Skip to content

Instantly share code, notes, and snippets.

@nzw0301
Created August 31, 2016 16:20
Show Gist options
  • Save nzw0301/b84708898c0085a6f8f79f70f4cf25d6 to your computer and use it in GitHub Desktop.
Save nzw0301/b84708898c0085a6f8f79f70f4cf25d6 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"raw = open('./glove.6B.200d.txt').readlines()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"vec = [list(map(float, l.split()[1:])) for l in raw]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(400000, 200)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vec = np.array(vec)\n",
"vec.shape"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"norms = np.linalg.norm(vec, axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"norms_table = pd.DataFrame(norms)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>400000.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>5.315520</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.961256</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>0.026054</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>4.584721</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>5.203980</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>5.937785</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>14.937667</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 0\n",
"count 400000.000000\n",
"mean 5.315520\n",
"std 0.961256\n",
"min 0.026054\n",
"25% 4.584721\n",
"50% 5.203980\n",
"75% 5.937785\n",
"max 14.937667"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"norms_table.describe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [Root]",
"language": "python",
"name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment