Created
January 4, 2014 20:52
-
-
Save olgabot/8260601 to your computer and use it in GitHub Desktop.
Matplotlib spines/ticks rcParams
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%load_ext autoreload" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"The autoreload extension is already loaded. To reload it, use:\n", | |
" %reload_ext autoreload\n" | |
] | |
} | |
], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import matplotlib as mpl\n", | |
"import matplotlib.pyplot as plt" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"for k in mpl.rcParams.keys():\n", | |
" if 'spines' in k:\n", | |
" print k" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"axes.spines.bottom\n", | |
"axes.spines.left\n", | |
"axes.spines.right\n", | |
"axes.spines.top\n" | |
] | |
} | |
], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"for k in mpl.rcParamsDefault.keys():\n", | |
" if 'spines' in k:\n", | |
" print k" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"axes.spines.bottom\n", | |
"axes.spines.left\n", | |
"axes.spines.right\n", | |
"axes.spines.top\n" | |
] | |
} | |
], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"for k in mpl.rcParamsOrig.keys():\n", | |
" if 'spines' in k:\n", | |
" print k" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"axes.spines.right\n", | |
"axes.spines.top\n", | |
"axes.spines.bottom\n", | |
"axes.spines.left\n" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plt.plot((0,1), (0,1))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 6, | |
"text": [ | |
"[<matplotlib.lines.Line2D at 0x10e4f2250>]" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEP9JREFUeJzt3W+oXGedwPHvb9MqCHbrEiiYRupqcFVoUUnaXXe3Iy30\nWsGCC1ui3lIVLAuRfVGw1hfmvolLIS9c6XK3KbXIvjALKmxcSousDkqp1dak1TUpyXYLSSpl6z9E\nCknob1/MmJxO7505M/fMzPnz/cCFe+48PfP04d4n3z6TuY3MRJLULn+y7AlIkqrn5i5JLeTmLkkt\n5OYuSS3k5i5JLeTmLkktNHFzj4ivRcRLEfGzMWO+GhEnI+KZiHhftVOUJE2rTLk/DKxs9mBE3Aq8\nMzN3AZ8F1iuamyRpRhM398z8IfCbMUM+Cnx9OPZJ4MqIuKqa6UmSZlHFmfsO4HTh+gxwdQX3lSTN\nqKoXVGPk2t9pIElLdFkF9zgL7CxcXz382mtEhBu+JM0gM0cDeqIqyv0IcAdARNwA/DYzX9poYGb6\nkcn+/fuXPoe6fLgWroVrcenjpz9Nrr02+chHkrNnB1+b1cRyj4hvADcC2yPiNLAfuHy4WT+QmY9E\nxK0RcQr4A/CpmWcjSR107hwcOADr63DwIKyuQkzd6q81cXPPzL0lxuzb2jQkqZuOHoU774SdO+HY\nMXjrW6u5r+9QXYJer7fsKdSGa3GJa3FJF9bi3DnYvx9uuQXuvhu+853qNnaA2MqZzlRPFJGLei5J\nqrNirR86NH5TjwhySS+oSpJKmHetF1XxVyElSRPM62x9M5a7JM3RImu9yHKXpDlZdK0XWe6SVLFl\n1XqR5S5JFVpmrRdZ7pJUgTrUepHlLklbVJdaL7LcJWlGdav1IstdkmZQx1ovstwlaQp1rvUiy12S\nSqp7rRdZ7pI0QVNqvchyl6QxmlTrRZa7JG2gibVeZLlL0oim1nqR5S5JQ02v9SLLXZJoR60XWe6S\nOq1NtV5kuUvqrLbVepHlLqlz2lrrRZa7pE5pc60XWe6SOqELtV5kuUtqva7UepHlLqm1ulbrRZa7\npFbqYq0XWe6SWqXLtV5kuUtqja7XepHlLqnxrPXXs9wlNZq1vjHLXVIjWevjWe6SGsdan8xyl9QY\n1np5lrukRrDWpzOx3CNiJSJORMTJiLhng8e3R8SjEXEsIn4eEXfOZaaSOslan01k5uYPRmwDngNu\nBs4CPwH2Zubxwpg14I2ZeW9EbB+OvyozL4zcK8c9lySNKtb6oUPd3NQjgsyMaf+5SeW+BziVmS9k\n5nngMHDbyJhfAlcMP78C+NXoxi5J07DWt27SmfsO4HTh+gxw/ciYB4HvRcSLwJuBv69uepK6xrP1\nakza3Muco3wROJaZvYh4B/DdiLguM38/OnBtbe3i571ej16vN8VUJbXZuXNw4ACsr8PBg7C6CjH1\nYUTz9ft9+v3+lu8z6cz9BmAtM1eG1/cCr2bmfYUxjwAHMvPx4fV/Afdk5lMj9/LMXdKGPFvf3LzO\n3J8CdkXENRHxBuB24MjImBMMXnAlIq4C3gU8P+1EJHWPZ+vzM/ZYJjMvRMQ+4DFgG/BQZh6PiLuG\njz8AfBl4OCKeYfCHxecz89dznrekhvNsfb7GHstU+kQey0jCs/VpzXos4ztUJS2Mtb44/m4ZSXPn\n2friWe6S5spaXw7LXdJcWOvLZblLqpy1vnyWu6TKWOv1YblLqoS1Xi+Wu6QtsdbryXKXNDNrvb4s\nd0lTs9brz3KXNBVrvRksd0mlWOvNYrlLmshabx7LXdKmrPXmstwlbchabzbLXdJrWOvtYLlLusha\nbw/LXZK13kKWu9Rx1no7We5SR1nr7Wa5Sx1krbef5S51iLXeHZa71BHWerdY7lLLWevdZLlLLWat\nd5flLrWQtS7LXWoZa11guUutYa2ryHKXWsBa1yjLXWowa12bsdylhrLWNY7lLjWMta4yLHepQax1\nlWW5Sw1grWtalrtUc9a6ZjGx3CNiJSJORMTJiLhnkzG9iDgaET+PiH7ls5Q6yFrXVowt94jYBtwP\n3AycBX4SEUcy83hhzJXAvwC3ZOaZiNg+zwlLXWCta6smlfse4FRmvpCZ54HDwG0jYz4OfCszzwBk\n5svVT1PqBmtdVZl05r4DOF24PgNcPzJmF3B5RHwfeDPwz5n5b9VNUeoGa11VmrS5Z4l7XA68H7gJ\neBPwRET8KDNPbnVyUhecOwcHDsD6Ohw8CKurELHsWanpJm3uZ4GdheudDOq96DTwcma+ArwSET8A\nrgNet7mvra1d/LzX69Hr9aafsdQi1rpG9ft9+v3+lu8TmZvHeURcBjzHoMpfBH4M7B15QfUvGLzo\negvwRuBJ4PbM/MXIvXLcc0ldYq2rrIggM6f+7hhb7pl5ISL2AY8B24CHMvN4RNw1fPyBzDwREY8C\nzwKvAg+ObuySLrHWtQhjy73SJ7Lc1XHWumYxl3KXVA1rXYvm75aR5si/t65lsdylObHWtUyWu1Qx\na111YLlLFbLWVReWu1QBa111Y7lLW2Stq44sd2lG1rrqzHKXZmCtq+4sd2kK1rqawnKXSrLW1SSW\nuzSBta4mstylMax1NZXlLm3AWlfTWe7SCGtdbWC5S0PWutrEcpew1tU+lrs6zVpXW1nu6ixrXW1m\nuatzrHV1geWuTrHW1RWWuzrBWlfXWO5qPWtdXWS5q7WsdXWZ5a5WstbVdZa7WsValwYsd7WGtS5d\nYrmr8ax16fUsdzWatS5tzHJXI1nr0niWuxrHWpcms9zVGNa6VJ7lrkaw1qXpWO6qNWtdmo3lrtqy\n1qXZWe6qHWtd2rqJm3tErETEiYg4GRH3jBm3OyIuRMTHqp2iuuToUdi9G55+elDrd9wBEcueldQ8\nYzf3iNgG3A+sAO8B9kbEuzcZdx/wKOCPoqZmrUvVmnTmvgc4lZkvAETEYeA24PjIuM8B3wR2Vz1B\ntZ9n61L1Jh3L7ABOF67PDL92UUTsYLDhrw+/lJXNTq1mrUvzM6ncy2zUXwG+kJkZEYHHMirBWpfm\na9LmfhbYWbjeyaDeiz4AHB7s62wHPhwR5zPzyOjN1tbWLn7e6/Xo9XrTz1iNdu4cHDgA6+tw8CCs\nrvqCqVTU7/fp9/tbvk9kbh7nEXEZ8BxwE/Ai8GNgb2aOnrn/cfzDwHcy89sbPJbjnkvtV6z1Q4es\ndamMiCAzp06gsWfumXkB2Ac8BvwC+PfMPB4Rd0XEXbNNVV3j2bq0eGPLvdInstw7yVqXtmYu5S7N\nylqXlsvfLaPK+TdhpOWz3FUZa12qD8tdlbDWpXqx3LUl1rpUT5a7ZmatS/VluWtq1rpUf5a7pmKt\nS81guasUa11qFstdE1nrUvNY7tqUtS41l+WuDVnrUrNZ7noNa11qB8tdF1nrUntY7rLWpRay3DvO\nWpfayXLvKGtdajfLvYOsdan9LPcOsdal7rDcO8Jal7rFcm85a13qJsu9xax1qbss9xay1iVZ7i1j\nrUsCy701rHVJRZZ7C1jrkkZZ7g1mrUvajOXeUNa6pHEs94ax1iWVYbk3iLUuqSzLvQGsdUnTstxr\nzlqXNAvLvaasdUlbYbnXkLUuaass9xqx1iVVxXKvCWtdUpVKlXtErETEiYg4GRH3bPD4JyLimYh4\nNiIej4hrq59qO1nrkuZhYrlHxDbgfuBm4Czwk4g4kpnHC8OeB/42M38XESvAIeCGeUy4Tax1SfNS\nptz3AKcy84XMPA8cBm4rDsjMJzLzd8PLJ4Grq51mu1jrkuatzJn7DuB04foMcP2Y8Z8BHtnKpNrM\nWpe0CGU29yx7s4j4EPBp4IMbPb62tnbx816vR6/XK3vrxjt3Dg4cgPV1OHgQVlchYtmzklQ3/X6f\nfr+/5ftE5vi9OyJuANYyc2V4fS/wambeNzLuWuDbwEpmntrgPjnpudqqWOuHDlnrksqLCDJz6hQs\nc+b+FLArIq6JiDcAtwNHRp78bQw29k9utLF3lWfrkpZl4rFMZl6IiH3AY8A24KHMPB4Rdw0ffwD4\nEvAWYD0GZw3nM3PP/KZdf56tS1qmiccylT1RR45lPFuXVKVZj2V8h2qFrHVJdeHvlqmAZ+uS6sZy\n3yJrXVIdWe4zstYl1ZnlPgNrXVLdWe5TsNYlNYXlXpK1LqlJLPcJrHVJTWS5j2GtS2oqy30D1rqk\nprPcR1jrktrAch+y1iW1ieWOtS6pfTpd7ta6pLbqbLlb65LarHPlbq1L6oJOlbu1LqkrOlHu1rqk\nrml9uVvrkrqoteVurUvqslaWu7UuqetaVe7WuiQNtKbcrXVJuqTx5W6tS9LrNbrcrXVJ2lgjy91a\nl6TxGlfu1rokTdaYcrfWJam8RpS7tS5J06l1uVvrkjSb2pa7tS5Js6tduVvrkrR1tSp3a12SqlGL\ncrfWJalaSy93a12Sqjex3CNiJSJORMTJiLhnkzFfHT7+TES8r8wTW+uSND9jN/eI2AbcD6wA7wH2\nRsS7R8bcCrwzM3cBnwXWJz3p0aOwezc8/fSg1u+4AyJm/ndonH6/v+wp1IZrcYlrcYlrsXWTyn0P\ncCozX8jM88Bh4LaRMR8Fvg6QmU8CV0bEVRvdzFof8Bv3EtfiEtfiEtdi6yadue8ATheuzwDXlxhz\nNfDS6M127/ZsXZIWYdLmniXvM3qosuE/d/fdsLrarSMYSVqGyNx8/46IG4C1zFwZXt8LvJqZ9xXG\n/CvQz8zDw+sTwI2Z+dLIvcr+QSFJKsjMqZN4Urk/BeyKiGuAF4Hbgb0jY44A+4DDwz8Mfju6sc86\nOUnSbMZu7pl5ISL2AY8B24CHMvN4RNw1fPyBzHwkIm6NiFPAH4BPzX3WkqSxxh7LSJKaqfJfPzCv\nNz010aS1iIhPDNfg2Yh4PCKuXcY8F6HM98Vw3O6IuBARH1vk/Bal5M9HLyKORsTPI6K/4CkuTImf\nj+0R8WhEHBuuxZ1LmOZCRMTXIuKliPjZmDHT7ZuZWdkHg6ObU8A1wOXAMeDdI2NuBR4Zfn498KMq\n51CXj5Jr8ZfAnw4/X+nyWhTGfQ/4T+Dvlj3vJX1PXAn8N3D18Hr7sue9xLVYA/7pj+sA/Aq4bNlz\nn9N6/A3wPuBnmzw+9b5ZdblX+qanhpu4Fpn5RGb+bnj5JIP3B7RRme8LgM8B3wT+b5GTW6Ay6/Bx\n4FuZeQYgM19e8BwXpcxa/BK4Yvj5FcCvMvPCAue4MJn5Q+A3Y4ZMvW9Wvblv9IamHSXGtHFTK7MW\nRZ8BHpnrjJZn4lpExA4GP9x//PUVbXwxqMz3xC7gzyLi+xHxVESsLmx2i1VmLR4E3hsRLwLPAP+4\noLnV0dT7ZtW/FbLSNz01XOl/p4j4EPBp4IPzm85SlVmLrwBfyMyMiOD13yNtUGYdLgfeD9wEvAl4\nIiJ+lJkn5zqzxSuzFl8EjmVmLyLeAXw3Iq7LzN/PeW51NdW+WfXmfhbYWbjeyeBPmHFjrh5+rW3K\nrAXDF1EfBFYyc9x/ljVZmbX4AIP3SsDgfPXDEXE+M48sZooLUWYdTgMvZ+YrwCsR8QPgOqBtm3uZ\ntfgr4ABAZv5PRPwv8C4G77/pmqn3zaqPZS6+6Ski3sDgTU+jP5xHgDvg4jtgN3zTUwtMXIuIeBvw\nbeCTmXlqCXNclIlrkZl/nplvz8y3Mzh3/4eWbexQ7ufjP4C/johtEfEmBi+e/WLB81yEMmtxArgZ\nYHi+/C7g+YXOsj6m3jcrLff0TU8XlVkL4EvAW4D1YbGez8w9y5rzvJRci9Yr+fNxIiIeBZ4FXgUe\nzMzWbe4lvye+DDwcEc8wCNHPZ+avlzbpOYqIbwA3Atsj4jSwn8ER3cz7pm9ikqQWqsX/Q1WSVC03\nd0lqITd3SWohN3dJaiE3d0lqITd3SWohN3dJaiE3d0lqof8H/OANfF35uk4AAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x10e0c0f10>" | |
] | |
} | |
], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"spines = ['top', 'right']\n", | |
"for spine in spines: \n", | |
" mpl.rcParams['axes.spines.{}'.format(spine)] = False\n", | |
"plt.plot((0,1), (0,1))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 7, | |
"text": [ | |
"[<matplotlib.lines.Line2D at 0x10e524a50>]" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEVRJREFUeJzt3X+InHedwPH359IqKPbqESiYRupp8OqBRSVp77y7jljo\n2j8senAl6paqYDmI3EHFWv+wkz/iUcgfnvTYa0otcn+YAxUuHqWlnA6K1GpL0uqZSHJeIUmlXP2F\nSCEJ/dwfM+4+ne7OPDP7zI/ned4vWNhn5zsz33zZ/e47381sIjORJDXLHy16ApKk6rm5S1IDublL\nUgO5uUtSA7m5S1IDublLUgON3dwj4isR8UJE/HjEmC9HxOmIeCYi3lXtFCVJkypT7g8DK1vdGBG3\nAG/LzD3Ap4C1iuYmSZrS2M09M78H/HrEkA8CXx2MfRK4MiKuqmZ6kqRpVHHmvgs4W7g+B1xdweNK\nkqZU1Q9UY+ja32kgSQtUxeZ+HthduL568LFXiIjsdrvrb71eL+l/E2jdW5v/7K6Fa+FajH57/PFe\n3nhjN1//+m5+6EPdjIh/ZAqXTXOnIceAA8DRiLgB+E1mvrDZwG63W8HT1V+v16PT6Sx6GkvBtdjg\nWmxo61ocPw6f+UyH3bs7nD4Nb3oTRBy8cprHGru5R8TXgBuBnRFxFrgXuBwgMx/IzEci4paIOAP8\nHvj4NBORpLa6cAEOHYK1NTh8GFZXIYYPuyc0dnPPzP0lxhzY3jQkqZ2OH4c77oDdu+HEiX6tV8FX\nqC5AG/+6uRXXYoNrsaENa3HhAtx7L9x8M9x1F3zrW1tu7L1pHj/m9Z91RET6H4NI0itr/ciRsbU+\n1QGN5S5JczJBrW9bFf9aRpI0xqzO1rdiuUvSDM2z1ossd0makXnXepHlLkkVW1StF1nuklShRdZ6\nkeUuSRVYhlovstwlaZuWpdaLLHdJmtKy1XqR5S5JU1jGWi+y3CVpAstc60WWuySVtOy1XmS5S9IY\ndan1IstdkkaoU60XWe6StIk61nqR5S5JQ+pa60WWuyQN1L3Wiyx3SaIZtV5kuUtqtSbVepHlLqm1\nmlbrRZa7pNZpaq0XWe6SWqXJtV5kuUtqhTbUepHlLqnx2lLrRZa7pMZqW60XWe6SGqmNtV5kuUtq\nlDbXepHlLqkx2l7rRZa7pNqz1l/NcpdUa9b65ix3SbVkrY9muUuqHWt9PMtdUm1Y6+VZ7pJqwVqf\nzNhyj4iViDgVEacj4u5Nbt8ZEY9GxImI+ElE3DGTmUpqJWt9OpGZW98YsQP4GXATcB74EbA/M08W\nxnSB12bmPRGxczD+qsy8NPRYOeq5JGlYsdaPHGntph7T3Glcue8DzmTmc5l5ETgK3Do05hfAFYP3\nrwB+ObyxS9IkrPXtG3fmvgs4W7g+B1w/NOZB4NsR8TzwBuDvqpuepLbxbL0a4zb3MuconwdOZGYn\nIt4KPB4R12Xm74YHdrvd9fc7nQ6dTmeCqUpqsgsX4NAhWFuDw4dhdRViqgOJeuv1evR6vfXrgwcP\ndjKzt+UdtjDuzP0GoJuZK4Pre4CXM/O+wphHgEOZ+f3B9X8Bd2fmU0OP5Zm7pE15tj7STM7cnwL2\nRMQ1EfEa4Dbg2NCYU/R/4EpEXAW8Hfj5NJOR1C6erc/OyGOZzLwUEQeAx4AdwEOZeTIi7hzc/gDw\nReDhiHiG/jeLz2bmr2Y8b0k159n6bI08lqn0iTyWkYRn61OYanV8haqkubHW58ffLSNp5jxbnz/L\nXdJMWeuLYblLmglrfbEsd0mVs9YXz3KXVBlrfXlY7pIqYa0vF8td0rZY68vJcpc0NWt9eVnukiZm\nrS8/y13SRKz1erDcJZVirdeL5S5pLGu9fix3SVuy1uvLcpe0KWu93ix3Sa9grTeD5S5pnbXeHJa7\nJGu9gSx3qeWs9Way3KWWstabzXKXWshabz7LXWoRa709LHepJaz1drHcpYaz1tvJcpcazFpvL8td\naiBrXZa71DDWusBylxrDWleR5S41gLWuYZa7VGPWurZiuUs1Za1rFMtdqhlrXWVY7lKNWOsqy3KX\nasBa16Qsd2nJWeuaxthyj4iViDgVEacj4u4txnQi4nhE/CQiepXPUmoha13bMbLcI2IHcD9wE3Ae\n+FFEHMvMk4UxVwL/AtycmeciYucsJyy1gbWu7RpX7vuAM5n5XGZeBI4Ctw6N+Qjwjcw8B5CZL1Y/\nTakdrHVVZdyZ+y7gbOH6HHD90Jg9wOUR8R3gDcA/Z+a/VTdFqR2sdVVp3OaeJR7jcuDdwPuB1wFP\nRMQPMvP0dicntcGFC3DoEKytweHDsLoKEYuelepu3OZ+HthduN5Nv96LzgIvZuZLwEsR8V3gOuBV\nm3u3211/v9Pp0Ol0Jp+x1CDWuob1ej16vd769cGDBzuZ2dvyDluIzK3jPCIuA35Gv8qfB34I7B/6\ngeqf0f+h683Aa4Engdsy86dDj5WjnktqE2tdE5jqM2NkuWfmpYg4ADwG7AAeysyTEXHn4PYHMvNU\nRDwKPAu8DDw4vLFL2mCtax5GlnulT2S5q+WsdU2p+nKXVA1rXfPm75aRZsh/t65FsdylGbHWtUiW\nu1Qxa13LwHKXKmSta1lY7lIFrHUtG8td2iZrXcvIcpemZK1rmVnu0hSsdS07y12agLWuurDcpZKs\nddWJ5S6NYa2rjix3aQRrXXVluUubsNZVd5a7NMRaVxNY7tKAta4msdwlrHU1j+WuVrPW1VSWu1rL\nWleTWe5qHWtdbWC5q1WsdbWF5a5WsNbVNpa7Gs9aVxtZ7mosa11tZrmrkax1tZ3lrkax1qU+y12N\nYa1LGyx31Z61Lr2a5a5as9alzVnuqiVrXRrNclftWOvSeJa7asNal8qz3FUL1ro0GctdS81al6Zj\nuWtpWevS9Cx3LR1rXdq+sZt7RKxExKmIOB0Rd48YtzciLkXEh6udotrk+HHYuxeefrpf67ffDhGL\nnpVUPyM394jYAdwPrADvAPZHxLVbjLsPeBTwS1ETs9alao07c98HnMnM5wAi4ihwK3ByaNynga8D\ne6ueoJrPs3WpeuOOZXYBZwvX5wYfWxcRu+hv+GuDD2Vls1OjWevS7Iwr9zIb9ZeAz2VmRkTgsYxK\nsNal2Rq3uZ8Hdheud9Ov96L3AEf7+zo7gQ9ExMXMPDb8YN1ud/39TqdDp9OZfMaqtQsX4NAhWFuD\nw4dhddUfmEpFvV6PXq+3fn3w4MFOZva2vMMWInPrOI+Iy4CfAe8Hngd+COzPzOEz9z+Mfxj4VmZ+\nc5PbctRzqfmKtX7kiLUulTRV/ow8c8/MS8AB4DHgp8C/Z+bJiLgzIu6c5gnVPp6tS/M3stwrfSLL\nvZWsdWnbqi93aVrWurRY/m4ZVc5/CSMtnuWuyljr0vKw3FUJa11aLpa7tsVal5aT5a6pWevS8rLc\nNTFrXVp+lrsmYq1L9WC5qxRrXaoXy11jWetS/Vju2pK1LtWX5a5NWetSvVnuegVrXWoGy13rrHWp\nOSx3WetSA1nuLWetS81kubeUtS41m+XeQta61HyWe4tY61J7WO4tYa1L7WK5N5y1LrWT5d5g1rrU\nXpZ7A1nrkiz3hrHWJYHl3hjWuqQiy70BrHVJwyz3GrPWJW3Fcq8pa13SKJZ7zVjrksqw3GvEWpdU\nluVeA9a6pElZ7kvOWpc0Dct9SVnrkrbDcl9C1rqk7bLcl4i1LqkqlvuSsNYlValUuUfESkSciojT\nEXH3Jrd/NCKeiYhnI+L7EfHO6qfaTNa6pFkYW+4RsQO4H7gJOA/8KCKOZebJwrCfA3+Tmb+NiBXg\nCHDDLCbcJNa6pFkpU+77gDOZ+VxmXgSOArcWB2TmE5n528Hlk8DV1U6zWax1SbNW5sx9F3C2cH0O\nuH7E+E8Cj2xnUk1mrUuahzKbe5Z9sIh4H/AJ4L2b3d7tdtff73Q6dDqdsg9dexcuwKFDsLYGhw/D\n6ipELHpWkpZNr9ej1+utXx88eLCTmb0t77CFyBy9d0fEDUA3M1cG1/cAL2fmfUPj3gl8E1jJzDOb\nPE6Oe66mKtb6kSPWuqSJTJWBZc7cnwL2RMQ1EfEa4Dbg2CueOeLN9Df2j222sbeVZ+uSFmXssUxm\nXoqIA8BjwA7gocw8GRF3Dm5/APgC8EZgLfpnDRczc9/spr38PFuXtEhjj2Uqe6KWHMt4ti6pYlPt\nIL5CtULWuqRl4e+WqYBn65KWjeW+Tda6pGVkuU/JWpe0zCz3KVjrkpad5T4Ba11SXVjuJVnrkurE\nch/DWpdUR5b7CNa6pLqy3DdhrUuqO8t9iLUuqQks9wFrXVKTWO5Y65Kap9Xlbq1LaqrWlru1LqnJ\nWlfu1rqkNmhVuVvrktqiFeVurUtqm8aXu7UuqY0aW+7WuqQ2a2S5W+uS2q5R5W6tS1JfY8rdWpek\nDbUvd2tdkl6t1uVurUvS5mpZ7ta6JI1Wu3K31iVpvNqUu7UuSeXVotytdUmazFKXu7UuSdNZ2nK3\n1iVpektX7ta6JG3fUpW7tS5J1ViKcrfWJalaCy93a12Sqje23CNiJSJORcTpiLh7izFfHtz+TES8\nq8wTW+uSNDsjN/eI2AHcD6wA7wD2R8S1Q2NuAd6WmXuATwFr4570+HHYuxeefrpf67ffDhFT/xlq\np9frLXoKS8O12OBabHAtNkREZ5r7jSv3fcCZzHwuMy8CR4Fbh8Z8EPgqQGY+CVwZEVdt9mDWep+f\nuBtciw2uxQbX4hU609xp3Jn7LuBs4foccH2JMVcDLww/2N69nq1L0jyM29yz5OMMH6pser+77oLV\n1XYdwUjSIkTm1vt3RNwAdDNzZXB9D/ByZt5XGPOvQC8zjw6uTwE3ZuYLQ49V9huFJKkgMydO4nHl\n/hSwJyKuAZ4HbgP2D405BhwAjg6+GfxmeGOfdnKSpOmM3Nwz81JEHAAeA3YAD2XmyYi4c3D7A5n5\nSETcEhFngN8DH5/5rCVJI408lpEk1VPlv35gVi96qqNxaxERHx2swbMR8f2IeOci5jkPZT4vBuP2\nRsSliPjwPOc3LyW/PjoRcTwifhIRvTlPcW5KfH3sjIhHI+LEYC3uWMA05yIivhIRL0TEj0eMmWzf\nzMzK3ugf3ZwBrgEuB04A1w6NuQV4ZPD+9cAPqpzDsryVXIu/AP548P5Km9eiMO7bwH8Cf7voeS/o\nc+JK4L+BqwfXOxc97wWuRRf4pz+sA/BL4LJFz31G6/HXwLuAH29x+8T7ZtXlXumLnmpu7Fpk5hOZ\n+dvB5ZP0Xx/QRGU+LwA+DXwd+L95Tm6OyqzDR4BvZOY5gMx8cc5znJcya/EL4IrB+1cAv8zMS3Oc\n49xk5veAX48YMvG+WfXmvtkLmnaVGNPETa3MWhR9EnhkpjNanLFrERG76H9x/+HXVzTxh0FlPif2\nAH8SEd+JiKciYnVus5uvMmvxIPDnEfE88AzwD3Oa2zKaeN+s+rdCVvqip5or/WeKiPcBnwDeO7vp\nLFSZtfgS8LnMzIgIXv050gRl1uFy4N3A+4HXAU9ExA8y8/RMZzZ/Zdbi88CJzOxExFuBxyPiusz8\n3Yzntqwm2jer3tzPA7sL17vpf4cZNebqwceapsxaMPgh6oPASmaO+mtZnZVZi/fQf60E9M9XPxAR\nFzPz2HymOBdl1uEs8GJmvgS8FBHfBa4Dmra5l1mLvwQOAWTm/0TE/wJvp//6m7aZeN+s+lhm/UVP\nEfEa+i96Gv7iPAbcDuuvgN30RU8NMHYtIuLNwDeBj2XmmQXMcV7GrkVm/mlmviUz30L/3P3vG7ax\nQ7mvj/8A/ioidkTE6+j/8Oync57nPJRZi1PATQCD8+W3Az+f6yyXx8T7ZqXlnr7oaV2ZtQC+ALwR\nWBsU68XM3LeoOc9KybVovJJfH6ci4lHgWeBl4MHMbNzmXvJz4ovAwxHxDP0Q/Wxm/mphk56hiPga\ncCOwMyLOAvfSP6Kbet/0RUyS1EBL8X+oSpKq5eYuSQ3k5i5JDeTmLkkN5OYuSQ3k5i5JDeTmLkkN\n5OYuSQ30/8HEnOIkZGQLAAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x10e0d6990>" | |
] | |
} | |
], | |
"prompt_number": 7 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment