAABA2USYG1BtWHZUPrRuAAAAAACACmLwBQAAAAAAoIIYfAEAAAAAAKgg7vkyl3zei6vE+kQ770qk\naSZa32xn/cIz11pxyYf8Heo++1QrrvP+n9tpZr93uxUXe9vH7TTz8QYvcHzIi0v6x31gIG3FPdzb\nZKe5tiFuxX32sR4rLl5TSiP2+los6vfJTM7rFw/3jthpun5l/Qor7sEDw3aatWb/bY5Hrbh79g7a\nea+p99rGic11dpr7RlNW3Ks2eMfyRyXsT38qa8Ud3+TtTylP0GyIefXz7acP2mkOpr39GTHjdpt1\nI0lmN1P3yISdptuOsua1rznhfyyKmpW5qSVppzmQylhxHXUxK67T7I+S9NN93vXn+BL2526zr7l9\nfMjsj5J/PnhmYNxO071WPDvopdkz5l2fJenBPd6xfEF7oxX3rZ19dt4XHttmxf28z79GuueY9BMH\nrLjf3rjSzntDi3fe+OzP9thpxs3PHI/0jlpxdWZ6iZol+Hd0HjVddaiR8lmCPRaV0nXDLWEXAQAA\nAACARYfBF9i23fTRsIsAAAAAAMCiw7IjAAAAAEAVYJFLtYmwFKxsmPkCAAAAAABQQQy+AAAAAAAA\nVBDLjgAAAAAA4WOJS9WhRsqHmS+wbb380rCLAAAAAADAosPgC2xdV34w7CIAAAAAALDosOwIAAAA\nABA+lh1VHWZrlA+DL3NxTwD5yhZjdiWcpNzQvLlD2Yyddc/TfVbc0xMpO83RHf1W3MDmTVbcKY9t\nt/NO//377djYOz5hBtbZadpGvWPU3b+i/Hmb6mv903pnfbzs+e8fS1tx+8a9uJoSumTvRPnTPGVF\nvRX3zNC4Fefut+TX5a6RrJ3mwQnvPLNrZMKKG0r756362qgVt2fUO2+lczk776x5Go6W0DaG0t5x\nd5NsifsfI9y2kcr6x2i/2TZ3Dntto89sa5KUMuuyLuqf33JmnfenvHI2lHBuddub29Yl6by1LVbc\nDvNc1F7nt7fvd3vXvuOby3/dXZmMWXE7zXOW5B+jpwa9uFLsHfPqPOU2IvnH/bH+MStu/6h/nbq/\nZ8iKGzbPl5LUbdblic1JK+5gxju/jJdwvgQQPgayAAAAAAAAKoiZLwAAAACAKsCyo2rDSrDyYeYL\nbF033hJ2EQAAAAAAWHQYfIFt200fC7sIAAAAAAAsOgy+AAAAAAAAVBD3fAEAAAAAhI8bjFSdCPfh\nKRtmvgAAAAAAAFQQgy8AAAAAAAAVxLIj2LZe/oGwiwAAAABgqWLZUdWhRsqHwRfYuq74YNhFOGrZ\nXN6Ki73t40r//fvLnn/68++24mrfuM2Ki7Rv8DNPNFph5iGSJPWPpa24NU0JKy5VQubdoykr7vS2\nejvNulpvEuCKhHfKPDjhHR9J6p3IWHH7zWMuSU8NjVtxGfO4t8b9S0VtjXeJPm9ti53md7v7rbjm\neNSKa0vE7Lyj5ieO/+0dseI66vxjOZzOWXHmIZfkt6ONLUkr7ud9o3bejTGvftY3xO003TbcYvbd\n3kGvP0pSKufVz+P9Y3aa7jnmBR3eef3vHumx875gQ6sV11bn95+HewesuDX1XppufUvS2nqvHd3X\nM2Sn6db5JrP/fG+3d3wkabOZpnsejLsnN0l1Ue8aGSthPv1VP3rairvwhHYr7qcHh+2833B8hx3r\n+sEery6Paayz4obTWStuNOO1SQDVgcGXOUTM0dd8pAIruCoy8mumWePtTyThfRiQpHVnrLPi6rfv\ns9OMmR8ykuYH1We2f1p7f+kzVuya+35mxQEAAAAAljcGXwAAAAAAVYBFLtWGGikfbrgLAAAAAABQ\nQQy+AAAAAAAAVBCDL7B13XBz2EUAAAAAsFRFIuV/YV5qIuV9LWcMvsC27caPhl0EAAAAAAAWHQZf\nAAAAAAAAKoinHQEAAAAAwhdhbkC1ifC8o7KhdQMAAAAAAFQQgy8AAAAAAAAVxLKjOeTz+XKnWOb0\nSmVOG4vGjnhr65WXH/l+e6edc/L2r3hxdopSuY9nQwn1ne152oqLrj7eTjPzla1WXOz3brPTVGO7\nFTaRztpJ7jkwYMVl17VZcfWJqJ33wGjajnWNZrx939CQsOJWJI7sPzPJ5Lw215LwT9eprJfm6qRX\nzmwJ/eKc1c1W3I96Bu00U+YxGk7nrLjRzISft3ks62u9v2U80jdq5/2tPz7XinvLZ35sp7l3LGXF\n9U5krLjT2+rtvNvrvPb2sxKO0UTGq/PNrd6V5eC4f345saXOinPPG5KUNtv6Tw8MW3G/tK7Fztu1\ne8RrQ5LUN+Edzzee0GHF/eMT++y8HzowYsWd2OzVoyQ93j9mx5bbsHmdWl0ft+JqS3gCjNuGH+71\njrkkbVzh9cnHB7xjflyjX4//vW/IivvVDSvsNHcMe9eVfeY5+J693jXypKx3DgRQHRh8ga3rQ1eE\nXQQAAAAASxb3F6k21Ej5sOwIAAAAAACgghh8AQAAAAAAqCCWHQEAAAAAQhcp4X5EWBhUSfkw8wUA\nAAAAAKCCGHyBreu6G8MuAgAAAAAAiw6DL7Btu+GmsIsAAAAAYKmKRMr/wrxEyvxazhh8AQAAAAAA\nqCAGXwAAAAAAACqIpx0BRymby1lxiTduU+YrW8uad/qO99qxtb/jLRcba2yy09zY2WbFZXN5K250\nImvn3ZDwTlvDaT/NNcmYFbd/PG3Fnb+2xc77oQPDVtye0ZSd5kmt9WVNM5P36lHy92fvqHcsJSmV\n9fra04PjVtxL1zTbeT895KWZnvDKeMG6VjvvN336PituY3OdnWZtTXkn/A6m/H62Y2jCitvcmrTT\ndPv5rhGvrSdq/b9JPTngtY0z2hvsNB8fGLPijjfrvJTz4GDabMMlnN+eGIxacX/7yB4rbmUybud9\nzmrvGI2b5xdJOsE87gfNa0V9Ce3NvZ7mzfP1SvO6J0lffeagFee2S0k6vc3rF3vHvGPZO5Gx824z\nP0f0mfUoSSvMNN1z5rFNCStubb1fj4sGy4SqTs2yXyxUPgy+zMF93Jn91cT/DuOffEr4YjTvNI94\nv5TOaJYzUsKELHMARDVmmiWc8GNJ74PD8HtOVvr7X5o7vfPfbOcNAAAAAFg8WHYE29YrLwu7CAAA\nAAAALDoMvsDWddUVYRdhWdmyZYtaWloUiUTU0tKiq6++OuwiAQAAABVU7mfrsGRmvqiN8mHZEVCF\ntmzZouuuu067du1SZ2enuru7tX79eknStddeG3LpAAAAAAClYOYLUIVuu+225wZeJKmzs1O7du3S\nrbfeGnLJAAAAAAClYvAFqEKDg4PPDbx0dXVJCgZgBgcHQywVAAAAAOBoMPgCVKHm5mZ1d3dLkq65\n5hpJUnd3t5qb/UfkAgAAAItKJFL+F+aF6igfBl9g67r+xrCLsGxccsklWr9+/XMDMJP3fLnkkktC\nLhkAAAAAoFTccBe2bTfczBOPFsjkTXVPOeWU5/7dsmULN9sFAAAAgEVomU/8OUI+N9x32BsRc25U\nPp83czDjgsyrKs2apjblhnr9vIpl015cpIQJWbmsF1dTgUleZt4TD/3Aimv6bI/Sd7z3iPcjkYjf\nvuYh9u477dim5iYrLpvzyh2t8U9FrfUxKy5e69d5Y503Dp2IemlOZHN23kmznCnzWEqSezhHJrw2\nXMqx3Dc4YcWdscZrQ5I0mDb7uandrG/JP71mzPppSfh594ymrLhXdrbaad6/f8iKGzGPeWdDws57\nTX3civt574id5oqEdz7oHvHa5WqzjJI0MJGx4jIVOH93D3n7c2Jr0k5ze9+oFXdSW72dZn1t1Io7\nOO59PoiXcK1w28aO4XE7Tfc0PJTy2sbGFr9+muPeuWPPqNc2BlP+ebXWPO7ueVCSzl/bYsWlzTSH\nSrhOuPvzoo5GO83r799hxb36+HYrrt687q5rTeqSX9l82HuF7y6L9TtePvbHXyh7oulPvV1avMck\nbPnvrlxX1gRfuX+3tEzrg5kv1WwBvnAvqKW2yC/nfcGO9XgX5P2DX9XQb31x2m1Dv3XuYT83/fM9\nVpoAAAAAgPBxzxegyl1x8oawiwAAAAAAmAdmvgBV7qrnHRN2EQAAAIAFsMRmyi8BEeqkbJj5AtvW\nKy8LuwgAAAAAACw6DL7AxpOOAAAAAAAoHcuOAAAAAADhW2oP6FgCSnjQHObAzBcAAAAAAIAKYvAF\nqHLXP/Js2EUAAAAAAMwDgy9Albvx0Z1hFwEAAAAAMA8MvsDWdf2NYRcBAAAAwFIViZT/hXmJlPm1\nnC33/S+Wzw33HfZGxOyw+Xy+AqWpQJrzOAHVNK5Q8fEprYwhHiN3v0vZn1zWC3vsfi+9X/xk2rdr\n3/lhZT57zWHvZXv2WEnGL/+Ul3eJYu/8ay+wqd2Lqynh3t/jQ15cotFOclVr0opLZXJWXCzq97OO\npoQVNzKRsdNsTsasuL6RlBWXjEftvGNRb0w/XuuP/SfN2APm/nQ0xO28e0fTVtzZa5qtuIf2m+1X\nUmudV4+l3Ahv1GzDcTPRnqEJO+/Wem9/RlPeuVWS2uu9uuw063zMPD6SlDDb+mN9o3aabWbf/d/u\nQSuuo8lv66eu9M6ZT/aP2WmeaJ5bnxrw0myI+eeiWrMNN5eQZtRMc8hsw8MZv61nc97nE7f/nNLe\nYOe93azz9Y3e9UySMubnrQ1mmusb/Lx/1jtixXWY52BJOr65zop70mzrL+jw+mNHc0Jveunxh71X\n+O6yWL/j5WPv/seyJ5r+xFulxXtMwpb/warOsiZ43r5uaZnWBzNfAAAAAAAAKohHTQMAAAAAqgBz\nA6rNspyiUiG0bqDKXf26C8IuAgAAAABgHhh8Aarch1//irCLAAAAAACYB5Ydwbb1ysvDLgIAAACA\npYqnE1WdCAuPyoaZL7B1feiKsIsAAAAAAMCiw+ALAAAAAABABbHsCAAAAAAQPpYdVR2qpHyY+QJU\nuWu++r2wiwAAAAAAmAdmvgBV7tp/veuIJx5lc3nrd2PvvlPpT7yl7GVKf/YPvfzf8QkvwWx6HqWZ\nQS5rh+7Lefm3NjdacQeHU3be+wcnvMC8V+eS1JiMWXGjKe8Y5dL+/rQ2N1hx/cPmfkta2VJnxe0f\nGLfidtd5x0eSRkfHrLidB0etuHTWr0f3L01rzOMjSYNj5e1rA8Pe8ZGk521os+J2HvTT7Bvx9uen\nOwesuOak/7HIzTudzdlpxqLe38RSGS/NMbOPS9LuPq//5Es4F+044PULV13M/5thxOxAQyX0Cbf/\n5sxj1Lkiaeft9t2VzQkrbs+of153r2nRGv/P48c0eeX8n4MjVtzXH99v572+zTvudWZ/lKRP/bTb\nivul9S1W3H09Q1bcsems3mRFAqgGDL7Mwf6QUcKHkfIrIW+7nEdeQLuuv1FdV83jprsR8yJWyrG0\n58GZabpllOx5YzUnnekFbnzBDBs+rJrf/IPD3qnLeR+8h37x30rf889WbOzc37LiAAAAgMpgjUu1\nYalM+XAsYdt2w81hFwEAAAAAgEWHwRcAAAAAAIAKYvAFAAAAAACggrjnC1Dltl72p2EXAQAAAKg8\nnmtcdaiR8mHmC1Dlui7/QNhFAAAAAIDlrnM+v8zgC2xbr7ws7CIAAAAAAJaWTkmflPRHkj4v6dQZ\n4i6WtFXShyVda26LSLpZ0rOSdkt6p7lNkl4lKTfldV7h/YSkmyRdJukfJb1h7l1k2RFKMK/HTAMA\nAADAbBZu2VGnpA9J+l9J5yj4Av7zaeIulrRGwZf0WklXG9sSkrZJOijphZL+SdK/lH0PFkik8nUS\nkfRvki6X9F+Svi/p3yVtkpSdEvc6Se+Q9LLCz1+U9AeSPj3HtrcW0r9M0hsVDJbcKWlsjm0qvHdW\n4f8ZBe1FkrokPSnpdklNkp6Q9DNJ22fb0aOZ+dImqd6MPU7BjlwkaeVR5AUAAAAAQLlMftn/Z0l/\nJelGSV+TFC2Km/xCv03SNZJOUvCFfq5tXQq+mN+sYIDmrxQMJGB6r5L0PEl3FX5+RFJa0uuL4i6T\n9I0pP39V0vuMbfcUXpL0HwoGdCLGtk2STpe0TsHAyuTAiyT9saQHC/8fknS3pEtm20nJH3y5R4em\n2vxQ0qiCUbx7JfVJ+k9J7UW/89uS/kHSlyR9TtL+wvuzTSla6G0AAAAAgOWj0l/2j+qL+TL2MklP\nKZhZMulxSa+c8nNcwQyUR6e8t13Bd/uVs2zrULCkaNKFkt6jYDxDc2w7U1JSwaylnQrajSStktQ8\nJU6F7S+YdS/lLTs6U9K3dKjB7FKw828uFKBGwfSg9yuYuiVJF0j6y0IBdk9Ja6YpRRsl5RdwW/EU\npoWTKyHbGnNsrJQ0I2aabt75vJ+3HVtCmmVXQt7uFDz7mE+fXteNt6jrig8WxXrlTBz/PC9vSel/\n/xsrLvaad/lpfv7dXppv/3M7TSWbvbhs2k4yUZe04vqHJ6y49uY6O+/e4ZQVt6IxbqfZZsbuODA6\nd5CkfK2fd7zWa++NyZid5uoW73hmc16/6Bvx20bE3PfxdM6Kq4v5E043tHuTTJ/oGbbTzGW8fY9E\nvfqJxf220T/q5d1S77eNsZR3/WtIFP8xc3ojE/719NiO8tfPRCozd5Ck2lpvfzqa/Ppx+08s6rfh\njJnmquaEFeeeLyUpnfX6ZH3CX4F/cGDEimtp9K4puRI+Q7nnVvscHPPakCRtWOHtz7DZfiVpyOy7\nZ3Y0WnHxGT5DTafNrPOhtH8+cK+7Tw+NW3EdCe882FLCMV88FmTZ0Wxf9r9S+Hnyy/6fTYkp/rI/\n07bpvpifpUVqAWpkjaTBovcGJK2f8nObpFjh/Un9hX83zrJtvaQDCgZhrpL0JwomiHxOh8YDZtp2\nZ+G1XtJfK5gptUnB5JOcgtlOvyikMShjpY9zhn6fpHEFo3YPStonaYWC6VRjkkYUDGpMFj4i6VOS\nbtXhAy/SzKOMb1jgbcWjmkDV2nbTx8IuAgAAALBUVPLL/nE69MV8kvXFfBnLKPiOPlXxOMXkQFl6\nmpjsLNsmx44OKBhg+R0dWjImY5sUTD55k6S9he0pBTOd/p+CySxxSS/RoZU+M5pr8CWqoOF9QNJj\nCkZ+YpJ6CplKwQ2FVuvQyN85kjYraHhfVjDgMfnn79lGGV8q6ekF3IYSdV13Y9hFAAAAAID5qOSX\n/ayO8ov5MrZbUkvRe62Suqf8fFDB8W4pipGCpUMzbZuaxrikf1UwSeRFRfnNtk0KJp18W8EkFCm4\nv8/jCpYkXalgttOPpvm9w8w17y4r6TUKRozepmBGy/WSJtdAXKjgMU7tkk5TsJ7tTAWzZK5QMIr0\nIkn/LekBTT/K2K9glLFGh48eVmpb8agmTNtuuEldH+KJRwAAAAAqoAxP1sntfFj5XT+bLWS3pHOL\n3muV9MyUn4/2y/4uBV/Mb1bwxfwBBV/M79EiNd8a+cnEuH6SmnXp/vcUjB1MtVnB8p9JeQWrWabe\nuPhkBRM99s6ybd80+R2UNFOBZtsW1aH7ygxI+sPC/zsVzJz5/Rl+7znuwt28pC9I+lNJb5/y/tcU\nLOH5QWG7JDUqmCVzoPDzgwoa3WsVNNLpRhkjmnkEshLbAAAAAABLTM2G0xU9563PvabxPUknFL23\nWYduVSHN78v+5BfzCyX9rYLJCZ85qp1ZAs5M1OnippbnXtO4T9IOSa8o/Hyygqcrf13SRxQ8cUgK\njuWFU37vN3TouM627VWSNhT+H5F0nrnt/YWySMEkks0K7h9b7HZJt+jwG/5Oy7/LWOBfJd1W9N4z\nCkb3DiqYAdMjqaEoZqeC5Uvdkl5etK1VwejhngXc9oxmMHVpzQUvP1cXnFc8KAoAAAAA4bvrrrt0\n1113hV2MxWbql/3v6cgv+1+U9LCCL/TvkfTRwu8Vf9mfadtU9hfzZSyv4F4qWxXcr/XFCiZujEp6\ntYLJHA8reIrysQrqaExBHX68kMZs296uQwNh3ZK26NCMmJm2RST9qqSrFTwqfEDBfV+m3s6kqbDt\nJ4Wyz6nUwZeoglktxcYVDL70KngU9V8ouDfM5KyTpIJ7vfxQR04pOlnBI6B3LtC24ilMh2FZDarN\n1ss/EHYRAAAAUIUuuOACXXDBBc/9fM0114RXmDKoKcOyI0Olv+xLR/HFvFpFFqZOnpJ0UeH/n5zy\nfvFToj6qmc207aIZ3p9tW15BW5jJr0h6voJbsNgDa3MNvpwt6QwFo3g5Se+VdJ2CWSwvU7DsSJLO\nl3RHoZCPKmhkr1Wwzi2uYKrQHygYRSoeZWwopDO+QNvqp5QbqHpHPGYaAAAAwHxU8sv+UX0xx6Ly\nn4VXSeYafFmjoNG8XdK3JP1Y0r8paJR/o2AWzJclDSuYkjPp7ZI+pmCWyXpJ71KwHEk6cpTxNQpG\nCxdq22unbEMJtl55edhFAAAAAIBqdlRfzLH0zTX48jVJa6d5f/LJRTPZpeA52dOZaZQxjG0oAUuy\nAAAAAAAoXan3fFn68vmj/UUvrCYacpoLsmZvAbn749ZrCccnly1vXDpVQt6ZuWMk5XZOd4um6UXu\n+rYV9513blO0Zu7jdMHeZ+280194nx0be9vH5w6SpFidnebEUL8XGI1ZYQf3D9t5K5awwlIZv58/\nsdfMP++24Zyd976+4gfMTe/Eta1zBxUMjnlpDo55/aIu5j/0LpPzzh1Ndd7lNBHz6zFnXo/WtyXt\nNA8MefmvaPDael0J+5M1j+WaZq9PSNLjPV5bj9d6dd6Q8D8WHRia9bGZz2mt946lJLWYsXv7x624\n5qSf9+4+b1LwcWvr7TR7R72+u2+w/Mfy4LB3Tc2X8LnvuNXTPqXjCCMT3rloZMI8B8vv5+NpL829\nI/5njtPbi5+jMb2eMT/N0Yx3XbmvZ9CKi0X983rKPBf9yWnT/f15eu/+zuNW3Fuft9qKe3rI6+N1\n0aX2ub4sT5pGmRkf+2HiscsAAAAAAAAVxOALUOW6bvmzsIsAAAAAAJgHBl+AKrfto38RdhEAAACA\niquJRMr+wvxEaiJlfS1nDL7A1nXdjWEXAQAAAACARYfBF9i23XBT2EUAAAAAAGDR4WlHAAAAAIDQ\nLfNVKVWJlVvlw8wXAAAAAACACmLwBahyWy/9f2EXAQAAAAAwDyw7Aqpc1wf/NOwiAAAAABUXYY1L\n1aFKyofBF9i2Xnl52EVAlcjm8nPGxN7+50p/4X1lzzv99++34mpff7WfaHzACoskGrz03DhJqo1b\nYcODg36SyUYrLpNKmynOXd+T2pq9fX9yT7+dZiQas+JWtySsuMGxjJ13c7K8l8mJdNaObarz8nb6\n46SWeu9Y9o14baM56efdnPTy3tk3Zqd52rpmK653zNufdDZn590sb39WNXntUpKeOThqxzrGUn57\nc+untoQbMsRrvQnWq5q9Y5TK+PXTuaLOijs4nLLT7GjyztfHrEhacbsHx+28Rya881ZDwjtvlNI2\nesa8YxSv8SfUx+NebGvc259YtPzfDr/y5AE79tKzNlhx+8e9etzcWm/FrW3y2jmA6sDgS7GjHdrz\nP3/6IuZFLO9/GJmPrg9dMb8E3GNbiWMpM+9S6r8menRFmUm0/N2xZtOL7Nj8/11rxV3wFm+gYqhn\np9Lf/IwVG3v171txAAAAALAYMfgCAAAAAAgdTzuqPiwFKx9uuAsAAAAAAFBBDL4AVa7rhpvDLgIA\nAAAAYB4YfAGq3LYbPxp2EQAAAAAA88DgC2xd190YdhEAAAAALFGRSKTsL8xPJFLe13LG4Ats2264\nKewiAAAAAACw6DD4AgAAAAAAUEE8ahoAAAAAEDoeNV19WLpVPsx8Aarc1isuDbsIAAAAAIB5YOZL\nsXz+aH+xrMUIkjTTLKXM9sBlBUY47XKWcizLXM6S6r/M+5PLTft21+WXTrPNTDM94cVJyg/2eYH7\ndqqAoXcAACAASURBVFphsQP77LzT//RxL83ffr+dZuar19qxtW/6iBeYy3hx40N23rbahB2aO+rz\n2Ez8fjY07h2jlsaknWYiFrXiUpnp+1Cx0QGzrUtqXL3SimtIeGVsTsbsvHsGxq24xjr/Uj4ykbXi\nNq1ptOIGx9J23rVRrx2tba2z0+w18+8wj/vBcX9/YlHv71cHR1J2mm47Ghj1ytmU9NuG23/6zT4u\n+TdWdNvRcAl5r2z2zpluPUp+/6k1dzwZ9+pbkpriXl0+1jNsxT3P7OOS9FTvmBW3sb3eTjOT865T\nKTOuPu/X4+ZW7/oTq/HT/MZO77qSrPXSfPHKJi+9EtovgPAx+ALb1isvD7sIAAAAAJYolrhUH6qk\nfBguha3rQ1eEXQTgOeeee+5hjxF8+ctfHnaRAAAAAGBaDL4AWHTOPfdc3Xvvvbr//vuVz+d1//33\n65577mEABgAAAEBVYtkRgEVncuDlrLPOkiSdddZZuv/++3X22WeHXDIAAAAcLZ52VH1qWHdUNsx8\nAapc1423hF2EqjQ58NLV1XXYzwAAAABQbRh8Aarctps+FnYRqtIDDzwgSbrmmmsO+xkAAAAAqg2D\nL7B1XXdj2EUAJAX3fDn77LOfG3B54IEHdPbZZ+vcc88NuWQAAAA4WlMfplCuF+YnEinvazlj8AW2\nbTfcFHYRAEnS3Xff/dwAjKTnBl7uvvvukEsGAAAAAEfihrsAFqXJgZZIJKJ8Ph9yaQAAAABgZgy+\nAAhdNpuz4pKvv1qZr15b9vwzX95ixdX+5lVegiXMqYzE6sxIf4Ap1zfsBda3enHDB+28080rrbiR\nvLvf0sDwmBWXrEt4CSYa7bxHJzJljRsc8+JKSbOtMW6n6eY/lsqWNT1JymS9Nry7b9xO030qxsBo\n2oqLlvCYDfe4pzLe+U2Snuzu9wIzKSusJtJk5+3WT0PCnzS9uSVpxT024PXxDa1eepL0bJ953ohH\n7TRXNnh13mKmmSvh7wZPHRix4la3eOfBX+wZsvPe0F5vxWVK2KG6qNeOGmNenyyl77bEva8/bz9t\nrZ3mh+99yoo7a6XXJ9sSXhnb6mJWHIDqwOBLkUjN0a3Ecv/yXsq6Q/uv+RVYOzdTOY94vwIL9xbP\nLAZz390PBDM0va1XXibVFn/gM49RY5sXJ6lmU7MXeOIZXlzW+7IjSeZXZo2+fFzZ3dsPe+/q97/n\niPckKbpuk50/AAAAwsejpqsP980pH+75AlS5rquuCLsIVe3DH7gk7CIAAAAAwKwYfIHtw1ddHnYR\nAAAAAABYdFh2BFvXh64MuwgAAAAAliiWuFSfCNM1yoZDCQAAAAAAUEEMvgAAAAAAAFQQgy9Aleu6\n/sawi1DVrvnYrWEXAQAAAGVQEyn/C/MTiUTK+lrOGHwBqty2G24OuwhV7dqP/2XYRQAAAACAWTH4\nAlvXdTeEXQQAAAAAABYdBl9gu+b6m8IuAgAAAIAlqtxLXJb7MpdyiETK+1rOeNR0kXw+f7S/WNn0\nF9hMpVyQ8peSR5g9ONS6NPe7lONTY54OomaatTE/b3N/YrG6ad+vqW8+4r30d//BS/OVv2vFSVLm\n36634qLnvdNO0z7udQ12kpFEoxc42u/F1UTtvDUxYoVl0ik/TTP/SGT69nEEs4ySNBptsuKak157\nT2Vydt5jY+NW3C92Ze002xrjVlz/aNqKa0j4bWMs5ZVzbatZj5KyOe88HDUX/bv7LUn7ByesuGS8\nhP7jnrMzXv95eOeAnfUx7fVWXH2t/3e7+/cOWnFuPda3+G3DPe7jab//7B70+uRAwjuvl3I+cPvF\nrt4xK8485JKkZ/Z758yaVf51qqkx4RfAsKrO/8yxfcA7Rn/90C47zZ3D3vlgTdI7B28wj0+yhP4I\nIHz0WAAAAAAAgApi5gtQ5bZeeVnYRahqWy//QNhFAAAAQBnwdKLqw9Kt8mHmC1Dluq66IuwiVLWu\nKz4YdhEAAAAAYFbMfIFt65WXh10EoOL++KoP6smDe1WXi+iOW25Va2tr2EUCAAAAsMgx8wW2rg8x\nAwNL35MH9+q+vU/rvzfV64+vYEkTAAAAgPlj5gsATFGXi2jo3+7V6Yk2fer2O8IuDgAAwLJRw/1F\nqg5VUj7MfAGAKe645VZJ0r/ffgdLjgAAAACUBYMvQJXruv7GsItQ1bpuvKWs6U0OuDDwAgAAAKBc\nGHwBqty2G24OuwhVbdtNHwu7CAAAACiDSKT8L8xPTSRS1tdyxj1f5mA/19yMy+fz8yjNwpluv7uu\nu0FdH7rysPcqsT+RmvKPCVbkuC/kyeNo84pE/dh8zk3UDKvA2O5MbaM2duRbp73USnL8tksVrTly\nn9KfOPwR1rF3+zNssj/4rB1be6F3I+tIbZudpn3sMykvrqaEdpTNeHFJf2aRe06oi3lxo4kGO+9E\nbXnzHh43j4+kpsZ6K27dijo7zbFU1kuzxUvzqQOjdt4rmxNW3HT9cSaDY2krrq0xbsWtafHKKEnp\nrHddcduGJLU2Jq24hvZGK261WY+S1DMwbsU9WUKdb17p9bWBlNcvRtJe+5WklQ1enddF/fbWM+q1\ntw2NXjvqN/dbknrL3Naf2e/X4+kbmr28E/7Xioms95nDPeZ1Ub+fndTi9bMXdnj9TJJ+3ucdz0Gz\nDSfMdhkv4XwJIHzMfIHtmutvCrsIwILY8uvnhF0EAAAAAEsIM18AoMjW17ws7CIAAAAsO8t9WUo1\nokrKh5kvAAAAAAAAFcTgC1Dltl55edhFqGpbr7ws7CIAAAAAwKxYdgRUua4PeTdkXa66rmJwCgAA\nYClgiUv1sR9Agzkx8wW2D/MlFwAAAACAkjH4AlvxY6aBpWrbv98bdhEAAAAALCEMvgBAkY9840dh\nFwEAAGDZqYlEyv7C/EQi5X0tZwy+AAAAAAAAVBA33AWqXNd1N3LT3Vl0XX/TvG+6m83m/j97dx4f\nV1X/f/x9Z8lkT5MWWmjZNxFB9i+WssgmIIiooGyCgiiKbErbtBimwTZtQUBANnFBQBAUVARB/SqK\n4AL6/SGb7Ghb6EqzJ7P//kgpzTTL5zb35s7yevKYR8nMJ+ece865NzNnzjl31OcqD/6cMn/6wZjy\nGUr6wYWmuOiZ37EnmuyzxcVqbHFhF38qMmlbXO9ac5K56kZT3DtdxuPO5cx59/WlbHEJ43FnjXGS\npkysM8Wt7kqa05xQHTXFvbaqxxTXn9r43BlOV5/t2MMh+9diTbUVprj2Hls7btFQac57eYetv/Va\n+4bs9dneaWufrL2rm/tGY5UtTpL+saTDFHfEjhNNcWtd1OWKHtt50Z/KmNOsrbRdC19cbWufxhp7\nXcYitu9LJ1fZzokVHQlz3lZLu+xpVkbDpridJ1SZ4lYZr9WSVG/M+9YX3zanac3/4C0aTHHPrrH1\nocnpjA4xRQIoBAy+5MsNfuOTK4bJQS4+SJiT9DxFmcuZy9nfzPtx7GbmeXPGuGHSa21btPHgS5DH\n7Uvv2PQ5iK1ti4cefKmyfXCNnTnEwNaFVyt21uA9jnpCi5W6yTYIFj3PNqACAAAAoDwUwcgCCkV8\nPh8oAQAAAPjD6/1Fyn2PES/QHt5h8AVmrW2Lgi4CMC5aZl8adBEAAAAAlBAGXwAgT7x5ZtBFAAAA\nAFBC2PMFAAAAABA4bg1deBwXG+FjZMx8gVlL89juKINNQ72PrIVZKgAAAAAKHIMvMON2x8Gg3kc2\n1ttMAwAAAIDfWHYEAAAAAAgcq44KD23iHWa+AECeeNvioIsAAAAAoIQw+AIAeVoXXhl0EQAAAACU\nEJYd5XFC4U36vVwu53FJ7JyQfQwtl83a0jTOL3N13OY5ay7mtpXQNDhrnUuSL73Nmmigcw/d5G3r\n6zL24dhJXzLnnP7n70xxkb2PMKeZuv0r5tjISfNNcU6sxpZgf7c5b1mvR5GoPc1syhZnLWe00p53\npMIYaOtvVVX2vJevXGtLs7bWnGZvIm2K60skbQlmbOlJUne/7dgba+x9I5G21XsmazvPX1reZc7b\nes1OZexX7KoK23uQRI+t3tt7jO0oqSZmy/vfLupoy0Zbm7/e2W+K6+6397f+VMYUt1VjlTnNVd22\n+kxlbP1ybY/x2uZDmpPqrNc2aWVnwhS3fVO1Oc1OY/tYRVzcjeWAyfWmuP1cvMf99RLb9XpNv619\npk+xlbGh1t6OxYK7HRUe2sQ7zHwBClx8flvQRSho8fkLgy4CAAAAAIyIwRegwM1bsCjoIhS01jbq\nBwAAAEBhY/AFAAAAAADAR+z5AgB5WmZfGnQRAAAAyg7bixQe2sQ7zHwBgDzx5plBFwEAAABACWHw\nBQAAAAAAwEcsO4Jrf/rzE1pw5dWqrq5STXW1/vTEk1qydJmOPvJw1dXW6b4Hfq7zvnC2Zl58gbbe\nais99qc/66KZs/XcCy/q2sVtOuG4Y7Xo6m/rpu9+T9MP2F977rGH3nnnHXV0duq0T5+sU07+1Pq8\nEomEWr65QBObmvT/nvmXTvrEiTrxY8cFePTj7/I5s4IuQkFraaZ+AAAASgG3NS48Dm3iGQZf4MpP\nH/iFzvnKV/Xw/fdp+gH/o1wup0QioTPO/qKmTZuqj37kKN33wM/1tQvO19ZbbSVJOvTgGfrYR4/V\n2vZ2nf+lcyVJF5//Zd303e/pmy3f0CEHHShJeunlV/Sxk0/Rzx98SHff/j2FQiHFFyzUDtttp3M/\nf5a6urq00x776APv31U77bhDYHUw3uJzm4MuQkGLz50ddBEAAAAAYEQsO4LZ2rXtOvvLX9V555yt\n6Qf8z/rnY7GYbrvxOtXW1CgSGRjPC4cHd61QKKRwOLz+53f/f8OB1F123kkP3H2nHnjwV/rOLbdJ\nkm6+7fvae88PSpLq6up00PQP6bqbbvHl+AAAAAAA8AMzX2B27/0PqKurS6d/5uSNXquvr9cZp3xa\ny956W5KUy+U2KY/37/o+HX7oIbr9rh/rM5/6hDo7u1RdVbX+9WnTpuof//y/TTsAwCjetnhMm+5m\nsrb+X3Xmd5S6/SubnM9w0vfNNcVFPv4NU5xTv7mLzFO2OKfPnqZVJm2LCxnLKEnZjCnMqao3xfX1\n9trzrqgaPUZSKmO/3lpnDofCtrcHoUjUnHc0bMt8s/qYOc3XVvSY4hprbOV0M7U6mc6a4iqj9u+5\nzG1prHc3x/NOd9IU15e0nROSlDYez1vdtutBfZW9v3X3264Hr62y9SFJaqypMMVlsrZ6j7noG1nj\n+6qehK19amLh0YPWsdb7VrX2c/dfa2z1/rwxLhq21+XfV3aZ4iIh+/nTFLNdM58xHk+l8Xi2SFXp\ncFNk8WCFS+GhTbzD4EueTR000Kb+3kiMPT2Xtb0BdJXmEMfzr+eelyRtu83W772+QdxOO2yvZW+9\nJUm64GuzVFNTvf6151540fwm8AO77apbvvdDTZjQoFAopJdffU3v3/V9kqT6ujqtWr3GlE7eAdni\n/Li6GPN21YP86G/FkLcr1k+ZG7/BaV145cbLmYwfhCWpYvvdTHHdl0SVfvaPptjI7oeY8wcAAABQ\nWBh8gVk6PfAt0obLh4Zz/bcWa+utpq3/eV7bIt1+192mfEKhkEIhR9FoVB8/7qO67sabddwxH1E2\nm9Xfn/6HNps0cdMOAAAAAACAALDnC8x23mlHSdIrr77m+nfdzCh67bU3tOsuu0iSbrvxOu204w76\nxCmnq+2qa9TZ1akD/mc/1/kXs/j8hUEXoaDFF1A/AAAApSDkOJ4/MDaO43j6KGcMvsDspBNPUDQa\n1b33/9y3PFauXKXf/uExnXX6qZKkhoYG3XL9tfrlfffonLPO0D/+7xl9/ozTfcu/ELW2LQq6CAWt\ntW1x0EUAAAAAgBEx+AKzraZN05Xzr9C3rrtBDz3y6KDX/vexP+qW7/9QyeTAhn2JRGLQ6/39CaVS\n721+l0oNbHi54YSY5StW6JOnnaHjjj5KXzz7cxvl/8WvXqSvX/hVvW+Xnb06JAAAAAAAfMeeL3Dl\nq+edq+223VqLvnWt2q66Wttts41qamp08IHTddD0AxSfv1CO42jxtdfpsplf1zZbb6Xf/eExPfjw\nr7V8xQpdf9OtOuG4Y/TtG2+W4ziav/gq3f/LB5XNZvX228s18+ILdfyxxwzKs6urS+ddeIn23nNP\ntX5jTkBHjnLSMoY7HQEAAGDTuLjJFMZJma8U8hSDL3DtuGOO1nHHHD3wQ95eLvfe8cON4o/48KF6\n/um/Djpzb7j6St1w9ZWj5vXb3/9B/3rueV0261JmvGDcxOfMCroIAAAAAEoIgy8oaEce9mEdediH\ngy4GAAAAAACbjD1fgALX0swsjJGwRAgAAABAoWPmC1Dg4nNnB12EghafQ/0AAACUgnK/FXEhok28\nw+BLnk3tXLnRQ/wT4AnhhLyfPJXL2WvT3F5BXjSMebs5bmuaflwszeX04Xh8SVPGuGjMRd6286Ji\nhz3MSWZWLzHFhSdtZU4z/fMrTHGRT7aa01Ss2hTmhKP2NDPp0WMkqareFpfsteddVWMKM1+KKirN\nWYeNuw5GXOxOuOOUWlPcc0s6TXGTJ9jPi+5+Wzt29KbMaW7ZaKvPaNh2TlrrXJJWdPSb4qoqwuY0\n+7qTtkDjOeHm70pFxFZHTbUV5jR7EhlT3JaNVaY4N32jttL2FtfaNySpL2k7Hmubu8m7utaapq1v\nWI9FkmqNx7Om394+M7awXa+rI7a8n1nTbc67N501xW1WZf87FTO25S4TbH39g5Ns1+oJLs5HAMFj\n2REA5InPXxh0EQAAAACUEAZfACBPa9uioIsAAABQdkKO9w+MjRPy9lHOyvzwAQAAAAAA/MXgC1Dg\nWAIzsvgC6gcAAABAYWPwBShwLIEZWWvb4qCLAAAAAA+EHMfzB8bGcRxPH+WMwRcAAAAAAAAfMfgC\nAHlammcFXQQAAAAAJSQSdAEAoNDE584OuggAAABlh7sTFSAaxTPMfAEAAAAAAPARM1/y5LLZwU9Y\nNwXKZUePGUjQTWl8SNNbOfNxu2E/nlzOWkdFYJi+NuQSGONx+1M/PvTLMZSzpXnmGNM0xuVfG0Zi\nHdZ2cdyhiipTXP/NcxQ2fEMRPXe+Oe/0z1rMsZGTjOmGesxpKlppi+vrtMXFaux5ZzOmsGg4Zoqr\nqgjb8zaqidnTXN7eb4qLhG3n79vG9CRpYm2FKc5NHVVEbCfbW2tt5WysiZrztnJzPIm08ToTsZUz\nErZ/x9ZYY2uflZ0Jc5rWNo8Zy+mmLlevsZUzFrWnOX2bCaa4l9/pNcWt7Uma896+qdoU155LmeJq\nK+0fAdLGv1VVEXtd/mFpuylu23rb9X+Lats1WJJe6egzxa3os7fPByfa/q5sV2c7nn+vtfWhKW7e\nmwAIHIMvQIFjCczI4nOoHwAAgFLA3YkKEG3iGZYdAQAAAAAA+IjBFwDIE1+wKOgiAAAAACghDL4A\nQJ7WtsVBFwEAAABACWHPFwAAAABA4JgZUHgc9nzxDP0bKHDx+QuDLkJBiy+gfgAAAAAUNgZfgALX\n2sb+IyNhiRAAAACAQseyIwAAAABA4FjiUoBCtIlXmPkCAHlammcGXQQAAAAAJYSZLwCQJz5nVtBF\nGJNMNjdqTNUnW5X+WYvneafvm2uKi575HXui4agtLpe1xWVS9rwzSVNYIhIzxaUyxjJKikVs34+0\nd3ab09xxapMprrs/bYprrKkw52394qwnkTGnadVYY+tD9VXGviYplRn9PJOkymjYnKY1/+5+W2Vu\nNbHKnHdf0lbvm9fb+rokvd3eb4qznhc1Mfvb1mpjrLVvSNLTyzpNcZVR27nrpr+t7LVdi6bU2dpn\nZbctPUl6dUWPKS4k+7fj29ZXmuKW99mu1/0urq0fmlxniouF7d9Rf3Tbiaa4J9/qMMXN2LLBFFdb\nbe9DAILH4Eu+TZ7qZvw9V+kHN8XLOuUvl7O9+YS3nJDtDYEv7WNNcjynjQ6Vl/nYjeUM2T9A2Y/d\nRfsYk6z4yKdNcV3PXabkBSfY0rzuF7bMAQAAxoAVLgWIpWCeYdkRUOBamot7FobfqB8AAAAAhY7B\nF6DAxefODroIBY36AQAAAFDoWHYEAAAAAAgcy44Kj0OjeIaZLwCQJ75gYdBFAAAAAFBCGHwBgDyt\nbYuDLgIAAACAEsKyIwAAAABA4ELcWafw0CaeYeYLUODi81kCMxLqBwAAAEChY/AFKHCtbYuCLkJB\no34AAAAAFDoGXwAAAAAAAHzEni+FLJezxfmwDi9nzdsaJ9nL6UeaQcplPU8jlyu147b2jWHSzGaG\nSNI6trxxf2tpnjnk82Zj+NWxchqnmOIqW643p5l+9o+muMjuh5jTTN3+FXNs5GNzTHHOpG1tCSa6\nzXmrfnNbXG6IPjiEbH/CnHW6utYUV1VVZU7zzVW9tjQrwqa4d7qT5rxrK21vOSoi9u+Flrf3m+IS\nadv1aGqjOWvzsfclbX1Dkjp6U6a4KRMqTXEvLOkw511XXWGK6+qzlVGSDtihyRT35hpbvwy7uN3p\nxFrb8azusp+Th25nO56/LrXVe3/K3jdqYrbz54W3u0xx79+izpy39Xrwye0nmdP8w7J2U1yT8bgb\njXGS9Gqn7bpRH7UdtyTd+8pKU9wTKzpNcT1pW9+Y3FCp/UyRxYOZAYWHW017h/4NAHnic2YFXQQA\nAAAAJYTBFwAAAAAAAB+x7AgocANLYDCcltmXBl0EAAAAeIBbTRcg2sQzzHwBChxLYEZG/QAAAAAo\ndAy+AAAAAAAA+IjBFwDIE1+wKOgiAAAAlJ2Q4/0DY0SDeIbBFwDI09q2OOgiAAAAACghDL4AAAAA\nAAD4iMEXoMCxBGZk1A8AAEBpCDmO5w+MjeM4nj7KWXkf/cZy2e61m/ibOVtcmXc4E2tdSnJCtvHD\nXDZrTNBF+4xTm4dqG+V7v5SKo28OcTyhuiZlu97ZONZ6PLmN+0aobqKyXWvclm4T+FDnQxzPmOIk\ncz9K/udFhQ1reSMfONietwvRM75tCwxHXSRa6XGaLto8WmGLy2RcpGk7nkgkbIrbamKVOevl7f2m\nuHTWft1qrLHV0equhCnOzSVzygRj33ChozdliutNpE1xdVX2vm45dyWpL2nvb1UVtn5UE7PF9afs\n162MsR/VVUbMafYY673WmKa1jJKUTNuO/YNb1tvSc5H3xJjteNYY60eStquznT+9aVt/W9VnO3ck\nqTZq62+xsP076iXdtmvM7k3Vprj/W9Njittls1r96NR9Bj237sNtEbypG1LuY7c+6Xmivzx3ulS8\ndRK0XPfxB3iaYO2Df5XKtD2Y+QIAAAAAAOAj+3A/AJSJluaZQRcBAACg7DAzoACV+R2KvET/BoA8\n8Tmzgi4CAAAAgBLC4AsAAAAAAICPGHwBClxLM7MwRsISIQAAAACFjj1fgAIXnzs76CIUtPgc6gcA\nAKAUcGvoAkSbeIaZLwAAAAAAAD5i8AUA8sQXLAq6CAAAAABKCIMvAJCntW1x0EUAAAAoOyHH+wfG\nxgl5+yhnZX74AAAAAAAA/mLD3TzOJm4olPM5/XJirUs3nJD344zj1ebx+W2Kz23etF8usf42VJ3H\n5y8cclNia73nhhuDHsPQvB/neS5n7XHGcrsqoy22YrsPmOKSK95U2HhOhjfb2hQnSak7LjTFRU+7\nxpymcllbXKzWFpfN2PPOpoyBLtrSmH8mVGeKe2PpanPW1XW2NCfWRs1pLl/bZ4qrq64wp2nV3pM0\nxfUlbHGS1FBTaQvMpk1hXb0u/qIarwmxaNicZEXEdp5bN9i0pidJ6Yzt3E2kjee4pIZqW9/s7LO1\nTyJlvx5Ux2xv2d9st50Tu21mvGZJmlRpO243G6Uu6e43xVWGbW3+VlfCnPduk2pMcRMq7H19+y0b\nTHEvd9jaZ0vjNWszY9sAKAzMfAEK3Dz2HxlRaxv1AwAAUApCjuP5A2PkON4+yhiDLwAAAAAAAD5i\n8AUA8rQ0zwq6CAAAAABKCHu+AECeofaQAQAAgL+4O1HhcWgUzzDzBQAAAAAAwEcMvgAF7vI5LIEZ\nCUuEAAAAABQ6lh0BBW6TbzNdJlgiBAAAUBpCYolLwSnzOxR5iZkvAAAAAAAAPmLwBQDyxOcvDLoI\nAAAAAEoIy47y5HK5QT87Hk+zyk9/JF7n7SZ/a95+HI+b43aTv9d5ey2XzdqDi2D6n6t2tB77OB13\na9uicVnO5HX/lSRlM7a4TMqeZjhqDLQdT7QiZs46+fozCht22Q9vu4c5zdRdF5tjo2dcZwtMdBsT\nrDTnbZbstcdWVJvCcv3G44lUmLPu7emxxfXaz/NozFaf6YztGtOXSJrzbqix5e049v7enzJeC63n\nuYuv2CbU2vpGVUXYnObqroQpLhq2FdTNDTesdVkRsVfS2h5b/5jWVGVLL2v/GzC5wdaPYi6Ox+qN\nrn5TXKWxHSVpcpXt2vFSR58prqna+ndKWtVv+/sXP2A7c5rNT7xmiksa23ynBlsfmuziuAEEj8EX\nAAAAAEDguKtxAaJRPMOyI6DAxRewBGYkLBECAAAAUOgYfAEKXGvb4qCLUNBa2xYFXQQAAAAAGBHL\njgAAAAAAgQsVwb6G5SbIPTFLDTNfgALX0jwz6CKUnZbmWUEXAQAAAEAJYfAFKHDxOf7fdQeDjced\njgAAAACUD5YdAQAAAAACx411ChCN4hlmvgAoaiwRAgAAAFDoGHwBUNRYIgQAAACg0LHsCABQ0DLZ\n3Kgxladdo9RdF3ued+qOC0xxkVNst4R3YjX2zHOjH7ckyU2ambQtLlppTNBYRknKZuyxRqmULc1c\nJGxL0EUZ+1NZU5yl/74rnfa4jpJ95tBcrsoU19GbMqdZE7O9zayJ2donlbHXZTZn6+tu2sfa31Z3\nJc1pWq3oSJjipjbazt0l3bb0JGlqTYUpri9tOyck6T9d/aa4bepsx/Nau72vH7ttkynu8SVrQLk+\n5gAAIABJREFUzWmu7rf1tw9OtF2v2xO29BqS3l9Xg8bdjgoQbeIZBl9GkbO++S2xvIPk5riDvPWZ\nNW/a0cCHdhxLvcfnLxzTjBpf2tyaprUuwy4u/+b2seYdNWcdbZhoiuuc/Gclv/6kKbbiqvvM+QMA\nAABeYNkRAORpbVsUdBEAAAAAlBAGXwAAZeuyyy5TQ0ODHMdRQ0ODvvGNbwRdJAAAypbjwwNj4ziO\np49yxuALgKIWn78w6CKgSF122WWaP3++XnjhBeVyOb3wwgv65je/yQAMAAAAPMfgC4CixhIhbKrr\nr79eS5cu1dSpUyVJU6dO1dKlS3XdddcFXDIAAACUGgZfgAL38KO/1bbv30MNW26tc796kT77hS/p\nsGOO1yO//Z0k6aWXX9F5F16icF2Tjv/Up3X+JZfqxM+cptM+d45ee/0NSdLate2at2CRwnVN+vDR\nx+mJv/x1yLyefe55HXj4UaqfspUOPPwoPff8C+N2nMB46+zsXD/wEo/HJQ0MwHR2dgZYKgAAAJQi\nBl+AAnfsR47UwQdO1z577qlbr79WP/ruzZp5yYX66CdO1u8f+5N22Xknfe2C8yVJl150gW64+ko9\ncM9dmjhxoj5ywickSY2NE3TZrK9Lks449TM68EMHbJRPIpHQoquv1fXfulIP/ewn6uvr1ydP++z4\nHWgBaWmeFXQRMA7q6+u1bNkySdK8efMkScuWLVN9fX2QxQIAoGyFHO8fGCMaxDMMvgBFIBwKD/r5\n6COP0IQJDXro0d9IkiKRjW8bfNThH9Ybb/5Ha9e2D6QRDg8bK0mPP/kXXdFymfbe84M66MDpunrh\nAr362utauXKVl4dSFMZym2kUjwsuuEDTpk1bPwCzbNkyTZs2TRdccEHAJQMAAECpGfpTGICCs+Hu\n