Skip to content

Instantly share code, notes, and snippets.

@ohyeah521
ohyeah521 / ss_att.py
Created November 10, 2015 13:44
Shadowsocks attack
#!/usr/bin/env python
#-*- coding: utf-8 -*-
'''
Copyleft (c) 2015 breakwa11
https://github.com/breakwa11/shadowsocks-rss
'''
import logging
import socket

为什么流量可以进行分类

这里的“流量”一般定义为中间人观测到的一组由(时间,方向,包大小)元数据组成的序列 [Cai2014]。其源头是应用层的读写操作,经过传输层协议的变换(分片、协议状态机、加密等),流量序列产生一定变化。但是这种变化非常有限,因为流量的发生过程本质是确定性的,随机因素较小,因此对于特定环境中的特定应用(浏览器访问 google.com)各种流量特征体现出相当大的一致性和独特性,这就使“从流量特征识别应用”的监督学习问题成为可能。虽然有若干不利因素使得确定性下降,例如多层次上软件多版本的排列组合爆炸、有状态的缓存、流水线和连接复用、用户随机行为,但是因为版本的幂律分布、应用层读写操作间的依赖关系、流量特征和检测算法的改进等原因,分类依然具有相当的可行性。

分类的对象:流量应用分类与网站指纹攻击

根据分类的对象产生了两个相近但是不同的研究领域。从流量特征中分类应用类型的被称为流量分类(traffic classification),从流量特征中分类所访问网站或者网页的被称为网站指纹(website fingerprinting)。以机器学习的方法而论前者是比后者更弱但本质相同的一个问题。

这两类攻击的威胁类型不同。流量分类威胁的是可用性,如果GFW检出流量是隧道应用然后进行封锁,则破坏了可用性。而网站指纹威胁的是匿名性和隐私,如果从隐秘流量中检出是谁在访问哪个网站,则破坏了匿名性,丝绸之路就是这样被FBI破获的。

@ohyeah521
ohyeah521 / psdecomp.py
Created December 10, 2019 14:03 — forked from idiom/psdecomp.py
Script to decode and decompress Powershell Commands
import base64
import zlib
import argparse
def decode_command(cmd):
try:
# base64 decode the command
p1 = base64.b64decode(cmd)