4MlkUt3dPaqMxQbF5HLvvX7vzx7QjA8doMbGCab0j/jwoYN+nrz5ZqqpqVFTU+OYyg0UqiuuuEKS\n9P73v3/9v5dddtn65wEAAACvMPgCFIncupGV3t5ezWqZp/q6Op195hmDYq5YuFg33tqkv/z979pi\nyhQ9cM+dm5zfP595Rp//7OnDzpQpFCwRwlhcccUVuuKKK+Q4jjo6OoIuDgAAZS1U5rciLkTlfnto\nLxX2p6pi8u6Ug9EUSefNWY/HGifJHmlnLmcxGKlvONLrb76pM889T798+Nc687RT9exTT2rK5MmD\nwlqaZ+rgGQcqkUjoSxdcrP855Ag99fjvN4obTTab1UO/flS3XH/tphzJuBrzEqEgz10/+q+5nC5W\nnVrT9ON4IhWmsMrZV5mTzPznOdPz4W0+YE4zffdMU1z0dPs5levvNsU5tU3mNBWttMUlemxxVXX2\nvNNJW5yxzSVJuYwprDIaNcV1p8OjB62TSNnyVs875jQj9ZNMcemErS5D1fb9izp6U6a4uipbXUr2\nv9HL1tj6+oTaKnPe1m0FQmH7tb2x0ZZ/X9LWN2JRe3+ridliY2HbtX3Xxmpz3i+195nimmLef6x4\nq9fW1xsq7Xn/tzthinuzyxYnSf99p9cUZ62jugpbe2dK6X0wUAbY8wUoEjtst51uvu4abb/ttvrb\nU0+rqXH45UCxWEwL5rXorbff1s23/cB1Xjfc/F3F5zarrs7FByugiH3jwvOCLgIAAABKGIMvQBGp\nqqrS/Xffoddef0PnXfS1EWNrqge+1erpHf0b7Ed/97/r///+XzyoA/bfVzvvtKMkKZWyfRtaSuIL\nFgZdBIyzyy/+ctBFAACg7HG3owJEg3iGwRegCCSTSaXTaUnSNltvrXtu/77u+PE9+s4t35X03gBJ\nOv3eVOcf/fgehUIhHX/M0YNistnsoLRfefU1PfjwI5IGBmGWLF2m+ro6/full/W3p57WLd9zP3Om\n2LW2LQ66CAAAAABKCHu+AAXu4Ud/oz898Rf19vXqRz++R2ec8mkddujBWvTNebpk9ly9s7Zdb/zn\nP3IcR5fPX6Cf/+ohrVixUm/+97/6yY9+oINnHKj29g5dc8ONkqSrrr1ef/nb3+U4jlauXKXf/P4P\nuu6qRXrm2Wd10ulnqafnvZkyjuPokV/8LKhDBwAAAICSwOALUOCO/chRWvLy8xs9f/H5X9bF57+3\nVOL7N90wbBoTJjRo3mXNmndZ84h5dS5fsukFDUh8/sKxb7oLAACAwIVU3stSClKR3DCmGLDsCEBR\na21bFHQRAAAAAGBEDL4AAMrevGtuDLoIAAAAKGEMvgBAnpbmmUEXAePsim/fFHQRAAAoe9ztqPA4\nIcfTRzlj8AUA8sTnsIcMAAAAAO+w4a5XimQjIsfrchbJcReDXC4XdBHKU5B92Je8jWkGmLUvIhXm\n0FBN49DPT5o26OfkmrcUDo3+HUW4cYo579SdF5ljI5827meUTprTVCRmizMctyQplbDnHQrb4pK9\nnqfZ3dNnTNDFdTibMoWF6iba0zSqnTB0H86XdXE40bDtBO7otR23JDVUR21xNZWmuHQma857q4nV\nprgla+z9bW2P7dgzxor3/D2ZpPqJtnPCzbevWeP7k1fW2utyYrXtmt1vbPNt6mx9SJKeXd1tiuvu\nT5vTrInZPlLVRG3ts6WxfjartJ1jAAoDM18AFLWW5llBFwEAAAAARsTMFwBFjdtMAwAAlIYQs+oL\nD23iGWa+AADKHjOoAAAA4CcGXwAgT3z+wqCLgHHGDCoAAAD4icEXAMjT2mbc6BQAAACeGcdbTU+V\ndKOkL0m6XdJuw8SdK6lF0uWSrjC+VinpJkmrJS2R9GX3NVFAxqdBgmoPa1sdIel3m/B7gzD4AgAA\nAAAoF46kX0q6X9LNkhZKelBS/u2oTpB0pqRWSfMk7SzpbMNrl0r6vaSDJd0n6QZJB/pzKCUhyPaw\ntNXmGhjQ2XDsZJPamMEXAEWNJUIAAABw4QhJu0p6bN3PL0pKSfp4XtxMSb/e4OefS7rI8NoKDXwg\nf0HSJZL+IwZfRhJke4zWVo6kr2hgNs6G03Y2qY0ZfAFQ1FgiBAAAUBpCjuP5YwgHSnpdUnqD516W\ndNgGP1dI2lfSvzd47hUNLIfZbITXJkm6NS+/FZL+6742CoPjOJ4+hhBke4zWVudK+mFe2Sy/N6RN\nGXxpklS9Cb8HAEBBYgYVAABlY4qkzrznOiRN2+DnJknRdc+/q33dvzuO8NqGaUgDe4NMkPSLMZS3\n1BVKe+S/tr8G9nR5Y5Tym9vYOvjyZ0nZdY8nJfXmpfEHSYcMk37+ayNtpjPerwHARrjtcPlhBhUA\nAGUjrYFlLRvK/1z87kyH1BAxmRFey5/a8QUNLEvpc1/MslEo7bHhaw2Sjpb0s5EKbkhzkIghsX0k\nPSrpgnU/L817/TxJe0jKDfG7+a+9u5nOLA3sFvxHSQ9pYLQqN46v7aT3GmmwXHbwz45xfCo31OEP\nYeipVuMmZy0nxp+btgmyH/nR18faL4f6fWv+Q/xufM6ssZVpDHmPOc3s0Je2jWTy/8aNIJS/39kw\nrNfLTP7MzZHyNqbZ2+UizWGOp6dj0I/RyhpTcsk3nlV4hNspbCi8zQdMcZKU/oltEDByymJzmk6y\nd/Qgyd6PJmxhztvc7pFKe5qRmC3OetwuzotIbaMpLp3sN6dZU2vrc1a9PcbjlhSpsNVlVYXxeiCp\no6vHFmi8xkSjUXPeS9bYjr0/lR09aJ2Galv+1vdaWRd/AuqrLG/ZpYYKW5z9qKXdm2z98q8r8r+4\nHl5/xlaCzSttdf5ap/1zbVOVLc1o2L5AoDFmq/c3umzXA2vcLsZ6LCZe7Inx3+ef1pIXnh4p5C1J\nM/KemyDpzQ1+XqOBD/MNeTHSwPKS4V5btsFzu2tg0OBhS7kLlvE9znD+uGyN/rhszUghhdAe+a8d\nImmOpOZ1P4fXPXo1MCPmOUOaG7FcKS6S9C9JXRpYO7WhGRqYhjPU1Xao14bbTOfEdXHj9drHZRvF\nAgAAAAAUia1321db77bv+p+f/Okt+SF/kDQ777ldNLC3x7tyGvgMudMGz71PA58nl4/w2sp1P28p\n6XBJ124QE9HGe4eUvEOmTtQhUyeu//mKp/KHFAJvj6Fee1gDy4nedea6x4b70Lhu49EGF8MaWF/1\nNUkvSbpHA+upJGmipOkaepRnuNdG2kxnugYGa8brNQAloKV5ZtBFAAAAQPH4qwbuTvPhdT+/TwN7\nmv5K0jc1MJtBkm6TdPwGv3espO8bXmuQ9A1Jj6xLezcNzKBwMbWzrATZHta2cjR4CdMmtfFoM18y\nkj66LqPTJN0kaYEG7mt9kaQrhvm94V4bajOddg1shBPS4E1y/Hotf/MeAEUsPid/oBwAAAAYVk7S\nCZJaNLBKYn9Jx2lgScnRkv4p6VkN3Ep4Gw0MAPRpYIDg6nVpDPdaSAMbrx4s6Ysb5PljSd0+HlMx\nC6o9eiX9fpjX8tsqp/e2UgmPkOaIbWxboDiQ0Z0aGMm5QgOzYO6SlNwg5t2RoC+M8Npwm+k44/wa\nAADrtXz9wqCLAABA2RvmVsR+eF3SWev+/8YNnt83L+6qEdIY6rWcpEM3uVSFaHzaJKj2GOm1Dd2+\n7iENTFCx/t4g1sGXd/1c0vUauN/19Rs8H5P0m3WvbyfpumFee0ZDb6bzX0lvSzponF57c+jDk+IL\n3rvjxaEHHahDDz54uFAAJSq+YCEzaspM/NKLgy4CAACuPfbYY3rssceCLgYAA7eDLxENzHrZP+/5\nNzSwAc2fhvidDV+bro0303mfBkaRlozTa/mb9wwSn8MtZoFy19q2mMEXAABQ8A499FAdeuih63+e\nN29ecIUBMKLRluDsJ+mcDeK+Kmn+JuTz7lylv2jjzXRqJD2ooTfa8eO16nWvAQAAAAAKRMjx/oEx\nchxvH2VstJkvUzSwx8vpkh6V9DdJv9yEfHIb/Ju/mc5HNbApjsbpteM2eA1AkWOJEAAAAIBCN9rg\ny4OStjCks52L14bbTCeI1wAUOZYIAQAAACh0bvd8KX3Z7OCfw9abI+VGD5E0+PbgoyVpTLNYpm8F\neTzFkLe5D7kLNSuWflQM/Ohv5jSN16yQi8u/tZzWuJAPN52rqrXHDlFH8bbFijfPHPyksZzRhkZz\n1snrLjHFVVxw9ehB66Tvnjl60DqRT33TFOfUGI+pZ605b4XCtjjzNVNSJjl6jCRVGvuHi7zTPR22\nwGzanGZX/nuQ4USitrhEjznvcGWlKa6vP2FOc7PGOlNcTyJjTtNr6bQ970TKdk2oiNji3CyHSGds\nfXNVX/5NPodWGzWej5Lak7Y+vE2drQ9JUsz4/rrSGBcN2yvzzc5+U1xdhf3v5FtdtvNir8m2c6LL\nWOcTY6X3UY53owWIzwie4bbLAJCnJf9DOEpe68Irgy4CAAAAShiDLwCQh2VMAAAAALxUenPVAAAA\nAABFJ8QSl8Ljx3LxMkVNAihqLBECAAAAUOgYfAFQ1FgiBAAAAKDQsewIAFD2WmZfGnQRAAAoe8wM\nKEAsBfMM/RsA8sQXLAy6CBhnG91mGgAAAPAQgy8AkKe1bXHQRQAAAABQQhh8AQAAAAAA8BF7vgAo\navEFC9l0F0Ujk82Z4iKnLFb6bu+XQqV/epkt/5PbTHFOVb0980iFLc7N2vJQ1BaXSdviwi7eFhnL\nGaucYE6yMmr7TiyZzpri+hx73olk0hZorUtJa3tSprjGGls7ru4yllFSJGxrn0gkbE6zImJrH8eH\n/RGsdZQ0XmNW99vaRpKmVNnO3YqQrV+6sTZhK+fbvfa+sVmVrS4nG49bkiZU2PpRV9J2/hw1rdEU\nN6k+ZoorJmwvUoBoFM8w+JLHiRjfyG30i/Y/3vY0S6yjB3k85Zq3C7mc7Q2bE7K9+bSmN9Y0W9sW\nKz63eeM0jfU+bCnzft+PN9OuWI/HWu8hF9csY97mOnKTt5Gb/ua5WK05tPLsb5jiujf7rlJ325a/\nRU9hvxoAAIBCx7IjAEDZi89nk2UAAAD4h8EXAMjT0jwr6CJgnLW2LQq6CAAAlL2Q43j+wBg5jreP\nMsbgCwDkic9lDxkAAAAA3mHwBQAAAAAAwEdsuAugqLFECAAAoDSU96KUAmW8MQZGR00CKGosEQIA\nAABQ6Bh8AQCUPWZQAQAAwE8MvgBAHm47XH6YQQUAQPC421EB4m5HnmHwBQDycNthAAAAAF5iw908\nuVwu/wnrb9rCHBfjXea8fVDmo5JlydjfzL3SRf8NNs2s6flcsYxVe33NchG60fXTi7ytW+8VyzXL\nWMzYMWeYk8wsfckUF562iznN9L3NprjoadeY08wle0xxTuM0c5pK9trirH97YzX2vNMpU1iid5hr\nzBAyldW2rDPGNNMJc97mOgrb3zqm0xlT3Kr2pCkuFIma845FbMfT3Wevo/6ULc1wyHaiJ9P2vmEV\nMea9dW3MnGZtJGyKe35tpznNrPHvRdoYt319lTnvN7r6TXE1UVv/laTlfbbrwT6Tak1xf3i7wxS3\nXbJanzZFAigERfJpAgCGFl/AEiEAAIBS4PUKl2L5bqag0SCeYfAFQFFrbVscdBEAAAAAYEQMvgAA\nyh6bLAMAAMBPDL4AQJ6W5plBFwHjjE2WAQAA4Cc23AWAPPE5s4IuAgAAQNlhZkABKvN9WrxE/wYA\nAAAAAPARgy8AihpLhAAAAAAUOpYdAShq8Tmzgy4CAAAAPBBiiUvhCTFfwyvUJACg7LU0s88PAAAA\n/MPMlzxO/mircfQ1l8ttWvojpWmO9J6bcmJk1r7hB1ft6HFf92VzLhdpmo/dCW/0VHx+m+Jzm815\njQfv69379rHWuZtzwo9r0VD5x+eOzwwqJ7RxfxtKLlZtTjNkjE08+7jCodHrM7LbDHPeqbsuNsdG\nP3u9LbBrlTlNxWpscRXG+kz2ep93KmlO0tzd+7ttcbEqc95mqYSLYNsB1TXUm+KiYfv1oCeRMcVV\nV8bMaVZV2M7fRMqWtzU9SWrvTZniJlZGTXFLe+z9sjps+652i+oKc5ovt9vOtVjElvezq4znhGS6\nDkrSAdvZ+qUkPf52hynuja5+U1xN1N43ABQPZr4AQJ55C7jtMAAAwHhzfHhgjBzH20cZY/AFAAAA\nAADARwy+AChq8fkLgy4CAAAAAIyIwRcARa21jSVCAAAApSDkeP/AGLHsyDMMvgAAyh4zqAAAAOAn\nBl8AIM/lc7jtcLlhBhUAAAD8xK2mASBPod1mGgAAoBw4Zb4spSDRJp5h5gsAAAAAAICPGHwBUNRa\nmlkiBAAAAKCwsewIQFGLz50ddBGAopHJ5kaNqTrtGqXuutjzvFM/+qopLnJymzlNR8ap0P3dtrjq\nBnPe6uu0xdVMNCeZ6rWVs6Gp0RTX0d1nzlv9XaawLaZuaU7y7bdXmuK6+9OmuJpY2Jy39Q4nvQlb\n3pKUTGdNcZbzTJKaau3HY827LmpL8/CpE8x5W/309dXm2IaY7SNIZdj2PfE+k2rNeb/W2W+Ku/6f\nS8xpfnTHSaa4ZT1JU1y18bgrQ3yPDhQTBl/y5LJ5f9ysa9xytj+0OWNc0IqjlBjNRv15PAW8PrRY\nzjUz6/F4fM1yw48696UVcxufFy3NM4d43vs+7E+/tKVZMXGKKa7rsA6lfjDPFBv93OWmOAAALBhO\nKjwOg3yeoSYBIA+3HS4/ce5wBQAAAB8x+AIAebjtMAAAAAAvsewIAAAAABA4bjVdgGgTzzDzBUBR\nY4kQAAAAgELH4AuAoubHEiFuXw0AAADASwy+AEAebl9dfuIL2OcHAICghRzvHxgjx/H2UcYYfAEA\nlL3WtsVBFwEAAAAljMEXAAAAAAAAH3G3IwAAAABA4JgZUIDKfKmQlxh8yeOENvGUN3bKXC7nIklj\nmtmsOU1rObnNW4kog3a8fM6sMfVX6zkZ+Dnh8TVmk691HvDjOugq/+He2jmDnzdfg9Mpe+Zh459d\nF3WUX+5h1U4whcVO/II56/SLfzHFRXb9kD3Ne5vNsZETLzfFObVNtgRTCXPe5npP9NjTjNWYwjpW\nrzTFOTXG45YUrptoint7bZ85Taeq3hRnfR/T46J5rKpj3r8V9mOPiVTGdk3YvCpqivu/1d3mvNMu\nLkdWHYm0Ka7LeB3OurhmrjXm3VBtq0tJ+uPSdlPczk3Vprglxs5eWcVHOaCYMLgIoKjF59o/qAEA\nAABAEBguBQCUPW4vDgBA8AKfaYyNBThbutRQkwCAssftxQEAAOAnBl8AAAAAAAB8xOALAIxRJpPR\nmjXvFHya7+rr6/MtbQAAAAAbY/AFQFGLz28LNP9fPvSwdt9/un7+q18NG/PZc76o2+/88fqfn33u\neU0/7CjVTZ6m6Ycdpeeef8GUZkdHhy74+kzd9N3v6Zwvf1V/+vMT61974cV/a87lrbruxlt01rnn\n6S9/+/ug3z3j7HMVrmtSuK5J03Z+v2pqbHdcAAAAGC8hHx4YI8fx9lHG2HAXQFGbt2BRYHc86ujo\n0If2318rV62So6H/mPzkp/frscef0BEfPlSSlEgktPBb1+qGby1WT2+vLvj6LH3i1DP08jP/GDXN\nz33pKzr2I0fpnLM+q3feWasP7PchPf/0X9XYOEGnfu4c/f7hB9XYOEH/+e9/deTxJ65P8+3ly9XU\n1KSnHv+DJGnzzSapsrLSp1oBAAAAkI/BQADYRA0NDdpss0mqq60d8vWXX3lVfX192mH7bdc/9/gT\nf9E3L5+rvffaUwcdOF3XLFqgV197XStXrhoxzVdefU0/f/AhHX3k4ZKkpqZG7b7b+/X9H90hSXr1\n9Tf0ztq1kqQJDQ1au7Z9/e/eeOv3FItVKBwOae89P6hpU6d6VgelIj5/YdBFAAAAQAlj8AUA8jzy\n29/p+E99WnfcfY923Wt/ferUz+ryby7QD++4S1vtvJspjUQiobt+cq/OOuO0Qc8fcdih2m7bbdf/\nPHnzzVVTU6OmpsYR03viL39VVVXVoIGTnXfaQb//4+OSpBOP/6jOPPc8rV69Rldee70WXhFfH7dk\n6VLdd//Ptff0Q3TkcR9Xe3uH6RjKSWvboqCLAABA2fN6hUuZr3LxBg3iGZYdAUCeww45WGd+4Tzt\ns9deuv/uO/TVr83UnnvsrhM/dryi0agpjWtvuEkXfvm8UeP++f+e0dmfPV2RyMiX4+UrVqqhvn7Q\ncw31DVq6bJkk6aZvX61jP3GSttvtg5pz6SU6+8wz1sf98NabJEm//s1v9fkvna9zz79Q9911u+k4\ngJFksjlTXOXJbUrf6/3ywPQD80xx0dOusSWY7LNnXmHcNynlIs1s2hTm1DSZ4nKJXnPW6bDxLWHI\n/tYxl7P1D+ub8cYa2/V3IElbmmt7kuY0K6NhU1wqYzvuSXX2ukyks6a47pQtLmttG0lJ43m+NmHr\nv5IUDdu+/92mNmZO02pipa0fTa2x572mP2WKW9Vni0sb6zxtb0YABYDBlzz5bxSsf7xzWdsfOzej\nfeY3LT4w5+1HGct1RLTE6tJ67khj7+tj+v0hfrciGlVNTbU+fPAM7brLzjr+2KN1yey52mLyZJ1y\n0ieHPN9zudz65x/89SPaf9991Ng4YaBsuYE3uvnlzGaz+tWvH9Et11875DHkNji2cCSsaDQyKC6T\nzQzkm8tp9Zo12mWnnbX7brvpG63zVVlZqYvP//Kg9I456kjd8b1bdPQJn1Rfb68P+754f93IhWwf\ndjw5f/LSMKdo/dA6RB4jBLpI0xjnGCe7hu0fcCum7WiK671hmjKrl46e9aRp5rwBAACKCYMvAIpa\nS/Ms39J+d8Pb87/4BT37/AuaceQx+toF52th6+Uj/t4dP/6JfvXIo+t/TiaTeuKvf9Mt3/uBnvz9\nb9Y/f8PN31V8brPq6upGLcsWUyaro7Nz0HPt7R2aNnVLSdLHTjpF37/5O9pnrz215x6767wLL9Hx\nxxytHXfYftDvHH7oIaqpqVFnVxeb7gIAgIISKtcvYQsZbeIZ9nwBUNTic2f7nsfyFSt023eu04P3\n3a3bfvgj3XnPvSPG33vnD9W7+u31j4MPnK7vfue6QQMv9//iQR2w/77aeaeBmQOp1MhTkQ89aIa6\nurq1Zs0765976eVXdMhBM7Ry5So998KL2m3X90mSzjnrs9plp530zLPPbZRONptVQ32dNps0yXz8\nAAAAAMaGwRcAGEIul1M2N7CM6Lbb71Amk9HRRx6hM079tLp7egbFZjKZUZc+bfj6o7/7Xy1Zukz1\ndXX690sv629PPa1bvveDEdOcuuWWOvrIw/XLh38tSVq7tl3/eu55nXryp7TZZpM0dcst9K/nnn+v\n7NmsPrj7B/TKq6/puhtvUX9//8Cx/PBHuuDLX3K1LKwctDTPDLoIAAAAKGEsOwKAPA/88ldavmKl\n7vnp/dphu231n//8V6effa4+csTh6u9P6KzTTpEkdXd36+77fqa33l6uX/zqYe31wT20954fHDLN\ndwc7/t+/ntVJp5+lng0GcBzH0SO/+NkQaT40KM3bb71Zl17Wou7uHj37/Au68/u3rr/70S/uvVuL\nr75W++y9l1avWaP43NnacYft9dQ//qlrbviOfnjnXTrpEx/X1C231BfP/pw/ewwVsfgc/2dQAQCA\nkfHVUAEKMV/DK/TvwXLZ7rWDnghyw10zNx+ivM6/xDaJDVSJ1eV4brg7JiVW72a+1LkPG3WP54a7\n+QK9Xrs5HmM5c8a/U9mMi7xtUol+hQ1v3vzacNd8tyM3rHc7cvOm1bjZsVMz8q3p3+XmbkfmjaNd\n3O3IzHiuNdVWuEgyuLsdWe8CtsUE+75b1rsdHbat7U5Yftzt6NUO+529wiFb+/hxt6OIMe8g73bU\nnrTdOWqnzWr1/c/sPei5dX2/CN6IDCl36yP/9jzRc49+n1S8dRK0XHrR6HfvdCMy6yapTNuDYSwA\nAAAAAAAfMfgCoKjF5y8MuggAAADwQMhxPH9gjBzH20cZY/AFQFFrbVsUdBEAAAAAYES86UQGAAAg\nAElEQVQMvgAAyl58ATOoAAAA4B/udjQK80ag1ilUxbIpZDHkXc6KoL8FuomuH0pts2xfzl1jmr5k\nPbZEW9sWKz63efCTXl//XXGRpjl/Y5x1k2PJXEfRqhpTXOLlp80bcUZ23McUJ0mpuy42xUXPuM6c\npsLGesq42MDYuKGreSPddMKet7Ufubrrhbff8b3TZT+e6krb5sWxiL2MjTW2NK16ErZNVSXJuOet\n/rmyyxR36s6bm/N+enW3KW6LavuGyG8YN+etbKgyxb3Sad/sd8aUBlNch3HTW0l6o6vfFFcZtvW3\n3RptG3pvVWfftBlA8Bh8AQAAAAAEzjj+jvHEl+2eYdkRAAAAAACAjxh8AVDUWppnBV0EAAAAABgR\ny44AFLX43NlBFwEAAAAeYIFLAXK11xdGQk0CAMoeM6gAAADgJwZfAABljxlUAAAA8BPLjgAAAAAA\ngQtxZ53CQ5t4hpkvAAAAAAAAPmLwBUBRi89fGHQRAAAAAGBELDsab0UybcsxljOXy5VUmtb03DAf\njx99w0Wafhz7eGhtW6R5lzVv9Hyg9W7lQ/u4OX8wioDPSTNzX7d+3+KiD4W8PZ6KLXcwxybfek1h\nQ/7hKdub00zdcYE5NvLJVlOcU9NoTlPpsC2uusqYoJu2NOad6DMnGa2tt2VtPC+S6aw977AtzY6u\nXnOaHcb+3p+ylbMmZqxzSZGw7fydXFNhilvak7DnbWyfNemMOc26SttHkG5jmk0x+0eat3uTprgJ\nFfb26UikTXH9EVs7RnpsdR6ripriikmRvh0tbTSKZ5j5AgAoe8ygAgAAgJ8YfAEAlL3WtkVBFwEA\nAAAljGVHAAAAAIDAMTOgALHsyDP0bwAAAAAAAB8x+AKgqF0+Z1bQRQAAAACAETH4AqCoxedufKcj\nAAAAACgk7PkCACh7Lc3MoAIAIGgO+4sUnhDzNbxCTQIAyl587uygiwAAAIASxuALAAAAAACAj1h2\nBAAAilImmxs1pvKM65S64wLP807/rMUUFz39Ws/zVjppDHQxfT+VsKVYVWdPMp21BWZStjgXyxEq\nIhWmuEhFpTnN7j5bHVXFbHlPmeAi7/60KW5iZdQUZzh11ptUafu4sHmVLW9JeidhO563e219vSJk\n7xvb1dnq/Y2ufnOak6uN/c3YhztTGVNcT9oWV0yYGVCAWArmGQZf8mzqOsNczvZXLOh1jNZyWgV9\nPFZBlrNY6shrbvraWOooPr9tyE13rWkWy7lr5fVxF0veQXLTN/w5dmuaxnK66evW88e4XtxN7USr\na01xXUf3KXX3Yluap8x0UQIAAAA7BhcBFLV5CxYFXQQAAAAAGBGDLwCAshefvzDoIgAAUPYcx/H8\ngTFyHG8fZYzBFwBA2WttYwYVAAAA/MPgCwAAAAAAgI/YcBcAAAAAELgyX5VSmBzma3iFmgRQ1C6f\nMyvoIgAAAADAiBh8AVDUhrrNNAAAAAAUEgZfAABlr6WZGVQAAADwD3u+AADKXnzu7KCLAABA2WNm\nQAEKsRGPVxh8yZPL5Qb97PW94fPTLyd+HHs516eFm/4bZF36kTfnLsbM2uZu+pofaarw3xT5c/7Y\n0oxuMdWcYuo3t9vSPOpMe5p3XmSOjZ5+rS0wFLbFuan3cNSWZLLPnqaxH2/WVG+K60tmzFmvWttl\nimtqqDWn2Wk89L7+hCluebv9Y2ZjTYUpLm1s810bq815v9HZb4rrTNnb5zVjZU6psh13ezJtzvs/\nXbbjibi4Dk+fbOvDU6ptx3Pbv5eb4pIZ3psAxYTBRQAAAAAAAB8x+AKgqMXnLwy6CAAAAPCA4zie\nPzBGTsjbRxkr76MHUPRa2xYFXQQAAAAAGBGDLwCAsscMKgAAAPiJwRcAQNljBhUAAMFzHO8fGCMa\nxDMMvgAAAAAAAPiIwRcAAAAAAAAfRYIuAACMRUvzrKCLAAAAAA8wM6AAhWgVr1CTAIpafO7soIsA\nAAAAACNi5ssocrmc1wnaY4tgQyI39eMUwfG4YT32II/b8/5bRMzHbo0rsf7r5lrkGL/x8KW/5bK2\nOMf+XcJQ5+Tlc2Zt9Lz1eFwdt7UfFcvfCq/zdnPcIdtbmNCeh9mTDIVNcYmnHlU4NPqxR/Y5ypy3\nJKXuvMgUFz3j27YEY7Uucje2ZaLbnmRlnSmsvTdlikt1rbXnXVFlCnuns9ecZCRaYYqrq7HlHQnb\nr1tZj6+vv1/Wbo59qzdpitu8MmpOszpiO9dW99v6xgGT6815/3utrc2XdifMadZGbW35wBurTXFV\nxvoJl9p7E6DEMfgCACh78bnNQRcBAICyV2pf1pYE2sQzLDsCAAAAAADwEYMvAAAAAAAAPmLwBUBR\ni89fGHQRAAAAAGBEDL4AKGqtbYuCLgIAAAA84PjwwBg5IW8fZay8jx4AAEnx+W1BFwEAAAAljMEX\nAEDZm7eAGVQAAADwD7eaBgAAAAAELsQ6ocLDraY9w8wXAAAAAAAAHzH4AqCotTTPCroIAAAAADAi\nlh15JZezxRXJtK2c9XgCTtMx1qcfeVsFmXc5iM+dPT4ZuWlHP87zAK8x5j5sriM3den9dwTDHc9G\nzwfZjuXKTZ2Hwra4SIXnaVbsuIcprv/BWxQO2fpw9KNfMMVJUuqOC21pnnObOU2l+mxx1nqXFIlV\n2bJOpWwJRivNeSsUNYVVV9riJKm3r98UF66sNsWlM1lz3n1JW9yS7oQprj5qb8ft6mz1vqrf2I6S\nKoxrS5IZW3o/eXGFOe/dJtea4qbU2K8dyazt2l5jrPddJtj60Nb1Ls6JImF9b49xZPw7htFRkwCA\nsscMKgAAAPiJwRcAQNkbtxlUAAAAKEssOwIAAAAABI5FRwWIpWCeYeYLAAAAAACAjxh8AVDU4vMX\nBl0EAAAAABgRgy8Ailpr26KgiwAAAAAPhBzvHxgjJ+Tto4yV99EDACBmUAEAAMBfDL4AAMoeM6gA\nAADgJwZfAAAAAAAAfMStpktBLmePDfJWYW7KaU3S8xRR0IbrQ0M9X2q3xbMej/k8c3H2BHmi+XDd\n8Lwu3fQ1c95Ze5rleiG01lE6YU8zZHxblOw3hUVee9Gcdc/nj1Q4NPp3YpW3PWpOM3XbOebY6Jnf\nsQVW1prTTPf12AKzGVtcNGbOW9m0Kay3z5i3JCccNcXljNeOSNj+HWgqY0uzu9923LXRsDnvl9b2\nmuImVNo/VrzZbjuHptTZ2rwyaq/LiPE6/E7CVpeSlDS2z66N1aa47pStX/an7f23WDil9v6tFLBx\njmeY+QKgqLU0zwy6CAAAAAAwIgZfABS1+JzZQRcBAAIxY8YMOY6z/nHQQQcFXSQAADAMBl8AAGWv\npXlW0EUAXJkxY4aeeOIJPfXUU8rlcnrqqaf05z//mQEYAEXN8eGBMeJW055hzxcAQNmLz2UGFYrL\nuwMv++67ryRp33331VNPPaX99tsv4JIBAIChlPfQEwAAQJF6d+AlHo8P+hkAABQeBl8AAACK0NNP\nPy1Jmjdv3qCfAaBYhRzvHxgjx/H2UcYYfAFQ1OILFgZdBAAYdzNmzNB+++23fsDl6aef1n777acZ\nM2YEXDIAADAUBl8AFLXWtsVBFwEAxt3jjz++fgBG0vqBl8cffzzgkgEAgKEw+AIAKHvx+cygQvF5\n/PHHlcvlJEm5XI6BFwBFz/HhP4wRdzvyDHc7AgCUvda2RdzxCMFyHGXWDaSMJHrObUrddo7n2adu\n/4opLnLCXHuiFdW2uEjUFObUTLTnHQrb4qoazEnm0glTXEfv6O3o1oSaClPcbpNqTHH/t7zLnPek\nOlve6az9uHc1lvO/XbY6nz51gjnvFX1JU9zf/73UnOaFJ+1vivv2s2+Z07SIVdrOHQCFgcGXPM6m\nbgLkw+ZBOcObMElyQkUygljmGyzBA8P0oTGdA6XWL0vteMbRRtf/IOvSMX5wDJj575QvdWk773OO\ncQBAsrd5NGYKC38hbs662liXPamUMh2rBj33jVlf3+g5SQo3bGbOHwAA+IvBFwAAgCJ2efPMoIsA\nAJ7gO6QCxC2jPFMkUyYAYGiXz5kVdBEAAAAAYEQMvgAoavG5zUEXAQAAAABGxOALAKDsMYMKAAAA\nfmLPFwBA2WMGFQAAwWN7kQLERjyeYeYLAABAEZvXtjjoIgAAgFEw+AIAAFDErlh0VdBFAAAAo2Dw\nBUBRi89vC7oIAAAA8IDjw38YIyfk7aOMlffRAyh68xYsCroIAAAAADAiNtzNk8vlgi7Ce4xlKaAS\ne8NNG5TrBlDWOnJRP44xtqDOkXXGVCYf6rIolNp5Nsbjic9fqPjc2R4WaBhBnj8BtqMv141c1hbX\nscqeZkWlLS4ctcXFqu15G0XDQ39vFhqifVNP/sKW5vQTzPmnfzHfHBs52TYz0QkZ6zPVZ85b1jRj\naXuaqaQpzInE7GkatXf2mOKeX23L+9RdJ5vzfnJ5pymuP2M8JyW92dlvikukbGk+vcJWRmn4cyjf\njN22Mqd5/XNvmeJO2n6SKe5J4/FsXsVHOaCYMPMFAFD2WtuYQQUAQNAcx/sHxijkePsoYwy+AAAA\nFLGW2ZcGXQQAADAKBl8AAACKWLx5ZtBFAAAAo2ChIICi1tI8K+giAAAAwAMsEypAZX6HIi9RkwCK\n2rhskgoAAAAAY8DgCwCg7DGDCgAAAH5i2REAoOwxgwoAgOCFxLqjgsNaMM8w8wUAAKCIxdsWB10E\nAAAwCgZfAAAAiljrwiuDLgIAABgFy47y5XKDf7ZOs8r/veG4mbbldd5u8w9KMZQxaD7UUc5NP/KY\nYzyeocoYn79wyCUjY0lzmEBb3EDm9lgrr9snl7XHOmGP8/ajLl2kaQ31ox1L7fpmbEsnZPuux911\nyFiXlTX2JMPGt0XWOz+4Oc98ENl5L1Nc/91XKRwe/ZiiJ1/iKv/0vc2muMjJbbYEcxlz3k4sagvs\nXmNOU7FaU1gu2WeKcyqqzFlHYzFT3Oa1Faa4l9ptZZSkzpSt3restuUtSSHjtTAatp1D3f1pc96T\nqmx946VVPeY0t5hQaYr7/ovLTXGRsK1+IjGP/z4D8BUzXwAUtda2RUEXAQAAAB5wHO8fGCMn5O2j\njJX30QMAICm+YGHQRQAAAEAJY/AFAFD2WtmwFAAAAD5izxcAAIAi1jL70qCLAACeYJVQAQrRKl5h\n5gsAAEARizfPDLoIAABgFAy+AChqLc2zgi4CSkALH14BAADgI5YdAShqQ91mGnArPod+BABA0Ky3\nIcc4KvM7FHmJmgQAAAAAAPARgy8AAAAAAAA+YvAFAACgiMW5VTqAEuE43j8wRjSIZ9jzJY8T2rTx\nqJzH5XDDTZlzOVtJHeOJYU3PTZrFwuu6DJqbtiyGvM1p+tA+frS55zXkhL1O0UXePpwTxbIe2Y9+\nGWBft6YZ5PVFIRd93RxrrEs/+uUQt/xsXXil4nObN46NVpqSjB14tCku8co/FTbecjSyw16mOElK\n3ztE2YdK84S55jQVrbLFuTkv0glbXMyYd4Cm1VSYY/vSGVPcm5395jQrIrZzY1Wnrc6nTrD1dUnK\nGuO2m1htTrMpZvtI1R+z5d6eTJviouEi+dsHQBIzXwAUufj8hUEXAQAAAABGxOALgKLW2rYo6CIA\nAADAA44P/2GMQiFvH2WsvI8eAAAAAADAZwy+AAAAAAAA+IjBFwBA2fvj40/o8GM/pnBdky6ZPVet\nbYsVrmvS3tMP1he/epE+dtJn9LkvflnL3npr/e889Mij2m2fAxSua9Lpn/+CXn/jTUnSX//+lHbc\nfS8dfcIn9ecn/yJJ+r9n/qUZR3xETVttp6M+dqLWrHkniMNEiWppnhl0EQAAwCgYfAEAlL1DDjpQ\np376JEnSVQuu0NyZX5MkXfiV83TL9dfql/fdo2QyqQ8f8//bu+84KYq8j+PfntldlhxFkgIKCiqC\nYDjBgHiKCRMgoigKCBhQzkAWV5AogoooeIqHWXgIBhQFBQT1FPXMAQUTC4jCkoXdCc8fA+tGpprt\n3t6e+bx9zUum+zdV1VU9PTs1XVWdlJOTI0m68LyOWrJwgWrWqKFwOKwjGjeSJDWoX0/HHdNcC+fN\n1mltT1V2drbmzF+gxa8u0G/ffaWdO3dp8iOPenGYSFAZw4Z4XQQAcETAcv6BEmKpacfQ+QLA10YO\nHex1EZAggsHYMsOBQCD333mXDe/W5XKtWfuTvvt+de62unXqaNqUSZo9b4EWv7NU4XBYtw8erhkP\nP5ibRlbWVmUMG6Ly5curYsWKOuO0dgqyPCgAAEBSMVuUHgDKqIzh/OKL0rEla6skKT09Pd/2rpdf\nqmdffEn9b/2XLru4k/r36aVDD62duz/vv/fu3atNmzbpgXFjSqfQAAAAKBP46Q0AgGJEo1FJ0o9r\n1mrCAw/q4gvPV9MmRxaKmzZlkv7cvEWrf/hBHdqfUWRar77+hv5x1jlasmy5vvrmW1fLDQCAHzk9\nwiXJR7k4wwo4+0hi3PlSwP4/tO2/MGIYaOMKYHi1OOgylzK/lNNp0YjpueECLz9x7LS3H8oZCZsn\nGTD9YHH+emB8LbJzXgY9/KgwbR+XzqE5c+frqaef1VfffKtHJk9Ut86XF1mmcCis+nXraNHit7Xq\n4090UpvWhWI6nX+eWhx7rEbcO1rX3NBPP3/7ZfEZ27pemsb64C9QNz4ngqnmsabvXTfKaZymjbxN\nrwcVqhiFpaWFjLP++YTmChpMtnDYJ98Ypxl62fyOsdSej5gFutGWhtfXtDTzLyEmdSlJu3LMPqvW\nbN9jnPexNSoaxf2Y9ZdxmjXKm70vK9WsYBT3x65s47zrVkoziju6ulnekrRht1n+mTv2GsWlpZid\nG6FIcv5tDfhVcnc9AQBwAFd0vkyj7x6uHTt3auPvm/LNAbNfKBTSwEFDteS1BWrZ4jj1vmlA7qS8\nBTVqeLieeHSq/ty8hRWP4JiMsRO8LgIAoGiHel0A5HOg9ihpW9WPF0DnCwAAB3B6u1M1efwYDRpx\nj5a+u6LQ/rtHj9VNfXurXt26mv7QZH37/WrdN3FSsemlp6erZo3qqlGjupvFRhIZNW6i10UAAEdY\nLvxXjPqSHpXUX9IsSccWE9dX0khJ90gabWNfI0nPSZpttw7KnNIZB+ZlexS3L13SY5L+lPSbpJsK\n7P+npEieR9HjzvOg8wWAr2WMGe91EZAg9t+tEgqFlJ2dnftvSbq5bx/1uPIKdbu2l3759bfc1yxc\n9JZ27NypczqcJUlqc0Ir9eh2hSZMfkiff/mVJGnLliy9+vqi3NcsX/Gerul+ZZF30QAAANdZkl6R\nNE/SdEnjJb0qKVgg7hJJPSWNknSvpKMk9TbYJ8W+jG+RL8b8es7r9ihu312S3lGsU2WOpEcktcuz\nv7OkE/c9Wkl6Id6B0vkCwNdGjeN2e5Tcyvc/0Ev/N0+WZWnQiHt048A7ZFmW5sxfoA9XfSxJeuzB\nB3RE44bqeElnvfr6Ik2d/riu7n2DotGoNmzcKElal5mpQDCgUCikLj166vU3F+unX35R3wED1f68\nizT1sce19uefdd89I7w8XAAAktk/JTWXtGzf828l5Ui6tEDcIElv5Hm+QNJAg32S9KukzaLzxYTX\n7VHcvt8V63T5RtLtkn7R350vTSW1kFRP0leSvijm2PJhwl0AQNI7re2pWrLw5Xzbnpz2cL7n5cqV\n03+XLsm3bUD/vvmeN6hfX08+OlVPPjo13/YNa76L/YO7XQAAKJbh3NIl1U7SWkl5ZxFfLamDpLn7\nnqcpdkfDlDwxPyg2HOaQA+yrpdgwlcRhvJDEQSur7fF4gee/K9ZRI0ltJJWXNF+xu2aulrREcXDn\nCwAAAAAgWdSRtL3Atm2SGuR5XkNS6r7t+23d9/8mB9iXNw2Y8UN7pEuqJmn/L3UvKtYB01jSx4oN\nmaoTLxE6XwAAAHxs5NBBXhcBAPwkpNiwlrwKfi/efxdGThEx4QPs4xZX+/zQHjcoNvTorwLb10nq\nImmjYvPOHNDBDDuqIWmPpN2G2wEAAOCSjGGDvS4CADjCidG5q1a9r49XvX+gkPWSTiuwrZqkn/M8\n36zYl/mqBWKk2NCT4vZl2ixu2VfCRln22bda/vm3Bwop6+3RQrHOn9eL2f+XpLfy5Fks086XlZLa\n7vv3aknN4mw/U9LDit2G84GkPootzyTFlpEartikNKdKmijpa4/2AfC5kUP50gEAAICYk05qq5NO\napv7fPr0yQVDlkoaUmDb0ZL+k+d5VLEJYJvm2dZMsclgNx5g36aDLXeiat+qudq3ap77fPQzCwqG\nlOX2qCfpbEkP5tmWovzz00ixlZm+i5eYSedLG0lvSrp13/N1cbbXltRLsUln6kuaIWmmpHP09zJS\ngxWbkGa5pIWKjdOKluK+pvr79iQAPpYxvOC1GgBQFoQjkbgxKZcMV+jlMY7nnTPrFqO4lCvGGadp\nBdMMA81+Jd67b0l7w8yNwiJRs+TWbC1453zx1u82K2e18qnGaVZKMZv54Js/dhnFVShnVj+S9L1h\nmpt2FxwFUbwaNo7dRNiwISOmDY6C/qvYyjVnKfbFv5mkCpJek3SfpJckfSnpCUm3SJq073UXKPa9\nVnH27ccUH2bKQnsUta+qpLslPbSvTEFJF0uaKqmvYnfCfKfYXC9HSxoQ70BNOl8GKnbXyA7FZg2O\nt72DYge+Q7FllzIkPbZvX3HLSF2m2CQ7pbXvUv09c3J+0QIXMdPbrCwX3lsFy+IEw+OJupF3smJ1\nE+fYOS+drveA+R92xuyU0fTYTa9FpbScQKmJxv+Slytk+IUnYHhzaNDrhQMdbksPP3tcuV7aWqXB\nw3KapmmneVIMOwuChl8cy5ln3XDZcqO43dv+VHhd3B8LJUnBBs3iBwFAfFHF5ucYqdh3xZMlXaTY\n9BnnSfpUsS/7cyQ1VKwD4C/FOgj230ZzoH2SdIZiX9QbKPa99DUVntcEMV63R1H7wopNrnuGpH55\n0nle0i5J5yrWMTNdsYl+u6jw3TCFxPuLMajYXC53SJogabakayRFitmeo9jMv3n9rtjBSwdeRmqT\npJ9KcV/RnS8AAAAAgFJnld58tWslXbfv34/m2X5igbhJKt6B9r0rqZX9YpVBbtxkUJiX7VHcvvYH\nSO+8A+wrVryaDEu6UFJdSdfu+/fYA2wvSmvFeoSkopeR2qpYL1Md5V8eyq19BZetAgAA8K2MseO9\nLgIAAIjDtBsrKulZSf+S1MNg+34VFZsd+OF9z4tbRsoq5X0AAAAJYdS4iV4XAQAAxGG3I+JlFb2E\nUnHb71Rs4pn9g/HXK/8SUNr3ukxJG0p5H4AEwC++AAAACcJy4YGSsSxnH0nM7iyBQUnfG26/QbG7\nYv7Y9zxVRS8j1UzSLMWWoi6NfQWXrcon7xe59qefpvZnnF5cKIAyYNS4icoYxopHAAAg+SxbtkzL\nli3zuhgADMTrfDlJUkvFlmmKKHYXyxjFJr5pVcT2/a5TbJbhVMU6Qg6V1EixDpGCy0hVlPSqpD2l\ntK/Cvn1F4kscAAAAAD9o37692rdvn/v83nvv9a4wAA4oXudLHUmjFZvP5U1JH0p6RVKnYrZLsZl/\n/63Y3TD7RRW740QqvIzUhYp11JTWvovy7AMAAAAAlAFJPiqlbCqd1Y6SQrzOl1cVW9HIdLskLVLs\njpfiFLeMlBf7AAAAfG3k0EFeFwEAAMRBNxYAAICPMWQaAICyz+6Eu4nP5XvdLDvpu1CWaDRqmLU/\n7vlz+nhM07OTZqIxriMb9WNcl0XE3TNssKxA4X5k87Y0PR5v+6qLOsaiuNE+TvP6Oqi08kZhXl4v\nza9ELlzfXDgeL6/BUQ9/Z3Llc8JGmub1GYkfEsvcOG8FzWJTa9QxTjL0v7eN4lJOONs8zdlDjWNT\nOo8yirMiIbMEKxS1UGgxgmZ/sm/ZmW0Ud2TNCsZZhwzPozV/7jZOc1OK2fuyXKpZXMDG+6JutXSj\nuG8ydxin2bhpTaO4UORAgwP+ViU1GD9IUu0KaUZxfmKxPFHZE6BNnMKdLwB8LWO4+R/OAAAAAOAF\nOl8AAAAAAABcxLAjAAAAAIDnknRUf9nGakeOoSYBAAB8LGPMOK+LAAAA4qDzBQAAwMfuHTvB6yIA\nAIA46HwB4Gv84gsAAACgrKPzBYCv8YsvAABAYrAsy/EHSsiynH0kMTpfAAAAAAAAXETnCwAAAAAA\ngItYarqAgremRaNRj0rijkS79c7p40m0+rHD6XPdTl2WNO8Svd5w+Tw3jsfLNO3UmZfvi0S7Bpty\no84T7foWjYTNArP3mCcaNPyzyDDvaGo546ytQNAszSLeEyOHDi76vWL6/jGtS7lwDpnWuaRg09ZG\ncdl/ZioYiH9tD9aoa5y3JIXmjjSKS73mYbME9+w0ztuqeqhRXKV0s/rMjphfW0OGsalB8/Njx56Q\nUVzWrohRXMsGVY3z/mnzbqO4gI3TPc3gfJOkdVv/MoprVKOCUdyesFn9+ElifVIlCJaadgw1CQAA\n4GMZw4d4XQQAABAHnS8AfG3k0MFeFwEAAAAADohhRwB8jV98AQAAEkOCjZBNCIk2bNlL3PkCAAAA\nAADgIjpfAAAAAAAAXETnCwAAgI9ljBnvdREAwBGWZTn+QAlZAWcfSSy5jx4AAMDnRo2b4HURAABA\nHHS+APA1fvEFAAAAUNbR+QLA1/jFFwAAAEBZx1LTAAAAAACgsCSfp8VJdL4UEI1GfZ1+qbNzPEx4\nlVR8c64bltONo3GjjnyRpl+uG26cG+GQWVwgaJ6maR2Z1rsLde7KhIemfwyWq+B83i4wfp8VF1fU\ndtN6D3j456Cd60HE7P2TmmL2/tnzynQFA2bnUepFfY3iJCnnmVvN0uw5zTjN6M7NRnEbtqYaxUVs\n1LtpaHYoYpzm4TXLG8Wt2/KXUdzKH83qR5JqVylnFHdU3crGac79YoNRXP0aZrPXPywAACAASURB\nVMeduW2PUVzVdLP2BlA20I0FAADgYyOHDvK6CAAAIA46XwAAAHwsY9gQr4uQVEaMGKGqVavKsixV\nrVpVd999t9dFAhKGZTn/QAkFLGcfSYxhRwB8beTQwV4XAQCQJEaMGKExY8Zo3bp1ql+/vjIzM9Wg\nQQNJ0ujRoz0uHQCgLOPOFwC+ljGcX3wBAKVj6tSpuR0vklS/fn2tW7dODz/8sMclAwCUdXS+AAAA\nAAa2b9+e2/GSkZEhKdYBs337dg9LBSQOy7Icf6CErICzjySW3EcPAAAAGKpSpYoyMzMlSffee68k\nKTMzU1WqVPGyWAAAH6DzBQAAwMcyxo73ughJ49Zbb1WDBg1yO2D2z/ly661my0sDAJIXE+4CAAD4\n2KhxE1nxqJTsn1T3mGOOyf3/iBEjmGwXcAiDhMoghm45hs4XAAAAwNDo0aM1evRoWZalbdu2eV0c\nAIBP0PmCkrHRE2o64VU0Gj3Y0qAAO5OMJVq9Gx8752Xps/MLimm9u/GrjBtpBj382E20X66iEbO4\n7L/M0wymmsVFwmZxKWnmeQeCZnHFtWNR203rKBwqWd4lYVrnkvlEjZbZdaNc6zOMs94z50EFizj+\nnP97KN/z1C63GaeZM+tm49jUqycbxWWHahvF/frnbuO8K6WbXbfSUsxnM/jfmk1GcdWqVDKKi4QN\nz3VJv2/baxS3cf1G4zQr1ahlFJcdMitnTtjsHN6VbXgtAlAm0PkCAAAA2DSia0eviwAkHFYnKoOS\nfIUiJ1GTAAAAgE0jrzjf6yIAAHyEzhcAAAAfGzl0sNdFAAAAcdD5AgAA4GMZw1npCACAso45XwAA\nAAAAnmPKlzKIRnEMd74AAAAAAAC4iM4XAAAAwKZRs9/wuggAAB+h8wUAAACw6b45b3pdBCDhWJbz\nD5SQFXD2kcSS++gBAAB8LmPMeK+LAAAA4qAvML9oZGdWvg2WYXdpNBp1ozxGTMsomZfTD8ct2Tt2\nE54ej428rYBZv6mt43H62O20jRv1bpq/ad4F0otGo9qwcaPq1a1rs2AH6SDLWXx6EfO8nf6Vwo32\njoSdTzMQdD5NN/jgZz1XPlOcfk/4WKBSdRX8+8VzbrSP6XXLNG8718FQdqFNgZoNFNm8Lt+2nK1/\nKhiIf0zBRseb521D6o3PGcUFylcyTrNW5XJGcZu2bDdO0/j6GjFtIzufK2bnXNXKFYxTNGlzSUpL\nMfs8NU3v2DqVtbBv23zb9l1v/Xrhi/605k/HE218ZC3Jv3XitWj408WOJhhsfY6UpO3BakcAfO3l\n117XgDsHadfu3eretYssy9LevXv12Rdf6pP/faa2/zhZDQ87TEuWLlflypV0cpvWWv3jGq356Sdt\nWfezJOmXX3/TyPvGKhQKqWbNmlq79iedc/ZZuvXGfvm+ND7xn6fVb8DA3Ocrlywqvc4XAACABGcl\n53fyss2wMxDx0fkCwNcuuegCzX35FWWu36BHHpiYuz0UDiu9xqFasXiRJKnD+Z3UqFFDzXzsEUlS\nzxv6S5LW/vSzTu1wru4dMVT9e18vSdqzZ48uuPwKffb5l3pqxrTcND/4aJVWrVgqSSqfnq7mzY4u\nlWMEAAAA4G/M+QLA94KBYKHhCikpKVq26LXc5wX3D7ixnyTpljvuUsPDD8vteJGk9PR0TZkwVk+/\n8KJefT3WefP20uX6448/lJW1Va2Ob0HHCwAkuZGD/uV1EQAAPkLnC4CEE41GNfb+B3Ra21NztxWc\nc+LE1ido8+YteuvtpTr37A6F0mjZ4jjVq1tHTz//giTpy2++0c+//KqOl1yuo1q20WdffOnuQQAA\nyrSMwXd4XQQg8VguPFAyrHbkmOQ+egAJ47vVP6hX/5t1fb+b1brdmfrk08/ivubHtWsVjUbV8LAG\nRe4/rH59ff/Dj5KkgTffqC8+el9frfpAtWrW1CVXdNfevXsdPQYAOBgjhw72uggAACAOOl8AJITm\nRx+lmdOn6akZ07Tq3Xd05JGN474m3goskWik0HClZkcfpVdmv6Bdu3dr2YqVJSozADghY/gQr4sA\nAADiYMJdAAkhbydJSkqKruzSOe5rmh55pAKBgH7LzCxyf+b6DTrlxDaFtteufYhOPfkkbdtmY1lN\nAAAAHJCd1edRSmgUx3DnC4CEUPAultatWsZ9TfXq1XT+Of/UosVvF9r3/eoftH7DRl11RdciXxsO\nh3X0UU0OrrAAAAAAkgqdLwB8LyeUo+zs7APGZOdkK5STU2j7w5MmaF3mes18+tm/08vJ0aAR9+jK\nLpfr8ks6ac+ePZow+UFlrl8vSfrq62+UXi5dLVu0cPZAAAC+kTHhAa+LAADwETpfAPjaq68v0rvv\nva8vvv5aTz//oiKRSL79kUhEs557QV9+/a3efe99zZ47P9/+Rg0P14fLFmvFex+oZ98bddugIep+\nXW+1P+M0Pfvk45Kk7OxszX/lNZ10egdljBmvN99+R8//54lSO0YAQNkzauIUr4sAAPARBnDlF43s\nzDrIV0bjx0hJPWYu3uSm+xWc4NSJNE3Zydtpdo7Fy3L6hRvnGzxg2D5WwPnfEkzPDd67DrJVPx7W\nZThkFhcImqdpJ7aAjDHjS2fSXTfOXzuf46b5R8KmCZrnvWdXoU2BQxsr8vtP+TempRslt/eNZxQM\nmB17arc7jeLsSB0wx/E0zetd5m252/DvcsvG+ycl1SwumGaeZnols7js3UZhlapUMYo7vl4VLb/1\njHzb9n0m+fULR/TXn7Y4nujhjWtI/q0Tr0XDXy53NMFgizOlJG0P7nwBAADwsVHjJnhdBAAAEAed\nLwAAAAAAAC5iqWkAAAAAgOeSeIaGsotGcQx3vgAAAAA2jbzzNq+LAADwETpfAKCM+P33TV4XAQBg\nKOOugV4XAQDgI3S+APC11998S42at1DVuoer7y0DdW2ffupwfictemuJJOmT/32mDud3UqBSdV3f\n7yYNuOMu3TTwDl3UuZvatDszN51vvv1OV17bS/+88BJdfX0ftfrHaQpWrqHWbWOrCKx8/wO1bnuG\n0qodot43DVCv/jfrjHPO13Mvzc5N47d165QxZryClWuow/mdtHT5Cr319jtq2Ow41Tyssfrf+i9d\n07uvLup8hVZ98mnu63bu3KmRo8eqacs2uUtlZ2dn65HpjytYuYaOP7mt3lzydmlUJwAfGjl0sNdF\nAABHWJbl+AMlZAWcfSQx5nwB4GsXdDxXZ7Rrq3WZ6/X4Iw9KkhYtXqILLu+qJa8tUIf2Z+qqbl21\nbMVKPTXj0XyvHXv/A5KkFe+9rws7d9OksaPVt9d1ufvHTZqs/5v/siTptLan6sLzOmrrtm168tGp\nkqQvvvpKJ59xtvbuzVava3vosAYNdPeQuzR6/ET16N5NZ515uiTpzNPaKXP9Bk1/eIok6fGZ/9Hp\n55yv/73/rpo3O1pbt21Ti2OP0a5dfy9lmpaWplv699XEKQ/p0k4XqeM/z3anAgH4XqksMw0AAEok\nubueACSEYDCY7/l55/xT1apV1cJFb0mSUgrs3++2m/pr7969uqZPP3W59OJ8HS+SNPTO23XKSScW\nm8/xxx2nY5s308I33iwUk5KSkm9bNBrNfd6t82XKycnRW28vlSQ1qF9fh9SqVWQZU1JS8qUFAAAA\nwH/ofAGQEPLeVpqdna2dO3cpPT292Pj7JtyvihUr6u1ly/Xbukx1vfzSIuPGZow8YL5bsrJUvnzx\n+RRVvl27d0uSqlevFvd1AAAAycJy4YESCgScfSQxfk51CuMJ48r7y39ZTtMrrhyLnTRNz2HTNEv5\nPbG//nbv3q3Bd2eoSuXK6nVtD0WjUe0v8fX9bpIkZa7foE8++0zDB92pr7/9TpJ0ZOPG+dL76edf\ntOmPPxSNRhUIBHRym9bS/pSiUeXk5OiBh6fpjz836+a+feLWy/7yZWdna8S996lRw8PV+eKL8rzu\n77QLp+XxueElw/PIy2uBrbzdKKfT711b55th3qZltHXdMIwN55gnGTD8syiYahbnl78NXHn/GKZp\nJ+tI2CwutNcsLiXNPO9yFQptyhh3vzKG3pV/o2EZy7U9zzjrX1o3VzAQ/1xq8PE3xmnmTO1qHBs8\nvadRnFXnKOM0lWL4HsreYxZnYx4Jq3o9s8C0+D+s5Nr8i1FYzUZmdVSrstm5WbuKjTIC8Fxydz0B\nSBhrf/5ZPW/or/pNmysYDOrLVe/riMaN8sXMnD5NM6dP05uvzNO1V3WXJIXDsT+Us7Oz88XWPqSW\nnn7+RbU7u6NSU//+IzFr61b1u/Vfqt/0GH3x1Vf6/IMVOvWUk+OWb/WPa9RvwEBdcc11Kl++vFYs\nfkMVK1Ys2UEDADwzasIkr4sAAPAR7nwBkBCObNxY0x+eoq+++VYfrvpYNapXP2B8jyuvkCQd3bSp\nJOmHNWt13LHH5O6vWLGiTmx9giTphJbH5/4yXKN6dc14eIrWZWbqo08+jZvPfkc3baIZUx/Mv9Ev\nd58AKNMyxoxn0l0ACcEvNwwmE1aMcg53vgBIGOXLl9e8F57RmrU/6caBdxwwtnWrlpKk8845W7Vq\n1tSTs54uFFPUh83+ISbPz3xCwUBQV17XK3d56NK0+J2lpZ4ngLJp1LgJXhcBAADEQecLAN/Lzs5W\nKBSSJDU8/HC9OGumnnn+RU2b8W9JUk5ObM6H/TF5lS9fXs/OfFzLV76vR6Y/nm/fjh07C0zkm5M7\nTKlq1Sqa/+Iz+u+qjzX47ozcmP155R3GFAqFcrcXZ38HTsH5Q7Kzcwp17mza9Ieeef7FA6YHAAAA\noOxg2BEAX3v9zbf07nsfaPdfu/X08y/qmu7d1KH9GZpw3726fchwbcnaqmXvrpBlWRoz8QHd2KeX\natc+JF8a53Q4S5+sXKbxD0zRuZ0u02GHNVA0ElHW1q16be5LkqSV7/9Xr72xSBt/36QZM/+jHt26\n6phmzfTUY9N0xbXXKxKJaODN/TXzmeckSc+9OFtHNTlSe7Oz9d5/P1TW1q165oUX1b1rl0JLR3/3\n/Wo9OesZWZalR2b8W927dla1qlX1+FOztPH33zXruRe0fsPvCgYD2rIlS0uWLdPNfW8onQoGAAAA\nUGIM4MovGtmZ5XUZAOck0WpHrvOyLu2kacov880k83lkKpFWO3KDG6sdmSql4w5Uqq4S/f3i5WpH\ndv4U9XK1oyLqqCSrHWn7n8ZZ/3rZFY6vdmRH0q52VL6KcZrKyjQKc3q1o+a1K2vOdfkn/d93x65f\nPzyjG37b6niidQ+rJvm3TrwWjXz/oaMJBo4+RUrS9mDYEQAAAGBToY4XAAAOgM4XAAAAHxs5dLDX\nRQAAAHEw5wsAAICPscw0AMA1iTYE3EPc+QIAAAAAAOAi7nyJwzLs6Su4PKwjknVi00Rj2o7RSPyY\n/WxMLOe4RDvfvHyf+aYuXZg40zhrDyeodYPx5Lg2rgeOT3rrfP14+lkaCJrH+uY96TA3Jgl343pg\n2pZpFczibH3uGsYFDSeSrVnfOOvDl75rFJf989dGE/NKUvDwY4zzD6+YZRSXctUk4zStoOFkxynp\nZnF22tL0/MgxnLhZUtXDmhjFVUgzO4erppudR5XK8VUO8BPufAEAAABsyhg7wesiAAnHspx/oISs\ngLOPJJbcRw8AAAAchFHj7/e6CAAAH6HzBQAAwMcyxoz3uggAACAOOl8AAAB8bNQ4hr8ASAyWZTn+\nQAkxDswxdL4AAAAAAAC4iM4XAAAAAAAAF7E+GQAAAGDTyCF3eV0EIOEk+aiUsinA/RpOoSYBAAAA\nmzKGDfa6CAAAH6HzBQAAwMdGDqUTAACAso5hRwVFo/mfHuTrSpUbeZve82cn70S7j9DperfoCy3T\nvHyPey7B3rumEq3NI2GzOBeuRZ5+lkYi5rEBh8/1Uvrcyxg+pGQJ+OZcNyyn6fHYaR/T88gyzNvO\neWlYzNQKFY2T3Nn1DKO4SnPeNU4z9PydxrEpnUeZBRpej6xyFYzzNlW/bi3j2PVZe4zialRKM4rL\nMTw/QnbOIwCeo/MFAAAAAOA5K1l/8CnLEu0HdA/xUzsAAAAAAICL6HwBAAAAbMoYN9HrIgAAfITO\nFwAAAMCmUePv97oIQMKxLOcfKCEr4OwjiSX30QMAAPhcxpjxXhcBAADEQecLAACAj40aN8HrIgAA\ngDhY7QgAAAAA4DlGCZVBjN1yDHe+AAAAAAAAuIjOFwAAAMCmkUPu8roIAAAfYdhRQQd9W1XUNAPz\nJD28xcsyzduFMkajpnVpo5wu5O30sds5FlvlxIH54X1mgx/ODa/PddP83ahJ47ztHLdpbCBonqbD\nvKxzBc3/1HG6fbx+jzv9We7KeWmn1U1XyTCtdjvHU8T7J2P4UPPXF0rPxu+fkYhZXND8PZ5+fFOj\nuD2vTFfQoKypF/U1zluSQnNHGsWldB5lFBeNGtaRJGvnZqO4zL07jdM0baOfQtWN4ipUKG8UVy4R\nV45hiEsZRJs4JQHfsQAAAMlj5NDBXhcBAADEQecLAACAj2UMH+J1EQAAQBwMOwIAAAAAeI4BLmUQ\nQ8Ecw50vAAAAAAAALqLzBQAAALApY+x4r4sAAPAROl8AAAAAm0aNm+h1EQAAPkLnCwAAgI9ljOEO\nDAAJwnLhgZKxLGcfSYzOFwAAAB8bNW6C10UAAABx0PkCAAAAAADgIpaaBgAAAAB4LrkHpZRVtIpT\n6HwpwDrIcWhRw5uIDjb9sioajRrHmh67nToyzd+NeveyLU3zttM+TvPLue7lOeRG+3h5briRtx/O\nI8+vL6b1Hgkbpmd+U6zTx+7K+ywSsVMAx/N3WnF1VBrvFVufz8Zpmp9vttrSaUUc+8ihgwttd+Ua\nHDCs93IVjZMMDjQbqhY0rPO9n76joGE5U1qdZRQnSaG5I83S7DTEOE1Vr28UVrV2XeMkt+3OMQsM\nZxuFlU8LGsWlp5rFASgbGHYEAAAA2JQx3MYXfgBA0uPOFwAAAB+7Z9hgr4sAAI7wwx2vSYc2cQx3\nvgAAAPhYxvChXhcBAADEQecLAAAAAACAixh2BAAAAAAACmPUkWO48wUAAACwKWPMeK+LAADwETpf\nAAAAAJtGjTNbrhkAAInOFwAAAF/LGDPO6yIAgCMsy/kHSspy+JG86HwBAADwsXvHcgcGAABlHRPu\nxhGNRk0DzcJKUBa/M65LL/O2UcZkbksTXrb3vgI4nJzHx2P4040b57opN+rI83o3YKuExsdjI1XL\n8HeUSMQsLmD+q5RpKS3T89e0jHbY+NnT6fPNVnolzLvIujM9dtO87fyEbPp3ka3jdvj6ZvrekaRo\nMedmge1R0981I+GS510oTRfeP4Z1nlqtmnGKfw3voaDBdSZt9DPGaYZeNZ9/J6XrGKO4rWu+Mk7T\nSi1nFphWwShsW1q6UdzOPSGzfAGUCdz5AgAAAAAA4CLufAEAAABsGjl0kNdFABJQcs8JUiYxcY5j\nuPMFAAAAsClj2GCviwAA8BE6XwAAAHyMOzAAACj7GHYEAADgYxnDhnhdBABwBCNcyiAaxTHc+QIA\nAAAAAOAiOl8AAAAAAABcROcLAAAAYFPG2AleFwEASoHl8CN50fkCAAAA2DRq3ESviwAA8BEm3AUA\nAPCxjLHjmXQXvhKOROPGpHQaotCr4x3POzRnuFFc8Mxe5onWPtIozAqmGsVVSjf7ilY+LWgUB6Bs\nSO77fgqLRndtPcgXxv8QOYhEzeL8MgN1oh2Pwywbx+3G+Waav5d52+F4Od14jyfaue5GHZlK5rpM\ntGP3kJfXwZIIVKquyM4sr4vhPqfr3c57JxoptClQuaYiOzYXSNPDm8pt1Y9prGkd2cg7EjIKy9me\npWDArD6D9Zqa52/ITueLZdr5UqGaUVy1Bo2N4lrUraJ3bjktfx6x89qvHwzRHZt3OZ5o5ZoVJf/W\nideikY1rHE0wUOdIKUnbg2FHAAAAAAAALqLzBQAAAAAAwEV0vgAAAAA2jRw6yOsiAAB8hAl3AQAA\nAJsyhg32ughAwrGScyqQMo42cQp3vgAAAPjYyKF0AgAAUNbR+QIAAOBjGcNZZhoAgLKOYUcAAAAA\nAO8xwqXssWgUp3DnCwAAAAAAgIvofAEAAAAAAHARw44cYrlxO1ai3eKVaMfjIVfONx/kbYfj5fTJ\ncXuKOnIOdemYaDTqeJp+uQ56ybTebdWlh/Ue9cPvlbbqxyzWtH1svc+CaUZhqdUOMU4ytPYzo7iU\nI1oZpxlePtM4NnjOLUZxVoWqRnFbN200ituRnmMU5ydcXcsgPvMc44NPEgAAABQnY8w4r4sAAADi\noPMFAADAx+4dO8HrIgAAgDgYdgQAAAAA8B4jXMogGsUp3PkCAAAAAADgIu58AQAA8LF7hg32ughw\n0c+//KrZ8+ar9iGH6MKO5+qQQ2p5XSQAwEHgzhcAAAAfyxg+1OsiJKXlK97T2RdcrGDlGrp9yHCN\nGjdRwco11LrtGeo3YKAu7nqlru93kzLXr899zcJFb+rYNv9QsHIN9eh1g9b+9LMk6b8frVKTFifo\nvEs6a+X7H+TGz547X1f36qOul12q63pcRccLEp7lwn8oGcuyHH0kMzpfAAAAAJvOPL2drurWVZI0\naexoDR90hyTptptv1IypD+qVOS8qOztbZ53fSTk5sSWBLzyvo5YsXKCaNWooHA7riMaNJEkN6tfT\nccc018J5s3Va21MlScveXakBdwzSnGdnqXGjhqV+fAAAZ9H5AgAAAByEYDAoSQoEArn/zvvLbrcu\nl2vN2p/03ferc7fVrVNH06ZM0ux5C7T4naUKh8O6ffBwzXj4wdw0otGobhp4hwbc2E/16tYtxSMC\nALiFzhcAAADABVuytkqS0tPT823vevmluuj8jup/6780+O4M9e/TS4ceWjt3/wcffqTvf/hBP//6\nq7pe3VPHtD5F02b8u1TLDgBwFhPuFhCNRNzOwUaoYaxlpw/NNH8vx+PZqKOE4vUYSIfr3fT8lSRX\nxn86nGbUxrXB9D1pK03D47FT707nbco350aSXovstI9pbMCF33pc+LyOmpbT+PPZxvnrRppO5+3C\n9cW4zu3kb+faWtK8w6HY/0PZf4eGQ1I4pB/XrNWEB6bo4gvOU9PGDf+O3WfapAk69pR2Wr16tSaN\nviff/k8+/VSVK1fS+HuGq1bNmvr0s891SoeOOrHV8TrlxDZFl8XW+WZWR9FA0DA9O9cNw/ax8R4P\nVqlpFPdrm+YKGpxz9Vd9bZy3JIUXP2IUl9pzmlmC2X+ZxeXsMYvzkSSfEqRsolEcw50vAAAAgEPm\nzH9Z7S+4WP84+zzdM2SQ5j03q8i4cDis+nXratGSd7Tqk//l27dz5y4d3aSJatWMdSq0btVSJ57Q\nSq8tesv18gMA3EHnCwAAAOCQKy6/VKNHDNWOnTu1cdPvRa7uEQqFNHDIcC15ZZ5aHneset9yW+6k\nvJJU59Da2rV7d77XHFa/nrK2bnW9/AAAd9D5AgAAADjo9LanavK40Rp0971a+u7KQvvvvm+cburT\nS/Xq1tH0Bx/Qt9+v1n33T87df+rJJ+nXdevydcj8tWePGjdk1SMApc1y+JG86HwBAAAADkJOKNY5\nEgqFlJ2dnftvSbr5ht7qcWVXdbuuj3759bfc1yx88y3t2LlT53RoL0lqc0JL9ejWRROmPKzPv/xK\nktTsqKZq06pl7jCj7OxsffnNt+rRrUspHRkAwGl0vgAAAAA2rfzgQ700d4Esy9KgkaN04+2DZFmW\n5sx/WR9+/Ikk6bHJ9+uIRg3V8bKuevWNNzV1xr91dZ/+ikaj2rBxoyRpXeZ6BQJBhUIhdbnmer3+\n1mJJ0jOPP6aX5s7X+MkP6fZhd+vxhybr0Nq1iy0PAKBsS+77fgqLRnZscTsLG6GsdpRcvH47strR\nAbHakXN8c24k6bUoiVc7Mi4nqx05x++rHRVk628yh7mw2pF8stpR3tWmDuS3jue6stqRKePVjgy1\nalhLq0Z1y7dt3xxDXv9RebCie7Y5v4JTetV0yb914rVodHOmowlaNetLSdoe3PkCAAAAAADgIjpf\nAAAAAAAAXJTidQEAAAAAAEAZ5MoQ8OTEnS8AAAAwtmVLlnbv3u11MQAA8BXufCnI7Z49O3PVeTjR\npGU4AV7Ujcn3PJx/yXKhzk3ryE7ertS745MJej2pqsMsw0kHbbHR/21aRy5UpdPvC3euG24wvF56\n/d41ZFpOT9vHTt7GE7XaOH+N29KFyXFL8DZbvuI9jRo3QctWrNRtN9+oalWr6t6x49WyxXE6qU1r\nbdi4UTVr1NB994xQ/Xr1JEkLF72pQcPv0XerV6t7184aNWKYjmjcSP/9aJV69OmnJkc01ohBd+m0\ntv+QJJ1+zvl6/8OPJElHNWmibz/9MM7xuHExMg10YZJYU15Ojm6H6US6pmw1t2HeAef/jjjs5flG\ncXvmTzOamFeSUi+50ShOknJm3WwUl9JtglmCeysa5w3Ae3S+AAAA+NiZp7fTVWu7atmKlZo0drSi\n0ajuHTtet918o3pe3V2SdPX1fXTW+Z309cf/VWpqqi48r6Nat2qplqecpnA4rCMaN5IkNahfT8c1\nb665zz+tYDD2JfmT/32mc//ZQQ/dPz43BgDc4Iff45IPjeIUhh0BAAD43P6OkkAgkPvvvHc7dety\nudas/Unffb86d1vdOnU0bcokzZ63QIvfWapwOKzbhwzXjKlTctOQpIcena70cuVUuVIltW7VUrUP\nOaSUjgoAgMRB5wsAAECC25K1VZKUnp6eb3vXyy/VRed1VP/bbtfguzPUv08vHVq7du7+cDisLVuy\nNHnqo2rW+mR1v663cnJySrXsAAAkAjpfAAAAEtD++Xt+XLNWEx54UBdfeL6aNjmyUNy0Kffrz82b\ntfqHH9XhzDPy7QsGg3pt7kta/+O3mvX4Y1r45mINyxhdKuUHACCR0PkCa8zNIwAADDBJREFUAACQ\ngObMm6/2HS/UP876p+4ZNljzXni2yLhwOKL6detq0ZK3teqTT4uMsSxLPa68QpPH3afnXprjZrEB\nJDHLhQdKyLKcfSQxOl8AAAAS0BWdL9fokcO1Y8dObdy0qcgVr0KhkAYOGqolry1QyxbHqfdNAw44\nrOiSCy/Q1m3b3Cw2AAAJic4XAACABHV6u7aaPH6MBg0fqaXLVxTaf/foMbqpb2/Vq1tX0x+arG+/\nX637Jk4qNr1wJKyjmzZxs8gAACQkOl8AAAB8bv/dKqFQSNnZ2bn/lqSb+92gHt27qdu11+uXX3/N\nfc3CRW9qx46dOqfDWZKkNie0Uo9uV2jC5If0+ZdfSZJWffKpnvjP04pEIpKkqdP/rWF33V5qxwUg\nyTg9xCXJh7k4gnFgjqHzBQAAwMdWvv+BXvq/ebIsS4NG3KMbB94hy7I0Z94CfbjqY0nSYw8+oCMa\nN1LHSzrr1dff0NTHHtfVvW5QNBrVho0bJUnrMjMVCAYUCoXUpUdPLVz0ljb+vkkj7xunsy+8ROMm\nTdEpJ7ZR18su9fBoAQDwpyTveyokGtmZlW9DUeOji3zhvhUFDALtlik+F3p0HT9ul5iW05Qbx+N0\nGSXzctrJ2/Fjj0bMY63E6gf2ss19wc6xePmLlen7LGB+/nrZjq5c1x2uo2jExnUjEjaLCwTN03T6\nfPPJZ74xO9d1U15e/03PIcneeZSM3Liu2zrfDNMMmy2THl37uXHOobpNFAzEzz9Yu5FxmiWx71rv\n1+940ewdex1PNK1yOcm/deK1aHTrRkcTtKrVkZK0PVK8LgAAAAAAAEn5jbzMo1Wcklg/NwMAAAAA\nAJQxdL4AAAAAAAC4iGFHAAAAAADvMcKl7GHFKMdw5wsAAAAAAICL6HwBAABIAO+ufE/nX9pFnbtf\no2v79FOj5i0UrFxDl1/ZQ+d2ukzByjV01XW91fumATrz3As09bHHFQ7HVvzJXL9e/QYMVLByDT3x\nn6fzpTvz6WdVrd7h6nfr7Vq/YYPuHTdRwSq11PIfp2vAnYPVs++NOu/SLnrsiZm56WVlbdU9Y8Yr\nWKWW2nboqAF3DtaAOwfr2hv6q3ajo7R85XulXj8AAHiJe4jyY6np3CRZatopLDVtgKWm4/L6veYo\nlpr2BEtNG/DxUtP/N/9l3XDLrVo4d7ba/uMUSdLevXt1Te9+atCgvo5t3kx9b7lN4R1bJEnrN2zQ\n8ae000039NGou4flppNSpabKly+vj5a/rebNjs7d3vXqnpr1+DRVqFBB4XBYadUP1czHpqrn1d0l\nSRs2btTl3a9VWlqaFi2Yo/Lly+fGPTX9EV171ZW5aS1+Z6nS0tJ05mntWGo6UbDUdNw4lpo2Eg3t\nzHY80ZRKaZJ/68Rr0ej2PxxN0KpyiJSk7ZFY33gAAACSTFbWVvW5eYD69+mV2/EiSeXKldMTjz6s\nShUrKiUl/zR/9erW1Znt2mnhojfzbb+s00WqX6+uul/XW3v37s3dXrlyJVWoUEGSFAzGOiLydujV\nrVNHr8x+Xl98/bVGjBqbL66gs9ufqZPbtC7BEQMA4D90vgAAAPjY7HnztWPHTvXodkWhfVWqVNE1\n3bsVeUfTlqwslS+fnm9b5cqVNPuZp/TDmrX61+BhhV5zIIccUkvdOl+uZ154Kd/2vHn/8cefmjHz\nPypfvryttAEA8Ds6XwAAAHzsy6+/kSQ1btSwyP1NmxyZ73k0GtXTz7+oDz5apYE331Qo/vjjjtND\n94/XjCef0ryXX7VVlhbHNtfmLVu0efOW3G1PznpWvfrfomv69FPr09orJ8ds6AfgF+FIJO4jpdsE\nr4sJwGMsNe0Q47H0HuYtmY/l98O8BHZ4OUeKcV2GQ8Z5y3T+BBv9q47PB+HCOH5P57CxIaHmZ3GB\nnTlSTNmpcy+v18Z8Mj+Y02namj/HD0tfllIZQ6HY50fBYT55z/X9//rXoKGaM/9lHdu8mT5a/rZa\nHt+iyPdPn+uu1bsr39MNt9yqE1u32pdIgfaxAoW2BfbNjRL7v5Wb1v45X374cY3eWLzk7xJ5OT+Y\nC/O4eDpnnp3roOnfEcaf+W5cX1z4G8ZKM0vvyFbGeacGzL5O7Z7SReGNa+PGBescYZx3IvLDpT35\n0ChO4c4XAAAAHzuqaRNJsY6NeB68f7w6XXCePvnsM1WpUvmAsY89NFl1ah+qq3vdkNvBE8+Pa3/S\nobVrq3r1akXub9rkSJ168klGaQEAkEjofAEAAPCxrpddotTUVM2et8AofuoDE9XsqKN0abertXv3\n7mLjKlasqNnPPKX/ff6l5hoMP9qzZ4/mLnhZPXt0P2DcSW1aa8V7HxiVFQCAREHnCwAAgI8d1qCB\n7h8zWg88/Eih1YveXrpcM558Stn75lmJRCJKTU3V3Oee1p+bt+i6fn/P+bJt2zZt374j3+uPPaa5\nHpl8v/bs2ZO7bf+cLXmHpGzfvl09evVVkyOO0D1DB0v6ezhUOJx/SefM9ev15KxnSnrYAIDSYFnO\nPpIYc74AAAD43IAb+6pxo8M14YEHNW7SZDVu2FCVKlXSGe3a6tSTT9Ktdw2WZVma8MCD6t3zGtWp\nc6jmPv+02p93kXre0F+9e16jZ16crbeXL9es515Qz6v/vnvluh5X6d333pckbdmSpanTH5ckTX9i\npj797HNJ0m+/rVPnyy5W965dFAgElLUlSw9PnyFJmvTQVH36+ReSpD/++EOLly7ToIG3lWb1AADg\nueTueiosGtmZlW+D05O/ujHBml8mITWVaBPuGnNhwl1XJqvzyWTMfjjXk5WX73E7+Xt63XDjs8Lp\nCTbt5O1xmycrf0z+aiNvFyZyd5o/6tzb64EbHK/3sI0VuQwn3M3ZvkXBQPxylnTC3X114dfveNHw\nrmzHEw1WTJP8Wydei0Z3bHY0QatyTSlJ24M7XwAAAAAAnkvyUSllE43imLL/EwIAAAAAAICP0fkC\nAAAAAADgIoYdAQAAAADKgFIb4lJf0nBJX0g6VdJESV8XEddXUp19BUuRdLcD+3ymVNrEy/Y4mH37\n//2HpMMl7ZA0Ot5BMoArv2h011avywAkBDcmQEVi8Mu54caEu07n7Vb+fuDK5MUO16Vf2ibRJlL3\nctJbv7S5H3g5kbqy/zLOW6npZnGhvUZhkV3bjbMO1j+q0Da/T7gb2W1jsmNDgQqpUv46sSR9LGmw\npCWSmktaKKmppHCeuEskDZLUbt/zlyS9JenJEuzzm2i0wII0JWVVqi6VnfY42H0DJQUlPbBv31JJ\nIyS9d6BjZ9gRgBJb9u4Kr4sA+BbvH+DgLXt3pddFAOA//1TsC/6yfc+/lZQj6dICcYMkvZHn+QLF\nvnSXZB8K87I9DnZfE0nV8+zLklSt4IEVROcLgBJbtoI/foGDxfsHOHi8f4DEYlnOP4rQTtJaSaE8\n21ZL6pDneZqkEyV9l2fbD5KOlXTIQe6rdRBV4j33G8Sr9ihJOy6QdKtiHUetFetXWVTUweXFnC8A\nAAAAgGRRR1LB8V3bJDXI87yGpNR92/fbPz9Fk4Pc10DSnwdd6sTlVXuUpB2XKDbnyyLFhkydqfxD\npIrEnS8AAAAAgGQRUmxYS14Fvxfvvwsjp4iY8EHu8+tcPG7zqj1K0o6WYp1GwyUdKeltSRUUB3e+\n5Pe5VbFaS68LAfjRvWMneF0EwLd4/wAHb9Q43j9AHsu9LkBJWOVT3Uh2R4Hn6yWdVmBbNUk/53m+\nWbEv3lULxEjSrwe5L9NOocsKq2LcqUzsKivtUZJ2vF1SZUlDJb2o2ES7gyXdowOg8yW/Vl4XAAAA\nAACSUGndGbJU0pAC246W9J88z6OKTQDbNM+2ZopNBrvxIPdtKmG5vVAabeJVe5SkHTtIenXf9l8k\nPaTY0KMDYtgRAAAAACBZ/FexL8xn7XveTLEhI69Juk9Si33bn5DUKc/rLpA0s4T7UJiX7XGw+z6T\ndHyefeUVm/vlgBh3BgAAAABIJkdIGinpI0knS5oq6RPFvkCPlTRvX9ydig03+UtSFcXu0IiWcB8K\n87I9DmZfuqQpii0x/Yek+pKGScoucU0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAErB/wPxBuJwHzzK7gAAAABJRU5ErkJggg==\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x1134e5110>" | |
] | |
} | |
], | |
"prompt_number": 77 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment