Created
October 16, 2017 19:05
-
-
Save olgabot/df659ca721d9d4e8643a794098b72f48 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"import glob\n", | |
"import os\n", | |
"from itertools import chain\n", | |
"import string\n", | |
"import matplotlib.pyplot as plt\n", | |
"\n", | |
"import seaborn as sns\n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"DATA_FOLDER = 'data'\n", | |
"FIGURE_FOLDER = 'figures'\n", | |
"\n", | |
"notebook_name = '014_rotate_i7_indices_for_updated_samplesheets'\n", | |
"data_folder = os.path.join(DATA_FOLDER, notebook_name)\n", | |
"figure_folder = os.path.join(FIGURE_FOLDER, notebook_name)\n", | |
"\n", | |
"! mkdir -p $data_folder\n", | |
"! mkdir -p $figure_folder" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"pd.options.display.max_columns = 30" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th>number_col</th>\n", | |
" <th>1</th>\n", | |
" <th>2</th>\n", | |
" <th>3</th>\n", | |
" <th>4</th>\n", | |
" <th>5</th>\n", | |
" <th>6</th>\n", | |
" <th>7</th>\n", | |
" <th>8</th>\n", | |
" <th>9</th>\n", | |
" <th>10</th>\n", | |
" <th>11</th>\n", | |
" <th>12</th>\n", | |
" <th>13</th>\n", | |
" <th>14</th>\n", | |
" <th>15</th>\n", | |
" <th>16</th>\n", | |
" <th>17</th>\n", | |
" <th>18</th>\n", | |
" <th>19</th>\n", | |
" <th>20</th>\n", | |
" <th>21</th>\n", | |
" <th>22</th>\n", | |
" <th>23</th>\n", | |
" <th>24</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>letter_row</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>A</th>\n", | |
" <td>NEXT-i5-IDT-1</td>\n", | |
" <td>NEXT-i5-IDT-97</td>\n", | |
" <td>NEXT-i5-IDT-9</td>\n", | |
" <td>NEXT-i5-IDT-105</td>\n", | |
" <td>NEXT-i5-IDT-17</td>\n", | |
" <td>NEXT-i5-IDT-113</td>\n", | |
" <td>NEXT-i5-IDT-25</td>\n", | |
" <td>NEXT-i5-IDT-121</td>\n", | |
" <td>NEXT-i5-IDT-33</td>\n", | |
" <td>NEXT-i5-IDT-129</td>\n", | |
" <td>NEXT-i5-IDT-41</td>\n", | |
" <td>NEXT-i5-IDT-137</td>\n", | |
" <td>NEXT-i5-IDT-49</td>\n", | |
" <td>NEXT-i5-IDT-145</td>\n", | |
" <td>NEXT-i5-IDT-57</td>\n", | |
" <td>NEXT-i5-IDT-153</td>\n", | |
" <td>NEXT-i5-IDT-65</td>\n", | |
" <td>NEXT-i5-IDT-161</td>\n", | |
" <td>NEXT-i5-IDT-73</td>\n", | |
" <td>NEXT-i5-IDT-169</td>\n", | |
" <td>NEXT-i5-IDT-81</td>\n", | |
" <td>NEXT-i5-IDT-177</td>\n", | |
" <td>NEXT-i5-IDT-89</td>\n", | |
" <td>NEXT-i5-IDT-185</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>B</th>\n", | |
" <td>NEXT-i5-IDT-193</td>\n", | |
" <td>NEXT-i5-IDT-289</td>\n", | |
" <td>NEXT-i5-IDT-201</td>\n", | |
" <td>NEXT-i5-IDT-297</td>\n", | |
" <td>NEXT-i5-IDT-209</td>\n", | |
" <td>NEXT-i5-IDT-305</td>\n", | |
" <td>NEXT-i5-IDT-217</td>\n", | |
" <td>NEXT-i5-IDT-313</td>\n", | |
" <td>NEXT-i5-IDT-225</td>\n", | |
" <td>NEXT-i5-IDT-321</td>\n", | |
" <td>NEXT-i5-IDT-233</td>\n", | |
" <td>NEXT-i5-IDT-329</td>\n", | |
" <td>NEXT-i5-IDT-241</td>\n", | |
" <td>NEXT-i5-IDT-337</td>\n", | |
" <td>NEXT-i5-IDT-249</td>\n", | |
" <td>NEXT-i5-IDT-345</td>\n", | |
" <td>NEXT-i5-IDT-257</td>\n", | |
" <td>NEXT-i5-IDT-353</td>\n", | |
" <td>NEXT-i5-IDT-265</td>\n", | |
" <td>NEXT-i5-IDT-361</td>\n", | |
" <td>NEXT-i5-IDT-273</td>\n", | |
" <td>NEXT-i5-IDT-369</td>\n", | |
" <td>NEXT-i5-IDT-281</td>\n", | |
" <td>NEXT-i5-IDT-377</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>C</th>\n", | |
" <td>NEXT-i5-IDT-2</td>\n", | |
" <td>NEXT-i5-IDT-98</td>\n", | |
" <td>NEXT-i5-IDT-10</td>\n", | |
" <td>NEXT-i5-IDT-106</td>\n", | |
" <td>NEXT-i5-IDT-18</td>\n", | |
" <td>NEXT-i5-IDT-114</td>\n", | |
" <td>NEXT-i5-IDT-26</td>\n", | |
" <td>NEXT-i5-IDT-122</td>\n", | |
" <td>NEXT-i5-IDT-34</td>\n", | |
" <td>NEXT-i5-IDT-130</td>\n", | |
" <td>NEXT-i5-IDT-42</td>\n", | |
" <td>NEXT-i5-IDT-138</td>\n", | |
" <td>NEXT-i5-IDT-50</td>\n", | |
" <td>NEXT-i5-IDT-146</td>\n", | |
" <td>NEXT-i5-IDT-58</td>\n", | |
" <td>NEXT-i5-IDT-154</td>\n", | |
" <td>NEXT-i5-IDT-66</td>\n", | |
" <td>NEXT-i5-IDT-162</td>\n", | |
" <td>NEXT-i5-IDT-74</td>\n", | |
" <td>NEXT-i5-IDT-170</td>\n", | |
" <td>NEXT-i5-IDT-82</td>\n", | |
" <td>NEXT-i5-IDT-178</td>\n", | |
" <td>NEXT-i5-IDT-90</td>\n", | |
" <td>NEXT-i5-IDT-186</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>D</th>\n", | |
" <td>NEXT-i5-IDT-194</td>\n", | |
" <td>NEXT-i5-IDT-290</td>\n", | |
" <td>NEXT-i5-IDT-202</td>\n", | |
" <td>NEXT-i5-IDT-298</td>\n", | |
" <td>NEXT-i5-IDT-210</td>\n", | |
" <td>NEXT-i5-IDT-306</td>\n", | |
" <td>NEXT-i5-IDT-218</td>\n", | |
" <td>NEXT-i5-IDT-314</td>\n", | |
" <td>NEXT-i5-IDT-226</td>\n", | |
" <td>NEXT-i5-IDT-322</td>\n", | |
" <td>NEXT-i5-IDT-234</td>\n", | |
" <td>NEXT-i5-IDT-330</td>\n", | |
" <td>NEXT-i5-IDT-242</td>\n", | |
" <td>NEXT-i5-IDT-338</td>\n", | |
" <td>NEXT-i5-IDT-250</td>\n", | |
" <td>NEXT-i5-IDT-346</td>\n", | |
" <td>NEXT-i5-IDT-258</td>\n", | |
" <td>NEXT-i5-IDT-354</td>\n", | |
" <td>NEXT-i5-IDT-266</td>\n", | |
" <td>NEXT-i5-IDT-362</td>\n", | |
" <td>NEXT-i5-IDT-274</td>\n", | |
" <td>NEXT-i5-IDT-370</td>\n", | |
" <td>NEXT-i5-IDT-282</td>\n", | |
" <td>NEXT-i5-IDT-378</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>E</th>\n", | |
" <td>NEXT-i5-IDT-3</td>\n", | |
" <td>NEXT-i5-IDT-99</td>\n", | |
" <td>NEXT-i5-IDT-11</td>\n", | |
" <td>NEXT-i5-IDT-107</td>\n", | |
" <td>NEXT-i5-IDT-19</td>\n", | |
" <td>NEXT-i5-IDT-115</td>\n", | |
" <td>NEXT-i5-IDT-27</td>\n", | |
" <td>NEXT-i5-IDT-123</td>\n", | |
" <td>NEXT-i5-IDT-35</td>\n", | |
" <td>NEXT-i5-IDT-131</td>\n", | |
" <td>NEXT-i5-IDT-43</td>\n", | |
" <td>NEXT-i5-IDT-139</td>\n", | |
" <td>NEXT-i5-IDT-51</td>\n", | |
" <td>NEXT-i5-IDT-147</td>\n", | |
" <td>NEXT-i5-IDT-59</td>\n", | |
" <td>NEXT-i5-IDT-155</td>\n", | |
" <td>NEXT-i5-IDT-67</td>\n", | |
" <td>NEXT-i5-IDT-163</td>\n", | |
" <td>NEXT-i5-IDT-75</td>\n", | |
" <td>NEXT-i5-IDT-171</td>\n", | |
" <td>NEXT-i5-IDT-83</td>\n", | |
" <td>NEXT-i5-IDT-179</td>\n", | |
" <td>NEXT-i5-IDT-91</td>\n", | |
" <td>NEXT-i5-IDT-187</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
"number_col 1 2 3 \\\n", | |
"letter_row \n", | |
"A NEXT-i5-IDT-1 NEXT-i5-IDT-97 NEXT-i5-IDT-9 \n", | |
"B NEXT-i5-IDT-193 NEXT-i5-IDT-289 NEXT-i5-IDT-201 \n", | |
"C NEXT-i5-IDT-2 NEXT-i5-IDT-98 NEXT-i5-IDT-10 \n", | |
"D NEXT-i5-IDT-194 NEXT-i5-IDT-290 NEXT-i5-IDT-202 \n", | |
"E NEXT-i5-IDT-3 NEXT-i5-IDT-99 NEXT-i5-IDT-11 \n", | |
"\n", | |
"number_col 4 5 6 \\\n", | |
"letter_row \n", | |
"A NEXT-i5-IDT-105 NEXT-i5-IDT-17 NEXT-i5-IDT-113 \n", | |
"B NEXT-i5-IDT-297 NEXT-i5-IDT-209 NEXT-i5-IDT-305 \n", | |
"C NEXT-i5-IDT-106 NEXT-i5-IDT-18 NEXT-i5-IDT-114 \n", | |
"D NEXT-i5-IDT-298 NEXT-i5-IDT-210 NEXT-i5-IDT-306 \n", | |
"E NEXT-i5-IDT-107 NEXT-i5-IDT-19 NEXT-i5-IDT-115 \n", | |
"\n", | |
"number_col 7 8 9 \\\n", | |
"letter_row \n", | |
"A NEXT-i5-IDT-25 NEXT-i5-IDT-121 NEXT-i5-IDT-33 \n", | |
"B NEXT-i5-IDT-217 NEXT-i5-IDT-313 NEXT-i5-IDT-225 \n", | |
"C NEXT-i5-IDT-26 NEXT-i5-IDT-122 NEXT-i5-IDT-34 \n", | |
"D NEXT-i5-IDT-218 NEXT-i5-IDT-314 NEXT-i5-IDT-226 \n", | |
"E NEXT-i5-IDT-27 NEXT-i5-IDT-123 NEXT-i5-IDT-35 \n", | |
"\n", | |
"number_col 10 11 12 \\\n", | |
"letter_row \n", | |
"A NEXT-i5-IDT-129 NEXT-i5-IDT-41 NEXT-i5-IDT-137 \n", | |
"B NEXT-i5-IDT-321 NEXT-i5-IDT-233 NEXT-i5-IDT-329 \n", | |
"C NEXT-i5-IDT-130 NEXT-i5-IDT-42 NEXT-i5-IDT-138 \n", | |
"D NEXT-i5-IDT-322 NEXT-i5-IDT-234 NEXT-i5-IDT-330 \n", | |
"E NEXT-i5-IDT-131 NEXT-i5-IDT-43 NEXT-i5-IDT-139 \n", | |
"\n", | |
"number_col 13 14 15 \\\n", | |
"letter_row \n", | |
"A NEXT-i5-IDT-49 NEXT-i5-IDT-145 NEXT-i5-IDT-57 \n", | |
"B NEXT-i5-IDT-241 NEXT-i5-IDT-337 NEXT-i5-IDT-249 \n", | |
"C NEXT-i5-IDT-50 NEXT-i5-IDT-146 NEXT-i5-IDT-58 \n", | |
"D NEXT-i5-IDT-242 NEXT-i5-IDT-338 NEXT-i5-IDT-250 \n", | |
"E NEXT-i5-IDT-51 NEXT-i5-IDT-147 NEXT-i5-IDT-59 \n", | |
"\n", | |
"number_col 16 17 18 \\\n", | |
"letter_row \n", | |
"A NEXT-i5-IDT-153 NEXT-i5-IDT-65 NEXT-i5-IDT-161 \n", | |
"B NEXT-i5-IDT-345 NEXT-i5-IDT-257 NEXT-i5-IDT-353 \n", | |
"C NEXT-i5-IDT-154 NEXT-i5-IDT-66 NEXT-i5-IDT-162 \n", | |
"D NEXT-i5-IDT-346 NEXT-i5-IDT-258 NEXT-i5-IDT-354 \n", | |
"E NEXT-i5-IDT-155 NEXT-i5-IDT-67 NEXT-i5-IDT-163 \n", | |
"\n", | |
"number_col 19 20 21 \\\n", | |
"letter_row \n", | |
"A NEXT-i5-IDT-73 NEXT-i5-IDT-169 NEXT-i5-IDT-81 \n", | |
"B NEXT-i5-IDT-265 NEXT-i5-IDT-361 NEXT-i5-IDT-273 \n", | |
"C NEXT-i5-IDT-74 NEXT-i5-IDT-170 NEXT-i5-IDT-82 \n", | |
"D NEXT-i5-IDT-266 NEXT-i5-IDT-362 NEXT-i5-IDT-274 \n", | |
"E NEXT-i5-IDT-75 NEXT-i5-IDT-171 NEXT-i5-IDT-83 \n", | |
"\n", | |
"number_col 22 23 24 \n", | |
"letter_row \n", | |
"A NEXT-i5-IDT-177 NEXT-i5-IDT-89 NEXT-i5-IDT-185 \n", | |
"B NEXT-i5-IDT-369 NEXT-i5-IDT-281 NEXT-i5-IDT-377 \n", | |
"C NEXT-i5-IDT-178 NEXT-i5-IDT-90 NEXT-i5-IDT-186 \n", | |
"D NEXT-i5-IDT-370 NEXT-i5-IDT-282 NEXT-i5-IDT-378 \n", | |
"E NEXT-i5-IDT-179 NEXT-i5-IDT-91 NEXT-i5-IDT-187 " | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"i5 = pd.read_excel('/Users/olgabot/Downloads/NovaSeq and NextSeq 384-Well Index Format.xlsx',\n", | |
" sheetname='i5 384 Well Format')\n", | |
"i5 = i5.applymap(lambda x: x.replace('i7', 'i5'))\n", | |
"i5.index.name = 'letter_row'\n", | |
"i5.columns.name = 'number_col'\n", | |
"i5.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(16, 24)\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th>number_col</th>\n", | |
" <th>1</th>\n", | |
" <th>2</th>\n", | |
" <th>3</th>\n", | |
" <th>4</th>\n", | |
" <th>5</th>\n", | |
" <th>6</th>\n", | |
" <th>7</th>\n", | |
" <th>8</th>\n", | |
" <th>9</th>\n", | |
" <th>10</th>\n", | |
" <th>11</th>\n", | |
" <th>12</th>\n", | |
" <th>13</th>\n", | |
" <th>14</th>\n", | |
" <th>15</th>\n", | |
" <th>16</th>\n", | |
" <th>17</th>\n", | |
" <th>18</th>\n", | |
" <th>19</th>\n", | |
" <th>20</th>\n", | |
" <th>21</th>\n", | |
" <th>22</th>\n", | |
" <th>23</th>\n", | |
" <th>24</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>letter_row</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>A</th>\n", | |
" <td>NEXT-i7-IDT-1</td>\n", | |
" <td>NEXT-i7-IDT-97</td>\n", | |
" <td>NEXT-i7-IDT-9</td>\n", | |
" <td>NEXT-i7-IDT-105</td>\n", | |
" <td>NEXT-i7-IDT-17</td>\n", | |
" <td>NEXT-i7-IDT-113</td>\n", | |
" <td>NEXT-i7-IDT-25</td>\n", | |
" <td>NEXT-i7-IDT-121</td>\n", | |
" <td>NEXT-i7-IDT-33</td>\n", | |
" <td>NEXT-i7-IDT-129</td>\n", | |
" <td>NEXT-i7-IDT-41</td>\n", | |
" <td>NEXT-i7-IDT-137</td>\n", | |
" <td>NEXT-i7-IDT-49</td>\n", | |
" <td>NEXT-i7-IDT-145</td>\n", | |
" <td>NEXT-i7-IDT-57</td>\n", | |
" <td>NEXT-i7-IDT-153</td>\n", | |
" <td>NEXT-i7-IDT-65</td>\n", | |
" <td>NEXT-i7-IDT-161</td>\n", | |
" <td>NEXT-i7-IDT-73</td>\n", | |
" <td>NEXT-i7-IDT-169</td>\n", | |
" <td>NEXT-i7-IDT-81</td>\n", | |
" <td>NEXT-i7-IDT-177</td>\n", | |
" <td>NEXT-i7-IDT-89</td>\n", | |
" <td>NEXT-i7-IDT-185</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>B</th>\n", | |
" <td>NEXT-i7-IDT-193</td>\n", | |
" <td>NEXT-i7-IDT-289</td>\n", | |
" <td>NEXT-i7-IDT-201</td>\n", | |
" <td>NEXT-i7-IDT-297</td>\n", | |
" <td>NEXT-i7-IDT-209</td>\n", | |
" <td>NEXT-i7-IDT-305</td>\n", | |
" <td>NEXT-i7-IDT-217</td>\n", | |
" <td>NEXT-i7-IDT-313</td>\n", | |
" <td>NEXT-i7-IDT-225</td>\n", | |
" <td>NEXT-i7-IDT-321</td>\n", | |
" <td>NEXT-i7-IDT-233</td>\n", | |
" <td>NEXT-i7-IDT-329</td>\n", | |
" <td>NEXT-i7-IDT-241</td>\n", | |
" <td>NEXT-i7-IDT-337</td>\n", | |
" <td>NEXT-i7-IDT-249</td>\n", | |
" <td>NEXT-i7-IDT-345</td>\n", | |
" <td>NEXT-i7-IDT-257</td>\n", | |
" <td>NEXT-i7-IDT-353</td>\n", | |
" <td>NEXT-i7-IDT-265</td>\n", | |
" <td>NEXT-i7-IDT-361</td>\n", | |
" <td>NEXT-i7-IDT-273</td>\n", | |
" <td>NEXT-i7-IDT-369</td>\n", | |
" <td>NEXT-i7-IDT-281</td>\n", | |
" <td>NEXT-i7-IDT-377</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>C</th>\n", | |
" <td>NEXT-i7-IDT-2</td>\n", | |
" <td>NEXT-i7-IDT-98</td>\n", | |
" <td>NEXT-i7-IDT-10</td>\n", | |
" <td>NEXT-i7-IDT-106</td>\n", | |
" <td>NEXT-i7-IDT-18</td>\n", | |
" <td>NEXT-i7-IDT-114</td>\n", | |
" <td>NEXT-i7-IDT-26</td>\n", | |
" <td>NEXT-i7-IDT-122</td>\n", | |
" <td>NEXT-i7-IDT-34</td>\n", | |
" <td>NEXT-i7-IDT-130</td>\n", | |
" <td>NEXT-i7-IDT-42</td>\n", | |
" <td>NEXT-i7-IDT-138</td>\n", | |
" <td>NEXT-i7-IDT-50</td>\n", | |
" <td>NEXT-i7-IDT-146</td>\n", | |
" <td>NEXT-i7-IDT-58</td>\n", | |
" <td>NEXT-i7-IDT-154</td>\n", | |
" <td>NEXT-i7-IDT-66</td>\n", | |
" <td>NEXT-i7-IDT-162</td>\n", | |
" <td>NEXT-i7-IDT-74</td>\n", | |
" <td>NEXT-i7-IDT-170</td>\n", | |
" <td>NEXT-i7-IDT-82</td>\n", | |
" <td>NEXT-i7-IDT-178</td>\n", | |
" <td>NEXT-i7-IDT-90</td>\n", | |
" <td>NEXT-i7-IDT-186</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>D</th>\n", | |
" <td>NEXT-i7-IDT-194</td>\n", | |
" <td>NEXT-i7-IDT-290</td>\n", | |
" <td>NEXT-i7-IDT-202</td>\n", | |
" <td>NEXT-i7-IDT-298</td>\n", | |
" <td>NEXT-i7-IDT-210</td>\n", | |
" <td>NEXT-i7-IDT-306</td>\n", | |
" <td>NEXT-i7-IDT-218</td>\n", | |
" <td>NEXT-i7-IDT-314</td>\n", | |
" <td>NEXT-i7-IDT-226</td>\n", | |
" <td>NEXT-i7-IDT-322</td>\n", | |
" <td>NEXT-i7-IDT-234</td>\n", | |
" <td>NEXT-i7-IDT-330</td>\n", | |
" <td>NEXT-i7-IDT-242</td>\n", | |
" <td>NEXT-i7-IDT-338</td>\n", | |
" <td>NEXT-i7-IDT-250</td>\n", | |
" <td>NEXT-i7-IDT-346</td>\n", | |
" <td>NEXT-i7-IDT-258</td>\n", | |
" <td>NEXT-i7-IDT-354</td>\n", | |
" <td>NEXT-i7-IDT-266</td>\n", | |
" <td>NEXT-i7-IDT-362</td>\n", | |
" <td>NEXT-i7-IDT-274</td>\n", | |
" <td>NEXT-i7-IDT-370</td>\n", | |
" <td>NEXT-i7-IDT-282</td>\n", | |
" <td>NEXT-i7-IDT-378</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>E</th>\n", | |
" <td>NEXT-i7-IDT-3</td>\n", | |
" <td>NEXT-i7-IDT-99</td>\n", | |
" <td>NEXT-i7-IDT-11</td>\n", | |
" <td>NEXT-i7-IDT-107</td>\n", | |
" <td>NEXT-i7-IDT-19</td>\n", | |
" <td>NEXT-i7-IDT-115</td>\n", | |
" <td>NEXT-i7-IDT-27</td>\n", | |
" <td>NEXT-i7-IDT-123</td>\n", | |
" <td>NEXT-i7-IDT-35</td>\n", | |
" <td>NEXT-i7-IDT-131</td>\n", | |
" <td>NEXT-i7-IDT-43</td>\n", | |
" <td>NEXT-i7-IDT-139</td>\n", | |
" <td>NEXT-i7-IDT-51</td>\n", | |
" <td>NEXT-i7-IDT-147</td>\n", | |
" <td>NEXT-i7-IDT-59</td>\n", | |
" <td>NEXT-i7-IDT-155</td>\n", | |
" <td>NEXT-i7-IDT-67</td>\n", | |
" <td>NEXT-i7-IDT-163</td>\n", | |
" <td>NEXT-i7-IDT-75</td>\n", | |
" <td>NEXT-i7-IDT-171</td>\n", | |
" <td>NEXT-i7-IDT-83</td>\n", | |
" <td>NEXT-i7-IDT-179</td>\n", | |
" <td>NEXT-i7-IDT-91</td>\n", | |
" <td>NEXT-i7-IDT-187</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
"number_col 1 2 3 \\\n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-1 NEXT-i7-IDT-97 NEXT-i7-IDT-9 \n", | |
"B NEXT-i7-IDT-193 NEXT-i7-IDT-289 NEXT-i7-IDT-201 \n", | |
"C NEXT-i7-IDT-2 NEXT-i7-IDT-98 NEXT-i7-IDT-10 \n", | |
"D NEXT-i7-IDT-194 NEXT-i7-IDT-290 NEXT-i7-IDT-202 \n", | |
"E NEXT-i7-IDT-3 NEXT-i7-IDT-99 NEXT-i7-IDT-11 \n", | |
"\n", | |
"number_col 4 5 6 \\\n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-105 NEXT-i7-IDT-17 NEXT-i7-IDT-113 \n", | |
"B NEXT-i7-IDT-297 NEXT-i7-IDT-209 NEXT-i7-IDT-305 \n", | |
"C NEXT-i7-IDT-106 NEXT-i7-IDT-18 NEXT-i7-IDT-114 \n", | |
"D NEXT-i7-IDT-298 NEXT-i7-IDT-210 NEXT-i7-IDT-306 \n", | |
"E NEXT-i7-IDT-107 NEXT-i7-IDT-19 NEXT-i7-IDT-115 \n", | |
"\n", | |
"number_col 7 8 9 \\\n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-25 NEXT-i7-IDT-121 NEXT-i7-IDT-33 \n", | |
"B NEXT-i7-IDT-217 NEXT-i7-IDT-313 NEXT-i7-IDT-225 \n", | |
"C NEXT-i7-IDT-26 NEXT-i7-IDT-122 NEXT-i7-IDT-34 \n", | |
"D NEXT-i7-IDT-218 NEXT-i7-IDT-314 NEXT-i7-IDT-226 \n", | |
"E NEXT-i7-IDT-27 NEXT-i7-IDT-123 NEXT-i7-IDT-35 \n", | |
"\n", | |
"number_col 10 11 12 \\\n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-129 NEXT-i7-IDT-41 NEXT-i7-IDT-137 \n", | |
"B NEXT-i7-IDT-321 NEXT-i7-IDT-233 NEXT-i7-IDT-329 \n", | |
"C NEXT-i7-IDT-130 NEXT-i7-IDT-42 NEXT-i7-IDT-138 \n", | |
"D NEXT-i7-IDT-322 NEXT-i7-IDT-234 NEXT-i7-IDT-330 \n", | |
"E NEXT-i7-IDT-131 NEXT-i7-IDT-43 NEXT-i7-IDT-139 \n", | |
"\n", | |
"number_col 13 14 15 \\\n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-49 NEXT-i7-IDT-145 NEXT-i7-IDT-57 \n", | |
"B NEXT-i7-IDT-241 NEXT-i7-IDT-337 NEXT-i7-IDT-249 \n", | |
"C NEXT-i7-IDT-50 NEXT-i7-IDT-146 NEXT-i7-IDT-58 \n", | |
"D NEXT-i7-IDT-242 NEXT-i7-IDT-338 NEXT-i7-IDT-250 \n", | |
"E NEXT-i7-IDT-51 NEXT-i7-IDT-147 NEXT-i7-IDT-59 \n", | |
"\n", | |
"number_col 16 17 18 \\\n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-153 NEXT-i7-IDT-65 NEXT-i7-IDT-161 \n", | |
"B NEXT-i7-IDT-345 NEXT-i7-IDT-257 NEXT-i7-IDT-353 \n", | |
"C NEXT-i7-IDT-154 NEXT-i7-IDT-66 NEXT-i7-IDT-162 \n", | |
"D NEXT-i7-IDT-346 NEXT-i7-IDT-258 NEXT-i7-IDT-354 \n", | |
"E NEXT-i7-IDT-155 NEXT-i7-IDT-67 NEXT-i7-IDT-163 \n", | |
"\n", | |
"number_col 19 20 21 \\\n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-73 NEXT-i7-IDT-169 NEXT-i7-IDT-81 \n", | |
"B NEXT-i7-IDT-265 NEXT-i7-IDT-361 NEXT-i7-IDT-273 \n", | |
"C NEXT-i7-IDT-74 NEXT-i7-IDT-170 NEXT-i7-IDT-82 \n", | |
"D NEXT-i7-IDT-266 NEXT-i7-IDT-362 NEXT-i7-IDT-274 \n", | |
"E NEXT-i7-IDT-75 NEXT-i7-IDT-171 NEXT-i7-IDT-83 \n", | |
"\n", | |
"number_col 22 23 24 \n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-177 NEXT-i7-IDT-89 NEXT-i7-IDT-185 \n", | |
"B NEXT-i7-IDT-369 NEXT-i7-IDT-281 NEXT-i7-IDT-377 \n", | |
"C NEXT-i7-IDT-178 NEXT-i7-IDT-90 NEXT-i7-IDT-186 \n", | |
"D NEXT-i7-IDT-370 NEXT-i7-IDT-282 NEXT-i7-IDT-378 \n", | |
"E NEXT-i7-IDT-179 NEXT-i7-IDT-91 NEXT-i7-IDT-187 " | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"i7 = i5.applymap(lambda x: x.replace('i5', 'i7'))\n", | |
"print(i7.shape)\n", | |
"i7.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEYCAYAAABLOxEiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8HFWd/vHPk4QAARISwg4SUBARZDEsArLrALKJywCy\numRUBAT9gcCMwCyKigsj4hgFDLIoAiIoKEhYRNnXgMAMO8i+hk0g935/f1RdUjRd3V19u/rW7X7e\nvOqV6lPn1Dl976VPn6XOUURgZmbWqjEjXQAzMxtdXHGYmVkhrjjMzKwQVxxmZlaIKw4zMyvEFYeZ\nmRXiisM6QtIRkn7W6bgt3CskvSvn2kWS9mnzvsNJ+4CkbdpJazYayM9xWC1J+wJfAd4JzAV+Axwe\nEc+PZLnqkRTAqhFxT5N4WwCzgVcywftHxKxMnPHAo8C0iHgpE34EcEQm3VhgQWCpiHi6Tl4PAJ+N\niD8VfkMd0urPxawdbnHYW0j6CvAt4P8Bk4CNgJWAS9IP1nppxnWvhMPyaEQsmjlm1VzfDLglW2kA\nRMQ3sulIfj6X16s0zPqBKw57k6SJwDHAARHxh4h4IyIeAD4JTAP2TOMdLelsSadJmgvsm4adlrnX\n3pIelPSMpH/Ldt9k40qalnY37SPpIUlPSzoyc58NJF0t6XlJj0k6Ia8Cq/N+Lpf02QI/gu2BCxul\nlSRgb6C20skrQ275Jf1I0ndr4p8v6eD0/D1pOZ6XdIeknfLem6R9JV2Vnl+ZBt8q6SVJ/1zgZ2DW\nlCsOy9oYWAg4NxuYfgO/EPhQJnhn4GxgceD0bHxJawAnAp8CliVpuSzfJO9NgXcDWwNfl/SeNHwA\nOBiYCnwgvf7Fgu9ryFKSnpB0v6TvS1qk5vr2wO+b3OODwFLAOS3m2aj8s4DdJY0BkDQV2AY4Q9IC\nwAXAxWl+BwCnS3p3swwjYrP0dO20lfSrFstq1hJXHJY1FXg6IubVufZYen3I1RFxXkQMRsSrNXE/\nDlwQEVdFxOvA14Fmg2nHRMSrEXErcCuwNkBE3BgR10TEvLT18xNg8+JvjbuAdUgqsq2A9wPfG7oo\n6Z3AuIi4u8l99gHOru3OytOo/BFxHfACSWUCsBtJF9gTJF2EiwLHRsTrETEb+B2weyv5mpXJFYdl\nPQ1MzRmzWDa9PuThBvdZLns9Il4BnmmS9+OZ81dIPjSRtJqk30l6PO0W+wZvrcBaEhGPR8Tf0oru\nfuBQ4GOZKNsDFzW6h6QJwCdosZuqxfLPIu0CTP/9RXq+HPBwRAxm4j5I85abWelccVjW1cBrwK7Z\nQEmLAtsBl2aCG7UgHgNWyKRfGFiizTL9mKS1sGpETCSZ3aQ275UVvPXv/83xjQY+CjwLXF4gn2bl\nPw3YWdLawHuA89LwR4EVh7qxUu8A/p6evwxMyFxbpkCZzIbFFYe9KSJeIBkc/6GkbSUtIGkacBbw\nCPO/DTdzNrCjpI3TgeCjaf/DfjGSKcEvSVod+EI7N5G0paSVlFiRZGbUb9NrE4ANgMua3GYf4NQo\nNoe9Yfkj4hHgepKf7TmZbr9rSVpeh6a/hy2AHYFfptdvAXaVNCF9juUzNfk+AaxSoJxmLXPFYW8R\nEd8m+VZ8HMkH3rUk3U5bR8RrLd7jDpLB3F+StD5eAp4kac0U9VVgD+BF4KdAuwO96wJ/Jfmm/lfg\nNuDA9NpWJGM2/8hLLGn5NN6pBfNtpfyzgLXIVMzp2NCOJC29p0kmG+wdEXelUb4PvE5SQcyiZoIC\nSWU9K52R9cmCZTZryA8AWunSrq7nSbpr7h/p8tSSdCJwe0ScOEL5b0bSZbVSwdaM2Yhwi8NKIWnH\ntBtlEZLWyxzggZEtVa5bSJ6O77p02u1BwM9cadho4YrDyrIzyQDvo8CqwG5V/WCMiJkR8Vi3802f\nVXmeZMbaD7qdv1m73FVlZmaFuMVhZmaFVHpxunHjly/UHJq44ITmkWosvuCixeIvULtKRXOTxxYv\n1+SxCxWLrwUL5zGljV//koNjC8VfYqBwFkwZGGweKRuf1wvnsfjCxSd4LTYpd9JVXROWKF6u8UsV\n+y43dulif78AY6ZOKpxGS0wuFn9K4Wc0YfKShZNo8tLF4i++bOE8xkwu/ojMAlNX6cSzRgC88fR9\nLX8OdjLfRtziMDOzQird4jAz63uDbTTbS+aKw8ysygbqrTk6slxxmJlV2FvXuayGro5xSNpU0o+6\nmaeZ2ag2ONj60SWltzgkrUuyVs8ngPup2STIzMwaqGCLo5SKQ9JqJBvO7E6yQNuvSB423LKFtDOA\nGQAaO4kxY4pPfzUz6xl9NDh+F/BnYIeIuAdgaB/lZiJiJjATij/HYWbWcyo4OF7WGMeuJMtpXybp\np5K2pjOb75iZ9ZWIwZaPbiml4kj3ot4NWJ1kc5wvA0tJ+rGkD5eRp5lZT6rg4Hips6oi4uWIOCMi\ndiTZSvRm4LAy8zQz6ykx2PrRJV17jiMiniMZu5jZrTzNzEa9Cg6Oe60qs1Fs4ImXRroIVrZ+bnGY\nWee1szqujTIVnFXlisPMrMq6OOjdKlccZmYVFlG9MQ5XHGZmVdYvS46YmVmH9HtXlaSpwDMR4aVE\nzMxaMfDGSJfgbUqbjitpI0mXSzpX0rqSbgduB56QtG1Z+ZqZ9ZQ+m457AnAEMAmYDWwXEddIWh04\nE/hDvUReHdfMLKOCXVVlPgA4LiIujohfA49HxDUAEXFXo0QRMTMipkfEdFcaZtb3+qzFkX0Xr9Zc\n8xiHmVkrKtjiKLPiWFvSXJLl1BdOz0lfL1RivmZmPSMqODheWsUREWPLureZWd/oUItD0orAqcDS\nJL0+MyPieElTSHZpnQY8AHwyXZQ2lxc5NDOrss6NccwDvhIRawAbAftLWgP4GnBpRKwKXJq+bsgV\nh5lZlXVoI6eIeCwibkrPXwTuBJYHdgZmpdFmAbs0K5KfHDczq7ISZktJmgasC1wLLB0Rj6WXHifp\nymrILQ4zsyor0OKQNEPSDZljRu3tJC0KnAN8OSLmZq+lq3o0nfXqFoeZWZUV2I8jIhrusippAZJK\n4/SIODcNfkLSshHxmKRlgSeb5eMWh5lZlXVojEOSgJOAOyPie5lL5wP7pOf7AL9tVqTSWhyS3kXS\nd/aXmvBNSJ4kv7esvM3Mekbnxjg2AfYC5ki6JQ07AjgWOEvSZ4AHgU82u1GZXVU/AA6vEz43vbZj\niXmbmfWGDj3HERFXkTyAXc/WRe5VZsWxdETMqQ2MiDnpiH5dXuTQzCyjzzZyWrzBtYXzLmQHd8aN\nX95rWplZfyswON4tZQ6O3yDpc7WBkj4L3FhivmZmvaNDg+OdVGaL48vAbyR9ivkVxXRgPPDREvM1\nM+sd/bQ6bkQ8AWwsaUtgzTT49xExu6w8zcx6TgV32i79AcCIuAy4rOx8zMx6Uj+1OMzMrANccZiZ\nWSEVnFXlisPMrMr6cYzDzMyGwV1VZmZWiCsOMzMrpM+WHHmTpCUBIuKpbuRnZtYrYt7ASBfhbUpb\nckSJoyU9DdwN/K+kpyR9vaw8zcx6Tgy2fnRJmWtVHUyy/vv6ETElIiYDGwKbSDo4L1F268PBwZdL\nLJ6Z2SgwGK0fXVJmxbEXsHtE3D8UEBH3AXsCe+clioiZETE9IqZ7SXUz63t9tsjhAhHxdG1gRDyV\n7ntrZmbN9NmsqtfbvGZmZkMGqjc4XmbFsbakuXXCBSxUYr5mZr2ji2MXrSpzWfWxZd3bzKxv9Otz\nHGZm1qZ+anGYmdnwRZ8NjpuZ2XC5xWFmZoX02awqMzMbLndVmZlZIRXsqipzkcNDM+efqLn2jbLy\nNTPrKX22yOFumfPDa65tm5fIixyamWVUcJHDMruqlHNe7/WbImImMBNg3Pjlq9dGMzPror7ajwOI\nnPN6r83MrJ4OtjgknSzpSUm314QfIOkuSXdI+naz+3RjrSoBC2fWrfJaVWZmrers2MXPgROAU4cC\nJG0J7AysHRGvSVqq2U28VpWZWZV1cOwiIq6UNK0m+AvAsRHxWhrnyWb3KbOryszMhikGo+UjO7ko\nPWa0kMVqwAclXSvpCknrN0vg5zjMzKqswOB4dnJRAeOAKcBGwPrAWZJWiYjcpo4rDjOzKit/mu0j\nwLlpRXGdpEFgKvBUXgJ3VZmZVVn5z3GcB2wJIGk1YDzwtm2/s9ziMDOrsAY9RoVJOhPYApgq6RHg\nKOBk4OR0iu7rwD6NuqnAFYeZWbV1dlbV7jmX9ixyH1ccZmZVVsFFDkurOCS9IyIeKuv+Zmb9IOZV\nb1n1MgfHzxs6kXROifmYmfWuwQJHl3RrkcNVWk6UPLAyA0BjJzFmzCKdLpeZ2agR/dRVReNFDvMT\neXVcM7P5+qziaLTIYUTExBLzNjPrDdUb4vAih2ZmVRbz+qvFYWZmw9RvYxxmZjZc/dRVZWZmw9fZ\nfZw6wxWHmVmVueIwM7MiYt5Il+DtXHGYmVWYu6rMzKyQUV1xSLoKuAL4M/CXiHixtFKZmRlQzYqj\nyCKHewF3Ax8D/ppuhP79vMiSdpa0f+b1tZLuS4+Pt19kM7M+Emr96JKWWxwRcb+kf5DsEPU6yVaD\n72mQ5FBgt8zrBUk2Ql8EOAU4u14iL3JoZjZfFVscRbqq7iXZh/YM4CTggIiGb2l8RDyceX1VRDwD\nPCMptzbwIodmZvMNzuteS6JVRQbH/xvYFNgdWBe4QtKVEXFvTvzJ2RcR8aXMyyULldLMrE9FF7ug\nWtXyGEdEHB8RnwC2AW4Ejgb+t0GSayV9rjZQ0r8A1xUsp5lZX4rB1o9uKdJV9V2SFseiwNXA10lm\nWOU5GDhP0h7ATWnY+0nGOnZpq7RmZn0mBqvX4ijSVXU18O2IeKKVyBHxJLCxpK2A96bBv4+I2QXL\naGbWt6KCI71FZlWdLWknSZulQVdExAUtpJsNuLIwM2vD4LwiT010R5Guqm8CGwCnp0EHSvpARBxR\nSsnMzGx0tziAjwDrDE3BlTQLuBlwxWFmVpLRPsYBsDjwbHo+qcNlMTOzGlWcjluk4vgmcLOkywAB\nmwFfK6VUZmYGjOInxyUJuArYiGTZEIDDIuLxsgpmZmYwMDhKB8cjIiRdGBFrAeeXXCYzM0t1coxD\n0snADsCTEbFmGvYdYEeSNQjvBfaLiOcb3adIV9VNktaPiOtbLOAPgdz5ABFxYIG8zcz6UodnVf0c\nOAE4NRN2CXB4RMyT9C3gcOCwRjcpUnFsCHxK0oPAyyTjHBER78uJf0Pm/BjgqFYy8eq4ZmbzdbLF\nERFXSppWE3Zx5uU1QNNtL4pUHP/U6KKkyRHxXKYwszLXvpx93YhXxzUzm2+wu7OqPg38qlmkIk+O\nP9gkyqXAennJW83HzMzmKzIdN9tjk5qZfhlvJe2RwDzmP+Sdq5N7jldvsrGZ2Sg3UKCrKttjU4Sk\nfUkGzbeOaD6q0smK4y2ZSXoxEzZB0tyhSyRjIxM7mLeZWU8q+wFASduS7Ni6eUS80kqaTlYcbxER\ni5V1bzOzftHJWVWSzgS2AKZKeoRk0tLhJNtdXJI8ssc1EfH5RvdxV5WZWYV1cnA8InavE3xS0fu0\n9EiipLGS7moSbeuimZuZWWMRavnollafHB+QdLekd0TEQzlxnq0XbmZm7RsY5YscTgbukHQdyQOA\nAETETh0vlZmZAV1/jqMlRSqOfyutFGZmVteoXlY9Iq6QtBKwakT8SdIEYGx5RTMzswquqt7a4DiA\npM8BZwM/SYOWB84ro1BmZpYI1PLRLUW6qvYn2XP8WoCI+D9JS+VFrnkA8C2XaPAAoBc5NDObb7CC\nCzYVqThei4jX0wdEkDSOxsumt/UAoBc5NDObb6D1jqGuKVKiKyQdASws6UPAr4ELyimWmZlBMsbR\n6tEtRSqOrwFPAXOAfwEujIgjSymVmZkBo3+M44CIOB746VCApIPSMDMzK8GonlUF7FMnbN8OlcPM\nzOqoYldV0xaHpN2BPYCVJZ2fubQY4GVGzMxKNKDR+QDgX4HHgKnAdzPhLwK3lVEoMzNLDFZw4fGm\nFUe6ZeyDkq6MiCuy1yR9CzisrMKZmfW7Kj6TUGSM40N1wrbrVEHMzOztRusYxxeALwLvlJTtmloM\n+EtZBTMzMxgcpWMcZwAXAd8keZZjyIt5e3A0WG4E4DXgXuDIiLi0QFnNzPrOwEgXoI5WxjheAF4A\ndpe0KcnquKdImipp5Yi4v06a3OVGJI0F1gROT/81M7Mcg9VrcLT+AKCko4DpwLuBU4DxwGnAJkUy\njIgB4FZJP8zJx4scmpmlqjirqsjg+EeBnUh3/4uIR0nGOdoSET/JCZ8ZEdMjYrorDTPrd1Hg6JYi\nS468HhEhKQAk+VPdzKxkVeyqKtLiOEvST4DF002d/kRm3SozM+u8UTkdd0hEHJcupz6XZJzj6xFx\nSWklMzMzBirY4ijSVUVaUbiyMDPrkiqujtvKA4BtbQFrZmbDNyorjna3gDUzs+GL0d5VZWZm3TUq\nWxxmZjZyqrjkSJHpuGZm1mWDav1oRtLBku6QdLukMyUt1E6ZXHGYmVVYp57jkLQ8cCAwPSLWBMYC\nu7VTptIqDkkrNri2Q1n5mpn1kg4/ADgOWFjSOGAC8Gg7ZSqzxXGJpGm1gZI+DRxfYr5mZj2jyFpV\nkmZIuiFzzHjzPhF/B44DHiLZDvyFiLi4nTKVWXEcAlwsadWhAEmHAwcDm+clyr7xwcGXSyyemVn1\nzVPrR3aR2PSYOXQfSZOBnYGVgeWARSTt2U6ZSptVFREXSnoNuEjSLsBngQ2AzSLiuQbpZgIzAcaN\nX76K2+2amXVNBz8EtwHuj4inACSdC2xMsj1GIaUOjqc7/O0HXA6sAmzVqNIwM7O3GiRaPpp4CNhI\n0gRJArYG7mynTKW1ODJLlQhYkKSQT6YF9lIlZmYt6NQDgBFxraSzgZuAecDNpL07RZXZVeWlSszM\nhqmT/fURcRRw1HDv4yfHzcwqzEuOmJlZIfNUvTlCrjjMzCqsetWGKw4zs0pzV5WZmRXSwjTbrnPF\nYWZWYdWrNlxxmJlV2rwKVh0jsqy6pC+PRL5mZqNNkUUOu2Wk9uM4JO+CFzk0M5uvw8uqd8RIdVXl\n7lXlRQ7NzOaLCnZVjVTFUb2fhJlZBfXVdNzMIodvuwQsXFa+Zma9ZKCC37O9yKGZWYX5OQ4zMyuk\nr7qqzMxs+Dw4bmZmhbjFYWZmhbjFYWZmhcwLVxxmZlZA9aoNVxxmZpXm6bhmZlZIX41xSDq/0fWI\n2KmsvM3MekW/zar6APAwcCZwLQ0WNsySNAOYAaCxkxgzZpHSCmhmVnUDFaw6yqw4lgE+BOwO7AH8\nHjgzIu5olMir45qZzVe9aqPE/TgiYiAi/hAR+wAbAfcAl0v6Ull5mpn1moho+eiWUgfHJS0IfISk\n1TEN+G/gN2XmaWbWS/pqVpWkU4E1gQuBYyLi9rLyMjPrVVXsqiqzxbEn8DJwEHCg9ObYuICIiIkl\n5m1m1hP6ajpuRIzUfuZmZj1jIDrb5pA0FrgB+HtE7NDOPfwAoJlZhZXQVXUQcCfQdq+PWwVmZhUW\nBf5rRtIKJBOWfjacMrnFYWZWYR2eVfUD4FBgWFt7u8VhZlZhRZ7jkDRD0g2ZY8bQfSTtADwZETcO\nt0xucZiZVViRJUeyK2/UsQmwk6TtgYWAiZJOi4g9i5bJLQ4zswobjGj5aCQiDo+IFSJiGrAbMLud\nSgPKfQDw6w0uR0T8R046L3JoZpaq3lMc5XZVvVwnbALwWWAJoG7F4UUOzczmK2PJkYi4HLi83fRl\nPgD43aFzSYuRzB3+NPBL4Lt56czMbL6+WqsKQNIU4BDgU8AsYL2IeK7MPM3MekmnnxzvhDLHOL4D\n7ErS7bRWRLxUVl5mZr2qimtVlTmr6ivAcsC/Ao9KmpseL0qaW2K+ZmY9o6/24/Aih2Zmw9d3Yxxm\nZjY83WxJtMoVh5lZhbnFYWZmhfTVrCozMxu+Ks6qKr3ikLQQ8K705T0R8Y+y8zQz6xXN1qAaCWU+\nxzEO+AbJ0+IPkuw1vqKkU4AjI+KNsvI2M+sVVWxxlDll9jvAFGDliHh/RKwHvBNYHDiuxHzNzHpG\np1bH7aQyu6p2AFaLzFyyiJgr6QvAXSRrV72NV8c1M5uv3wbHI+pMQI6IAUm5VaNXxzUzm6/fuqr+\nJmnv2kBJe5K0OMzMrImIwZaPbimzxbE/cK6kTwNDe9xOBxYGPlpivmZmPaOvHgCMiL8DG0raCnhv\nGnxhRFxaVp5mZr2mL5cciYjZwOyy8zEz60X9NjhuZmbD1FcPAJqZ2fBVcVaVKw4zswrryzEOMzNr\nX1/NqjIzs+Fzi8PMzAoZGOyjWVXpcuqfJ1lSfQ5wUkTMKys/M7Ne1G9dVbOAN4A/A9sBa5CzsGGW\nFzk0M5uv37qq1oiItQAknQRc10oiL3JoZjZfvz3H8eZGTRExT1KJWZmZ9aZ+e45jbUlz03MBC6ev\nRbLk+sQS8zYz6wlVHBwvbVn1iBgbERPTY7GIGJc5d6VhZtaCKPBfM5K2lXS3pHskfa3dMnk6rplZ\nhXVqcFzSWOBHwIeAR4DrJZ0fEX8req8yN3IyM7NhioiWjyY2AO6JiPsi4nXgl8DOpReqKgcwo4pp\neiUPl6t6ebhc1cuj3TRlHiSPMtyQOWZkrn0c+Fnm9V7ACW3lM9JvtM0fzg1VTNMrebhc1cvD5ape\nHu2mGamjkxWHu6rMzPrD34EVM69XSMMKc8VhZtYfrgdWlbSypPHAbsD57dxotM6qmlnRNL2SRztp\n+rlc/fze20nTK3m0m2ZERPIg9peAPwJjgZMj4o527qW0r8vMzKwl7qoyM7NCXHGYmVkhrjjMzKyQ\nnq04JK0uaWtJi9aEb5sTfwNJ66fna0g6RNL2BfM8tWD8TdN8PpxzfUNJE9PzhSUdI+kCSd+SNCkn\nzYGSVqx3LSf+eEl7S9omfb2HpBMk7S9pgQbpVpH0VUnHS/qepM8PldXMetuoHxyXtF9EnFITdiCw\nP3AnsA5wUET8Nr12U0SsVxP/KJLNpsYBlwAbApeRrOnyx4j4rzr51k5jE7AlMBsgInaqk+a6iNgg\nPf9cWsbfAB8GLoiIY2vi3wGsnc6GmAm8ApwNbJ2G71onjxeAl4F7gTOBX0fEU7XxMvFPT9/3BOB5\nYFHg3DQPRcQ+ddIcCOwAXAlsD9ycpv0o8MWIuDwvP7NeIWmpiHhypMsxIkb6acYOPA35UJ2wOcCi\n6fk0kkfvD0pf35wTfyzJh+dcYGIavjBwW06+NwGnAVsAm6f/Ppaeb56T5ubM+fXAkun5IsCcOvHv\nzOZXc+2WvDxIWpIfBk4CngL+AOwDLFYn/m3pv+OAJ4Cx6Ws1eO9zMvEmAJen5++o9/PthwNYqgt5\nLDHS77ONMk8CjgXuAp4FniH5QncssHjBe12UEz4R+CbwC2CPmmsn5qRZBvgxyaJ/SwBHp3/XZwHL\n1ok/peZYAngAmAxMGemfc7ePUdFVJem2nGMOsHSdJGMi4iWAiHiA5EN9O0nfI/lArDUvIgYi4hXg\n3oiYm6Z9FchbDH86cCNwJPBCJN+yX42IKyLiipw0YyRNlrQEyQfvU2k+LwP19mO/XdJ+6fmtkqan\nP4/VyGyUVSMiYjAiLo6IzwDLAScC2wL35ZRpPLAYSSUw1AW2IJDbVcX8Z4AWJGmlEBEP5aWRNEnS\nsZLukvSspGck3ZmGLd4gn7okXVQnbKKkb0r6haQ9aq6dmHOfZST9WNKPJC0h6WhJcySdJWnZnDRT\nao4lgOvS3+2UOvG3zZxPknRS+vd7hqR6f7+kP5ep6fl0SfcB10p6UNLmdeLfJOlfJb2z3v1y8pgu\n6TJJp0laUdIlkl6QdL2kdXPSLCrp3yXdkcZ9StI1kvbNyeYs4Dlgi4iYEhFLkLTMn0uv1d5/vZzj\n/SS9B/WcQvL/9TnAbpLOkbRgem2jnDQ/B/4GPEzSu/AqSev5z8D/1In/NMn/70PHDcDyJF8gb8jJ\no3eNdM3VykHyTXgdYKWaYxrwaJ34s4F1asLGAacCA3XiXwtMSM/HZMInUfNNv07aFYBfAydQp/VT\nE/cBkg/v+9N/l03DF6VOCyLN/+ck3U7XklQW9wFXkHRV1csj9xv/0HusCTs4veeDwIHApcBPSb59\nHZVzn4OA29J4dwH7peFLAlfmpPkjcBiwTCZsmTTs4pw06+Uc7wceqxP/HJJvsruQPBF7DrBgeq3u\n75GkNXYA8LX0PR1GsizDAcBvc9IMpr/D7PHG0O+1TvybMuc/A/4z/fs9GDgvJ485mfPLgPXT89Wo\nsz5SmvdxwEMk2zQfDCzX5O/xOpIu2t1JPkA/noZvDVydk+a3wL7p3/0hwL8BqwKzgG/UiX93g/zf\ndg0YIPn/97I6x6s597ml5vWRwF9IWgV5v/ds6/+hRvdLw76S/q2slf2ZN/r59vIx4gVoqZBJl8um\nOdfOqBO2QvYDqubaJnXCFsyJOzX7h9KkjB+p9z9Oi2knACs3uD4RWDv9wFy6yb1WayP/5YY+ZIDF\nSRZD26BJmvem8VZvMY9CHyBpeKEPkW58gKThhT5EeGvFUVvGvDzuBMal59fUXKvXrZnN44MkrczH\n059V3RVcm7z3ul9AgFtrXl+f/jsGuKtO/IuBQ7N/tyS9BIcBf6oT/3Zg1Zy8H27wsxpTE7YvcAfw\nYLP3Afxns59vGj70JfF7JC30t31J6JdjxAvgoz+Ooh8g6fVCHyLd+gBJr7X8IUKyac4haYVzP+mk\nlPRa3jjSAenPbCuS/vfjScbPjgF+USf+2ypGknG7bYFTcvK4mmQs7BMkLc5d0vDNyVn1Ffgr6Zc4\nYCeSySND1+q1ICYD3yJpmT5HMs5xZxr2trEBki8j787Je5ec8G8D29QJ3xb4v5w0/046DloT/i7g\n7CZ/yzsB1wCPd/L/kdF0jHgBfPTHUfMB8mzNB8jknDSFPkS6/QGSxmv6IQIcVXMMTYpYBji1Qbot\ngF+RTHiYA1xIst/CuDpxf9nG72Rtki7Ei4DV08rpeZKKduOcNO8j6eJ6DriKtIVL0k15YE6a1YFt\nan/OwLbFzWo1AAADUElEQVQN4m/davwmabZrI03TcpFMnFmzWbl69RjxAvjwQTpGUmaaMvOo+RCp\nTLm6mUdeGpJxs7uB80jG+HbOXKvXSioUPw0/oOw07ZSrl48RL4APHzSZVNCJNN3Io6rlGsn3TntT\n41uO36007eTRy8doXVbdRhlJt+Vdov6U6sJpupFHVctV1fdOzdR4SVsAZ0taifpT44vG71aadvLo\nWa44rFuWBv6JpG88SyQDrp1I0408qlquqr73JyStExG3AETES5J2AE4G1upA/G6laSePnuWKw7rl\ndyRN/VtqL0i6vENpupFHVctV1fe+NzUPt0bEPGBvST/pQPxupWknj5416teqMjOz7hoVS46YmVl1\nuOIwM7NCXHGYmVkhrjisp0m6fGhV4REsw88lfXwky2DWSa44zHJI8qxDszpccVglSJqW7s/x03Sv\nh4uVbJf7ZotB0lRJD6Tn+0o6L91D4gFJX1KyDe/N6f4Q2X0x9pJ0i6TbJQ3twLiIpJMlXZem2Tlz\n3/MlzSZZYj6vvIcp2bfjVknHpmHrpHnfJuk3kiaX9OMyG1GuOKxKVgV+FBHvJVls72NN4q8J7Aqs\nD/wX8EpErEuy6uvemXgTImId4IskD2xBsuT67Ei28t0S+I6kRdJr65HsTbF5vUwlbQfsDGwYEWuT\nLK4IyX4vh0XE+0j3M2ntbZuNLm6KW5Xcn3mw7EaSNYEauSwiXgReVLLX+gVp+BySVVyHnAkQEVcq\n2SVwcZLlxHeS9NU0zkIkW98CXBIRzzbIdxuSpcpfSe/7rKRJJFuhDu3+OItk2XWznuOKw6rktcz5\nAMmqs/OY3zJeqEH8wczrQd76t137lGuQLJHxsYi4O3tB0obAy4VLbtZH3FVlVfcAyc6HkOzP0Y5/\nBpC0Kcn+8C+Q7ENxgCSl1+rusZ3jEmA/SRPStFPSez4n6YNpnL1Itvg16zlucVjVHQecJWkG8Ps2\n7/EPSTcDCwCfTsP+A/gBcJukMSQ78+3Qys0i4g+S1gFukPQ6yQZLRwD7AP+TVij3Afu1WV6zSvNa\nVWZmVoi7qszMrBB3VZnlkLQW8Iua4NciYsORKI9ZVbiryszMCnFXlZmZFeKKw8zMCnHFYWZmhbji\nMDOzQv4/VzI1/MY4PxEAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x119587198>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"ncol = 24\n", | |
"nrow = 16\n", | |
"data = [range(ncol) for i in range(nrow)]\n", | |
"original_heatmap = pd.DataFrame(data, index=i5.index, columns=i5.columns)\n", | |
"\n", | |
"fig, ax = plt.subplots()\n", | |
"sns.heatmap(original_heatmap)\n", | |
"ax.set(title='Original i5/i7 layout')\n", | |
"fig.tight_layout()\n", | |
"fig.savefig(os.path.join(figure_folder, 'original_i5-i7_layout.png'))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>number_col</th>\n", | |
" <th>letter_row</th>\n", | |
" <th>value</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>well_id</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>A1</th>\n", | |
" <td>1</td>\n", | |
" <td>A</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>B1</th>\n", | |
" <td>1</td>\n", | |
" <td>B</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>C1</th>\n", | |
" <td>1</td>\n", | |
" <td>C</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>D1</th>\n", | |
" <td>1</td>\n", | |
" <td>D</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>E1</th>\n", | |
" <td>1</td>\n", | |
" <td>E</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" number_col letter_row value\n", | |
"well_id \n", | |
"A1 1 A 0\n", | |
"B1 1 B 0\n", | |
"C1 1 C 0\n", | |
"D1 1 D 0\n", | |
"E1 1 E 0" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"original_heatmap_tidy = original_heatmap.unstack().reset_index()\n", | |
"original_heatmap_tidy = original_heatmap_tidy.rename(columns={'level_0': 'number_col', \n", | |
" 'level_1': 'letter_row', \n", | |
" 0: 'value'})\n", | |
"original_heatmap_tidy['well_id'] = original_heatmap_tidy['letter_row'] + original_heatmap_tidy['number_col'].astype(str)\n", | |
"original_heatmap_tidy = original_heatmap_tidy.set_index('well_id')\n", | |
"original_heatmap_tidy.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>index_name</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>well_id</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>A1</th>\n", | |
" <td>NEXT-i7-IDT-1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>B1</th>\n", | |
" <td>NEXT-i7-IDT-193</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>C1</th>\n", | |
" <td>NEXT-i7-IDT-2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>D1</th>\n", | |
" <td>NEXT-i7-IDT-194</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>E1</th>\n", | |
" <td>NEXT-i7-IDT-3</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" index_name\n", | |
"well_id \n", | |
"A1 NEXT-i7-IDT-1\n", | |
"B1 NEXT-i7-IDT-193\n", | |
"C1 NEXT-i7-IDT-2\n", | |
"D1 NEXT-i7-IDT-194\n", | |
"E1 NEXT-i7-IDT-3" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"i7_tidy = i7.unstack().reset_index()\n", | |
"i7_tidy['well_id'] = i7_tidy['letter_row'] + i7_tidy['number_col'].astype(str)\n", | |
"i7_tidy = i7_tidy.set_index('well_id')\n", | |
"i7_tidy = i7_tidy.rename(columns={0: 'index_name'})\n", | |
"i7_tidy = i7_tidy.drop(['number_col', 'letter_row'], axis=1)\n", | |
"i7_tidy.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>number_col</th>\n", | |
" <th>letter_row</th>\n", | |
" <th>value</th>\n", | |
" <th>index_name</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>well_id</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>A1</th>\n", | |
" <td>1</td>\n", | |
" <td>A</td>\n", | |
" <td>0</td>\n", | |
" <td>NEXT-i7-IDT-1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>B1</th>\n", | |
" <td>1</td>\n", | |
" <td>B</td>\n", | |
" <td>0</td>\n", | |
" <td>NEXT-i7-IDT-193</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>C1</th>\n", | |
" <td>1</td>\n", | |
" <td>C</td>\n", | |
" <td>0</td>\n", | |
" <td>NEXT-i7-IDT-2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>D1</th>\n", | |
" <td>1</td>\n", | |
" <td>D</td>\n", | |
" <td>0</td>\n", | |
" <td>NEXT-i7-IDT-194</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>E1</th>\n", | |
" <td>1</td>\n", | |
" <td>E</td>\n", | |
" <td>0</td>\n", | |
" <td>NEXT-i7-IDT-3</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" number_col letter_row value index_name\n", | |
"well_id \n", | |
"A1 1 A 0 NEXT-i7-IDT-1\n", | |
"B1 1 B 0 NEXT-i7-IDT-193\n", | |
"C1 1 C 0 NEXT-i7-IDT-2\n", | |
"D1 1 D 0 NEXT-i7-IDT-194\n", | |
"E1 1 E 0 NEXT-i7-IDT-3" | |
] | |
}, | |
"execution_count": 15, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"i7_heatmap_tidy = original_heatmap_tidy.join(i7_tidy)\n", | |
"i7_heatmap_tidy.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"NEXT-i7-IDT-1 0\n", | |
"NEXT-i7-IDT-193 0\n", | |
"NEXT-i7-IDT-2 0\n", | |
"NEXT-i7-IDT-194 0\n", | |
"NEXT-i7-IDT-3 0\n", | |
"dtype: int64" | |
] | |
}, | |
"execution_count": 16, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"i7_index_to_value = pd.Series(i7_heatmap_tidy['value'].values, index=i7_heatmap_tidy['index_name'].values)\n", | |
"i7_index_to_value.head() " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th>number_col</th>\n", | |
" <th>1</th>\n", | |
" <th>2</th>\n", | |
" <th>3</th>\n", | |
" <th>4</th>\n", | |
" <th>5</th>\n", | |
" <th>6</th>\n", | |
" <th>7</th>\n", | |
" <th>8</th>\n", | |
" <th>9</th>\n", | |
" <th>10</th>\n", | |
" <th>11</th>\n", | |
" <th>12</th>\n", | |
" <th>13</th>\n", | |
" <th>14</th>\n", | |
" <th>15</th>\n", | |
" <th>16</th>\n", | |
" <th>17</th>\n", | |
" <th>18</th>\n", | |
" <th>19</th>\n", | |
" <th>20</th>\n", | |
" <th>21</th>\n", | |
" <th>22</th>\n", | |
" <th>23</th>\n", | |
" <th>24</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>letter_row</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>A</th>\n", | |
" <td>NEXT-i7-IDT-1</td>\n", | |
" <td>NEXT-i7-IDT-97</td>\n", | |
" <td>NEXT-i7-IDT-9</td>\n", | |
" <td>NEXT-i7-IDT-105</td>\n", | |
" <td>NEXT-i7-IDT-17</td>\n", | |
" <td>NEXT-i7-IDT-113</td>\n", | |
" <td>NEXT-i7-IDT-25</td>\n", | |
" <td>NEXT-i7-IDT-121</td>\n", | |
" <td>NEXT-i7-IDT-33</td>\n", | |
" <td>NEXT-i7-IDT-129</td>\n", | |
" <td>NEXT-i7-IDT-41</td>\n", | |
" <td>NEXT-i7-IDT-137</td>\n", | |
" <td>NEXT-i7-IDT-49</td>\n", | |
" <td>NEXT-i7-IDT-145</td>\n", | |
" <td>NEXT-i7-IDT-57</td>\n", | |
" <td>NEXT-i7-IDT-153</td>\n", | |
" <td>NEXT-i7-IDT-65</td>\n", | |
" <td>NEXT-i7-IDT-161</td>\n", | |
" <td>NEXT-i7-IDT-73</td>\n", | |
" <td>NEXT-i7-IDT-169</td>\n", | |
" <td>NEXT-i7-IDT-81</td>\n", | |
" <td>NEXT-i7-IDT-177</td>\n", | |
" <td>NEXT-i7-IDT-89</td>\n", | |
" <td>NEXT-i7-IDT-185</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>B</th>\n", | |
" <td>NEXT-i7-IDT-193</td>\n", | |
" <td>NEXT-i7-IDT-289</td>\n", | |
" <td>NEXT-i7-IDT-201</td>\n", | |
" <td>NEXT-i7-IDT-297</td>\n", | |
" <td>NEXT-i7-IDT-209</td>\n", | |
" <td>NEXT-i7-IDT-305</td>\n", | |
" <td>NEXT-i7-IDT-217</td>\n", | |
" <td>NEXT-i7-IDT-313</td>\n", | |
" <td>NEXT-i7-IDT-225</td>\n", | |
" <td>NEXT-i7-IDT-321</td>\n", | |
" <td>NEXT-i7-IDT-233</td>\n", | |
" <td>NEXT-i7-IDT-329</td>\n", | |
" <td>NEXT-i7-IDT-241</td>\n", | |
" <td>NEXT-i7-IDT-337</td>\n", | |
" <td>NEXT-i7-IDT-249</td>\n", | |
" <td>NEXT-i7-IDT-345</td>\n", | |
" <td>NEXT-i7-IDT-257</td>\n", | |
" <td>NEXT-i7-IDT-353</td>\n", | |
" <td>NEXT-i7-IDT-265</td>\n", | |
" <td>NEXT-i7-IDT-361</td>\n", | |
" <td>NEXT-i7-IDT-273</td>\n", | |
" <td>NEXT-i7-IDT-369</td>\n", | |
" <td>NEXT-i7-IDT-281</td>\n", | |
" <td>NEXT-i7-IDT-377</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>C</th>\n", | |
" <td>NEXT-i7-IDT-2</td>\n", | |
" <td>NEXT-i7-IDT-98</td>\n", | |
" <td>NEXT-i7-IDT-10</td>\n", | |
" <td>NEXT-i7-IDT-106</td>\n", | |
" <td>NEXT-i7-IDT-18</td>\n", | |
" <td>NEXT-i7-IDT-114</td>\n", | |
" <td>NEXT-i7-IDT-26</td>\n", | |
" <td>NEXT-i7-IDT-122</td>\n", | |
" <td>NEXT-i7-IDT-34</td>\n", | |
" <td>NEXT-i7-IDT-130</td>\n", | |
" <td>NEXT-i7-IDT-42</td>\n", | |
" <td>NEXT-i7-IDT-138</td>\n", | |
" <td>NEXT-i7-IDT-50</td>\n", | |
" <td>NEXT-i7-IDT-146</td>\n", | |
" <td>NEXT-i7-IDT-58</td>\n", | |
" <td>NEXT-i7-IDT-154</td>\n", | |
" <td>NEXT-i7-IDT-66</td>\n", | |
" <td>NEXT-i7-IDT-162</td>\n", | |
" <td>NEXT-i7-IDT-74</td>\n", | |
" <td>NEXT-i7-IDT-170</td>\n", | |
" <td>NEXT-i7-IDT-82</td>\n", | |
" <td>NEXT-i7-IDT-178</td>\n", | |
" <td>NEXT-i7-IDT-90</td>\n", | |
" <td>NEXT-i7-IDT-186</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>D</th>\n", | |
" <td>NEXT-i7-IDT-194</td>\n", | |
" <td>NEXT-i7-IDT-290</td>\n", | |
" <td>NEXT-i7-IDT-202</td>\n", | |
" <td>NEXT-i7-IDT-298</td>\n", | |
" <td>NEXT-i7-IDT-210</td>\n", | |
" <td>NEXT-i7-IDT-306</td>\n", | |
" <td>NEXT-i7-IDT-218</td>\n", | |
" <td>NEXT-i7-IDT-314</td>\n", | |
" <td>NEXT-i7-IDT-226</td>\n", | |
" <td>NEXT-i7-IDT-322</td>\n", | |
" <td>NEXT-i7-IDT-234</td>\n", | |
" <td>NEXT-i7-IDT-330</td>\n", | |
" <td>NEXT-i7-IDT-242</td>\n", | |
" <td>NEXT-i7-IDT-338</td>\n", | |
" <td>NEXT-i7-IDT-250</td>\n", | |
" <td>NEXT-i7-IDT-346</td>\n", | |
" <td>NEXT-i7-IDT-258</td>\n", | |
" <td>NEXT-i7-IDT-354</td>\n", | |
" <td>NEXT-i7-IDT-266</td>\n", | |
" <td>NEXT-i7-IDT-362</td>\n", | |
" <td>NEXT-i7-IDT-274</td>\n", | |
" <td>NEXT-i7-IDT-370</td>\n", | |
" <td>NEXT-i7-IDT-282</td>\n", | |
" <td>NEXT-i7-IDT-378</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>E</th>\n", | |
" <td>NEXT-i7-IDT-3</td>\n", | |
" <td>NEXT-i7-IDT-99</td>\n", | |
" <td>NEXT-i7-IDT-11</td>\n", | |
" <td>NEXT-i7-IDT-107</td>\n", | |
" <td>NEXT-i7-IDT-19</td>\n", | |
" <td>NEXT-i7-IDT-115</td>\n", | |
" <td>NEXT-i7-IDT-27</td>\n", | |
" <td>NEXT-i7-IDT-123</td>\n", | |
" <td>NEXT-i7-IDT-35</td>\n", | |
" <td>NEXT-i7-IDT-131</td>\n", | |
" <td>NEXT-i7-IDT-43</td>\n", | |
" <td>NEXT-i7-IDT-139</td>\n", | |
" <td>NEXT-i7-IDT-51</td>\n", | |
" <td>NEXT-i7-IDT-147</td>\n", | |
" <td>NEXT-i7-IDT-59</td>\n", | |
" <td>NEXT-i7-IDT-155</td>\n", | |
" <td>NEXT-i7-IDT-67</td>\n", | |
" <td>NEXT-i7-IDT-163</td>\n", | |
" <td>NEXT-i7-IDT-75</td>\n", | |
" <td>NEXT-i7-IDT-171</td>\n", | |
" <td>NEXT-i7-IDT-83</td>\n", | |
" <td>NEXT-i7-IDT-179</td>\n", | |
" <td>NEXT-i7-IDT-91</td>\n", | |
" <td>NEXT-i7-IDT-187</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
"number_col 1 2 3 \\\n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-1 NEXT-i7-IDT-97 NEXT-i7-IDT-9 \n", | |
"B NEXT-i7-IDT-193 NEXT-i7-IDT-289 NEXT-i7-IDT-201 \n", | |
"C NEXT-i7-IDT-2 NEXT-i7-IDT-98 NEXT-i7-IDT-10 \n", | |
"D NEXT-i7-IDT-194 NEXT-i7-IDT-290 NEXT-i7-IDT-202 \n", | |
"E NEXT-i7-IDT-3 NEXT-i7-IDT-99 NEXT-i7-IDT-11 \n", | |
"\n", | |
"number_col 4 5 6 \\\n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-105 NEXT-i7-IDT-17 NEXT-i7-IDT-113 \n", | |
"B NEXT-i7-IDT-297 NEXT-i7-IDT-209 NEXT-i7-IDT-305 \n", | |
"C NEXT-i7-IDT-106 NEXT-i7-IDT-18 NEXT-i7-IDT-114 \n", | |
"D NEXT-i7-IDT-298 NEXT-i7-IDT-210 NEXT-i7-IDT-306 \n", | |
"E NEXT-i7-IDT-107 NEXT-i7-IDT-19 NEXT-i7-IDT-115 \n", | |
"\n", | |
"number_col 7 8 9 \\\n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-25 NEXT-i7-IDT-121 NEXT-i7-IDT-33 \n", | |
"B NEXT-i7-IDT-217 NEXT-i7-IDT-313 NEXT-i7-IDT-225 \n", | |
"C NEXT-i7-IDT-26 NEXT-i7-IDT-122 NEXT-i7-IDT-34 \n", | |
"D NEXT-i7-IDT-218 NEXT-i7-IDT-314 NEXT-i7-IDT-226 \n", | |
"E NEXT-i7-IDT-27 NEXT-i7-IDT-123 NEXT-i7-IDT-35 \n", | |
"\n", | |
"number_col 10 11 12 \\\n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-129 NEXT-i7-IDT-41 NEXT-i7-IDT-137 \n", | |
"B NEXT-i7-IDT-321 NEXT-i7-IDT-233 NEXT-i7-IDT-329 \n", | |
"C NEXT-i7-IDT-130 NEXT-i7-IDT-42 NEXT-i7-IDT-138 \n", | |
"D NEXT-i7-IDT-322 NEXT-i7-IDT-234 NEXT-i7-IDT-330 \n", | |
"E NEXT-i7-IDT-131 NEXT-i7-IDT-43 NEXT-i7-IDT-139 \n", | |
"\n", | |
"number_col 13 14 15 \\\n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-49 NEXT-i7-IDT-145 NEXT-i7-IDT-57 \n", | |
"B NEXT-i7-IDT-241 NEXT-i7-IDT-337 NEXT-i7-IDT-249 \n", | |
"C NEXT-i7-IDT-50 NEXT-i7-IDT-146 NEXT-i7-IDT-58 \n", | |
"D NEXT-i7-IDT-242 NEXT-i7-IDT-338 NEXT-i7-IDT-250 \n", | |
"E NEXT-i7-IDT-51 NEXT-i7-IDT-147 NEXT-i7-IDT-59 \n", | |
"\n", | |
"number_col 16 17 18 \\\n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-153 NEXT-i7-IDT-65 NEXT-i7-IDT-161 \n", | |
"B NEXT-i7-IDT-345 NEXT-i7-IDT-257 NEXT-i7-IDT-353 \n", | |
"C NEXT-i7-IDT-154 NEXT-i7-IDT-66 NEXT-i7-IDT-162 \n", | |
"D NEXT-i7-IDT-346 NEXT-i7-IDT-258 NEXT-i7-IDT-354 \n", | |
"E NEXT-i7-IDT-155 NEXT-i7-IDT-67 NEXT-i7-IDT-163 \n", | |
"\n", | |
"number_col 19 20 21 \\\n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-73 NEXT-i7-IDT-169 NEXT-i7-IDT-81 \n", | |
"B NEXT-i7-IDT-265 NEXT-i7-IDT-361 NEXT-i7-IDT-273 \n", | |
"C NEXT-i7-IDT-74 NEXT-i7-IDT-170 NEXT-i7-IDT-82 \n", | |
"D NEXT-i7-IDT-266 NEXT-i7-IDT-362 NEXT-i7-IDT-274 \n", | |
"E NEXT-i7-IDT-75 NEXT-i7-IDT-171 NEXT-i7-IDT-83 \n", | |
"\n", | |
"number_col 22 23 24 \n", | |
"letter_row \n", | |
"A NEXT-i7-IDT-177 NEXT-i7-IDT-89 NEXT-i7-IDT-185 \n", | |
"B NEXT-i7-IDT-369 NEXT-i7-IDT-281 NEXT-i7-IDT-377 \n", | |
"C NEXT-i7-IDT-178 NEXT-i7-IDT-90 NEXT-i7-IDT-186 \n", | |
"D NEXT-i7-IDT-370 NEXT-i7-IDT-282 NEXT-i7-IDT-378 \n", | |
"E NEXT-i7-IDT-179 NEXT-i7-IDT-91 NEXT-i7-IDT-187 " | |
] | |
}, | |
"execution_count": 17, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"i7 = i5.applymap(lambda x: x.replace('i5', 'i7'))\n", | |
"i7.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"dict_keys(['170907_A00111_0051_BH2HWLDMXX.csv', '170910_A00111_0053_BH2HGKDMXX.csv', '170914_A00111_57_58.csv', '170919_A00111_59_60.csv', '170921_A00111_62_63_Nova5.csv', '170925_A00111_66_67_Nova6.csv', '170928_A00111_Nova7.csv'])" | |
] | |
}, | |
"execution_count": 18, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"original_novaseq_folder = 'maca_samplesheets/'\n", | |
"\n", | |
"novaseqs = {}\n", | |
"\n", | |
"for csv in sorted(glob.glob(os.path.join(original_novaseq_folder, '*.csv'))):\n", | |
" basename = os.path.basename(csv)\n", | |
" df = pd.read_csv(csv, skiprows=1)\n", | |
"# df['samplesheet'] = basename\n", | |
"# dfs.append(df)\n", | |
" novaseqs[basename] = df\n", | |
"novaseqs.keys()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(8832, 6)\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Sample_ID</th>\n", | |
" <th>Sample_Name</th>\n", | |
" <th>I7_Index_ID</th>\n", | |
" <th>index</th>\n", | |
" <th>I5_Index_ID</th>\n", | |
" <th>index2</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>K12-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K12-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-1</td>\n", | |
" <td>CTGATCGT</td>\n", | |
" <td>NEXT-i5-IDT-17</td>\n", | |
" <td>AGATCGTC</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>K13-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K13-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-193</td>\n", | |
" <td>CTTCGTTC</td>\n", | |
" <td>NEXT-i5-IDT-209</td>\n", | |
" <td>AACACTGG</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>K14-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K14-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-2</td>\n", | |
" <td>ACTCTCGA</td>\n", | |
" <td>NEXT-i5-IDT-18</td>\n", | |
" <td>GCTCAGTT</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>K15-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K15-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-194</td>\n", | |
" <td>GTCTAGGT</td>\n", | |
" <td>NEXT-i5-IDT-210</td>\n", | |
" <td>TTGGTGCA</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>K16-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K16-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-3</td>\n", | |
" <td>TGAGCTAG</td>\n", | |
" <td>NEXT-i5-IDT-19</td>\n", | |
" <td>GTCCTAAG</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Sample_ID Sample_Name I7_Index_ID \\\n", | |
"0 K12-MAA000917-3_11_M-1-1 K12-MAA000917-3_11_M-1-1 NEXT-i7-IDT-1 \n", | |
"1 K13-MAA000917-3_11_M-1-1 K13-MAA000917-3_11_M-1-1 NEXT-i7-IDT-193 \n", | |
"2 K14-MAA000917-3_11_M-1-1 K14-MAA000917-3_11_M-1-1 NEXT-i7-IDT-2 \n", | |
"3 K15-MAA000917-3_11_M-1-1 K15-MAA000917-3_11_M-1-1 NEXT-i7-IDT-194 \n", | |
"4 K16-MAA000917-3_11_M-1-1 K16-MAA000917-3_11_M-1-1 NEXT-i7-IDT-3 \n", | |
"\n", | |
" index I5_Index_ID index2 \n", | |
"0 CTGATCGT NEXT-i5-IDT-17 AGATCGTC \n", | |
"1 CTTCGTTC NEXT-i5-IDT-209 AACACTGG \n", | |
"2 ACTCTCGA NEXT-i5-IDT-18 GCTCAGTT \n", | |
"3 GTCTAGGT NEXT-i5-IDT-210 TTGGTGCA \n", | |
"4 TGAGCTAG NEXT-i5-IDT-19 GTCCTAAG " | |
] | |
}, | |
"execution_count": 19, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"novaseq7 = novaseqs['170928_A00111_Nova7.csv']\n", | |
"print(novaseq7.shape)\n", | |
"novaseq7.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(8832,)\n", | |
"(384,)\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"NEXT-i7-IDT-1 CTGATCGT\n", | |
"NEXT-i7-IDT-193 CTTCGTTC\n", | |
"NEXT-i7-IDT-2 ACTCTCGA\n", | |
"NEXT-i7-IDT-194 GTCTAGGT\n", | |
"NEXT-i7-IDT-3 TGAGCTAG\n", | |
"dtype: object" | |
] | |
}, | |
"execution_count": 20, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"i7_to_seq = pd.Series(index=novaseq7.I7_Index_ID.values, data=novaseq7['index'].values)\n", | |
"print(i7_to_seq.shape)\n", | |
"i7_to_seq = i7_to_seq.drop_duplicates()\n", | |
"print(i7_to_seq.shape)\n", | |
"i7_to_seq.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(8832,)\n", | |
"(384,)\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"NEXT-i5-IDT-17 AGATCGTC\n", | |
"NEXT-i5-IDT-209 AACACTGG\n", | |
"NEXT-i5-IDT-18 GCTCAGTT\n", | |
"NEXT-i5-IDT-210 TTGGTGCA\n", | |
"NEXT-i5-IDT-19 GTCCTAAG\n", | |
"dtype: object" | |
] | |
}, | |
"execution_count": 21, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"i5_to_seq = pd.Series(index=novaseq7.I5_Index_ID.values, data=novaseq7['index2'].values)\n", | |
"print(i5_to_seq.shape)\n", | |
"i5_to_seq = i5_to_seq.drop_duplicates()\n", | |
"print(i5_to_seq.shape)\n", | |
"i5_to_seq.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"8832" | |
] | |
}, | |
"execution_count": 22, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# samplesheet_concatenated.head()\n", | |
"\n", | |
"original_index_pairs = set(zip(novaseq7.I7_Index_ID, novaseq7.I5_Index_ID))\n", | |
"len(original_index_pairs)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def tidifier(indices, index_id='I5_Index_ID'):\n", | |
" tidy = indices.unstack().reset_index()\n", | |
" tidy = tidy.rename(\n", | |
" columns={'level_0': 'number_col', 'level_1': 'letter_row', 0: index_id},)\n", | |
" tidy = tidy.set_index(['letter_row', 'number_col'])\n", | |
" tidy = tidy.sort_index()\n", | |
"# tidy.index = np.arange(len(tidy))\n", | |
" return tidy" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 33, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/Users/olgabot/anaconda3/envs/maca-dash/lib/python3.6/site-packages/matplotlib/pyplot.py:524: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n", | |
" max_open_warning, RuntimeWarning)\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"(16, 24)\n", | |
"384\n", | |
"cumulative_overlapping_indices: 8832\n", | |
"(8832, 8)\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th>I7_Index_ID</th>\n", | |
" <th>I5_Index_ID</th>\n", | |
" <th>index</th>\n", | |
" <th>index2</th>\n", | |
" <th>Sample_ID</th>\n", | |
" <th>Sample_Name</th>\n", | |
" <th>well_id</th>\n", | |
" <th>iteration</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>letter_row</th>\n", | |
" <th>number_col</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th rowspan=\"5\" valign=\"top\">A</th>\n", | |
" <th>1</th>\n", | |
" <td>NEXT-i7-IDT-185</td>\n", | |
" <td>NEXT-i5-IDT-1</td>\n", | |
" <td>GCCACTTA</td>\n", | |
" <td>ACGATCAG</td>\n", | |
" <td>None</td>\n", | |
" <td>None</td>\n", | |
" <td>A1</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>NEXT-i7-IDT-1</td>\n", | |
" <td>NEXT-i5-IDT-97</td>\n", | |
" <td>CTGATCGT</td>\n", | |
" <td>TGATAGGC</td>\n", | |
" <td>None</td>\n", | |
" <td>None</td>\n", | |
" <td>A2</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>NEXT-i7-IDT-97</td>\n", | |
" <td>NEXT-i5-IDT-9</td>\n", | |
" <td>GCCTATCA</td>\n", | |
" <td>ATTAGCCG</td>\n", | |
" <td>None</td>\n", | |
" <td>None</td>\n", | |
" <td>A3</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>NEXT-i7-IDT-9</td>\n", | |
" <td>NEXT-i5-IDT-105</td>\n", | |
" <td>CGGCTAAT</td>\n", | |
" <td>CCAAGTAG</td>\n", | |
" <td>None</td>\n", | |
" <td>None</td>\n", | |
" <td>A4</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>NEXT-i7-IDT-105</td>\n", | |
" <td>NEXT-i5-IDT-17</td>\n", | |
" <td>CTACTTGG</td>\n", | |
" <td>AGATCGTC</td>\n", | |
" <td>None</td>\n", | |
" <td>None</td>\n", | |
" <td>A5</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" I7_Index_ID I5_Index_ID index index2 \\\n", | |
"letter_row number_col \n", | |
"A 1 NEXT-i7-IDT-185 NEXT-i5-IDT-1 GCCACTTA ACGATCAG \n", | |
" 2 NEXT-i7-IDT-1 NEXT-i5-IDT-97 CTGATCGT TGATAGGC \n", | |
" 3 NEXT-i7-IDT-97 NEXT-i5-IDT-9 GCCTATCA ATTAGCCG \n", | |
" 4 NEXT-i7-IDT-9 NEXT-i5-IDT-105 CGGCTAAT CCAAGTAG \n", | |
" 5 NEXT-i7-IDT-105 NEXT-i5-IDT-17 CTACTTGG AGATCGTC \n", | |
"\n", | |
" Sample_ID Sample_Name well_id iteration \n", | |
"letter_row number_col \n", | |
"A 1 None None A1 1 \n", | |
" 2 None None A2 1 \n", | |
" 3 None None A3 1 \n", | |
" 4 None None A4 1 \n", | |
" 5 None None A5 1 " | |
] | |
}, | |
"execution_count": 33, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4HEXd9vHvTUJCAoQsrJElIPCggiyyCfiwiQZZ9XUB\nZFWJKAICXixuoK8KLvg+KKIgIJtGEBBRUEFWUdkEJETgEZBF2cIadkzO7/2j65DOMHPO9JzpOX1m\n7g9XXfRUd3XVzJl0TVV1VSsiMDMzK2KR4S6AmZmNPK48zMysMFceZmZWmCsPMzMrzJWHmZkV5srD\nzMwKc+VRYZJmS9qqxbQhafU2F6nrSPq8pNNKOO9HJV3e7vMWLMOPJH1pOMtg3Uue5zEySPoRsGcu\nalHgtYhYssHxAawREfd2onx18p8G/BNYNCLmlZTHscDqEbHnYMem47cCzo2IFcsozyB5l/r3kLQv\n8ImI2KKM8w+S99rACcA7gCkRoU6XwTrPLY8RIiIOiIgl+gMwE/jFcJerLMr4+wlIGj3cZRjEf4Dz\ngY8Pd0GsgyLCoaIBeAB4d534xYHngS0HSBtkv8oBdgBuA+YCDwPH5o67FDioJu0dwPvT9mbAzcBz\n6f+bNSofcCzZL3uAh1IZXkjhnU2832uArwN/Al4GVgemApcATwP3AvunY6cDr5FduF4A/pbi9wPu\nSp/P/cAnc5/Zy0BfrkxT82VOx+0MzAaeTeV5S837/Vz6fJ4DzgMWa/Be9gWuT9vXpc/ixZTvR1L8\njsDtKa8/A2+vyevIlNerwGjgKOC+9N7+nvsbvQV4BZifzv9sij8T+FrunPunz/Dp9JlOrfm+HAD8\nI5XnB6SeiQLf19WBGO5/Nw6dCcNeAIcB/jiNK4+904Wx4T9uFq48tgLWIWtpvh14HNg17fswcGMu\n3brAU8AYYDLwDLBXunjtnl5PqVc+Fq48pqUyjC7wfq8hq3TelvJbNF14TwYWA9YD5gDb1OaXO8cO\nwJsBAVsCLwEb5D6Hf9Ucny/zmukCv13K+4h0sR2Te783kVU6k8kqqQMavJd9SZVH7d8jvV4feALY\nBBgF7JPOPzaX1+3ASsC4FPehlPciwEdSWVeol1+KO5NUeQDbAE8CGwBjge8D19WU7zfARGDl9DlP\nT/tWJqtQVh7k7+fKo4eCuwVGpn2AsyP9ix1MRFwTEbMioi8i7iDr8toy7b4EWFPSGun1XsB5EfEa\n2YX4HxFxTkTMi4iZwN3ATm19Nws7MyJmRzZOsjywOXBkRLwSEbcDp5FVnnVFxKURcV9krgUuB97V\nZN4fAS6NiCsi4j/Ad4BxZK2vft+LiEci4mng12QVWitmAKdExI0RMT8iziJrYWxak9fDEfFyem+/\nSHn3RcR5ZK2EjZvM76PAGRFxa0S8ChwNvDONTfU7PiKejYiHgKv731tEPBQRE1O8GeAxjxFH0spk\nv6DPLpBmE0lXS5oj6Tmy7omlASLiFbLulz3TGMPuwDkp6VTgwZrTPQi8aUhvYmAP57anAk9HxPPN\n5i9pe0k3SHpa0rPA+0jvtQkLvd+I6Evlyef3WG77JWCJJs9daxXgcEnP9geyVsbU3DH5zwJJe0u6\nPXf82rT+3l4ga2GW8d6sB7jyGHn2Av4UEfcXSPMzshbGShGxFPAjsm6dfmeR/TLdFngpIv6S4h8h\nu8jlrQz8O22/CIzP7Vs+t93qbXz5dI8AkyXl7yjL579QHpLGAheStRiWi4iJwGUseK+DlWmh9ytJ\nZBf0fzdM0bqHga+nX/T9YXxq3fV7vbySVgF+DHyGrNtwInAnrb+3xYEplPPerAe48hh59ibryy5i\nSbJf8K9I2hjYI78zVRZ9ZLdbnpPbdRlZl9YekkZL+gjwVrK+ccj65HeTtKikDYEP5tLOSedcrT9C\n0rQ0/2RaM4WOiIfJBpKPk7SYpLeT3dFzbjrkcWBa7q6sMWT9+XOAeZK2B96TO+XjwBRJSzXI8nxg\nB0nbSloUOJysK+nPzZR3EI+T+yzIKoIDUqtQkhaXtENNRZm3OFkFMQdA0n5kLY/8+VeUNKZB+pnA\nfpLWS5XsN8jGuh5o/S1lUvkXI/v8SX+rsUM9r1WbK48RRNI7gRUpfovup4GvSnoe+DLZRbLW2WSD\n6v0XZiLiKbI7gg4n6+I4AtgxIp5Mh3yJbHD6GeArZC2c/rQvke6cSt0sm5L9in+QYr92dycbfH8E\n+CVwTET8Ie3r/xyeknRr6t46OL2/Z8gqyUtyZbqb7CJ6fypTvouIiLiHbC7N98kGl3cCdkrjP0N1\nLHBWyvfDEXEL2d1PJ6Wy3ks26F1XRPydrHL/C1lFsQ7ZXWn9riK7S+wxSU/WSf8Hsr/XhcCjZH+3\n3ZopuKSVJb2QukzrWYXsTrbZ6fXLwD3NnNtGLk8SNCDrTwdmRImTzCR9EZgTEaeUlYeZdYYrD0PS\neLJfridHRNMD8WbWu9xt1eMkvZesH/1xct1OZmYDccvDzMwKc8vDzMwKq/SCa/958v5CzaJxU5ud\nSLzAhLHjBz8oZ+LY4vOmJi66eOE0k0YVK9ekUYsVz6OFuyknF/zKLNM3qnAeU+YXO37y/L7CeUym\n+A1UE8e9Wuj4JZd6pXAe46cUK9eYZYv//hu1XPHv8CJLN7q7uT5NmVQ4D01udr5jzqRliuUxabnC\nWWjiCoXTjF1js7atLFzkOrjo0qt1bEVjtzzMzKywSrc8zMx6Xl/BpniHuPIwM6uyKN4t2wmuPMzM\nqqyvmpVHR8c8JG0h6QedzNPMbCSL+fOaDp1UestD0vpkawx9iOyZ1heVnaeZWdfopW4rSWuSLWi3\nO9kCc+eRTUjcuoz8zMy6VkUHzMvqtrqb7LGXO0bEFhHxfbLnKw9K0gxJt0i65bSzZw6ewMysm0Vf\n86GDyuq2+gDZcs9XS/od8HMWfvhQQxFxKnAqFJ8kaGbWdXppwDwiLo6I3YC1yJ6F/FlgWUk/lPSe\ngVObmVm/iL6mQyeVerdVRLwYET+LiJ3IHmJ0G3BkmXmamXWVvr7mQwd1bJ5HRDxD1h11aqfyNDMb\n8XrpbiszM2uTit5t5crDzKzKOjz5r1muPMzMqszdVmZmVlhFb9V15WFmVmERHvMwM7Oi3G1lZmaF\nudvKzMwKc8sDJC0NPBURXrPKzKwZFZ3nUdryJJI2lXSNpIskrS/pTuBO4HFJ0wdI51V1zcz69diq\nugAnAZ8HlgKuAraPiBskrQXMBH5XL5FX1TUzy+nBSYKjI+JyAElfjYgbACLibqmp1dnNzKwHB8zz\n7/jlmn1uUZiZNaMHK491Jc0lewjUuLRNer1YifmamXWNnpskGBGjyjq3mVnPaGPLQ9JKwNnAcmQ9\nQKdGxImSJgPnAdOAB4APp8doNFTqw6DMzGyI2nu31Tzg8Ih4K7ApcKCktwJHAVdGxBrAlen1gFx5\nmJlVWRufJBgRj0bErWn7eeAu4E3ALsBZ6bCzgF0HO5crDzOzKivQ8sjPk0thRqPTSpoGrA/cCCwX\nEY+mXY+RdWsNyMuTmJlVWYExj/w8uYFIWgK4EPhsRMzNT5+IiJA06B2xrjzMzKqszZMEJS1KVnH8\nNCIuStGPS1ohIh6VtALwxGDncbeVmVmVtXHMQ1kT43Tgroj4bm7XJcA+aXsf4FeDnau0loek1cn6\n0f5UE7858FhE3FdW3mZmXaO9a1ZtDuwFzJJ0e4r7PHA8cL6kjwMPAh8e7ERldlv9D3B0nfi5ad9O\nJeZtZtYd2jjPIyKuJ5uoXc+2Rc5VZrfVchExqzYyxU1rlMir6pqZ5fTgqroTB9g3rtEOr6prZpZT\n0bWtymx53CJp/9pISZ8A/lpivmZm3aMHWx6fBX4p6aMsqCw2BMYA7y8xXzOz7lHRlkeZCyM+Dmwm\naWtg7RR9aURcVVaeZmZdp9cqj34RcTVwddn5mJl1pfk9tiS7mZm1Qa+2PMzMbAg6PBDeLFceZmZV\n5paHmZkVFtWc7ubKw8ysytzyMDOzwlx5mJlZYb08YC5pGYCImNOJ/MzMukX0VXPMo7S1rZQ5VtKT\nwD3A/0qaI+nLZeVpZtZ15s9rPnRQmQsjHkr24JGNImJyREwCNgE2l3Roo0Rekt3MLKcvmg8dVGa3\n1V7AdhHxZH9ERNwvaU/gcuD/1UvkJdnNzHJ6cMB80XzF0S8i5qQHsJuZ2WB6sPJ4rcV9ZmbWrwcn\nCa4raW6deAGLlZivmVn36LWWR0SMKuvcZmY9o6K36nqSoJlZlfXyJEEzM2uRWx5mZlZUzPOTBM3M\nrCh3W5mZWWHutjIzs8J67VZdMzNrg4q2PMpcVfeI3PaHavZ9o6x8zcy6SvQ1HzqozFV1d8ttH12z\nb3qjRF5V18wspwdX1VWD7XqvX+dVdc3MFoiKjnmU2fKIBtv1XpuZWT1tbHlIOkPSE5LurIk/SNLd\nkmZL+lYzxerEwogCxuUWSfTCiGZmzZrf1kmCZwInAWf3R0jaGtgFWDciXpW0bDMn8sKIZmZV1sax\njIi4TtK0muhPAcdHxKvpmCeaOVeZ3VZmZjZE0RdNhxatCbxL0o2SrpW0UTOJPM/DzKzKClQKkmYA\nM3JRp6abkAYyGpgMbApsBJwvabWIgZ9C5crDzKzKCtxtlb9btYB/ARelyuImSX3A0sCcgRK528rM\nrMrKn+dxMbA1gKQ1gTHAk4MlcsvDzKzK2jhgLmkmsBWwtKR/AccAZwBnpNt3XwP2GazLClx5mJlV\nWhPX8SLn2r3Brj2LnsuVh5lZlVV0YURXHmZmFRbzemx5Ekkrl3VuM7OeUdGFEcu82+ri/g1JF5aY\nj5lZ9+orEDqozMojv3Luak0n8pLsZmav68AM85aUOeYx0Kq6jRN5SXYzswV6cMB8oFV1IyImlJi3\nmVl3qOZ4uVfVNTOrsk53RzXLt+qamVVZr7U8zMxs6NzyMLO2e+2JPsYs6/VNu1nMG+4S1OfKw2wE\nc8XRA9xtZWZmRYUrDzMzK8yVh5mZFeWWh5mZFebKw8zMCqtq5VHmkuy7SDow9/pGSfen8MGy8jUz\n6yqh5kMHNV15SLpe0tclTZe0ZBNJjgAuyb0eC2xE9vzcTw2Qj1fVNTNLoq/50ElFuq32At4F/B/g\n25JeBf4YEYc2OH5MRDyce319RDwFPCVp8UaZeFVdM7MFoq+zLYpmNV15RMQ/Jb0CvJbC1sBbBkgy\nqSb9Z3IvlylSSDOzXtU3v5qVR5Fuq/vIng64HHA6sHZETB8gyY2S9q9znk8CNxUtqJlZL+qGbqvv\nAVsAuwPrA9dKui4i7mtw/KHAxZL2AG5Nce8gG/vYtcXympn1lG7otjoROFHSEsB+wLHAikDd53ZE\nxBPAZpK2Ad6Woi+NiKuGVGIzsx4SFR35bbrykHQCWctjCeAvwJeBPw6WLlUWrjDMzFow4lseZBXG\ntyLi8bIKY2ZmCxvxlUdEXCBpZ0n/naKujYhfl1QuMzOjO7qtjgM2Bn6aog6W9M6I+HwpJTMzs5Hf\n8gB2ANaLyG4Ik3QWcBvgysPMrCTR4WVHmlV0YcSJwNNpe6k2l8XMzGrMr+gkwSKVx3HAbZKuBgT8\nN3BUKaUyMzNghLc8JAm4HtiUbHFDgCMj4rGyCmZmZiN8zCMiQtJlEbEOC6+U25Ck7wMN7xOIiIOb\nK6KZWe9q591Wks4AdgSeiIi1U9y3gZ3I1iy8D9gvIp4d7FxFnudxq6SNBj/sdbcAf01h59x2f6jL\nS7KbmS0QfWo6NOFMoHZNwivI1ip8O/C/wNHNnKjImMcmwEclPQi8SDbuESnDN4iIs/q3JX02/3og\nXpLdzGyBvjaOeUTEdZKm1cRdnnt5A9DUw/qKVB7vHWinpEkR8UyD3a4EzMxaUGTAXNIMYEYu6tT0\ng7xZHwPOa+bAIjPMHxzkkCuBDZo9n5mZDa7ImEe+56YoSV8A5rFgIviAis7zGDDvmoI8z4IWx3hJ\nc3PHRURMaGPeZmZdqZ3dVo1I2pdsIH3biOaqq3ZWHgtlGBHNPOfczMwG0FfyrbqSpgNHAFtGxEvN\npmtn5WFmZm3WzpaHpJnAVsDSkv4FHEN2d9VY4IpsSh83RMQBg52rtG4rMzMbunbOMI+I3etEn97K\nuZqa5yFplKS7Bzls21YKYGZmjfWFmg6d1FTlERHzgXskrTzAMU832mdmZq2JAqGTinRbTQJmS7qJ\nbJIgABGxc9tLZWZmQGfutmpFkcrjS6WVwszM6hrRq+oCRMS1klYB1oiIP0gaD4wqr2hmZtY33AVo\noOmFESXtD1wAnJKi3gRcXEahzMwsE6jp0ElFVtU9ENgcmAsQEf8Alm10sKTnJc2tE57PzTavl86r\n6pqZJfNCTYdOKjLm8WpEvJYmkSBpNAM/r6OlGeZeVdfMbIFOtyiaVaTlca2kzwPjJG0H/AL4dTnF\nMjMzyMY8mg2dVKTyOAqYA8wCPglcFhFfKKVUZmYGVHfMo0i31UERcSLw4/4ISYekODMzK8GIv9sK\n2KdO3L5tKoeZmdVR1W6rQVseknYH9gBWlXRJbteSgJckMTMrUVUHzJvptvoz8CiwNHBCLv554I4y\nCmVmZpmSH+fRskErj/T42QclXRcR1+b3SfomcGRZhTMz63V9FW15FBnz2K5O3PbtKoiZmb3R/AKh\nk5oZ8/gU8GngzZLy3VRLAn8qq2BmZgZ9qmbLo5kxj58BvwWOI5vr0e95P8PDzKxcVV1mY9Buq4h4\nLiIeSI8vXAnYJo2DLCJp1XppBljXaq6kOZJukOQnD5qZDWLE3qrbT9IxwIbAfwE/AcYA55ItlriQ\ngda1kjQKWBv4afq/mZk1UNW7rYoMmL8f2Jn0FMGIeIRs3KOQiJgfEX8Dvl9vv1fVNTNboA81HTqp\nyPIkr0VESAoASYsPJeOIOKVBvFfVNTNLqnoRLNLyOF/SKcDE9GCoP5Bb58rMzNqvT82HTiryGNrv\npKXY55KNe3w5Iq4orWRmZlbZhRGLdFuRKgtXGGZmHTK/ogPmzUwSfJ763W4CIiImtL1UZmYGjOCW\nR6uPkzUzs6EbsZWHmZkNnxip3VZmZjZ83PIwM7PCXHmYmVlh3TBJ0MzMOqzdkwQlHSpptqQ7Jc2U\ntFgr5XLlYWZWYe1cVVfSm4CDgQ0jYm1gFLBbK+UqrfKQtNIA+3YsK18zs25SwpMERwPjJI0GxgOP\ntFKuMlseV0iaVhsp6WPAiSXma2bWNYp0W+VXJU9hRv5cEfFv4DvAQ8CjwHMRcXkr5Sqz8jgMuFzS\nGv0Rko4GDgW2bJTIS7KbmS1QpNsqIk6NiA1z4dT8uSRNAnYBVgWmAotL2rOVcpV2t1VEXCbpVeC3\nknYFPgFsDPx3RDwzQDovyW5mlrT5Ivhu4J8RMQdA0kXAZmQP9iuk1AHziLgS2A+4BliN7BG2DSsO\nMzNbWB/RdGjCQ8CmksZLErAtcFcr5Sqt5ZFbUFHAWLJCPpEK7AUVzcya0M5JghFxo6QLgFuBecBt\npJ6eosrstvKCimZmQ9TuvvuIOAY4Zqjn8QxzM7MKq+ryJJ4kWNCzr74w3EWwGk+P6t2v8WtPVPXS\nYu0y4h9Da5mJY5cY7iJYjcnze/cCOmbZ3q04e8X8iq5u5crDzKzCqvrTyJWHmVmFNXkLbse58jAz\nq7BqVh2uPMzMKq2q3VbDMtom6bPDka+Z2UjT5hnmbTNct2ocNkz5mpmNKFEgdNJwVR4N70j2qrpm\nZgu082FQ7TRcYx4NK0mvqmtmtkBUdMi8EwsjvmEXMK6sfM3Musm8Xqs8vDCimdnQVbPq8K26ZmaV\n5kmCZmZWWFXnebjyMDOrsJ4bMDczs6Fzy8PMzApzy8PMzApzy8PMzArrC7c8zMysID9J0MzMCvOY\nh5mZFdZzYx6SLhlof0TsXFbeZmbdohdnmL8TeBiYCdzIAMuw50maAcwAOPmEr/GJvXcvrYBmZlXX\ni91WywPbAbsDewCXAjMjYvZAibwku5nZAlXttirtYVARMT8ifhcR+wCbAvcC10j6TFl5mpl1m4ho\nOnRSqQPmksYCO5C1PqYB3wN+WWaeZmbdpOfGPCSdDawNXAZ8JSLuLCsvM7NuVdVuqzJbHnsCLwKH\nAAdLr4+XC4iImFBi3mZmXWF+RauPMp8kWNp4iplZr+j0WEazfIE3M6uwvgKhWZJGSbpN0m9aLZdn\nmJuZVVhJ8zwOAe4CWh4+cMvDzKzC+oimQzMkrUh2F+xpQymXKw8zsworMs9D0gxJt+TCjDqn/B/g\nCIZ4I5e7rczMKqzIPI/8Ch31SNoReCIi/ippq6GUy5WHmVmFtXnMY3NgZ0nvAxYDJkg6NyL2LHqi\nMicJfnmA3RER/7esvM3MukU7nyQYEUcDRwOklsfnWqk4oNwxjxfrhAA+DhzZKFG+z+60s2eWWDwz\ns+qLAqGTypwkeEL/tqQlyW4N+xjwc+CEAdJ5VV0zs2ReSTPMI+Ia4JpW05e9MOJk4DDgo8BZwAYR\n8UyZeZqZdZOqzjAvc8zj28AHyFoR60TEC2XlZWbWraq6qm6ZYx6HA1OBLwKPSJqbwvOS5paYr5lZ\n14gC/3WSF0Y0M6uwnuu2MjOzoatqt5UrDzOzCnPLw8zMCnPLw8zMCuv0QHizXHmYmVXY/Oixx9Ca\nmdnQtXNtq3YqvfKQtBiwenp5b0S8UnaeZmbdoue6rSSNBr5Btp7Vg4CAlST9BPhCRPynrLzNzLpF\nVVseZU7k+zYwGVg1It4RERsAbwYmAt9plMir6pqZLdBzM8yBHYE1I3eTckTMlfQp4G6yVXbfwKvq\nmpktUNWWR5mVR0Sd2S0RMV9SNT8NM7OKqeqYR5ndVn+XtHdtpKQ9yVoeZmY2iIi+pkMnldnyOBC4\nSNLHgL+muA2BccD7S8zXzKxr9NwM84j4N7CJpG2At6XoyyLiyrLyNDPrNj07STAirgKuKjsfM7Nu\n5IURzcyssF6828rMzIaoqndbufIwM6swd1uZmVlhPXe3lZmZDZ1bHmZmVpgHzM3MrLCea3mk53gc\nQPYsj1nA6RExr6z8zMy6UVUnCZa5ttVZZMuRzAK2B05oJpGXZDczW6AvounQSWV2W701ItYBkHQ6\ncFMzibwku5nZAr04z+P1JwVGxDxJJWZlZtadenHAfF1Jc9O2gHHptcie9TGhxLzNzLpCVQfMSxvz\niIhRETEhhSUjYnRu2xWHmVkT2v0YWknTJd0j6V5JR7VaLt+qa2ZWYe1seUgaBfwA2A74F3CzpEsi\n4u9Fz1Xm3VZmZjZEEdF0aMLGwL0RcX9EvAb8HNil9IJVJQAzqpimW/JwuaqXh8tVvTxaTVNmAGYA\nt+TCjJr9HwROy73eCzippbyG+822+AHdUsU03ZKHy1W9PFyu6uXRaprhDO2sPNxtZWbWO/4NrJR7\nvWKKK8yVh5lZ77gZWEPSqpLGALsBl7RyopF6t9WpFU3TLXm0kqaXy9XL772VNN2SR6tphk1kE7Y/\nA/weGAWcERGzWzmXUr+XmZlZ09xtZWZmhbnyMDOzwlx5mJlZYV1beUhaS9K2kpaoiZ/e4PiNJW2U\ntt8q6TBJ7yuY59kFj98i5fOeBvs3kTQhbY+T9BVJv5b0TUlLNUhzsKSV6u1rcPwYSXtLend6vYek\nkyQdKGnRAdKtJulzkk6U9F1JB/SX1cy634gfMJe0X0T8pCbuYOBA4C5gPeCQiPhV2ndrRGxQc/wx\nZA+sGg1cAWwCXE22/svvI+LrdfKtvb1NwNbAVQARsXOdNDdFxMZpe/9Uxl8C7wF+HRHH1xw/G1g3\n3SFxKvAScAGwbYr/QJ08ngNeBO4DZgK/iIg5tcfljv9pet/jgWeBJYCLUh6KiH3qpDkY2BG4Dngf\ncFtK+37g0xFxTaP8zLqFpGUj4onhLsewGe4Zj22YMflQnbhZwBJpexrZNP1D0uvbGhw/iuwCOheY\nkOLHAXc0yPdW4FxgK2DL9P9H0/aWDdLcltu+GVgmbS8OzKpz/F35/Gr23d4oD7IW5XuA04E5wO+A\nfYAl6xx/R/r/aOBxYFR6rQHe+6zcceOBa9L2yvU+314IwLIdyGPKcL/PFsq8FHA8cDfwNPAU2Y+6\n44GJBc/12wbxE4DjgHOAPWr2ndwgzfLAD8kWCZwCHJu+1+cDK9Q5fnJNmAI8AEwCJg/35zwcYUR0\nW0m6o0GYBSxXJ8kiEfECQEQ8QHZh317Sd8kuirXmRcT8iHgJuC8i5qa0LwONHiC8IfBX4AvAc5H9\n2n45Iq6NiGsbpFlE0iRJU8guvnNSPi8C9Z7vfqek/dL23yRtmD6PNck9bKtGRERfRFweER8HpgIn\nA9OB+xuUaQywJFlF0N8dNhZo2G3FgjlCY8laK0TEQ43SSFpK0vGS7pb0tKSnJN2V4iYOkE9dkn5b\nJ26CpOMknSNpj5p9Jzc4z/KSfijpB5KmSDpW0ixJ50taoUGayTVhCnBT+ttOrnP89Nz2UpJOT9/f\nn0mq9/0lfS5Lp+0NJd0P3CjpQUlb1jn+VklflPTmeudrkMeGkq6WdK6klSRdIek5STdLWr9BmiUk\nfVXS7HTsHEk3SNq3QTbnA88AW0XE5IiYQtZCfybtqz3/Bg3CO8h6Eer5Cdm/6wuB3SRdKGls2rdp\ngzRnAn8HHibrZXiZrBX9R+BHdY5/kuzfe3+4BXgT2Y/IWxrk0d2Gu/ZqJpD9Il4PWKUmTAMeqXP8\nVcB6NXGjgbOB+XWOvxEYn7YXycUvRc0v/jppVwR+AZxEnVZQzbEPkF3A/5n+v0KKX4I6LYmU/5lk\nXVA3klUY9wPXknVb1cuj4S///vdYE3doOueDwMHAlcCPyX6FHdPgPIcAd6Tj7gb2S/HLANc1SPN7\n4Ehg+Vzc8inu8gZpNmgQ3gE8Wuf4C8l+0e5KNmv2QmBs2lf370jWKjsIOCq9pyPJlm84CPhVgzR9\n6W+YD//p/7vWOf7W3PZpwNfS9/dQ4OIGeczKbV8NbJS216TOekop7+8AD5E98vlQYOog38ebyLpr\ndye7iH4wxW8L/KVBml8B+6bv/WHAl4A1gLOAb9Q5/p4B8n/DPmA+2b/fq+uElxuc5/aa118A/kTW\nOmj0d8/vSZ+RAAADDklEQVT3Ajw00PlS3OHpu7JO/jMf6PPt9jDsBWiqkFn3yxYN9v2sTtyK+YtU\nzb7N68SNbXDs0vkvyyBl3KHeP54m044HVh1g/wRg3XTRXG6Qc63ZQv5T+y80wESyxdM2HiTN29Jx\nazWZR6GLSIovdCHpxEUkxRe6kLBw5VFbxkZ53AWMTts31Oyr18WZz+NdZK3Nx9JnVXfl10Hee90f\nIcDfal7fnP6/CHB3neMvB47If2/JeguOBP5Q5/g7gTUa5P3wAJ/VIjVx+wKzgQcHex/A1wb7fFN8\n/w/F75K11N/wQ6GXwrAXwKE3QtGLSNpf6ELSqYtI2tf0hYTsoTuHpUrnn6QbVdK+RuNKB6XPbBuy\n/vgTycbTvgKcU+f4N1SOZON404GfNMjjL2RjYx8ia3numuK3pMFqscCfST/kgJ3Jbijp31evJTEJ\n+CZZC/UZsnGPu1LcG8YKyH6Q/FeDvHdtEP8t4N114qcD/2iQ5qukcdGa+NWBCwb5Lu8M3AA81s5/\nIyMtDHsBHHoj1FxEnq65iExqkKbQhaTTF5F03KAXEuCYmtB/o8TywNkDpNsKOI/sJohZwGVkz2sY\nXefYn7fwN1mXrDvxt8BaqYJ6lqyy3axBmreTdXc9A1xPaumSdVke3CDNWsC7az9nYPoAx2/b7PGD\npNm+hTSDlovsZpq1BytXN4dhL4CDA2nMpMw0ZeZRcyGpTLk6mUejNGTjaPcAF5ON+e2S21evtVTo\n+BR/UNlpWilXt4dhL4CDA4PcaNCONJ3Io6rlGs73Tmu3zTd9fKfStJJHt4eRuiS7jTCS7mi0i/q3\nWxdO04k8qlquqr53am6bl7QVcIGkVah/23zR4zuVppU8uporD+uU5YD3kvWV54lsELYdaTqRR1XL\nVdX3/rik9SLidoCIeEHSjsAZwDptOL5TaVrJo6u58rBO+Q1Zs//22h2SrmlTmk7kUdVyVfW9703N\nBNiImAfsLemUNhzfqTSt5NHVRvzaVmZm1nkjYnkSMzOrFlceZmZWmCsPMzMrzJWHmZkV9v8BF1zM\nN6WI6NEAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x121882a58>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4HEW9xvHvS0JCAoQsrBEwIHBRQRbZBJRNNMjqDsiq\nElFk92FTBL0quOC9KC4gICCyCYggoCCrqGwCEhC4ArIoW1jDHpPzu390HdIZZs6ZnkzP6TPzfvLU\nk57qrq6aOed0TVV1VSsiMDMzK2KBoS6AmZkNP648zMysMFceZmZWmCsPMzMrzJWHmZkV5srDzMwK\nc+VRYZLulrRpi2lD0kptLlLXkXSEpJNLOO+nJF3R7vMWLMNPJR05lGWw7iXP8xgeJP0U2CUXtSAw\nKyIWbXB8ACtHxP2dKF+d/KcA/wQWjIjZJeVxNLBSROwy2LHp+E2BMyNi2TLKM0jepf48JO0BfDYi\nNi7j/IPkvTuwH7AyMBM4CziirJ+7VYNbHsNEROwdEYv0B+Bs4FdDXa6yKOPfT0DSyKEuwyDGAgcA\niwPrA1sAXxrSEln5IsKhogF4CHh/nfiFgReBTQZIG2TfygG2Bm4n+1b4KHB07rhLgX1r0t4JfDht\nbwjcAryQ/t+wUfmAo8m+2QM8ksrwUgrvaeL9Xgt8E/gT8CqwEjAZuBh4Frgf2CsdOxWYBfwnnf9v\nKX5P4J70+TwIfC73mb0K9OXKNDlf5nTcdsDdwPOpPG+veb9fSp/PC8C5wEIN3ssewA1p+/r0Wbyc\n8v1kit8GuCPl9WfgXTV5HZryeh0YCRwGPJDe299zP6O3A68Bc9L5n0/xpwHfyJ1zr/QZPps+08k1\nvy97A/9I5fkRqWeihd/bg4BLhvrvx6HcMOQFcBjgh9O48tgtXRgb/nEzb+WxKbA6WUvzXcCTwA5p\n3yeAm3Lp1gCeAUYBE4HngF3TxWun9HpSvfIxb+UxJZVhZIH3ey1ZpfPOlN+C6cL7Y2AhYE1gBrB5\nbX65c2wNvA0QsAnwCrB27nP4V83x+TKvki7wW6a8D0kX21G593szWaUzkayS2rvBe9mDVHnU/jzS\n67WAp8i+qY8Adk/nH53L6w5gOWBMivt4ynsB4JOprMvUyy/FnUaqPIDNgaeBtYHRwA+B62vK91tg\nPLB8+pynpn3Lk1Uoyzf5c7wIOHao/34cyg3uFhiedgfOiPSXOpiIuDYipkdEX0TcSdbltUnafTGw\niqSV0+tdgXMjYhbZhfgfEfGLiJgdEWcD9wLbtvXdzOu0iLg7sv7ypYGNgEMj4rWIuAM4mazyrCsi\nLo2IByJzHXAF8N4m8/4kcGlEXBkR/wG+B4wha331+0FEPBYRzwKXkFVorZgGnBgRN0XEnIg4nayF\nsUFNXo9GxKvpvf0q5d0XEeeStRLWazK/TwGnRsRtEfE6cDjwnjQ21e/YiHg+Ih4Brul/bxHxSESM\nT/EDkvRpYB2yz866mCuPYUbS8mTfoM8okGZ9SddImiHpBbLuicUBIuI1su6XXdIYw07AL1LSycDD\nNad7GHjLfL2JgT2a254MPBsRLzabv6StJN0o6VlJzwMfIr3XJszzfiOiL5Unn98Tue1XgEWaPHet\ntwIHS3q+P5C1Mibnjsl/FkjaTdIdueNXo/X39hJZC7Nt703SDsAxwFYR8XSRtDb8uPIYfnYF/hQR\nDxZIcxZZC2O5iFgM+ClZt06/08m+mW4BvBIRf0nxj5Fd5PKWB/6dtl8mGyztt3Ruu9Xb+PLpHgMm\nSsrfUZbPf548JI0GLiD71rtURIwHLmPuex2sTPO8X0kiu6D/u2GK1j0KfDN9o+8PY1Prrt8b5ZX0\nVuBnwBfJug3HA3fR+ntbGJhEm96bpKmpfNtGxPR2nNOqzZXH8LMbWV92EYuSfYN/TdJ6wM75namy\n6AOOY26rA7IL7yqSdpY0UtIngXeQ9Y1D1ie/o6QFJa0DfCyXdkY654r9EZKmpPknU5opdEQ8SjaQ\nfIykhSS9C/gMcGY65ElgSu6urFFk/fkzgNmStgI+kDvlk8AkSYs1yPI8YGtJW0haEDiYrCvpz82U\ndxBPkvssyC60e6dWoSQtLGnrmooyb2GyCmIGgKQ9yVoe+fMvK2lUg/RnA3tKWjNVst8iG+t6qPW3\nlJG0OfBL4KMRcfP8ns+GB1cew4ik9wDLUvwW3S8AX5f0IvBVsotkrTPIBtX7L8xExDNkdwQdTNbF\ncQiwTa5L4kiywenngK+RtXD6075CunMqdbNsQPYt/mGKfdvdiWzw/THg18BREfGHtK//c3hG0m2p\ne2u/9P6eI6skL86V6V6yi+iDqUz5LiIi4j6yuTQ/JBtc3pbsm/SsAuVt5Gjg9JTvJyLiVrK7n05I\nZb2fbNC7roj4O1nl/heyimJ1srvS+l1NdpfYE5Le1GWUPrMjyVpmj5P93HZspuCSlpf0UuoyredI\nYDHgsnTcS5Iub+bcNnx5kqABWX86MC1KnGQm6SvAjIg4saw8zKwzXHkYksaSfXP9cUQ0PRBvZr3L\n3VY9TtIHyfrRnyTX7WRmNhC3PMzMrDC3PMzMrLBKL7j2+j/+XKhZtMCEpQc/qMaYyc1OPs6MGz12\n8INqjB9dfB7Z+AUXLnT8hBHFyzVhxELF02h0oeMntvArtkTfiELHT5pTOAsmzukrnoZiN12NH/N6\n4TwWXey1QsePnVT8RrBRSxb/zjhiqWK/wwss3uhu6MY0aULxNBObnSOZTFiieB4TliqcZqF1P6rB\nj2rOf55+sOnr4IKLr9i2fAfjloeZmRVW6ZaHmVnP62uhad0BrjzMzKosinexdoIrDzOzKuurZuXR\n0TEPSRtL+lEn8zQzG85izuymQyeV3vKQtBbZGkMfJ3um9YVl52lm1jV6qdtK0ipkC9rtRLbA3Llk\nExI3KyM/M7OuVdEB87K6re4le+zlNhGxcUT8kOz5yoOSNE3SrZJuPfmc35RUPDOzYSL6mg8dVFa3\n1UfIlnu+RtLvgHOY9+FDDUXEScBJUHySoJlZ1+mlAfOIuCgidgRWJXsW8gHAkpJ+IukDA6c2M7N+\nEX1Nh04q9W6riHg5Is6KiG3JHmJ0O3BomXmamXWVvr7mQwd1bJ5HRDxH1h11UqfyNDMb9nrpbisz\nM2uTit5t5crDzKzKOjz5r1muPMzMqszdVmZmVlhFb9V15WFmVmERHvMwM7Oi3G1lZmaFudvKzMwK\nc8sDJC0OPBMRXrPKzKwZFZ3nUdryJJI2kHStpAslrSXpLuAu4ElJUwdI51V1zcz69diqugAnAEcA\niwFXA1tFxI2SVgXOBn5XL5FX1TUzy+nBSYIjI+IKAElfj4gbASLiXqmp1dnNzKwHB8zz7/jVmn1u\nUZiZNaMHK481JM0kewjUmLRNer1QifmamXWNnpskGBEjyjq3mVnPaGPLQ9JywBnAUmQ9QCdFxPGS\nJgLnAlOAh4BPpMdoNFTqw6DMzGw+tfduq9nAwRHxDmADYB9J7wAOA66KiJWBq9LrAbnyMDOrsjY+\nSTAiHo+I29L2i8A9wFuA7YHT02GnAzsMdi5XHmZmVVag5ZGfJ5fCtEanlTQFWAu4CVgqIh5Pu54g\n69YakJcnMTOrsgJjHvl5cgORtAhwAXBARMzMT5+IiJA06B2xrjzMzKqszZMEJS1IVnH8MiIuTNFP\nSlomIh6XtAzw1GDncbeVmVmVtXHMQ1kT4xTgnoj4fm7XxcDuaXt3YNC1oUpreUhaiawf7U818RsB\nT0TEA2XlbWbWNdq7ZtVGwK7AdEl3pLgjgGOB8yR9BngY+MRgJyqz2+p/gcPrxM9M+7YtMW8zs+7Q\nxnkeEXED2UTterYocq4yu62WiojptZEpbkqjRF5V18wspwdX1R0/wL4xjXZ4VV0zs5yKrm1VZsvj\nVkl71UZK+izw1xLzNTPrHj3Y8jgA+LWkTzG3slgHGAV8uMR8zcy6R0VbHmUujPgksKGkzYDVUvSl\nEXF1WXmamXWdXqs8+kXENcA1ZedjZtaV5vTYkuxmZtYGvdryMDOz+dDhgfBmufIwM6sytzzMzKyw\nqOZ0N1ceZmZV5paHmZkV5srDzMwK6+UBc0lLAETEjE7kZ2bWLaKvmmMepa1tpczRkp4G7gP+T9IM\nSV8tK08zs64zZ3bzoYPKXBjxQLIHj6wbERMjYgKwPrCRpAMbJfKS7GZmOX3RfOigMrutdgW2jIin\n+yMi4kFJuwBXAP9TL5GXZDczy+nBAfMF8xVHv4iYkR7AbmZmg+nBymNWi/vMzKxfD04SXEPSzDrx\nAhYqMV8zs+7Ray2PiBhR1rnNzHpGRW/V9SRBM7Mq6+VJgmZm1iK3PMzMrKiY7ScJmplZUe62MjOz\nwtxtZWZmhfXarbpmZtYGFW15lLmq7iG57Y/X7PtWWfmamXWV6Gs+dFCZq+rumNs+vGbf1EaJvKqu\nmVlOD66qqwbb9V6/wavqmpnNFRUd8yiz5RENtuu9NjOzetrY8pB0qqSnJN1VE7+vpHsl3S3pO80U\nqxMLIwoYk1sk0Qsjmpk1a05bJwmeBpwAnNEfIWkzYHtgjYh4XdKSzZzICyOamVVZG8cyIuJ6SVNq\noj8PHBsRr6djnmrmXGV2W5mZ2XyKvmg6tGgV4L2SbpJ0naR1m0nkeR5mZlVWoFKQNA2Ylos6Kd2E\nNJCRwERgA2Bd4DxJK0YM/BQqVx5mZlVW4G6r/N2qBfwLuDBVFjdL6gMWB2YMlMjdVmZmVVb+PI+L\ngM0AJK0CjAKeHiyRWx5mZlXWxgFzSWcDmwKLS/oXcBRwKnBqun13FrD7YF1W4MrDzKzSmriOFznX\nTg127VL0XK48zMyqrKILI7ryMDOrsJjdY8uTSFq+rHObmfWMii6MWObdVhf1b0i6oMR8zMy6V1+B\n0EFlVh75lXNXbDqRl2Q3M3tDB2aYt6TMMY+BVtVtnMhLspuZzdWDA+YDraobETGuxLzNzLpDNcfL\nvaqumVmVdbo7qlm+VdfMrMp6reVhZmbzzy0PM2u7V54ZxdhJs4a6GFaimD3UJajPlYfZMOaKowe4\n28rMzIoKVx5mZlaYKw8zMyvKLQ8zMyvMlYeZmRVW1cqjzCXZt5e0T+71TZIeTOFjZeVrZtZVQs2H\nDmq68pB0g6RvSpoqadEmkhwCXJx7PRpYl+z5uZ8fIB+vqmtmlkRf86GTinRb7Qq8F/go8F1JrwN/\njIgDGxw/KiIezb2+ISKeAZ6RtHCjTLyqrpnZXNHX2RZFs5quPCLin5JeA2alsBnw9gGSTKhJ/8Xc\nyyWKFNLMrFf1zalm5VGk2+oBsqcDLgWcAqwWEVMHSHKTpL3qnOdzwM1FC2pm1ou6odvqB8DGwE7A\nWsB1kq6PiAcaHH8gcJGknYHbUty7ycY+dmixvGZmPaUbuq2OB46XtAiwJ3A0sCxQ97kdEfEUsKGk\nzYF3puhLI+Lq+SqxmVkPiYqO/DZdeUg6jqzlsQjwF+CrwB8HS5cqC1cYZmYtGPYtD7IK4zsR8WRZ\nhTEzs3kN+8ojIs6XtJ2k96Wo6yLikpLKZWZmdEe31THAesAvU9R+kt4TEUeUUjIzMxv+LQ9ga2DN\niOyGMEmnA7cDrjzMzEoSHV52pFlFF0YcDzybthdrc1nMzKzGnIpOEixSeRwD3C7pGkDA+4DDSimV\nmZkBw7zlIUnADcAGZIsbAhwaEU+UVTAzMxvmYx4REZIui4jVmXel3IYk/RBoeJ9AROzXXBHNzHpX\nO++2knQqsA3wVESsluK+C2xLtmbhA8CeEfH8YOcq8jyP2yStO/hhb7gV+GsK2+W2+0NdXpLdzGyu\n6FPToQmnAbVrEl5Jtlbhu4D/Aw5v5kRFxjzWBz4l6WHgZbJxj0gZvklEnN6/LemA/OuBeEl2M7O5\n+to45hER10uaUhN3Re7ljUBTD+srUnl8cKCdkiZExHMNdrsSMDNrQZEBc0nTgGm5qJPSF/JmfRo4\nt5kDi8wwf3iQQ64C1m72fGZmNrgiYx75npuiJH0ZmM3cieADKjrPY8C8awryInNbHGMlzcwdFxEx\nro15m5l1pXZ2WzUiaQ+ygfQtIpqrrtpZecyTYUQ085xzMzMbQF/Jt+pKmgocAmwSEa80m66dlYeZ\nmbVZO1seks4GNgUWl/Qv4Ciyu6tGA1dmU/q4MSL2HuxcpXVbmZnZ/GvnDPOI2KlO9CmtnKupeR6S\nRki6d5DDtmilAGZm1lhfqOnQSU1VHhExB7hP0vIDHPNso31mZtaaKBA6qUi31QTgbkk3k00SBCAi\ntmt7qczMDOjM3VatKFJ5HFlaKczMrK5hvaouQERcJ+mtwMoR8QdJY4ER5RXNzMz6hroADTS9MKKk\nvYDzgRNT1FuAi8oolJmZZQI1HTqpyKq6+wAbATMBIuIfwJKNDpb0oqSZdcKLudnm9dJ5VV0zs2R2\nqOnQSUXGPF6PiFlpEgmSRjLw8zpammHuVXXNzObqdIuiWUVaHtdJOgIYI2lL4FfAJeUUy8zMIBvz\naDZ0UpHK4zBgBjAd+BxwWUR8uZRSmZkZUN0xjyLdVvtGxPHAz/ojJO2f4szMrATD/m4rYPc6cXu0\nqRxmZlZHVbutBm15SNoJ2BlYQdLFuV2LAl6SxMysRFUdMG+m2+rPwOPA4sBxufgXgTvLKJSZmWVK\nfpxHywatPNLjZx+WdH1EXJffJ+nbwKFlFc7MrNf1VbTlUWTMY8s6cVu1qyBmZvZmcwqETmpmzOPz\nwBeAt0nKd1MtCvyprIKZmRn0qZotj2bGPM4CLgeOIZvr0e9FP8PDzKxcVV1mY9Buq4h4ISIeSo8v\nXA7YPI2DLCBphXppBljXaqakGZJulOQnD5qZDWLY3qrbT9JRwDrAfwE/B0YBZ5ItljiPgda1kjQC\nWA34ZfrfzMwaqOrdVkUGzD8MbEd6imBEPEY27lFIRMyJiL8BP6y336vqmpnN1YeaDp1UZHmSWRER\nkgJA0sLzk3FEnNgg3qvqmpklVb0IFml5nCfpRGB8ejDUH8itc2VmZu3Xp+ZDJxV5DO330lLsM8nG\nPb4aEVeWVjIzM6vswohFuq1IlYUrDDOzDplT0QHzZiYJvkj9bjcBERHj2l4qMzMDhnHLo9XHyZqZ\n2fwbtpWHmZkNnRiu3VZmZjZ03PIwM7PCXHmYmVlh3TBJ0MzMOqzdkwQlHSjpbkl3STpb0kKtlMuV\nh5lZhbVzVV1JbwH2A9aJiNWAEcCOrZSrtMpD0nID7NumrHzNzLpJCU8SHAmMkTQSGAs81kq5ymx5\nXClpSm2kpE8Dx5eYr5lZ1yjSbZVflTyFaflzRcS/ge8BjwCPAy9ExBWtlKvMyuMg4ApJK/dHSDoc\nOBDYpFEiL8luZjZXkW6riDgpItbJhZPy55I0AdgeWAGYDCwsaZdWylXa3VYRcZmk14HLJe0AfBZY\nD3hfRDw3QDovyW5mlrT5Ivh+4J8RMQNA0oXAhmQP9iuk1AHziLgK2BO4FliR7BG2DSsOMzObVx/R\ndGjCI8AGksZKErAFcE8r5Sqt5ZFbUFHAaLJCPpUK7AUVzcya0M5JghFxk6TzgduA2cDtpJ6eosrs\ntvKCimZm86ndffcRcRRw1PyexzPMzcwqrKrLk3iSYEEzX39lqItgNZ4ZMdQlGDqvPDNqqItgJRv2\nj6G1zLjRY4e6CFZjUoHZUd1m7KRZQ10EK9mciq5u5crDzKzCqtpt5crDzKzCmrwFt+NceZiZVVg1\nqw5XHmZmlVbVbqshudtK0gFDka+Z2XDT5hnmbTNUt+oeNET5mpkNK1EgdNJQVR4N70j2qrpmZnO1\n82FQ7TRUYx4NK0mvqmtmNldUdMi8EwsjvmkXMKasfM3MusnsXqs8vDCimdn8q2bV4Vt1zcwqzZME\nzcyssKrO83DlYWZWYT03YG5mZvPPLQ8zMyvMLQ8zMyvMLQ8zMyusL9zyMDOzgvwkQTMzK8xjHmZm\nVljPjXlIunig/RGxXVl5m5l1i16cYf4e4FHgbOAmBliGPU/SNGAawAlfP4TP7rh9aQU0M6u6Xuy2\nWhrYEtgJ2Bm4FDg7Iu4eKJGXZDczm6uq3ValPQwqIuZExO8iYndgA+B+4FpJXywrTzOzbhMRTYdO\nKnXAXNJoYGuy1scU4AfAr8vM08ysm/TcmIekM4DVgMuAr0XEXWXlZWbWrarabVVmy2MX4GVgf2A/\n6Y3xcgEREeNKzNvMrCvMqWj1UeaTBEsbTzEz6xWdHstoli/wZmYV1lcgNEvSCEm3S/ptq+XyDHMz\nsworaZ7H/sA9QMvDB255mJlVWB/RdGiGpGXJ7oI9eX7K5crDzKzCiszzkDRN0q25MK3OKf8XOIT5\nvJHL3VZmZhVWZJ5HfoWOeiRtAzwVEX+VtOn8lMuVh5lZhbV5zGMjYDtJHwIWAsZJOjMidil6ojIn\nCX51gN0REf9dVt5mZt2inU8SjIjDgcMBUsvjS61UHFDumMfLdUIAnwEObZQo32d38jm/KbF4ZmbV\nFwVCJ5U5SfC4/m1Ji5LdGvZp4BzguAHSeVVdM7NkdkkzzCPiWuDaVtOXvTDiROAg4FPA6cDaEfFc\nmXmamXWTqs4wL3PM47vAR8haEatHxEtl5WVm1q2quqpumWMeBwOTga8Aj0mamcKLkmaWmK+ZWdeI\nAv86yQsjmplVWM91W5mZ2fyrareVKw8zswpzy8PMzApzy8PMzArr9EB4s1x5mJlV2JzoscfQmpnZ\n/Gvn2lbtVHrlIWkhYKX08v6IeK3sPM3MukXPdVtJGgl8i2w9q4cBActJ+jnw5Yj4T1l5m5l1i6q2\nPMqcyPddYCKwQkS8OyLWBt4GjAe+1yiRV9U1M5ur52aYA9sAq0TuJuWImCnp88C9ZKvsvolX1TUz\nm6uqLY8yK4+IOrNbImKOpGp+GmZmFVPVMY8yu63+Lmm32khJu5C1PMzMbBARfU2HTiqz5bEPcKGk\nTwN/TXHrAGOAD5eYr5lZ1+i5GeYR8W9gfUmbA+9M0ZdFxFVl5Wlm1m16dpJgRFwNXF12PmZm3cgL\nI5qZWWG9eLeVmZnNp6rebeXKw8yswtxtZWZmhfXc3VZmZjb/3PIwM7PCPGBuZmaF9VzLIz3HY2+y\nZ3lMB06JiNll5Wdm1o2qOkmwzLWtTidbjmQ6sBVwXDOJvCS7mdlcfRFNh04qs9vqHRGxOoCkU4Cb\nm0nkJdnNzObqxXkebzwpMCJmSyoxKzOz7tSLA+ZrSJqZtgWMSa9F9qyPcSXmbWbWFao6YF7amEdE\njIiIcSksGhEjc9uuOMzMmtDux9BKmirpPkn3Szqs1XL5Vl0zswprZ8tD0gjgR8CWwL+AWyRdHBF/\nL3quMu+2MjOz+RQRTYcmrAfcHxEPRsQs4Bxg+9ILVpUATKtimm7Jw+WqXh4uV/XyaDVNmQGYBtya\nC9Nq9n8MODn3elfghJbyGuo32+IHdGsV03RLHi5X9fJwuaqXR6tphjK0s/Jwt5WZWe/4N7Bc7vWy\nKa4wVx5mZr3jFmBlSStIGgXsCFzcyomG691WJ1U0Tbfk0UqaXi5XL7/3VtJ0Sx6tphkykU3Y/iLw\ne2AEcGpE3N3KuZT6vczMzJrmbiszMyvMlYeZmRXmysPMzArr2spD0qqStpC0SE381AbHrydp3bT9\nDkkHSfpQwTzPKHj8ximfDzTYv76kcWl7jKSvSbpE0rclLdYgzX6Slqu3r8HxoyTtJun96fXOkk6Q\ntI+kBQdIt6KkL0k6XtL3Je3dX1Yz637DfsBc0p4R8fOauP2AfYB7gDWB/SPiN2nfbRGxds3xR5E9\nsGokcCWwPnAN2fovv4+Ib9bJt/b2NgGbAVcDRMR2ddLcHBHrpe29Uhl/DXwAuCQijq05/m5gjXSH\nxEnAK8D5wBYp/iN18ngBeBl4ADgb+FVEzKg9Lnf8L9P7Hgs8DywCXJjyUETsXifNfsA2wPXAh4Db\nU9oPA1+IiGsb5WfWLSQtGRFPDXU5hsxQz3hsw4zJR+rETQcWSdtTyKbp759e397g+BFkF9CZwLgU\nPwa4s0G+twFnApsCm6T/H0/bmzRIc3tu+xZgibS9MDC9zvH35POr2XdHozzIWpQfAE4BZgC/A3YH\nFq1z/J3p/5HAk8CI9FoDvPfpuePGAtem7eXrfb69EIAlO5DHpKF+ny2UeTHgWOBe4FngGbIvdccC\n4wue6/IG8eOAY4BfADvX7PtxgzRLAz8hWyRwEnB0+r0+D1imzvETa8Ik4CFgAjBxqD/noQjDottK\n0p0NwnRgqTpJFoiIlwAi4iGyC/tWkr5PdlGsNTsi5kTEK8ADETEzpX0VaPQA4XWAvwJfBl6I7Nv2\nqxFxXURc1yDNApImSJpEdvGdkfJ5Gaj3fPe7JO2Ztv8maZ30eaxC7mFbNSIi+iLiioj4DDAZ+DEw\nFXiwQZlGAYuSVQT93WGjgYbdVsydIzSarLVCRDzSKI2kxSQdK+leSc9KekbSPSlu/AD51CXp8jpx\n4yQdI+kXknau2ffjBudZWtJPJP1I0iRJR0uaLuk8Scs0SDOxJkwCbk4/24l1jp+a215M0inp9/cs\nSfV+f0mfy+Jpex1JDwI3SXpY0iZ1jr9N0lckva3e+RrksY6kaySdKWk5SVdKekHSLZLWapBmEUlf\nl3R3OnaGpBsl7dEgm/OA54BNI2JiREwia6E/l/bVnn/tBuHdZL0I9fyc7O/6AmBHSRdIGp32bdAg\nzWnA34FHyXoZXiVrRf8R+Gmd458m+3vvD7cCbyH7Enlrgzy621DXXs0Esm/EawJvrQlTgMfqHH81\nsGZN3EjgDGBOneNvAsam7QVy8YtR842/TtplgV8BJ1CnFVRz7ENkF/B/pv+XSfGLUKclkfI/jawL\n6iayCuNB4Dqybqt6eTT85t//HmviDkznfBjYD7gK+BnZt7CjGpxnf+DOdNy9wJ4pfgng+gZpfg8c\nCiydi1s6xV3RIM3aDcK7gcfrHH8B2TfaHchmzV4AjE776v4cyVpl+wKHpfd0KNnyDfsCv2mQpi/9\nDPPhP/0/1zrH35bbPhn4Rvr9PRC4qEEe03Pb1wDrpu1VqLOeUsr7e8AjZI98PhCYPMjv481k3bU7\nkV1EP5Z3yR/lAAADRUlEQVTitwD+0iDNb4A90u/9QcCRwMrA6cC36hx/3wD5v2kfMIfs7/eaOuHV\nBue5o+b1l4E/kbUOGv3c870Ajwx0vhR3cPpdWT3/mQ/0+XZ7GPICNFXIrPtl4wb7zqoTt2z+IlWz\nb6M6caMbHLt4/pdlkDJuXe+Pp8m0Y4EVBtg/DlgjXTSXGuRcq7SQ/+T+Cw0wnmzxtPUGSfPOdNyq\nTeZR6CKS4gtdSDpxEUnxhS4kzFt51JaxUR73ACPT9o01++p1cebzeC9Za/OJ9FnVXfl1kPde90sI\n8Lea17ek/xcA7q1z/BXAIfnfW7LegkOBP9Q5/i5g5QZ5PzrAZ7VATdwewN3Aw4O9D+Abg32+Kb7/\ni+L3yVrqb/qi0EthyAvg0Buh6EUk7S90IenURSTta/pCQvbQnYNSpfNP0o0qaV+jcaV902e2OVl/\n/PFk42lfA35R5/g3VY5k43hTgZ83yOMvZGNjHydree6Q4jehwWqxwJ9JX+SA7chuKOnfV68lMQH4\nNlkL9TmycY97UtybxgrIvpD8V4O8d2gQ/x3g/XXipwL/aJDm66Rx0Zr4lYDzB/ld3g64EXiinX8j\nwy0MeQEceiPUXESerbmITGiQptCFpNMXkXTcoBcS4Kia0H+jxNLAGQOk2xQ4l+wmiOnAZWTPaxhZ\n59hzWviZrEHWnXg5sGqqoJ4nq2w3bJDmXWTdXc8BN5BaumRdlvs1SLMq8P7azxmYOsDxWzR7/CBp\ntmohzaDlIruZZrXBytXNYcgL4OBAGjMpM02ZedRcSCpTrk7m0SgN2TjafcBFZGN+2+f21WstFTo+\nxe9bdppWytXtYcgL4ODAIDcatCNNJ/KoarmG8r3T2m3zTR/fqTSt5NHtYbguyW7DjKQ7G+2i/u3W\nhdN0Io+qlquq752a2+YlbQqcL+mt1L9tvujxnUrTSh5dzZWHdcpSwAfJ+srzRDYI2440ncijquWq\n6nt/UtKaEXEHQES8JGkb4FRg9TYc36k0reTR1Vx5WKf8lqzZf0ftDknXtilNJ/Koarmq+t53o2YC\nbETMBnaTdGIbju9Umlby6GrDfm0rMzPrvGGxPImZmVWLKw8zMyvMlYeZmRXmysPMzAr7f8Qc3Q0A\nrcQMAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1206a0198>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4HEW9//H3hwRCAtlZI0tA4SKCLLIJKDsG2b0ugKwq\nEUVA0IfNBfSnggv+LooLKAiIIMgmCijIKiCbgAQEroAsyhbWhN3kfO8fXYc0w8w505PpOX1mPq88\n9aSnuqurZs45XVNVXdWKCMzMzIpYYKgLYGZmw48rDzMzK8yVh5mZFebKw8zMCnPlYWZmhbnyMDOz\nwlx5VJikuyVt2mLakPSONhep60g6UtLPSzjvxyVd1u7zFizDTyV9ZSjLYN1LnucxPEj6KbB7LmpB\n4PWIGNvg+ABWioj7O1G+OvlPBf4JLBgRc0rK42jgHRGx+2DHpuM3Bc6IiGXKKM8geZf685C0N/Cp\niNi4jPMPkvcuwNeApYFXgUuBAyJiVqfLYp3jlscwERH7RcSi/QE4C/jNUJerLMr49xOQNHKoyzCI\nG4BNImIcsCIwEvjG0BbJyuY/zgqT9JCkLevELwL8N3Bak+fZVtLtkmZJejR9Y+/fd7GkA2qOv1PS\nzml7Q0m3SHoh/b9ho/JJOlrSGenlten/5yW9KOm9TZTzaknflHQ98DKwoqQpki6S9Kyk+yXtm46d\nBhwJfCyd/28pfh9J90iaLelBSZ/OfWaXAlPS8S+mc+fLjKQdUnfh86k876x5v19Mn88Lks6WtHCD\n97K3pOvSdv9n8beU78dS/HaS7kh53SDp3TV5HSbpTuAlSSMlHS7pgfTe/p77Gb0T+Cnw3nT+51P8\nqZK+kTvnvukzfDZ9plNy+0LSfpL+kcrzI0ka7GcGEBGPRMQTuai5gLtMu11EOFQ0AA8BW9aJ3xN4\nkNTt2CBtkHXpAGwKrE72ZeHdwJPATmnfR4GbcunWAJ4BFgImAc8Be5B9m9w1vZ5cr3zA0WTdQgBT\nUxlGFni/VwOPAO9K+S1IVgn9GFgYWBOYCWxem1/uHNsCbwcEbEJWCa2d+xz+VXN8vswrAy8BW6W8\nDwXuBxbKvd+bgSnps7kH2K/Be9kbuK7ezyO9Xgt4ClgfGAHslc4/KpfXHcCywOgU95GU9wLAx1JZ\nl66XX4o7FfhG2t4ceBpYGxgF/BC4tqZ8vwcmAMulz3la2rcc8Dyw3AA/u42BF9J5XgK2Huq/H4dy\ng1sew9NewOmR/moHExFXR8SMiOiLiDvJurw2SbsvAlaWtFJ6vQdwdkS8TnYh/kdE/DIi5kTEWcC9\nwPZtfTdvdmpE3B3ZOMlSwEbAYRHxakTcAfycrPKsKyIujogHInMNcBnwvibz/hhwcURcHhH/Ab4H\njAY2zB3zg4h4LCKeBX5HVqG1YjpwYkTcFBFzI+I04DVgg5q8Ho2IV9J7+03Kuy8izgb+AazXZH4f\nB06JiNsi4jXgCLKWytTcMcdGxPMR8QhwVf97i6xlMSHF1xUR10XEeGAZ4LtklZ91MVcew4yk5ci+\nQZ9eIM36kq6SNFPSC8B+wGIAEfEqcDawexpj2BX4ZUo6BXi45nQPA2+brzcxsEdz21OAZyNidrP5\nS9pG0o2pa+Z54IOk99qEN73fiOhL5cnnl++eeRlYtMlz11oe+ELqIno+lXXZVIZ++c8CSXvmurme\nB1aj9ff2IlkLs63vLSL+DfwB+HXRtDa8uPIYfvYAro+IBwukOZOshbFs+nb4U7JunX6nkX0z3QJ4\nOSL+kuIfI7vI5S0H/DttvwSMye1bKrfd6m18+XSPAZMk5e8oy+f/pjwkjQLOI2sxLBkRE4BLmPde\nByvTm95v6vNfNpdfOz0KfDN9o+8PY1Lrrt8b5ZW0PPAz4HNk3YYTgLto/b0tAkymnPc2kqzr0LqY\nK4/hZ0+yvuwixpJ9g39V0nrAbvmdqbLoA45jXqsDsgvvypJ2SwO2HwNWJesbh6xPfhdJC0paB/hw\nLu3MdM4V+yMkTU0Ds1ObKXREPEp2J88xkhZOA8qfBPoHuJ8EpmreXVkLkfXnzwTmSNoG2Dp3yieB\nyZLGN8jyHGBbSVtIWhD4AllX0g3NlHcQT5L7LMgqgv1Sq1CSFlF2Y0PdW6+BRcgqiJmQ3RhA1vLI\nn38ZSQs1SH8WsI+kNVMl+y2ysa6HWn9LGWVzWpZL28sD3wSumN/zWrW58hhG0h1Ly1D8Ft3PAl+X\nNBv4KtlFstbpZIPqb9x5FBHPANuRXUSfIRtA3i4ink6HfIXsG+ZzZPf5n5lL+zLZReT61M2yAdm3\n+Icp9m13V7LB98eAC4CjIuJPaV//5/CMpNtS99aB6f09R1ZJXpQr071kF9EHU5nyXURExH1kc2l+\nSDa4vD2wfRr/mV9HA6elfD8aEbcC+wInpLLeTzboXVdE/J2scv8LWUWxOnB97pArgbuBJyQ9XSf9\nn8h+XucBj5P93HZppuCSlkt3cS3X4JBVgRskvZTKdF96b9bFPEnQgKw/HZgeJU4yk/RlYGZEnFhW\nHmbWGa48DEljyL65/jgimh6IN7Pe5W6rHifpA2T96E+S63YyMxuIWx5mZlaYWx5mZlZYpRdce/WW\n8wo1izRh6cJ5LDBxqcEPyhk9pdnJyvOMGzVm8INqTBhVbH7WhAUXKZzHxBHFyzVxRN2lnBofr1GF\n85hU8Ndy8b4RhfOYPLdwEibN7St2PMVv0pow+rVCx48d/2rhPMZMLl6uhZYo9j1zxJLF504usFij\nO6gb0+SJxY6f1OycypyJixdOMnrrzza1Llgz/vP0g01fBxdcbMW25TsYtzzMzKywSrc8zMx6Xl8L\nzeQOcOVhZlZlUay7tFNceZiZVVlfNSuPjo55SNpY0o86maeZ2XAWc+c0HTqp9JaHpLXI1hj6CNkz\nrc8vO08zs67RS91WklYmW9BuV7IF5s4mm5C4WRn5mZl1rYoOmJfVbXUv2WMvt4uIjSPih2TPNR6U\npOmSbpV068kXXF5S8czMhonoaz50UFndVh8iW+75Kkn9TxVravJKRJwEnATFJwmamXWdXhowj4gL\nI2IXYBWyZyF/HlhC0k8kbT1wajMz6xfR13TopFLvtoqIlyLizIjYnuwhRrcDh5WZp5lZV+nraz50\nUMfmeUTEc2TdUSd1Kk8zs2Gvl+62MjOzNqno3VauPMzMqqzDk/+a5crDzKzK3G1lZmaFVfRWXVce\nZmYVFuExDzMzK8rdVmZmVpi7rczMrDC3PEDSYsAzEeE1q8zMmlHReR6lLU8iaQNJV0s6X9Jaku4C\n7gKelDRtgHReVdfMrF+PraoLcAJwJDAeuBLYJiJulLQKcBbwh3qJvKqumVlOD04SHBkRlwFI+npE\n3AgQEfdKTa3ObmZmPThgnn/Hr9Tsc4vCzKwZPVh5rCFpFtlDoEanbdLrhUvM18ysa/TcJMGIGFHW\nuc3MekYbWx6SlgVOB5Yk6wE6KSKOlzQJOBuYCjwEfDQ9RqOhUh8GZWZm86m9d1vNAb4QEasCGwD7\nS1oVOBy4IiJWAq5IrwfkysPMrMra+CTBiHg8Im5L27OBe4C3ATsCp6XDTgN2GuxcrjzMzKqsQMsj\nP08uhemNTitpKrAWcBOwZEQ8nnY9QdatNSAvT2JmVmUFxjzy8+QGImlR4Dzg8xExKz99IiJC0qB3\nxLryMDOrsjZPEpS0IFnF8auIOD9FPylp6Yh4XNLSwFODncfdVmZmVdbGMQ9lTYyTgXsi4vu5XRcB\ne6XtvYDfDnau0loekt5B1o92fU38RsATEfFAWXmbmXWN9q5ZtRGwBzBD0h0p7kjgWOAcSZ8EHgY+\nOtiJyuy2+h/giDrxs9K+7UvM28ysO7RxnkdEXEc2UbueLYqcq8xuqyUjYkZtZIqb2iiRV9U1M8vp\nwVV1Jwywb3SjHV5V18wsp6JrW5XZ8rhV0r61kZI+Bfy1xHzNzLpHD7Y8Pg9cIOnjzKss1gEWAnYu\nMV8zs+5R0ZZHmQsjPglsKGkzYLUUfXFEXFlWnmZmXafXKo9+EXEVcFXZ+ZiZdaW5PbYku5mZtUGv\ntjzMzGw+dHggvFmuPMzMqswtDzMzKyyqOd3NlYeZWZW55WFmZoW58jAzs8J6ecBc0uIAETGzE/mZ\nmXWL6KvmmEdpa1spc7Skp4H7gP+VNFPSV8vK08ys68yd03zooDIXRjyY7MEj60bEpIiYCKwPbCTp\n4EaJvCS7mVlOXzQfOqjMbqs9gK0i4un+iIh4UNLuwGXA/6+XyEuym5nl9OCA+YL5iqNfRMxMD2A3\nM7PB9GDl8XqL+8zMrF8PThJcQ9KsOvECFi4xXzOz7tFrLY+IGFHWuc3MekZFb9X1JEEzsyrr5UmC\nZmbWIrc8zMysqJjjJwmamVlR7rYyM7PC3G1lZmaF9dqtumZm1gYVbXmUuaruobntj9Ts+1ZZ+ZqZ\ndZXoaz50UJmr6u6S2z6iZt+0Rom8qq6ZWU4PrqqrBtv1Xr/Bq+qamc0TFR3zKLPlEQ226702M7N6\n2tjykHSKpKck3VUTf4CkeyXdLek7zRSrEwsjChidWyTRCyOamTVrblsnCZ4KnACc3h8haTNgR2CN\niHhN0hLNnMgLI5qZVVkbxzIi4lpJU2uiPwMcGxGvpWOeauZcZXZbmZnZfIq+aDq0aGXgfZJuknSN\npHWbSeR5HmZmVVagUpA0HZieizop3YQ0kJHAJGADYF3gHEkrRgz8FCpXHmZmVVbgbqv83aoF/As4\nP1UWN0vqAxYDZg6UyN1WZmZVVv48jwuBzQAkrQwsBDw9WCK3PMzMqqyNA+aSzgI2BRaT9C/gKOAU\n4JR0++7rwF6DdVmBKw8zs0pr4jpe5Fy7Nti1e9FzufIwM6uyii6M6MrDzKzCYk6PLU8iabmyzm1m\n1jMqujBimXdbXdi/Iem8EvMxM+tefQVCB5VZeeRXzl2x6URekt3M7A0dmGHekjLHPAZaVbdxIi/J\nbmY2Tw8OmA+0qm5ExLgS8zYz6w7VHC/3qrpmZlXW6e6oZvlWXTOzKuu1loeZmc0/tzzMrO1mv7Aw\nY8e/OtTFsBLFnKEuQX2uPMyGMVccPcDdVmZmVlS48jAzs8JceZiZWVFueZiZWWGuPMzMrLCqVh5l\nLsm+o6T9c69vkvRgCh8uK18zs64Saj50UNOVh6TrJH1T0jRJY5tIcihwUe71KGBdsufnfmaAfLyq\nrplZEn3Nh04q0m21B/A+4L+B70p6DfhzRBzc4PiFIuLR3OvrIuIZ4BlJizTKxKvqmpnNE32dbVE0\nq+nKIyL+KelV4PUUNgPeOUCSiTXpP5d7uXiRQpqZ9aq+udWsPIp0Wz1A9nTAJYGTgdUiYtoASW6S\ntG+d83wauLloQc3MelE3dFv9ANgY2BVYC7hG0rUR8UCD4w8GLpS0G3BbinsP2djHTi2W18ysp3RD\nt9XxwPGSFgX2AY4GlgHqPrcjIp4CNpS0OfCuFH1xRFw5XyU2M+shUdGR36YrD0nHkbU8FgX+AnwV\n+PNg6VJl4QrDzKwFw77lQVZhfCciniyrMGZm9mbDvvKIiHMl7SDp/Snqmoj4XUnlMjMzuqPb6hhg\nPeBXKepASe+NiCNLKZmZmQ3/lgewLbBmRHZDmKTTgNsBVx5mZiWJDi870qyiCyNOAJ5N2+PbXBYz\nM6sxt6KTBItUHscAt0u6ChDwfuDwUkplZmbAMG95SBJwHbAB2eKGAIdFxBNlFczMzIb5mEdEhKRL\nImJ13rxSbkOSfgg0vE8gIg5srohmZr2rnXdbSToF2A54KiJWS3HfBbYnW7PwAWCfiHh+sHMVeZ7H\nbZLWHfywN9wK/DWFHXLb/aEuL8luZjZP9Knp0IRTgdo1CS8nW6vw3cD/Akc0c6IiYx7rAx+X9DDw\nEtm4R6QM3yIiTuvflvT5/OuBeEl2M7N5+to45hER10qaWhN3We7ljUBTD+srUnl8YKCdkiZGxHMN\ndrsSMDNrQZEBc0nTgem5qJPSF/JmfQI4u5kDi8wwf3iQQ64A1m72fGZmNrgiYx75npuiJH0JmMO8\nieADKjrPY8C8awoym3ktjjGSZuWOi4gY18a8zcy6Uju7rRqRtDfZQPoWEc1VV+2sPN6UYUQ085xz\nMzMbQF/Jt+pKmgYcCmwSES83m66dlYeZmbVZO1seks4CNgUWk/Qv4Ciyu6tGAZdnU/q4MSL2G+xc\npXVbmZnZ/GvnDPOI2LVO9MmtnKupeR6SRki6d5DDtmilAGZm1lhfqOnQSU1VHhExF7hP0nIDHPNs\no31mZtaaKBA6qUi31UTgbkk3k00SBCAidmh7qczMDOjM3VatKFJ5fKW0UpiZWV3DelVdgIi4RtLy\nwEoR8SdJY4AR5RXNzMz6hroADTS9MKKkfYFzgRNT1NuAC8solJmZZQI1HTqpyKq6+wMbAbMAIuIf\nwBKNDpY0W9KsOmF2brZ5vXReVdfMLJkTajp0UpExj9ci4vU0iQRJIxn4eR0tzTD3qrpmZvN0ukXR\nrCItj2skHQmMlrQV8Bvgd+UUy8zMIBvzaDZ0UpHK43BgJjAD+DRwSUR8qZRSmZkZUN0xjyLdVgdE\nxPHAz/ojJB2U4szMrATD/m4rYK86cXu3qRxmZlZHVbutBm15SNoV2A1YQdJFuV1jAS9JYmZWoqoO\nmDfTbXUD8DiwGHBcLn42cGcZhTIzs0zJj/No2aCVR3r87MOSro2Ia/L7JH0bOKyswpmZ9bq+irY8\niox5bFUnbpt2FcTMzN5qboHQSc2MeXwG+Czwdkn5bqqxwPVlFczMzKBP1Wx5NDPmcSZwKXAM2VyP\nfrP9DA8zs3JVdZmNQbutIuKFiHgoPb5wWWDzNA6ygKQV6qUZYF2rWZJmSrpRkp88aGY2iGF7q24/\nSUcB6wD/BfwCWAg4g2yxxDcZaF0rSSOA1YBfpf/NzKyBqt5tVWTAfGdgB9JTBCPiMbJxj0IiYm5E\n/A34Yb39XlXXzGyePtR06KQiy5O8HhEhKQAkLTI/GUfEiQ3ivaqumVlS1YtgkZbHOZJOBCakB0P9\nidw6V2Zm1n59aj50UpHH0H4vLcU+i2zc46sR4X4lM7MSVXVhxCLdVqTKwhWGmVmHzK3ogHkzkwRn\nU7/bTUBExLi2l8rMzIBh3PJo9XGyZmY2/4Zt5WFmZkMnhmu3lZmZDR23PMzMrDBXHmZmVlg3TBI0\nM7MOa/ckQUkHS7pb0l2SzpK0cCvlcuVhZlZh7VxVV9LbgAOBdSJiNWAEsEsr5Sqt8pC07AD7tisr\nXzOzblLCkwRHAqMljQTGAI+1Uq4yWx6XS5paGynpE8DxJeZrZtY1inRb5VclT2F6/lwR8W/ge8Aj\nwOPACxFxWSvlKrPyOAS4TNJK/RGSjgAOBjZplMhLspuZzVOk2yoiToqIdXLhpPy5JE0EdgRWAKYA\ni0javZVylXa3VURcIuk14FJJOwGfAtYD3h8Rzw2Qzkuym5klbb4Ibgn8MyJmAkg6H9iQ7MF+hZQ6\nYB4RVwD7AFcDK5I9wrZhxWFmZm/WRzQdmvAIsIGkMZIEbAHc00q5Smt55BZUFDCKrJBPpQJ7QUUz\nsya0c5JgRNwk6VzgNmAOcDupp6eoMrutvKCimdl8anfffUQcBRw1v+fxDHMzswqr6vIkniRY0CuP\n/Xmoi2A1Zi5Q4A73LjP7hZYmB9swMuwfQ2uZ0VPeN9RFsBqL940Y6iIMmbHjXx3qIljJ5lZ0dStX\nHmZmFVbVbitXHmZmFdbkLbgd58rDzKzCqll1uPIwM6u0qnZbDcndVpI+PxT5mpkNN22eYd42Q3Wr\n7iFDlK+Z2bASBUInDVXl0fCOZK+qa2Y2TzsfBtVOQzXm0bCS9Kq6ZmbzREWHzDuxMOJbdgGjy8rX\nzKybzOm1ysMLI5qZzb9qVh2+VdfMrNI8SdDMzAqr6jwPVx5mZhXWcwPmZmY2/9zyMDOzwtzyMDOz\nwtzyMDOzwvrCLQ8zMyvITxI0M7PCPOZhZmaF9dyYh6SLBtofETuUlbeZWbfoxRnm7wUeBc4CbmKA\nZdjzJE0HpgOccMSn+eTOW5VWQDOzquvFbqulgK2AXYHdgIuBsyLi7oESeUl2M7N5qtptVdrDoCJi\nbkT8ISL2AjYA7geulvS5svI0M+s2EdF06KRSB8wljQK2JWt9TAV+AFxQZp5mZt2k58Y8JJ0OrAZc\nAnwtIu4qKy8zs25V1W6rMlseuwMvAQcBB0pvjJcLiIgYV2LeZmZdYW5Fq48ynyRY2niKmVmv6PRY\nRrN8gTczq7C+AqFZkkZIul3S71stl2eYm5lVWEnzPA4C7gFaHj5wy8PMrML6iKZDMyQtQ3YX7M/n\np1yuPMzMKqzIPA9J0yXdmgvT65zyf4BDmc8budxtZWZWYUXmeeRX6KhH0nbAUxHxV0mbzk+5XHmY\nmVVYm8c8NgJ2kPRBYGFgnKQzImL3oicqc5LgVwfYHRHx/8rK28ysW7TzSYIRcQRwBEBqeXyxlYoD\nyh3zeKlOCOCTwGGNEuX77E6+4PISi2dmVn1RIHRSmZMEj+vfljSW7NawTwC/Bo4bIJ1X1TUzS+aU\nNMM8Iq4Grm41fdkLI04CDgE+DpwGrB0Rz5WZp5lZN6nqDPMyxzy+C3yIrBWxekS8WFZeZmbdqqqr\n6pY55vEFYArwZeAxSbNSmC1pVon5mpl1jSjwr5O8MKKZWYX1XLeVmZnNv6p2W7nyMDOrMLc8zMys\nMLc8zMyssE4PhDfLlYeZWYXNjR57DK2Zmc2/dq5t1U6lVx6SFgbekV7eHxGvlp2nmVm36LluK0kj\ngW+RrWf1MCBgWUm/AL4UEf8pK28zs25R1ZZHmRP5vgtMAlaIiPdExNrA24EJwPcaJfKqumZm8/Tc\nDHNgO2DlyN2kHBGzJH0GuJdsld238Kq6ZmbzVLXlUWblEVFndktEzJVUzU/DzKxiqjrmUWa31d8l\n7VkbKWl3spaHmZkNIqKv6dBJZbY89gfOl/QJ4K8pbh1gNLBzifmamXWNnpthHhH/BtaXtDnwrhR9\nSURcUVaeZmbdpmcnCUbElcCVZedjZtaNvDCimZkV1ot3W5mZ2Xyq6t1WrjzMzCrM3VZmZlZYz91t\nZWZm888tDzMzK8wD5mZmVljPtTzSczz2I3uWxwzg5IiYU1Z+ZmbdqKqTBMtc2+o0suVIZgDbAMc1\nk8hLspuZzdMX0XTopDK7rVaNiNUBJJ0M3NxMIi/JbmY2Ty/O83jjSYERMUdSiVmZmXWnXhwwX0PS\nrLQtYHR6LbJnfYwrMW8zs65Q1QHz0sY8ImJERIxLYWxEjMxtu+IwM2tCux9DK2mapPsk3S/p8FbL\n5Vt1zcwqrJ0tD0kjgB8BWwH/Am6RdFFE/L3oucq828rMzOZTRDQdmrAecH9EPBgRrwO/BnYsvWBV\nCcD0Kqbpljxcrurl4XJVL49W05QZgOnArbkwvWb/h4Gf517vAZzQUl5D/WZb/IBurWKabsnD5ape\nHi5X9fJoNc1QhnZWHu62MjPrHf8Gls29XibFFebKw8ysd9wCrCRpBUkLAbsAF7VyouF6t9VJFU3T\nLXm0kqaXy9XL772VNN2SR6tphkxkE7Y/B/wRGAGcEhF3t3IupX4vMzOzprnbyszMCnPlYWZmhbny\nMDOzwrq28pC0iqQtJC1aEz+twfHrSVo3ba8q6RBJHyyY5+kFj9845bN1g/3rSxqXtkdL+pqk30n6\ntqTxDdIcKGnZevsaHL+QpD0lbZle7ybpBEn7S1pwgHQrSvqipOMlfV/Sfv1lNbPuN+wHzCXtExG/\nqIk7ENgfuAdYEzgoIn6b9t0WEWvXHH8U2QOrRgKXA+sDV5Gt//LHiPhmnXxrb28TsBlwJUBE7FAn\nzc0RsV7a3jeV8QJga+B3EXFszfF3A2ukOyROAl4GzgW2SPEfqpPHC8BLwAPAWcBvImJm7XG543+V\n3vcY4HlgUeD8lIciYq86aQ4EtgOuBT4I3J7S7gx8NiKubpSfWbeQtEREPDXU5RgyQz3jsQ0zJh+p\nEzcDWDRtTyWbpn9Qen17g+NHkF1AZwHjUvxo4M4G+d4GnAFsCmyS/n88bW/SIM3tue1bgMXT9iLA\njDrH35PPr2bfHY3yIGtRbg2cDMwE/gDsBYytc/yd6f+RwJPAiPRaA7z3GbnjxgBXp+3l6n2+vRCA\nJTqQx+Shfp8tlHk8cCxwL/As8AzZl7pjgQkFz3Vpg/hxwDHAL4Hdavb9uEGapYCfkC0SOBk4Ov1e\nnwMsXef4STVhMvAQMBGYNNSf81CEYdFtJenOBmEGsGSdJAtExIsAEfEQ2YV9G0nfJ7so1poTEXMj\n4mXggYiYldK+AjR6gPA6wF+BLwEvRPZt+5WIuCYirmmQZgFJEyVNJrv4zkz5vATUe777XZL2Sdt/\nk7RO+jxWJvewrRoREX0RcVlEfBKYAvwYmAY82KBMCwFjySqC/u6wUUDDbivmzREaRdZaISIeaZRG\n0nhJx0q6V9Kzkp6RdE+KmzBAPnVJurRO3DhJx0j6paTdavb9uMF5lpL0E0k/kjRZ0tGSZkg6R9LS\nDdJMqgmTgZvTz3ZSneOn5bbHSzo5/f6eKane7y/pc1ksba8j6UHgJkkPS9qkzvG3SfqypLfXO1+D\nPNaRdJWkMyQtK+lySS9IukXSWg3SLCrp65LuTsfOlHSjpL0bZHMO8BywaURMiojJZC3059K+2vOv\n3SC8h6wXoZ5fkP1dnwfsIuk8SaPSvg0apDkV+DvwKFkvwytkreg/Az+tc/zTZH/v/eFW4G1kXyJv\nbZBHdxvq2quZQPaNeE1g+ZowFXiszvFXAmvWxI0ETgfm1jn+JmBM2l4gFz+emm/8ddIuA/wGOIE6\nraCaYx8iu4D/M/2/dIpflDotiZT/qWRdUDeRVRgPAteQdVvVy6PhN//+91gTd3A658PAgcAVwM/I\nvoUd1eA8BwF3puPuBfZJ8YsD1zZI80fgMGCpXNxSKe6yBmnWbhDeAzxe5/jzyL7R7kQ2a/Y8YFTa\nV/fnSNYqOwA4PL2nw8iWbzgA+G2DNH3pZ5gP/+n/udY5/rbc9s+Bb6Tf34OBCxvkMSO3fRWwbtpe\nmTrrKaVbNQBTAAADXklEQVS8vwc8QvbI54OBKYP8Pt5M1l27K9lF9MMpfgvgLw3S/BbYO/3eHwJ8\nBVgJOA34Vp3j7xsg/7fsA+aS/f1eVSe80uA8d9S8/hJwPVnroNHPPd8L8MhA50txX0i/K6vnP/OB\nPt9uD0NegKYKmXW/bNxg35l14pbJX6Rq9m1UJ25Ug2MXy/+yDFLGbev98TSZdgywwgD7xwFrpIvm\nkoOca+UW8p/Sf6EBJpAtnrbeIGnelY5bpck8Cl1EUnyhC0knLiIpvtCFhDdXHrVlbJTHPcDItH1j\nzb56XZz5PN5H1tp8In1WdVd+HeS91/0SAvyt5vUt6f8FgHvrHH8ZcGj+95ast+Aw4E91jr8LWKlB\n3o8O8FktUBO3N3A38PBg7wP4xmCfb4rv/6L4fbKW+lu+KPRSGPICOPRGKHoRSfsLXUg6dRFJ+5q+\nkJA9dOeQVOn8k3SjStrXaFzpgPSZbU7WH3882Xja14Bf1jn+LZUj2TjeNOAXDfL4C9nY2EfIWp47\npfhNaLBaLHAD6YscsAPZDSX9++q1JCYC3yZroT5HNu5xT4p7y1gB2ReS/2qQ904N4r8DbFknfhrw\njwZpvk4aF62Jfwdw7iC/yzsANwJPtPNvZLiFIS+AQ2+EmovIszUXkYkN0hS6kHT6IpKOG/RCAhxV\nE/pvlFgKOH2AdJsCZ5PdBDEDuITseQ0j6xz76xZ+JmuQdSdeCqySKqjnySrbDRukeTdZd9dzwHWk\nli5Zl+WBDdKsAmxZ+zkD0wY4fotmjx8kzTYtpBm0XGQ306w2WLm6OQx5ARwcSGMmZaYpM4+aC0ll\nytXJPBqlIRtHuw+4kGzMb8fcvnqtpULHp/gDyk7TSrm6PQx5ARwcGORGg3ak6UQeVS3XUL53Wrtt\nvunjO5WmlTy6PQzXJdltmJF0Z6Nd1L/dunCaTuRR1XJV9b1Tc9u8pE2BcyUtT/3b5ose36k0reTR\n1Vx5WKcsCXyArK88T2SDsO1I04k8qlquqr73JyWtGRF3AETEi5K2A04BVm/D8Z1K00oeXc2Vh3XK\n78ma/XfU7pB0dZvSdCKPqparqu99T2omwEbEHGBPSSe24fhOpWklj6427Ne2MjOzzhsWy5OYmVm1\nuPIwM7PCXHmYmVlhrjzMzKyw/wNd2H0Zk5sZGgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11f56e438>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XvcZlP9//HX2wxjBmMOChMawldFDjkVRUmNHOvXATlW\nJh0Q9SCdqF8HHfT7ihRFSImQVCpyTGUkZIgKOeU0GEaOzdyf3x973c2ey3Xd997Xfe3r3vd1vZ/z\nWI/Z19p77bWu677vva611l5rKyIwMzMrY6nRLoCZmY09rjzMzKw0Vx5mZlaaKw8zMyvNlYeZmZXm\nysPMzEpz5VFjkm6RtG2baUPS2h0uUs+R9ElJ36vgvO+RdHGnz1uyDN+R9JnRLIP1Lnmex9gg6TvA\nXrmopYHnI2KFFscHsE5E3N6N8jXJfybwT2DpiFhYUR5HA2tHxF7DHZuO3xY4MyJWq6I8w+Rd6c9D\n0n7A+yNi6yrOX6IclwJvpMKfu9XD+NEugBUTEQcCBw6+lnQaMDBqBaqYJJF9uenZ91iUpPFj4UIs\n6T1kX2qsH0SEQ00DcBfwpibxywFPAtsMkTbIvpUD7AjcACwA7gWOzh33S+CghrQ3AW9L268F/gQ8\nkf5/bavyAUeTfbMHuCeV4d8pvKbA+70C+CLwe+AZYG1gBnAh8BhwO3BAOnYW8Dzwn3T+v6T4/YFb\n0+dzJ/CB3Gf2DFmFO1imGfkyp+N2AW4BHk/leXnD+/14+nyeAM4Glm3xXvYDrk7bV6XP4qmU77tT\n/E7AjSmvPwCvasjriJTXc2Rf9D4B3JHe219zP6OXA88Ci9L5H0/xpwFfyJ3zgPQZPpY+0xkNvy8H\nAv9I5fkWqWei4O/qisDfgS3TucaP9t+PQ7Vh1AvgMMQPp3XlsU+6MLb842bJymNbYAOyMa5XAQ8B\nu6V97wLm5NJtCDwKLANMA+YDe6eL1x7p9fRm5WPJymNm2YtIuljfA7wy5bd0uvCeCCwLbATMA97Y\nmF/uHDsCLwMEbAM8DWyS+xzuazg+X+Z1yS7w26e8D08X22Vy7/daskpnGlkldWCL97IfqfJo/Hmk\n1xsDDwNbAOOAfdP5J+TyuhFYHZiY4t6Z8l4KeHcq66rN8ktxp5EqD7KupEeATYAJwPHAVQ3l+wUw\nBVgjfc6z0r41yCqUNYb42X0LOLSdn7vD2AweMB+b9gXOiPRXO5yIuCIi5kbEQETcBJxFdmGF7Bvo\nupLWSa/3Bs6OiOfJLsT/iIgfRMTCiDgLuA3YuaPvZkmnRcQtkXXTrAJsBRwREc9GxI3A98gqz6Yi\n4pcRcUdkrgQuBl5XMO93A7+MiEsi4j/A14GJZK2vQd+MiPsj4jHg52QVWjtmAydFxJyIWBQRp5O1\nMLZsyOveiHgmvbefpLwHIuJsslbC5gXzew9wakRcHxHPAUcCr0ljU4OOiYjHI+Ie4PLB9xYR90TE\nlBT/ApI2Jfs5HV+wLNYDXHmMMZLWIPsGfUaJNFtIulzSPElPkHVPrAQQEc+Sdb/sJWkpstbFD1LS\nGcDdDae7G3jJiN7E0O7Nbc8AHouIJ4vmL2kHSddIekzS48BbSe+1gCXeb2TjLfc25PdgbvtpYPmC\n5270UuBjkh4fDGStjBm5Y/KfBZL2kXRj7vj1af+9/ZushTmi95Z+Z04EDokxMC5jnePKY+zZG/h9\nRNxZIs2PyFoYq0fEisB3yLp1Bp1O9s10O+DpiPhjir+f7CKXtwbwr7T9FDApt2+V3Ha7t/Hl090P\nTJOUv6Msn/8SeUiaAJxH1mJYOSKmABex+L0OV6Yl3m8atF89l18n3Qt8MX2jHwyTUutu0H/LK+ml\nwHeBj5B1G04Bbqb997YcMJ2Rv7fJwKbA2ZIeJBsXA7hPUtEWn41BrjzGnn3I+rLLWIHsG/yzkjYH\n9szvTJXFAHAsi1sdkF1415W0p6Txkt4NvIKsbxyyPvndJS2dui7ekUs7L51zrcEISTPT/JOZRQod\nEfeSDSR/WdKykl4FvA84Mx3yEDAzffuFbJxmQsp7oaQdgDfnTvkQMF3Sii2yPAfYUdJ2kpYGPkbW\nlfSHIuUdxkPkPguyiuDA1CqUpOUk7dhQUeYtR1ZBzAOQtD9ZyyN//tUkLdMi/VnA/pI2SpXsl8jG\nuu5q/y0B2Y0DM8i6uDYia+kBvBqYM8JzW4258hhDJL0GWA34ScmkHwI+L+lJ4LNkF8lGZ5ANqg9e\nmImIR8nuCPoYWRfH4cBOEfFIOuQzZIPT84HPkbVwBtM+TbpzKnWzbEn2Lf5uyn3b3YNsEPZ+4KfA\nURHx27Rv8HN4VNL1qXvr4PT+5pNVkhfmynQb2UX0zlSmfBcREfE3srk0x5MNLu8M7JzGf0bqaOD0\nlO+7IuI6srufTkhlvZ1s0LupiPgrWeX+R7KKYgOyu9IGXUZ2l9iDkh5pkv63ZD+v84AHyH5uuxcp\nuKQ1JP07dZk2njci4sHBQKrcgIc69LlZTXmSoAFZfzowOyqcZCbp08C8iDipqjzMrDtceRiSJpF9\ncz0xIgoPxJtZ/3K3VZ+T9BayroaHyHU7mZkNxS0PMzMrzS0PMzMrrdYLIz5z8YmlmkWaunLpPDRl\n1VLHLzV1leEPajBxRvnb3SdPmDT8QTlTJpSfqzZl6eVKp5k6rly5po5btnwemlDq+Glt/Bq/aGBc\n6TTTF5U7ftqi8ms6TqPcDUpTJj5XOo8VVny2dJpJ08uVa5kXl/9eOm7l8r/DS63U6q7r5jR9auk8\nNK3oPMzFJr77KA1/VDH/eeTOwtfBpVdaq2P5DsctDzMzK63WLQ8zs743ULLJ2yWuPMzM6qymj7Rx\n5WFmVmcD9aw8ujrmIWlrSd/qZp5mZmNZLFpYOHRT5S0PSRuTrTH0TrJnWp9fdZ5mZj2jn7qtJK1L\ntqDdHmQLzJ1NNiHxDVXkZ2bWs2o6YF5Vt9VtZI+93Ckito6I48merzwsSbMlXSfpulMuurqi4pmZ\njRExUDx0UVXdVm8nW+75ckm/Bn7Mkg8faikiTgZOhvKTBM3Mek4/DZhHxAURsTuwHtmzkD8KvFjS\ntyW9eejUZmY2KGKgcOimSu+2ioinIuJHEbEz2UOMbgCOqDJPM7OeMjBQPHRR1+Z5RMR8su6ok7uV\np5nZmNdPd1uZmVmH1PRuK1ceZmZ11uXJf0W58jAzqzN3W5mZWWk1vVXXlYeZWY1FeMzDzMzKcreV\nmZmV5m4rMzMrzS0PkLQS8GhEeM0qM7MiajrPo7LlSSRtKekKSedL2ljSzcDNwEOSZg2RzqvqmpkN\n6rNVdQFOAD4JrAhcBuwQEddIWg84C/h1s0ReVdfMLKcPJwmOj4iLASR9PiKuAYiI26RCq7ObmVkf\nDpjn3/EzDfvcojAzK6IPK48NJS0gewjUxLRNer1shfmamfWMvpskGBHjqjq3mVnf6GDLQ9LqwBnA\nymQ9QCdHxHGSpgFnAzOBu4B3pcdotFTpw6DMzGyEOnu31ULgYxHxCmBL4MOSXgF8Arg0ItYBLk2v\nh+TKw8yszjr4JMGIeCAirk/bTwK3Ai8BdgVOT4edDuw23LlceZiZ1VmJlkd+nlwKs1udVtJMYGNg\nDrByRDyQdj1I1q01JC9PYmZWZyXGPPLz5IYiaXngPOCjEbEgP30iIkLSsHfEuvIwM6uzDk8SlLQ0\nWcXxw4g4P0U/JGnViHhA0qrAw8Odx91WZmZ11sExD2VNjFOAWyPiG7ldFwL7pu19gZ8Nd67KWh6S\n1ibrR/t9Q/xWwIMRcUdVeZuZ9YzOrlm1FbA3MFfSjSnuk8AxwDmS3gfcDbxruBNV2W31v8CRTeIX\npH07V5i3mVlv6OA8j4i4mmyidjPblTlXld1WK0fE3MbIFDezVSKvqmtmltOHq+pOGWLfxFY7vKqu\nmVlOTde2qrLlcZ2kAxojJb0f+HOF+ZqZ9Y4+bHl8FPippPewuLLYFFgGeFuF+ZqZ9Y6atjyqXBjx\nIeC1kt4ArJ+ifxkRl1WVp5lZz+m3ymNQRFwOXF51PmZmPWlRny3JbmZmHdCvLQ8zMxuBLg+EF+XK\nw8ysztzyMDOz0qKe091ceZiZ1ZlbHmZmVporDzMzK62fB8wlvQggIuZ1Iz8zs14RA/Uc86hsbStl\njpb0CPA34O+S5kn6bFV5mpn1nEULi4cuqnJhxEPJHjyyWURMi4ipwBbAVpIObZXIS7KbmeUMRPHQ\nRVV2W+0NbB8RjwxGRMSdkvYCLgb+X7NEXpLdzCynDwfMl85XHIMiYl56ALuZmQ2nDyuP59vcZ2Zm\ng/pwkuCGkhY0iRewbIX5mpn1jn5reUTEuKrObWbWN2p6q64nCZqZ1Vk/TxI0M7M2ueVhZmZlxUI/\nSdDMzMpyt5WZmZXmbiszMyut327VNTOzDqhpy6PKVXUPz22/s2Hfl6rK18ysp8RA8dBFVa6qu3tu\n+8iGfbNaJfKqumZmOX24qq5abDd7/V9eVdfMbLGo6ZhHlS2PaLHd7LWZmTXTwZaHpFMlPSzp5ob4\ngyTdJukWSV8tUqxuLIwoYGJukUQvjGhmVtSijk4SPA04AThjMELSG4BdgQ0j4jlJLy5yIi+MaGZW\nZx0cy4iIqyTNbIj+IHBMRDyXjnm4yLmq7LYyM7MRioEoHNq0LvA6SXMkXSlpsyKJPM/DzKzOSlQK\nkmYDs3NRJ6ebkIYyHpgGbAlsBpwjaa2IoZ9C5crDzKzOStxtlb9btYT7gPNTZXGtpAFgJWDeUInc\nbWVmVmfVz/O4AHgDgKR1gWWAR4ZL5JaHmVmddXDAXNJZwLbASpLuA44CTgVOTbfvPg/sO1yXFbjy\nMDOrtQLX8TLn2qPFrr3KnsuVh5lZndV0YURXHmZmNRYL+2x5EklrVHVuM7O+UdOFEau82+qCwQ1J\n51WYj5lZ7xooEbqoysojv3LuWoUTeUl2M7P/6sIM87ZUOeYx1Kq6rRN5SXYzs8X6cMB8qFV1IyIm\nV5i3mVlvqOd4uVfVNTOrs253RxXlW3XNzOqs31oeZmY2cm55mFnHPf7MBKZMfG60i2EVioWjXYLm\nXHmYjWGuOPqAu63MzKyscOVhZmalufIwM7Oy3PIwM7PSXHmYmVlpda08qlySfVdJH869niPpzhTe\nUVW+ZmY9JVQ8dFHhykPS1ZK+KGmWpBUKJDkcuDD3egKwGdnzcz84RD5eVdfMLImB4qGbynRb7Q28\nDvg/wNckPQf8LiIObXH8MhFxb+711RHxKPCopOVaZeJVdc3MFouB7rYoiipceUTEPyU9CzyfwhuA\nlw+RZGpD+o/kXr6oTCHNzPrVwKJ6Vh5luq3uIHs64MrAKcD6ETFriCRzJB3Q5DwfAK4tW1Azs37U\nC91W3wS2BvYANgaulHRVRNzR4vhDgQsk7Qlcn+JeTTb2sVub5TUz6yu90G11HHCcpOWB/YGjgdWA\nps/tiIiHgddKeiPwyhT9y4i4bEQlNjPrI1HTkd/ClYekY8laHssDfwQ+C/xuuHSpsnCFYWbWhjHf\n8iCrML4aEQ9VVRgzM1vSmK88IuJcSbtIen2KujIifl5RuczMjN7otvoysDnwwxR1sKTXRMQnKymZ\nmZmN/ZYHsCOwUUR2Q5ik04EbAFceZmYViS4vO1JU2YURpwCPpe0VO1wWMzNrsKimkwTLVB5fBm6Q\ndDkg4PXAJyoplZmZAWO85SFJwNXAlmSLGwIcEREPVlUwMzMb42MeERGSLoqIDVhypdyWJB0PtLxP\nICIOLlZEM7P+1cm7rSSdCuwEPBwR66e4rwE7k61ZeAewf0Q8Pty5yjzP43pJmw1/2H9dB/w5hV1y\n24OhKS/Jbma2WAyocCjgNKBxTcJLyNYqfBXwd+DIIicqM+axBfAeSXcDT5GNe0TK8AUi4vTBbUkf\nzb8eipdkNzNbbKCDYx4RcZWkmQ1xF+deXgMUelhfmcrjLUPtlDQ1Iua32O1KwMysDWUGzCXNBmbn\nok5OX8iLei9wdpEDy8wwv3uYQy4FNil6PjMzG16ZMY98z01Zkj4FLGTxRPAhlZ3nMWTeDQV5ksUt\njkmSFuSOi4iY3MG8zcx6Uie7rVqRtB/ZQPp2EcWqq05WHktkGBFFnnNuZmZDGKj4Vl1Js4DDgW0i\n4umi6TpZeZiZWYd1suUh6SxgW2AlSfcBR5HdXTUBuCSb0sc1EXHgcOeqrNvKzMxGrpMzzCNijybR\np7RzrkLzPCSNk3TbMIdt104BzMystYFQ4dBNhSqPiFgE/E3SGkMc81irfWZm1p4oEbqpTLfVVOAW\nSdeSTRIEICJ26XipzMwM6M7dVu0oU3l8prJSmJlZU2N6VV2AiLhS0kuBdSLit5ImAeOqK5qZmQ2M\ndgFaKLwwoqQDgHOBk1LUS4ALqiiUmZllAhUO3VRmVd0PA1sBCwAi4h/Ai1sdLOlJSQuahCdzs82b\npfOqumZmycJQ4dBNZcY8nouI59MkEiSNZ+jndbQ1w9yr6pqZLdbtFkVRZVoeV0r6JDBR0vbAT4Cf\nV1MsMzODbMyjaOimMpXHJ4B5wFzgA8BFEfGpSkplZmZAfcc8ynRbHRQRxwHfHYyQdEiKMzOzCoz5\nu62AfZvE7dehcpiZWRN17bYatuUhaQ9gT2BNSRfmdq0AeEkSM7MK1XXAvEi31R+AB4CVgGNz8U8C\nN1VRKDMzy1T8OI+2DVt5pMfP3i3pqoi4Mr9P0leAI6oqnJlZvxuoacujzJjH9k3iduhUQczM7IUW\nlQjdVGTM44PAh4CXScp3U60A/L6qgpmZGQyoni2PImMePwJ+BXyZbK7HoCf9DA8zs2rVdZmNYbut\nIuKJiLgrPb5wdeCNaRxkKUlrNkszxLpWCyTNk3SNJD950MxsGGP2Vt1Bko4CNgX+B/g+sAxwJtli\niUsYal0rSeOA9YEfpv/NzKyFut5tVWbA/G3ALqSnCEbE/WTjHqVExKKI+AtwfLP9XlXXzGyxAVQ4\ndFOZ5Umej4iQFACSlhtJxhFxUot4r6prZpbU9SJYpuVxjqSTgCnpwVC/JbfOlZmZdd6AioduKvMY\n2q+npdgXkI17fDYiLqmsZGZmVtuFEct0W5EqC1cYZmZdsqimA+ZFJgk+SfNuNwEREZM7XiozMwPG\ncMuj3cfJmpnZyI3ZysPMzEZPjNVuKzMzGz1ueZiZWWmuPMzMrLRemCRoZmZd1ulJgpIOlXSLpJsl\nnSVp2XbK5crDzKzGOrmqrqSXAAcDm0bE+sA4YPd2ylVZ5SFp9SH27VRVvmZmvaSCJwmOByZKGg9M\nAu5vp1xVtjwukTSzMVLSe4HjKszXzKxnlOm2yq9KnsLs/Lki4l/A14F7gAeAJyLi4nbKVWXlcRhw\nsaR1BiMkHQkcCmzTKpGXZDczW6xMt1VEnBwRm+bCyflzSZoK7AqsCcwAlpO0Vzvlquxuq4i4SNJz\nwK8k7Qa8H9gceH1EzB8inZdkNzNLOnwRfBPwz4iYByDpfOC1ZA/2K6XSAfOIuBTYH7gCWIvsEbYt\nKw4zM1vSAFE4FHAPsKWkSZIEbAfc2k65Kmt55BZUFDCBrJAPpwJ7QUUzswI6OUkwIuZIOhe4HlgI\n3EDq6Smrym4rL6hoZjZCne67j4ijgKNGeh7PMDczq7G6Lk/iSYIlDcx/cLSLYA0eY+FoF2HUPP7M\nhNEuglVszD+G1jJLTV1ltItgDab18a/xlInPjXYRrGKLarq6Vf/+1ZmZjQF17bZy5WFmVmMFb8Ht\nOlceZmY1Vs+qw5WHmVmt1bXbalTutpL00dHI18xsrOnwDPOOGa1bdQ8bpXzNzMaUKBG6abQqj5Z3\nJHtVXTOzxTr5MKhOGq0xj5aVpFfVNTNbLGo6ZN6NhRFfsAuYWFW+Zma9ZGG/VR5eGNHMbOTqWXX4\nVl0zs1rzJEEzMyutrvM8XHmYmdVY3w2Ym5nZyLnlYWZmpbnlYWZmpbnlYWZmpQ2EWx5mZlaSnyRo\nZmaleczDzMxK67sxD0kXDrU/InapKm8zs17RjzPMXwPcC5wFzGGIZdjzJM0GZgMcf8gevO+tW1dW\nQDOzuuvHbqtVgO2BPYA9gV8CZ0XELUMl8pLsZmaL1bXbqrKHQUXEooj4dUTsC2wJ3A5cIekjVeVp\nZtZrIqJw6KZKB8wlTQB2JGt9zAS+Cfy0yjzNzHpJ3415SDoDWB+4CPhcRNxcVV5mZr2qrt1WVbY8\n9gKeAg4BDpb+O14uICJicoV5m5n1hEU1rT6qfJJgZeMpZmb9ottjGUX5Am9mVmMDJUJRksZJukHS\nL9otl2eYm5nVWEXzPA4BbgXaHj5wy8PMrMYGiMKhCEmrkd0F+72RlMuVh5lZjZWZ5yFptqTrcmF2\nk1P+L3A4I7yRy91WZmY1VmaeR36FjmYk7QQ8HBF/lrTtSMrlysPMrMY6POaxFbCLpLcCywKTJZ0Z\nEXuVPVGVkwQ/O8TuiIj/W1XeZma9opNPEoyII4EjAVLL4+PtVBxQ7ZjHU01CAO8DjmiVKN9nd8pF\nV1dYPDOz+osSoZuqnCR47OC2pBXIbg17L/Bj4Ngh0nlVXTOzZGFFM8wj4grginbTV70w4jTgMOA9\nwOnAJhExv8o8zcx6SV1nmFc55vE14O1krYgNIuLfVeVlZtar6rqqbpVjHh8DZgCfBu6XtCCFJyUt\nqDBfM7OeESX+dZMXRjQzq7G+67YyM7ORq2u3lSsPM7Mac8vDzMxKc8vDzMxK6/ZAeFGuPMzMamxR\n9NljaM3MbOQ6ubZVJ1VeeUhaFlg7vbw9Ip6tOk8zs17Rd91WksYDXyJbz+puQMDqkr4PfCoi/lNV\n3mZmvaKuLY8qJ/J9DZgGrBkRr46ITYCXAVOAr7dK5FV1zcwW67sZ5sBOwLqRu0k5IhZI+iBwG9kq\nuy/gVXXNzBara8ujysojosnslohYJKmen4aZWc3Udcyjym6rv0rapzFS0l5kLQ8zMxtGxEDh0E1V\ntjw+DJwv6b3An1PcpsBE4G0V5mtm1jP6boZ5RPwL2ELSG4FXpuiLIuLSqvI0M+s1fTtJMCIuAy6r\nOh8zs17khRHNzKy0frzbyszMRqiud1u58jAzqzF3W5mZWWl9d7eVmZmNnFseZmZWmgfMzcystL5r\neaTneBxI9iyPucApEbGwqvzMzHpRXScJVrm21elky5HMBXYAji2SyEuym5ktNhBROHRTld1Wr4iI\nDQAknQJcWySRl2Q3M1usH+d5/PdJgRGxUFKFWZmZ9aZ+HDDfUNKCtC1gYnotsmd9TK4wbzOznlDX\nAfPKxjwiYlxETE5hhYgYn9t2xWFmVkCnH0MraZakv0m6XdIn2i2Xb9U1M6uxTrY8JI0DvgVsD9wH\n/EnShRHx17LnqvJuKzMzG6GIKBwK2By4PSLujIjngR8Du1ZesLoEYHYd0/RKHi5X/fJwueqXR7tp\nqgzAbOC6XJjdsP8dwPdyr/cGTmgrr9F+s21+QNfVMU2v5OFy1S8Pl6t+ebSbZjRDJysPd1uZmfWP\nfwGr516vluJKc+VhZtY//gSsI2lNScsAuwMXtnOisXq31ck1TdMrebSTpp/L1c/vvZ00vZJHu2lG\nTWQTtj8C/AYYB5waEbe0cy6lfi8zM7PC3G1lZmalufIwM7PSXHmYmVlpPVt5SFpP0naSlm+In9Xi\n+M0lbZa2XyHpMElvLZnnGSWP3zrl8+YW+7eQNDltT5T0OUk/l/QVSSu2SHOwpNWb7Wtx/DKS9pH0\npvR6T0knSPqwpKWHSLeWpI9LOk7SNyQdOFhWM+t9Y37AXNL+EfH9hriDgQ8DtwIbAYdExM/Svusj\nYpOG448ie2DVeOASYAvgcrL1X34TEV9skm/j7W0C3gBcBhARuzRJc21EbJ62D0hl/CnwZuDnEXFM\nw/G3ABumOyROBp4GzgW2S/Fvb5LHE8BTwB3AWcBPImJe43G543+Y3vck4HFgeeD8lIciYt8maQ4G\ndgKuAt4K3JDSvg34UERc0So/s14h6cUR8fBol2PUjPaMxw7MmLynSdxcYPm0PZNsmv4h6fUNLY4f\nR3YBXQBMTvETgZta5Hs9cCawLbBN+v+BtL1NizQ35Lb/BLwobS8HzG1y/K35/Br23dgqD7IW5ZuB\nU4B5wK+BfYEVmhx/U/p/PPAQMC691hDvfW7uuEnAFWl7jWafbz8E4MVdyGP6aL/PNsq8InAMcBvw\nGPAo2Ze6Y4ApJc/1qxbxk4EvAz8A9mzYd2KLNKsA3yZbJHA6cHT6vT4HWLXJ8dMawnTgLmAqMG20\nP+fRCGOi20rSTS3CXGDlJkmWioh/A0TEXWQX9h0kfYPsothoYUQsioingTsiYkFK+wzQ6gHCmwJ/\nBj4FPBHZt+1nIuLKiLiyRZqlJE2VNJ3s4jsv5fMU0Oz57jdL2j9t/0XSpunzWJfcw7YaREQMRMTF\nEfE+YAZwIjALuLNFmZYBViCrCAa7wyYALbutWDxHaAJZa4WIuKdVGkkrSjpG0m2SHpP0qKRbU9yU\nIfJpStKvmsRNlvRlST+QtGfDvhNbnGcVSd+W9C1J0yUdLWmupHMkrdoizbSGMB24Nv1spzU5flZu\ne0VJp6Tf3x9Javb7S/pcVkrbm0q6E5gj6W5J2zQ5/npJn5b0smbna5HHppIul3SmpNUlXSLpCUl/\nkrRxizTLS/q8pFvSsfMkXSNpvxbZnAPMB7aNiGkRMZ2shT4/7Ws8/yYtwqvJehGa+T7Z3/V5wO6S\nzpM0Ie3bskWa04C/AveS9TI8Q9aK/h3wnSbHP0L29z4YrgNeQvYl8roWefS20a69igSyb8QbAS9t\nCDOB+5scfxmwUUPceOAMYFGT4+cAk9L2Urn4FWn4xt8k7WrAT4ATaNIKajj2LrIL+D/T/6um+OVp\n0pJI+Z9G1gU1h6zCuBO4kqzbqlkeLb/5D77HhrhD0znvBg4GLgW+S/Yt7KgW5zkEuCkddxuwf4p/\nEXBVizS/AY4AVsnFrZLiLm6RZpMW4dXAA02OP4/sG+1uZLNmzwMmpH1Nf45krbKDgE+k93QE2fIN\nBwE/a5FmIP0M8+E/gz/XJsdfn9v+HvCF9Pt7KHBBizzm5rYvBzZL2+vSZD2llPfXgXvIHvl8KDBj\nmN/Ha8nZdGYzAAADTklEQVS6a/cgu4i+I8VvB/yxRZqfAful3/vDgM8A6wCnA19qcvzfhsj/BfuA\nRWR/v5c3Cc+0OM+NDa8/BfyerHXQ6uee7wW4Z6jzpbiPpd+VDfKf+VCfb6+HUS9AoUJm3S9bt9j3\noyZxq+UvUg37tmoSN6HFsSvlf1mGKeOOzf54CqadBKw5xP7JwIbpornyMOdat438ZwxeaIApZIun\nbT5Mmlem49YrmEepi0iKL3Uh6cZFJMWXupCwZOXRWMZWedwKjE/b1zTsa9bFmc/jdWStzQfTZ9V0\n5ddh3nvTLyHAXxpe/yn9vxRwW5PjLwYOz//ekvUWHAH8tsnxNwPrtMj73iE+q6Ua4vYDbgHuHu59\nAF8Y7vNN8YNfFL9B1lJ/wReFfgqjXgCH/ghlLyJpf6kLSbcuImlf4QsJ2UN3DkuVzj9JN6qkfa3G\nlQ5Kn9kbyfrjjyMbT/sc8IMmx7+gciQbx5sFfL9FHn8kGxt7J1nLc7cUvw0tVosF/kD6IgfsQnZD\nyeC+Zi2JqcBXyFqo88nGPW5NcS8YKyD7QvI/LfLerUX8V4E3NYmfBfyjRZrPk8ZFG+LXBs4d5nd5\nF+Aa4MFO/o2MtTDqBXDoj9BwEXms4SIytUWaUheSbl9E0nHDXkiAoxrC4I0SqwBnDJFuW+Bsspsg\n5gIXkT2vYXyTY3/cxs9kQ7LuxF8B66UK6nGyyva1LdK8iqy7az5wNamlS9ZleXCLNOsBb2r8nIFZ\nQxy/XdHjh0mzQxtphi0X2c006w9Xrl4Oo14ABwfSmEmVaarMo+FCUptydTOPVmnIxtH+BlxANua3\na25fs9ZSqeNT/EFVp2mnXL0eRr0ADg4Mc6NBJ9J0I4+6lms03zvt3TZf+PhupWknj14PY3VJdhtj\nJN3UahfNb7cunaYbedS1XHV97zTcNi9pW+BcSS+l+W3zZY/vVpp28uhprjysW1YG3kLWV54nskHY\nTqTpRh51LVdd3/tDkjaKiBsBIuLfknYCTgU26MDx3UrTTh49zZWHdcsvyJr9NzbukHRFh9J0I4+6\nlquu730fGibARsRCYB9JJ3Xg+G6laSePnjbm17YyM7PuGxPLk5iZWb248jAzs9JceZiZWWmuPMzM\nrLT/DxOa08xqVIecAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x120b54c50>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcHEX9//HXm4SEBAg5uAUMKHxRQRDDIaicapBTvx6A\nnCIRD1DUn4gX4E8FD/x9ETyIgoAHBgURBRUQAl9QQAQkIKDcKFc4g4Bgsp/fH11LmmFmt3syPds7\n837mUY/0VHd11czudk1VdVUrIjAzMytjqZEugJmZjT6uPMzMrDRXHmZmVporDzMzK82Vh5mZlebK\nw8zMSnPlUWOSbpK0TZtpQ9LLO1ykniPp05K+X8F53yPpgk6ft2QZvivpcyNZButd8jyP0UHSd4G9\nc1FLA89FxPItjg9g3Yi4rRvla5L/dOBOYOmIWFhRHkcBL4+IvYc7Nh2/DfCjiFijivIMk3elPw9J\n+wPvi4jXV3H+AnmfDDyTi945IuZ2uyzWPWNHugBWTEQcDBw8+FrSqcDAiBWoYpJE9uWmZ99jUZLG\nVlUBd9AfR6LispHjbqsak3SXpB2axC8L/DdwWsHz7CTpOkkLJN2bvrEP7jtP0iENx98g6W1pe0tJ\nf5L0RPp/y1blk3SUpB+ll5el/x+X9C9JrytQzrmSviTpCuBpYB1Jq0s6V9Kjkm6TdFA6dibwaeDd\n6fx/SfEHSLpZ0pOS7pD0/txn9htg9XT8v9K582VG0q6pu/DxVJ5XNLzfT6TP5wlJcyQt0+K97C/p\n8rQ9+Fn8JeX77hS/s6TrU15/kPTqhrwOl3QD8JSksZI+Jen29N7+mvsZvQL4LvC6dP7HU/ypkr6Y\nO+dB6TN8NH2mq+f2haSDJf09ledbqQI3ay4iHGoagLuAHZrE7wvcQep2bJE2yLp0ALYBNiT7svBq\n4EFg97TvXcBVuXQbAY8A44CpwGPAPmSt1D3T62nNygccRdYtBDA9lWFsifc7F7gHeFXKb2mySujb\nwDLAxsB8YLvG/HLn2Al4GSBga7JKaJPc5/CPhuPzZV4PeAp4U8r7k8BtwLjc+70aWD19NjcDB7d4\nL/sDlzf7eaTXrwEeAjYHxgD7pfOPz+V1PbAmMCHFvTPlvRTw7lTW1Zrll+JOBb6YtrcDHgY2AcYD\nJwCXNZTv18BkYK30Oc9M+9YCHgfWGuK9PpXO/zfgc2V+7g6jM7jlMTrtB5we6S93OBExNyLmRcRA\nRNwAnEF2YQU4F1hP0rrp9T7AnIh4juxC/PeI+GFELIyIM4BbgF06+m5e6NSIuCmybppVga2AwyPi\n3xFxPfB9ssqzqYg4LyJuj8ylwAXAGwrm/W7gvIi4MCL+A3wdmABsmTvmmxFxX0Q8CvyKrEJrxyzg\npIi4KiIWRcRpwLPAFg153RsRz6T39rOU90BEzAH+DmxWML/3AKdExLUR8SxwBFlLZXrumGMj4vGI\nuAe4ZPC9RcQ9ETE5xTdzGbABsDJZi3hP4P8ULJeNUq48RhlJa5F9gz69RJrNJV0iab6kJ8jGTlYE\niIh/A3OAvSUtRfaH/8OUdHXg7obT3Q28ZInexNDuzW2vDjwaEU8WzV/SjpKuTF0zjwNvJb3XAl7w\nfiMbb7m3Ib8HcttPA8sVPHejlwIfT11Ej6eyrpnKMCj/WSBp31w31+NkF+x239u/yFqYS/zeIuKO\niLgzVWrzgC8A7yhYLhulXHmMPvsAV0TEHSXS/ISshbFmRKxA1j+e788+jeyb6fbA0xHxxxR/H9lF\nLm8t4J9p+ylgYm7fqrntdm/jy6e7D5gqKX9HWT7/F+QhaTxwFlmLYZWImAycz+L3OlyZXvB+U5//\nmrn8Oule4EvpG/1gmJhad4OeL6+klwLfAz5M1m04GbiR9t/bssA0qnlvwQt/v6wHufIYffYl68su\nY3myb/D/lrQZsFd+Z6osBoDjWNzqgOzCu56kvdKA7buBV5L1jUPWJ7+HpKUlzeCF3zbnp3OuMxgh\naXoamJ1epNARcS/wB+AYScukAeUDgcEB7geB6anFBNk4zfiU90JJOwJvzp3yQWCapBVaZHkmsJOk\n7SUtDXycrCvpD0XKO4wHyX0WZBXBwalVKEnLKruxoemt18CyZBfl+ZDdGEDW8siffw1J41qkPwM4\nQNLGqZL9MtlY113tv6VMau2tkrbXJxvz+OWSntfqzZXHKJLuWFoD+FnJpB8EviDpSeDzZBfJRqeT\nDao/f+dRRDwC7Ex2EX2EbAB554h4OB3yObLB6ceAo8laOINpnwa+BFyRulm2IPsWfzflvu3uSTb4\nfh/wC+DIiLgo7Rv8HB6RdG3q3jo0vb/HyCrJc3NluoXsInpHKlO+i4iIuJVsLs0JZIO/uwC7pPGf\nJXUUcFrK910RcQ1wEHBiKuttZAPPTUXEX8kq9z+SVRQbAlfkDrkYuAl4QNLDTdJfRPbzOgu4n+zn\ntkeRgktaK93FtVaLQ7YHbpD0FNkXjrPJKifrYZ4kaEDWnw7Migrv1Zf0WWB+RJxUVR5m1h2uPAxJ\nE8m+uX47IgoPxJtZ/3K3VZ+T9BayfvQHyXU7mZkNxS0PMzMrzS0PMzMrrdYLIz4z5+hyzaIpK5XO\nQ1NWKXf85NVK57HUlFWHP6jBhNWLTorOTBo/cfiDGkweX35+2+Slly11/JQx5cs1ZUzT5aJaH6/x\npfOY2sav/koDY0odP21R6SyYuqjcOpBTKX8j2OQJz5ZOs/wK/y51/MRp5cs1buXy32XHrFLud3ip\nFVvdpd2apk0pnWbiB07o2DyX/zx8R+Hr4NIrrtO1+TVueZiZWWm1bnmYmfW9gTaasF3gysPMrM5q\n+kgbVx5mZnU2UM/Ko6tjHpJeL+lb3czTzGw0i0ULC4duqrzlIek1ZGsMvZPsmdZnV52nmVnP6Kdu\nK0nrkS1otyfZAnNzyCYkbltFfmZmPaumA+ZVdVvdQvbYy50j4vURcQJQ6BOQNEvSNZKuOfmiayoq\nnpnZKBEDxUMXVVV5vJ1s2edLJH1P0vYUfDhMRMyOiBkRMePAHWZUVDwzs1FiYKB46KJKKo+IOCci\n9gDWJ3sW8keBlSV9R9Kbh05tZmaDIgYKh26q9G6riHgqIn4SEbuQPcToOuDwKvM0M+spNW15dG2e\nR0Q8BsxOwczMiuinu63MzKxDanq3lSsPM7M66/Lkv6JceZiZ1Zm7rczMrLSarm3lysPMrMYiPOZh\nZmZludvKzMxKc7eVmZmV5pYHSFoReCQiCj/Q3cysr9V0nkdly5NI2kLSXElnS3qNpBuBG4EHJc0c\nIp1X1TUzG1TTVXWrbHmcCHwaWAG4GNgxIq6UtD5wBvDbZoki4vklTJ6Zc7RbKGbW3/pwkuDYiLgA\nQNIXIuJKgIi4RSq0OruZmfXhgHn+HT/TsM8tCjOzIvqw8thI0gKyh0BNSNuk18tUmK+ZWc/ou0mC\nETGmqnObmfWNDrY8JK0JnA6sQtYDNDsijpc0FZgDTAfuAt6VHqPRUqUPgzIzsyXU2butFgIfj4hX\nAlsAH5L0SuBTwO8jYl3g9+n1kFx5mJnVWQefJBgR90fEtWn7SeBm4CXAbsBp6bDTgN2HO5crDzOz\nOivR8sjPk0thVqvTSpoOvAa4ClglIu5Pux4g69YakpcnMTOrsxJjHvl5ckORtBxwFvDRiFiQnz4R\nESFp2DtiXXmYmdVZhycJSlqarOL4cUScnaIflLRaRNwvaTXgoeHO424rM7M66+CYh7ImxsnAzRHx\njdyuc4H90vZ+wC+HO1dlLQ9JLyfrR7uiIX4r4IGIuL2qvM3MekZn16zaCtgHmCfp+hT3aeBY4ExJ\nBwJ3A+8a7kRVdlv9D3BEk/gFad8uFeZtZtYbOjjPIyIuJ5uo3cz2Zc5VZbfVKhExrzEyxU1vlcir\n6pqZ5fThqrqTh9g3odUOr6prZpZT07Wtqmx5XCPpoMZISe8D/lxhvmZmvaMPWx4fBX4h6T0srixm\nAOOAt1WYr5lZ76hpy6PKhREfBLaUtC2wQYo+LyIuripPM7Oe02+Vx6CIuAS4pOp8zMx60qI+W5Ld\nzMw6oF9bHmZmtgS6PBBelCsPM7M6c8vDzMxKi3pOd3PlYWZWZ255mJlZaa48zMystH4eMJe0EkBE\nzO9GfmZmvSIG6jnmUdnaVsocJelh4Fbgb5LmS/p8VXmamfWcRQuLhy6qcmHEw8gePLJpREyNiCnA\n5sBWkg5rlchLspuZ5QxE8dBFVVYe+wB7RsSdgxERcQewN7Bvq0QRMTsiZkTEjAN3mFFh8czMRoEO\nPoa2k6oc81g6Ih5ujIyI+ekB7GZmNpw+vNvquTb3mZnZoD6cJLiRpAVN4gUsU2G+Zma9o99aHhEx\npqpzm5n1jZrequtJgmZmddbPkwTNzKxNbnmYmVlZsdBPEjQzs7LcbWVmZqW528rMzErrt1t1zcys\nA2ra8qhyVd1P5rbf2bDvy1Xla2bWU2KgeOiiKhdG3CO3fUTDvpmtEnlVXTOznJquqltlt5VabDd7\n/byImA3MBnhmztH1bK+ZmXVJ1HTMo8qWR7TYbvbazMya6WDLQ9Ipkh6SdGND/CGSbpF0k6SvFilW\nNxZGFDAht0iiF0Y0MytqUUcnCZ4KnAicPhghaVtgN2CjiHhW0spFTuSFEc3M6qyDYxkRcZmk6Q3R\nHwCOjYhn0zEPFTlXld1WZma2hGIgCoc2rQe8QdJVki6VtGmRRJ7nYWZWZyUqBUmzgFm5qNnpJqSh\njAWmAlsAmwJnSlonYuinULnyMDOrsxJ3W+XvVi3hH8DZqbK4WtIAsCIwf6hE7rYyM6uz6ud5nANs\nCyBpPWAc8PBwidzyMDOrsw4OmEs6A9gGWFHSP4AjgVOAU9Ltu88B+w3XZQWuPMzMaq3AdbzMufZs\nsWvvsudy5WFmVmc1XRjRlYeZWY3Fwj5bnkTSWlWd28ysb9R0YcQq77Y6Z3BD0lkV5mNm1rsGSoQu\nqrLyyK+cu07hRF6S3czseV2YYd6WKsc8hlpVt3UiL8luZrZYHw6YD7WqbkTEpArzNjPrDfUcL/eq\numZmddbt7qiifKuumVmd9VvLw8zMlpxbHmbWcY8yjqk8N9LFsArFwpEuQXOuPMxGMVccfcDdVmZm\nVla48jAzs9JceZiZWVlueZiZWWmuPMzMrLS6Vh5VLsm+m6QP5V5fJemOFN5RVb5mZj0lVDx0UeHK\nQ9Llkr4kaaak5Qsk+SRwbu71eGBTsufnfmCIfLyqrplZEgPFQzeVaXnsA9wK/Dfwh3SB/39DHD8u\nIu7Nvb48Ih6JiHuAZVsliojZETEjImYcuMOMEsUzM+s9MaDCoZsKj3lExJ2S/g08l8K2wCuGSDKl\nIf2Hcy9XKlNIM7N+NbCou5VCUWW6rW4nezrgKsDJwAYRMXOIJFdJOqjJed4PXF22oGZm/aiu3VZl\n7rb6JvB6YE/gNcClki6LiNtbHH8YcI6kvYBrU9xrycY+dm+zvGZmfaXb3VFFlem2Oh44XtJywAHA\nUcAaQNPndkTEQ8CWkrYDXpWiz4uIi5eoxGZmfSTquahu8cpD0nFkLY/lgD8Cnwf+d7h0qbJwhWFm\n1oZR3/IgqzC+GhEPVlUYMzN7oVFfeUTEzyXtKumNKerSiPhVReUyMzN6o9vqGGAz4Mcp6lBJr4uI\nT1dSMjMzG/0tD2AnYOOI7IYwSacB1wGuPMzMKhJdXnakqLILI04GHk3bK3S4LGZm1mBRTScJlqk8\njgGuk3QJIOCNwKcqKZWZmQGjvOUhScDlwBZkixsCHB4RD1RVMDMzG+VjHhERks6PiA154Uq5LUk6\nAWh5n0BEHFqsiGZm/auTd1tJOgXYGXgoIjZIcV8DdiFbs/B24ICIeHy4c5VZVfdaSZsOf9jzrgH+\nnMKuue3B0JSXZDczW6zDq+qeCjSuSXgh2VqFrwb+BhxR5ERlxjw2B94j6W7gKbJxj0gZvkhEnDa4\nLemj+ddDiYjZwGyAZ+YcXdM7nM3MumOgg2MeEXGZpOkNcRfkXl4JFHpYX5nK4y1D7ZQ0JSIea7Hb\nlYCZWRvKDJhLmgXMykXNTl/Ii3ovMKfIgWVmmN89zCG/BzYpej4zMxtemTGPfM9NWZI+Ayxk8UTw\nIZWd5zFk3g0FeZLFLY6JkhbkjouImNTBvM3MelInu61akbQ/2UD69hHFqqtOVh4vyDAiijzn3MzM\nhjBQ8a26kmYCnwS2joini6brZOVhZmYd1smWh6QzgG2AFSX9AziS7O6q8cCF2ZQ+royIg4c7V2Xd\nVmZmtuQ6OcM8IvZsEn1yO+cqNM9D0hhJtwxz2PbtFMDMzFobCBUO3VSo8oiIRcCtktYa4phHW+0z\nM7P2RInQTWW6raYAN0m6mmySIAARsWvHS2VmZkB37rZqR5nK43OVlcLMzJoa1avqAkTEpZJeCqwb\nERdJmgiMqa5oZmY2MNIFaKHwwoiSDgJ+DpyUol4CnFNFoczMLBOocOimMqvqfgjYClgAEBF/B1Zu\ndbCkJyUtaBKezM02b5bOq+qamSULQ4VDN5UZ83g2Ip5Lk0iQNJahn9fR1gxzr6prZrZYt1sURZVp\neVwq6dPABElvAn4G/KqaYpmZGWRjHkVDN5WpPD4FzAfmAe8Hzo+Iz1RSKjMzA+o75lGm2+qQiDge\n+N5ghKSPpDgzM6vAqL/bCtivSdz+HSqHmZk1Udduq2FbHpL2BPYC1pZ0bm7X8oCXJDEzq1BdB8yL\ndFv9AbgfWBE4Lhf/JHBDFYUyM7NMxY/zaNuwlUd6/Ozdki6LiEvz+yR9BTi8qsKZmfW7gZq2PMqM\nebypSdyOnSqImZm92KISoZuKjHl8APgg8DJJ+W6q5YErqiqYmZnBgOrZ8igy5vET4DfAMWRzPQY9\n6Wd4mJlVq67LbAzbbRURT0TEXenxhWsC26VxkKUkrd0szRDrWi2QNF/SlZL85EEzs2GM2lt1B0k6\nEpgB/BfwA2Ac8COyxRJfYKh1rSSNATYAfpz+NzOzFup6t1WZAfO3AbuSniIYEfeRjXuUEhGLIuIv\nwAnN9ntVXTOzxQZQ4dBNZZYneS4iQlIASFp2STKOiJNaxHtVXTOzpK4XwTItjzMlnQRMTg+Guojc\nOldmZtZ5AyoeuqnMY2i/npZiX0A27vH5iLiwspKZmVltF0Ys021FqixcYZiZdcmimg6YF5kk+CTN\nu90ERERM6nipzMwMGMUtj3YfJ2tmZktu1FYeZmY2cmK0dluZmdnIccvDzMxKc+VhZmal9cIkQTMz\n67JOTxKUdJikmyTdKOkMScu0Uy5XHmZmNdbJVXUlvQQ4FJgRERsAY4A92ilXZZWHpDWH2LdzVfma\nmfWSCp4kOBaYIGksMBG4r51yVdnyuFDS9MZISe8Fjq8wXzOznlGm2yq/KnkKs/Lnioh/Al8H7gHu\nB56IiAvaKVeVlcfHgAskrTsYIekI4DBg61aJvCS7mdliZbqtImJ2RMzIhdn5c0maAuwGrA2sDiwr\nae92ylXZ3VYRcb6kZ4HfSNodeB+wGfDGiHhsiHRekt3MLOnwRXAH4M6ImA8g6WxgS7IH+5VS6YB5\nRPweOACYC6xD9gjblhWHmZm90ABROBRwD7CFpImSBGwP3NxOuSpreeQWVBQwnqyQD6UCe0FFM7MC\nOjlJMCKukvRz4FpgIXAdqaenrCq7rbygopnZEup0331EHAkcuaTn8QxzM7Maq+vyJJ4kWFI8fv9I\nF8EaPBbPjnQRRsyjjBvpIljFRv1jaC2jyauNdBGswRSNH+kijJipPDfSRbCKLarp6lauPMzMaqyu\n3VauPMzMaqzgLbhd58rDzKzG6ll1uPIwM6u1unZbjcjdVpI+OhL5mpmNNh2eYd4xI3Wr7sdGKF8z\ns1ElSoRuGqnKo+UdyV5V18xssU4+DKqTRmrMo2Ul6VV1zcwWi5oOmXdjYcQX7QImVJWvmVkvWdhv\nlYcXRjQzW3L1rDp8q66ZWa15kqCZmZVW13kerjzMzGqs7wbMzcxsybnlYWZmpbnlYWZmpbnlYWZm\npQ2EWx5mZlaSnyRoZmaleczDzMxK67sxD0nnDrU/InatKm8zs17RjzPMXwfcC5wBXMUQy7DnSZoF\nzAI44X07c+AOMyoroJlZ3fVjt9WqwJuAPYG9gPOAMyLipqESeUl2M7PF6tptVdnDoCJiUUT8NiL2\nA7YAbgPmSvpwVXmamfWaiCgcuqnSAXNJ44GdyFof04FvAr+oMk8zs17Sd2Mekk4HNgDOB46OiBur\nysvMrFfVtduqypbH3sBTwEeAQ6Xnx8sFRERMqjBvM7OesKim1UeVTxKsbDzFzKxfdHssoyhf4M3M\namygRChK0hhJ10n6dbvl8gxzM7Maq2iex0eAm4G2hw/c8jAzq7EBonAoQtIaZHfBfn9JyuXKw8ys\nxsrM85A0S9I1uTCrySn/B/gkS3gjl7utzMxqrMw8j/wKHc1I2hl4KCL+LGmbJSmXKw8zsxrr8JjH\nVsCukt4KLANMkvSjiNi77ImqnCT4+SF2R0T836ryNjPrFZ18kmBEHAEcAZBaHp9op+KAasc8nmoS\nAjgQOLxVonyf3ckXXVNh8czM6i9KhG6qcpLgcYPbkpYnuzXsvcBPgeOGSOdVdc3MkoUVzTCPiLnA\n3HbTV70w4lTgY8B7gNOATSLisSrzNDPrJXWdYV7lmMfXgLeTtSI2jIh/VZWXmVmvquuqulWOeXwc\nWB34LHCfpAUpPClpQYX5mpn1jCjxr5u8MKKZWY31XbeVmZktubp2W7nyMDOrMbc8zMysNLc8zMys\ntG4PhBflysPMrMYWRZ89htbMzJZcJ9e26qTKKw9JywAvTy9vi4h/V52nmVmv6LtuK0ljgS+TrWd1\nNyBgTUk/AD4TEf+pKm8zs15R15ZHlRP5vgZMBdaOiNdGxCbAy4DJwNdbJfKqumZmi/XdDHNgZ2C9\nyN2kHBELJH0AuIVsld0X8aq6ZmaL1bXlUWXlEdFkdktELJJUz0/DzKxm6jrmUWW31V8l7dsYKWlv\nspaHmZkNI2KgcOimKlseHwLOlvRe4M8pbgYwAXhbhfmamfWMvpthHhH/BDaXtB3wqhR9fkT8vqo8\nzcx6Td9OEoyIi4GLq87HzKwXeWFEMzMrrR/vtjIzsyVU17utXHmYmdWYu63MzKy0vrvbyszMlpxb\nHmZmVpoHzM3MrLS+a3mk53gcTPYsj3nAyRGxsKr8zMx6UV0nCVa5ttVpZMuRzAN2BI4rkshLspuZ\nLTYQUTh0U5XdVq+MiA0BJJ0MXF0kkZdkNzNbrB/neTz/pMCIWCipwqzMzHpTPw6YbyRpQdoWMCG9\nFtmzPiZVmLeZWU+o64B5ZWMeETEmIialsHxEjM1tu+IwMyug04+hlTRT0q2SbpP0qXbL5Vt1zcxq\nrJMtD0ljgG8BbwL+AfxJ0rkR8dey56rybiszM1tCEVE4FLAZcFtE3BERzwE/BXarvGB1CcCsOqbp\nlTxcrvrl4XLVL49201QZgFnANbkwq2H/O4Dv517vA5zYVl4j/Wbb/ICuqWOaXsnD5apfHi5X/fJo\nN81Ihk5WHu62MjPrH/8E1sy9XiPFlebKw8ysf/wJWFfS2pLGAXsA57ZzotF6t9XsmqbplTzaSdPP\n5ern995Oml7Jo900IyayCdsfBn4HjAFOiYib2jmXUr+XmZlZYe62MjOz0lx5mJlZaa48zMystJ6t\nPCStL2l7Scs1xM9scfxmkjZN26+U9DFJby2Z5+klj399yufNLfZvLmlS2p4g6WhJv5L0FUkrtEhz\nqKQ1m+1rcfw4SftK2iG93kvSiZI+JGnpIdKtI+kTko6X9A1JBw+W1cx636gfMJd0QET8oCHuUOBD\nwM3AxsBHIuKXad+1EbFJw/FHkj2waixwIbA5cAnZ+i+/i4gvNcm38fY2AdsCFwNExK5N0lwdEZul\n7YNSGX8BvBn4VUQc23D8TcBG6Q6J2cDTwM+B7VP825vk8QTwFHA7cAbws4iY33hc7vgfp/c9EXgc\nWA44O+WhiNivSZpDgZ2By4C3AteltG8DPhgRc1vlZ9YrJK0cEQ+NdDlGzEjPeOzAjMl7msTNA5ZL\n29PJpul/JL2+rsXxY8guoAuASSl+AnBDi3yvBX4EbANsnf6/P21v3SLNdbntPwErpe1lgXlNjr85\nn1/Dvutb5UHWonwzcDIwH/gtsB+wfJPjb0j/jwUeBMak1xrivc/LHTcRmJu212r2+fZDAFbuQh7T\nRvp9tlHmFYBjgVuAR4FHyL7UHQtMLnmu37SInwQcA/wQ2Kth37dbpFkV+A7ZIoHTgKPS7/WZwGpN\njp/aEKYBdwFTgKkj/TmPRBgV3VaSbmgR5gGrNEmyVET8CyAi7iK7sO8o6RtkF8VGCyNiUUQ8Ddwe\nEQtS2meAVg8QngH8GfgM8ERk37afiYhLI+LSFmmWkjRF0jSyi+/8lM9TQLPnu98o6YC0/RdJM9Ln\nsR65h201iIgYiIgLIuJAYHXg28BM4I4WZRoHLE9WEQx2h40HWnZbsXiO0Hiy1goRcU+rNJJWkHSs\npFskPSrpEUk3p7jJQ+TTlKTfNImbJOkYST+UtFfDvm+3OM+qkr4j6VuSpkk6StI8SWdKWq1FmqkN\nYRpwdfrZTm1y/Mzc9gqSTk6/vz+R1Oz3l/S5rJi2Z0i6A7hK0t2Stm5y/LWSPivpZc3O1yKPGZIu\nkfQjSWtKulDSE5L+JOk1LdIsJ+kLkm5Kx86XdKWk/VtkcybwGLBNREyNiGlkLfTH0r7G82/SIryW\nrBehmR+Q/V2fBewh6SxJ49O+LVqkORX4K3AvWS/DM2St6P8Fvtvk+IfJ/t4HwzXAS8i+RPbn87JH\nuvYqEsi+EW8MvLQhTAfua3L8xcDGDXFjgdOBRU2OvwqYmLaXysWvQMM3/iZp1wB+BpxIk1ZQw7F3\nkV3A70z/r5bil6NJSyLlfypZF9RVZBXGHcClZN1WzfJo+c1/8D02xB2Wznk3cCjwe+B7ZN/Cjmxx\nno8AN6TjbgEOSPErAZe1SPM74HBg1VzcqinughZpNmkRXgvc3+T4s8i+0e5ONmv2LGB82tf050jW\nKjsE+FRRxO1FAAADkklEQVR6T4eTLd9wCPDLFmkG0s8wH/4z+HNtcvy1ue3vA19Mv7+HAee0yGNe\nbvsSYNO0vR5N1lNKeX8duIfskc+HAasP8/t4NVl37Z5kF9F3pPjtgT+2SPNLYP/0e/8x4HPAusBp\nwJebHH/rEPm/aB+wiOzv95Im4ZkW57m+4fVngCvIWgetfu75XoB7hjpfivt4+l3ZMP+ZD/X59noY\n8QIUKmTW/fL6Fvt+0iRujfxFqmHfVk3ixrc4dsX8L8swZdyp2R9PwbQTgbWH2D8J2ChdNFcZ5lzr\ntZH/6oMXGmAy2eJpmw2T5lXpuPUL5lHqIpLiS11IunERSfGlLiS8sPJoLGOrPG4GxqbtKxv2Nevi\nzOfxBrLW5gPps2q68usw773plxDgLw2v/5T+Xwq4pcnxFwCfzP/ekvUWHA5c1OT4G4F1W+R97xCf\n1VINcfsDNwF3D/c+gC8O9/mm+MEvit8ga6m/6ItCP4URL4BDf4SyF5G0v9SFpFsXkbSv8IWE7KE7\nH0uVzp2kG1XSvlbjSoekz2w7sv7448nG044Gftjk+BdVjmTjeDOBH7TI449kY2PvJGt57p7it6bF\narHAH0hf5IBdyW4oGdzXrCUxBfgKWQv1MbJxj5tT3IvGCsi+kPxXi7x3bxH/VWCHJvEzgb+3SPMF\n0rhoQ/zLgZ8P87u8K3Al8EAn/0ZGWxjxAjj0R2i4iDzacBGZ0iJNqQtJty8i6bhhLyTAkQ1h8EaJ\nVYHTh0i3DTCH7CaIecD5ZM9rGNvk2J+28TPZiKw78TfA+qmCepysst2yRZpXk3V3PQZcTmrpknVZ\nHtoizfrADo2fMzBziOO3L3r8MGl2bCPNsOUiu5lmg+HK1cthxAvg4EAaM6kyTZV5NFxIalOububR\nKg3ZONqtwDlkY3675fY1ay2VOj7FH1J1mnbK1ethxAvg4MAwNxp0Ik038qhruUbyvdPebfOFj+9W\nmnby6PUwWpdkt1FG0g2tdtH8duvSabqRR13LVdf3TsNt85K2AX4u6aU0v22+7PHdStNOHj3NlYd1\nyyrAW8j6yvNENgjbiTTdyKOu5arre39Q0sYRcT1ARPxL0s7AKcCGHTi+W2nayaOnufKwbvk1WbP/\n+sYdkuZ2KE038qhruer63velYQJsRCwE9pV0UgeO71aadvLoaaN+bSszM+u+UbE8iZmZ1YsrDzMz\nK82Vh5mZlebKw8zMSvv/nma0pYmZbf8AAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11f1f0630>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcHEX9//HXmwRCAoQk3AgYUfiighyGQ8EvIB5BTv15\nAHIrEQ8u9QHiBfrzQAV/X7zQKAiIIgiIKKAgp6hcAhIQ+ArIoVwBAkFOs/v5/dG1pDPM7HZPpmd7\nZ97PPOqRmeqururZ3a6pqq5qRQRmZmZlLDHaBTAzs7HHlYeZmZXmysPMzEpz5WFmZqW58jAzs9Jc\neZiZWWmuPGpM0q2StmkzbUh6VYeL1HMkfVrSjyo47vslXdTp45Ysw/clfW40y2C9S57nMTZI+j6w\nZy5qSeCFiFiuxf4BrBMRd3ajfE3ynw78A1gyIhZUlMfRwKsiYs+R9k37bwOcFhFrVFGeEfKu9Och\naV/ggxGxVRXHL5D/2sC3gK2B54GTIuLw0SiLdYdbHmNERBwYEcsOBeB04BejXa6qKOPfT0DS+NEu\nw3AkLQVcDFwKrAqsAZw2qoWy6kWEQ00DcA/wlibxywBPAVsPkzbIvpUD7ADcCMwH7geOzu13PnBQ\nQ9qbgXem128ErgOeTP+/sVX5gKPJvtkD3JfK8O8U3lDgfC8Hvgz8EXgWeBWwOnAe8DhwJ3BA2ncm\n8ALwn3T8v6b4/YDb0udzN/Ch3Gf2LDCYK9Pq+TKn/XYGbgWeSOV5dcP5fjJ9Pk8CZwBLtziXfYGr\n0usr02fxdMr3fSl+R+CmlNefgNc15HVEyut5YDzwKeCudG5/y/2MXg08Bwyk4z+R4k8GvpQ75gHp\nM3w8faarN/y+HAj8PZXnu6SeiQI/t1nAH0b778Whu2HUC+AwzA+ndeWxd7owtvzjZtHKYxtgA7KW\n5uuAh4Fd07b3Atfk0m0IPAYsBUwD5gF7pYvX7un9Cs3Kx6KVx/RUhvElzvdyskrntSm/JdOF93vA\n0sBGwFzgzY355Y6xA/BKQGRdKM8Am+Q+h3827J8v87rpAv/WlPfh6WK7VO58ryWrdKaRVVIHtjiX\nfUmVR+PPI73fGHgE2BwYB+yTjj8hl9dNwJrAxBT3npT3EsD7UllXa5ZfijuZVHkAbwYeBTYBJgDf\nBq5sKN9vgCnAWulznpm2rUVWoazV4lxPAn4CXJjyuBzYYLT/fhyqDe4WGJv2AU6N9Jc7koi4PCLm\nRMRgRNxM1uW1ddp8HrCupHXS+72AMyLiBbIL8d8j4icRsSAiTgduB3bq6Nks6uSIuDWycZJVgS2B\nIyLiuYi4CfgRWeXZVEScHxF3ReYK4CLgTQXzfh9wfkRcHBH/AY4FJpK1voZ8KyIeiIjHgV+TVWjt\nmAX8ICKuiYiBiDiFrIWxRUNe90fEs+ncfpHyHoyIM8haCZsVzO/9ZOMQN0TE88CRwBvS2NSQYyLi\niYi4D7hs6Nwi4r6ImJLim1kD2I1szGN1stbsr1J3lvUoVx5jjKS1yL5Bn1oizeaSLpM0V9KTZN0T\nKwJExHNk3S97pjGG3cm+RUJ2Ibi34XD3Ai9brJMY3v2516sDj0fEU0Xzl7S9pKslPS7pCeAdpHMt\nYJHzjYjBVJ58fg/lXj8DLFvw2I1eDnxC0hNDgayVsXpun/xngaS9Jd2U23992j+3f5O1MDtxbs+S\ntXouTF86jgVWIOtOsx7lymPs2Qv4Y0TcXSLNz8haGGtGxPLA98m6dYacQvbNdDvgmYj4c4p/gOwi\nl7cW8K/0+mlgUm7bqrnX7d7Gl0/3ADBNUv6Osnz+i+QhaQJwNtnFa5WImAJcwMJzHalMi5yvJJFd\n0P/VMkX77ge+nL7RD4VJqXU35MXySno58EPgY2TdhlOAW2j/3JYhu8B34txuLpC/9RhXHmPP3mR9\n2WUsR/YN/jlJmwF75DemymIQOI6FrQ7ILrzrStpD0nhJ7wNeQ9Y3Dlmf/G6SlpQ0A3h3Lu3cdMy1\nhyIkTU/zT6YXKXRE3E82kPxVSUtLeh3wARbeyfMwMD13V9ZSZP35c4EFkrYH3pY75MPACpKWb5Hl\nmcAOkraTtCTwCbKupD8VKe8IHib3WZBVBAemVqEkLSNph4aKMm8Zsgv0XABJ+5G1PPLHX2OYrqLT\ngf0kbZQq2a+QjXXd0/4pveg0YAtJb5E0DjiUbOzjtg4c22rKlccYIukNZP3LZW/R/QjwRUlPAZ8n\nu0g2OpVsUP3FWywj4jGyO4I+QdbFcTiwY0Q8mnb5HNng9DzgC2QtnKG0z5DunErdLFuQfYu/l3Lf\ndncnG3x/APglcFRE/D5tG/ocHpN0Q+reOjid3zyySvK8XJluJ7uI3p3KlO8iIiLuIJtL822yi99O\nwE6pK2ZxHQ2ckvJ9b0RcT3b303dSWe8kG/RuKiL+Rla5/5msotiA7K60IZeS3SX2kKRHm6T/PdnP\n62zgQbKf225FCi5pLUn/Tl2mzco29Ll9P53LLsDOHfrcrKY8SdCArD8dmBUVTjKT9FlgbkT8oKo8\nzKw7XHkYkiaRfXP9XkQUHog3s/7lbqs+J+ntZP3oD5PrdjIzG45bHmZmVppbHmZmVlqtF1x75oSD\nSjWLNK3ofKmcqSuV2l1TVymdhaasVjrNElNXHXmnnImrF51EvdDkCZNG3qnBlAnl5sRNWXKZ0nlM\nHVeuXFPHLV0+D00onWZayT+XlQbHlc5jhYFy+08bGCydxzTK3wQ1ZeLzpfZfbvnnSucxaYXy5Vpq\n5XLff8etUn5O5xIrtrqzu7VlPnuaRt6rmP88enfh6+CSK67dsXxH4paHmZmVVuuWh5lZ3xss2Rzt\nElceZmZ1FuW7JrvBlYeZWZ0N1rPy6OqYh6StJH23m3mamY1lMbCgcOimylsekjYmW2PoPWTPtD6n\n6jzNzHpGP3VbSVqXbEG73ckWmDuDbELitlXkZ2bWs2o6YF5Vt9XtZI+93DEitoqIb5M9X3lEkmZJ\nul7S9SdddUtFxTMzGyNisHjooqoqj3eRLft8maQfStqORR8+1FJEzI6IGRExY/+t1h85gZlZLxsc\nLB66qJLKIyLOjYjdgPXInoV8KLCypBMkvW341GZmNiRisHDopkrvtoqIpyPiZxGxE9lDjG4Ejqgy\nTzOznlLTlkfX5nlExDxgdgpmZlZEP91tZWZmHVLTu61ceZiZ1VmXJ/8V5crDzKzO3G1lZmal1XRt\nK1ceZmY1FuExDzMzK8vdVmZmVpq7rczMrDS3PEDSisBjEVH4ge5mZn2tpvM8KlueRNIWki6XdI6k\njSXdAtwCPCxp5jDpvKqumdmQmq6qW2XL4zvAp4HlgUuB7SPiaknrAacDv22WKCJeXMLkmRMOcgvF\nzPpbH04SHB8RFwFI+mJEXA0QEbdLhVZnNzOzPhwwz5/xsw3b3KIwMyuiDyuPDSXNJ3sI1MT0mvR+\n6QrzNTPrGX03STAixlV1bDOzvtHBloekNYFTgVXIeoBmR8TxkqYBZwDTgXuA96bHaLRU6cOgzMxs\nMXX2bqsFwCci4jXAFsBHJb0G+BRwSUSsA1yS3g/LlYeZWZ118EmCEfFgRNyQXj8F3Aa8DNgFOCXt\ndgqw60jHcuVhZlZnJVoe+XlyKcxqdVhJ04GNgWuAVSLiwbTpIbJurWF5eRIzszorMeaRnyc3HEnL\nAmcDh0bE/Pz0iYgISSPeEevKw8yszjo8SVDSkmQVx08j4pwU/bCk1SLiQUmrAY+MdBx3W5mZ1VkH\nxzyUNTFOBG6LiG/mNp0H7JNe7wP8aqRjVdbykPQqsn60PzbEbwk8FBF3VZW3mVnP6OyaVVsCewFz\nJN2U4j4NHAOcKekDwL3Ae0c6UJXdVv8DHNkkfn7atlOFeZuZ9YYOzvOIiKvIJmo3s12ZY1XZbbVK\nRMxpjExx01sl8qq6ZmY5fbiq7pRhtk1stcGr6pqZ5dR0basqWx7XSzqgMVLSB4G/VJivmVnv6MOW\nx6HALyW9n4WVxQxgKeCdFeZrZtY7atryqHJhxIeBN0raFlg/RZ8fEZdWlaeZWc/pt8pjSERcBlxW\ndT5mZj1poM+WZDczsw7o15aHmZkthi4PhBflysPMrM7c8jAzs9KintPdXHmYmdWZWx5mZlaaKw8z\nMyutnwfMJa0EEBFzu5GfmVmviMF6jnlUtraVMkdLehS4A/hfSXMlfb6qPM3Mes7AguKhi6pcGPEw\nsgePbBoR0yJiKrA5sKWkw1ol8pLsZmY5g1E8dFGVlcdewO4R8Y+hiIi4G9gT2LtVooiYHREzImLG\n/lut32o3M7P+0MHH0HZSlWMeS0bEo42RETE3PYDdzMxG0od3W73Q5jYzMxvSh5MEN5Q0v0m8gKUr\nzNfMrHf0W8sjIsZVdWwzs75R01t1PUnQzKzO+nmSoJmZtcktDzMzKysW+EmCZmZWlrutzMysNHdb\nmZlZaf12q66ZmXVATVseVa6qe3ju9Xsatn2lqnzNzHpKDBYPXVTlwoi75V4f2bBtZqtEXlXXzCyn\npqvqVtltpRavm71/UUTMBmYDPHPCQfVsr5mZdUnUdMyjypZHtHjd7L2ZmTXTwZaHpJMkPSLplob4\ngyTdLulWSV8vUqxuLIwoYGJukUQvjGhmVtRARycJngx8Bzh1KELStsAuwIYR8byklYscyAsjmpnV\nWQfHMiLiSknTG6I/DBwTEc+nfR4pcqwqu63MzGwxxWAUDm1aF3iTpGskXSFp0yKJPM/DzKzOSlQK\nkmYBs3JRs9NNSMMZD0wDtgA2Bc6UtHbE8E+hcuVhZlZnJe62yt+tWsI/gXNSZXGtpEFgRWDucInc\nbWVmVmfVz/M4F9gWQNK6wFLAoyMlcsvDzKzOOjhgLul0YBtgRUn/BI4CTgJOSrfvvgDsM1KXFbjy\nMDOrtQLX8TLH2r3Fpj3LHsuVh5lZndV0YURXHmZmNRYL+mx5EklrVXVsM7O+UdOFEau82+rcoReS\nzq4wHzOz3jVYInRRlZVHfuXctQsn8pLsZmYv6sIM87ZUOeYx3Kq6rRN5SXYzs4X6cMB8uFV1IyIm\nV5i3mVlvqOd4uVfVNTOrs253RxXlW3XNzOqs31oeZma2+NzyMLOOe3zcEkwbqOlXU+uIWDDaJWjO\nlYfZGOaKow/U9EfsysPMrMbClYeZmZXmysPMzMpyy8PMzEpz5WFmZqXVtfKockn2XSR9NPf+Gkl3\np/DuqvI1M+spoeKhiwpXHpKukvRlSTMlLVcgyeHAebn3E4BNyZ6f++Fh8vGqumZmSQwWD91UpuWx\nF3AH8H+AP6UL/P8bZv+lIuL+3PurIuKxiLgPWKZVooiYHREzImLG/lutX6J4Zma9JwZVOHRT4TGP\niPiHpOeAF1LYFnj1MEmmNqT/WO7tSmUKaWbWrwYHulspFFWm2+ousqcDrgKcCKwfETOHSXKNpAOa\nHOdDwLVlC2pm1o/q2m1V5m6rbwFbAbsDGwNXSLoyIu5qsf9hwLmS9gBuSHGvJxv72LXN8pqZ9ZVu\nd0cVVabb6njgeEnLAvsBRwNrAE2f2xERjwBvlPRm4LUp+vyIuHSxSmxm1keinovqFq88JB1H1vJY\nFvgz8HngDyOlS5WFKwwzszaM+ZYHWYXx9Yh4uKrCmJnZosZ85RERZ0naWdJ/p6grIuLXFZXLzMzo\njW6rrwKbAT9NUQdLekNEfLqSkpmZ2dhveQA7ABtFZDeESToFuBFw5WFmVpHo8rIjRZVdGHEK8Hh6\nvXyHy2JmZg0GajpJsEzl8VXgRkmXAQL+G/hUJaUyMzNgjLc8JAm4CtiCbHFDgCMi4qGqCmZmZmN8\nzCMiQtIFEbEBi66U25KkbwMt7xOIiIOLFdHMrH918m4rSScBOwKPRMT6Ke4bwE5kaxbeBewXEU+M\ndKwyq+reIGnTkXd70fXAX1LYOfd6KDTlJdnNzBbq8Kq6JwONaxJeTLZW4euA/wWOLHKgMmMemwPv\nl3Qv8DTZuEekDF8iIk4Zei3p0Pz74UTEbGA2wDMnHFTTO5zNzLpjsINjHhFxpaTpDXEX5d5eDRR6\nWF+ZyuPtw22UNDUi5rXY7ErAzKwNZQbMJc0CZuWiZqcv5EXtD5xRZMcyM8zvHWGXS4BNih7PzMxG\nVmbMI99zU5akzwALWDgRfFhl53kMm3dDQZ5iYYtjkqT5uf0iIiZ3MG8zs57UyW6rViTtSzaQvl1E\nseqqk5XHIhlGRJHnnJuZ2TAGK75VV9JM4HBg64h4pmi6TlYeZmbWYZ1seUg6HdgGWFHSP4GjyO6u\nmgBcnE3p4+qIOHCkY1XWbWVmZouvkzPMI2L3JtEntnOsQvM8JI2TdPsIu23XTgHMzKy1wVDh0E2F\nKo+IGADukLTWMPs83mqbmZm1J0qEbirTbTUVuFXStWSTBAGIiJ07XiozMwO6c7dVO8pUHp+rrBRm\nZtbUmF5VFyAirpD0cmCdiPi9pEnAuOqKZmZmg6NdgBYKL4wo6QDgLOAHKeplwLlVFMrMzDKBCodu\nKrOq7keBLYH5ABHxd2DlVjtLekrS/Cbhqdxs82bpvKqumVmyIFQ4dFOZMY/nI+KFNIkESeMZ/nkd\nbc0w96q6ZmYLdbtFUVSZlscVkj4NTJT0VuAXwK+rKZaZmUE25lE0dFOZyuNTwFxgDvAh4IKI+Ewl\npTIzM6C+Yx5luq0OiojjgR8ORUg6JMWZmVkFxvzdVsA+TeL27VA5zMysibp2W43Y8pC0O7AH8ApJ\n5+U2LQd4SRIzswrVdcC8SLfVn4AHgRWB43LxTwE3V1EoMzPLVPw4j7aNWHmkx8/eK+nKiLgiv03S\n14AjqiqcmVm/G6xpy6PMmMdbm8Rt36mCmJnZSw2UCN1UZMzjw8BHgFdKyndTLQf8saqCmZkZDKqe\nLY8iYx4/Ay4Evko212PIU36Gh5lZteq6zMaI3VYR8WRE3JMeX7gm8OY0DrKEpFc0SzPMulbzJc2V\ndLUkP3nQzGwEY/ZW3SGSjgJmAP8F/BhYCjiNbLHERQy3rpWkccD6wE/T/2Zm1kJd77YqM2D+TmBn\n0lMEI+IBsnGPUiJiICL+Cny72XavqmtmttAgKhy6qUzl8UJEvPioXEnLLE7GEfGDFvGzI2JGRMzY\nfys3TMysv9X1GeZlKo8zJf0AmJIeDPV7cutcmZlZ5w2qeOimMo+hPTYtxT6fbNzj8xFxcWUlMzOz\n2i6MWGZVXVJl4QrDzKxLBmo6YF5kkuBTNO9OExARMbnjpTIzM2AMtzzafZysmZktvjFbeZiZ2eiJ\nsdptZWZmo8ctDzMzK82Vh5mZlTZmF0Y0M7PR0+lJgpIOk3SrpFsknS5p6XbK5crDzKzGOrmqrqSX\nAQcDMyJifWAcsFs75aqs8pC05jDbdqwqXzOzXlLBkwTHAxMljQcmAQ+0U64qWx4XS5reGClpf+D4\nCvM1M+sZZbqt8quSpzArf6yI+BdwLHAf8CDwZERc1E65qqw8Pg5cJGmdoQhJRwKHAVu3SuQl2c3M\nFirTbZVflTyF2fljSZoK7AK8AlgdWEbSnu2Uq7K7rSLiAknPAxdK2hX4ILAZ8N8RMW+YdLOB2QDP\nnHBQXW80MDPrig5fBN8C/CMi5gJIOgd4I9mD/UqpdMA8Ii4B9gMuB9Yme4Rty4rDzMwWNUgUDgXc\nB2whaZIkAdsBt7VTrspaHrkFFQVMICvkI6nAXlDRzKyATk4SjIhrJJ0F3AAsAG4k9fSUVWW3lRdU\nNDNbTJ3uu4+Io4CjFvc4nmFuZlZjdV2exJMES4p5D492EazBvIHnRrsIo+bxcf4T7nVj/jG0ltHU\nVUa7CNZg6ri2VlfoCdMG6vq91DploKarW7nyMDOrsbp+PXDlYWZWYwVvwe06Vx5mZjVWz6rDlYeZ\nWa3VtdtqVG7VkHToaORrZjbWdHiGeceM1n1+Hx+lfM3MxpQoEbpptCqPlncke1VdM7OFOvkwqE4a\nrTGPlpWkV9U1M1soajpk3o2FEV+yCZhYVb5mZr1kQb9VHl4Y0cxs8dWz6vCtumZmteZJgmZmVlpd\n53m48jAzq7G+GzA3M7PF55aHmZmV5paHmZmV5paHmZmVNhhueZiZWUl+kqCZmZXmMQ8zMyut78Y8\nJJ033PaI2LmqvM3MekU/zjB/A3A/cDpwDcMsw54naRYwC+Dbe2zD/lutX1kBzczqrh+7rVYF3grs\nDuwBnA+cHhG3DpfIS7KbmS1U126ryh4GFREDEfHbiNgH2AK4E7hc0seqytPMrNdEROHQTZUOmEua\nAOxA1vqYDnwL+GWVeZqZ9ZK+G/OQdCqwPnAB8IWI8DNlzcxKqmu3VZUtjz2Bp4FDgIOlF8fLBURE\nTK4wbzOznjBQ0+qjyicJVjaeYmbWL7o9llGUL/BmZjU2WCIUJWmcpBsl/abdcnmGuZlZjVU0z+MQ\n4Dag7eEDtzzMzGpskCgcipC0BtldsD9anHK58jAzq7Ey8zwkzZJ0fS7ManLI/wEOZzFv5HK3lZlZ\njZWZ55FfoaMZSTsCj0TEXyRtszjlcuVhZlZjHR7z2BLYWdI7gKWByZJOi4g9yx6oykmCnx9mc0TE\n/60qbzOzXtHJJwlGxJHAkQCp5fHJdioOqHbM4+kmIYAPAEe0SpTvszvpKk9KN7P+FiVCN1U5SfC4\nodeSliO7NWx/4OfAccOk86q6ZmbJgopmmEfE5cDl7aavemHEacDHgfcDpwCbRMS8KvM0M+sldZ1h\nXuWYxzeAd5G1IjaIiH9XlZeZWa+q66q6VY55fAJYHfgs8ICk+Sk8JWl+hfmamfWMKPGvm7wwoplZ\njfVdt5WZmS2+unZbufIwM6sxtzzMzKw0tzzMzKy0bg+EF+XKw8ysxgaizx5Da2Zmi6+Ta1t1UuWV\nh6SlgVelt3dGxHNV52lm1iv6rttK0njgK2TrWd0LCFhT0o+Bz0TEf6rK28ysV9S15VHlRL5vANOA\nV0TE6yNiE+CVwBTg2FaJvKqumdlCfTfDHNgRWDdyNylHxHxJHwZuJ1tl9yW8qq6Z2UJ1bXlUWXlE\nNJndEhEDkur5aZiZ1Uxdxzyq7Lb6m6S9GyMl7UnW8jAzsxFEDBYO3VRly+OjwDmS9gf+kuJmABOB\nd1aYr5lZz+i7GeYR8S9gc0lvBl6boi+IiEuqytPMrNf07STBiLgUuLTqfMzMepEXRjQzs9L68W4r\nMzNbTHW928qVh5lZjbnbyszMSuu7u63MzGzxueVhZmalecDczMxK67uWR3qOx4Fkz/KYA5wYEQuq\nys/MrBfVdZJglWtbnUK2HMkcYHvguCKJvCS7mdlCgxGFQzdV2W31mojYAEDSicC1RRJ5SXYzs4X6\ncZ7Hi08KjIgFkirMysysN/XjgPmGkuan1wImpvcie9bH5ArzNjPrCXUdMK9szCMixkXE5BSWi4jx\nudeuOMzMCuj0Y2glzZR0h6Q7JX2q3XL5Vl0zsxrrZMtD0jjgu8BbgX8C10k6LyL+VvZYVd5tZWZm\niykiCocCNgPujIi7I+IF4OfALpUXrC4BmFXHNL2Sh8tVvzxcrvrl0W6aKgMwC7g+F2Y1bH838KPc\n+72A77SV12ifbJsf0PV1TNMrebhc9cvD5apfHu2mGc3QycrD3VZmZv3jX8CaufdrpLjSXHmYmfWP\n64B1JL1C0lLAbsB57RxorN5tNbumaXolj3bS9HO5+vnc20nTK3m0m2bURDZh+2PA74BxwEkRcWs7\nx1Lq9zIzMyvM3VZmZlaaKw8zMyvNlYeZmZXWs5WHpPUkbSdp2Yb4mS3230zSpun1ayR9XNI7SuZ5\nasn9t0r5vK3F9s0lTU6vJ0r6gqRfS/qapOVbpDlY0prNtrXYfylJe0t6S3q/h6TvSPqopCWHSbe2\npE9KOl7SNyUdOFRWM+t9Y37AXNJ+EfHjhriDgY8CtwEbAYdExK/SthsiYpOG/Y8ie2DVeOBiYHPg\nMrL1X34XEV9ukm/j7W0CtgUuBYiInZukuTYiNkuvD0hl/CXwNuDXEXFMw/63AhumOyRmA88AZwHb\npfh3NcnjSeBp4C7gdOAXETG3cb/c/j9N5z0JeAJYFjgn5aGI2KdJmoOBHYErgXcAN6a07wQ+EhGX\nt8rPrFdIWjkiHhntcoya0Z7x2IEZk/c1iZsDLJteTyebpn9Ien9ji/3HkV1A5wOTU/xE4OYW+d4A\nnAZsA2yd/n8wvd66RZobc6+vA1ZKr5cB5jTZ/7Z8fg3bbmqVB1mL8m3AicBc4LfAPsByTfa/Of0/\nHngYGJfea5hzn5PbbxJweXq9VrPPtx8CsHIX8lhhtM+zjTIvDxwD3A48DjxG9qXuGGBKyWNd2CJ+\nMvBV4CfAHg3bvtcizarACWSLBK4AHJ1+r88EVmuy/7SGsAJwDzAVmDban/NohDHRbSXp5hZhDrBK\nkyRLRMS/ASLiHrIL+/aSvkl2UWy0ICIGIuIZ4K6ImJ/SPgu0eoDwDOAvwGeAJyP7tv1sRFwREVe0\nSLOEpKmSViC7+M5N+TwNNHu++y2S9kuv/yppRvo81iX3sK0GERGDEXFRRHwAWB34HjATuLtFmZYC\nliOrCIa6wyYALbutWDhHaAJZa4WIuK9VGknLSzpG0u2SHpf0mKTbUtyUYfJpStKFTeImS/qqpJ9I\n2qNh2/daHGdVSSdI+q6kFSQdLWmOpDMlrdYizbSGsAJwbfrZTmuy/8zc6+UlnZh+f38mqdnvL+lz\nWTG9niHpbuAaSfdK2rrJ/jdI+qykVzY7Xos8Zki6TNJpktaUdLGkJyVdJ2njFmmWlfRFSbemfedK\nulrSvi2yOROYB2wTEdMiYgWyFvq8tK3x+Ju0CK8n60Vo5sdkf9dnA7tJOlvShLRtixZpTgb+BtxP\n1svwLFkr+g/A95vs/yjZ3/tQuB54GdmXyOtb5NHbRrv2KhLIvhFvBLy8IUwHHmiy/6XARg1x44FT\ngYEm+18DTEqvl8jFL0/DN/4madcAfgF8hyatoIZ97yG7gP8j/b9ail+WJi2JlP/JZF1Q15BVGHcD\nV5B1WzXLo+U3/6FzbIg7LB3zXuBg4BLgh2Tfwo5qcZxDgJvTfrcD+6X4lYArW6T5HXAEsGoubtUU\nd1GLNJtBLmCZAAADsUlEQVS0CK8HHmyy/9lk32h3JZs1ezYwIW1r+nMka5UdBHwqndMRZMs3HAT8\nqkWawfQzzIf/DP1cm+x/Q+71j4Avpd/fw4BzW+QxJ/f6MmDT9HpdmqynlPI+FriP7JHPhwGrj/D7\neC1Zd+3uZBfRd6f47YA/t0jzK2Df9Hv/ceBzwDrAKcBXmux/xzD5v2QbMED293tZk/Bsi+Pc1PD+\nM8AfyVoHrX7u+V6A+4Y7Xor7RPpd2SD/mQ/3+fZ6GPUCFCpk1v2yVYttP2sSt0b+ItWwbcsmcRNa\n7Lti/pdlhDLu0OyPp2DaScArhtk+GdgwXTRXGeFY67aR/+pDFxpgCtniaZuNkOa1ab/1CuZR6iKS\n4ktdSLpxEUnxpS4kLFp5NJaxVR63AePT66sbtjXr4szn8Say1uZD6bNquvLrCOfe9EsI8NeG99el\n/5cAbm+y/0XA4fnfW7LegiOA3zfZ/xZgnRZ53z/MZ7VEQ9y+wK3AvSOdB/ClkT7fFD/0RfGbZC31\nl3xR6Kcw6gVw6I9Q9iKStpe6kHTrIpK2Fb6QkD105+Op0vkH6UaVtK3VuNJB6TN7M1l//PFk42lf\nAH7SZP+XVI5k43gzgR+3yOPPZGNj7yFree6a4remxWqxwJ9IX+SAncluKBna1qwlMRX4GlkLdR7Z\nuMdtKe4lYwVkX0j+q0Xeu7aI/zrwlibxM4G/t0jzRdK4aEP8q4CzRvhd3hm4Gniok38jYy2MegEc\n+iM0XEQeb7iITG2RptSFpNsXkbTfiBcS4KiGMHSjxKrAqcOk2wY4g+wmiDnABWTPaxjfZN+ft/Ez\n2ZCsO/FCYL1UQT1BVtm+sUWa15F1d80DriK1dMm6LA9ukWY94C2NnzMwc5j9tyu6/whptm8jzYjl\nIruZZv2RytXLYdQL4OBAGjOpMk2VeTRcSGpTrm7m0SoN2TjaHcC5ZGN+u+S2NWstldo/xR9UdZp2\nytXrYdQL4ODACDcadCJNN/Koa7lG89xp77b5wvt3K007efR6GKtLstsYI+nmVptofrt16TTdyKOu\n5arrudNw27ykbYCzJL2c5rfNl92/W2nayaOnufKwblkFeDtZX3meyAZhO5GmG3nUtVx1PfeHJW0U\nETcBRMS/Je0InARs0IH9u5WmnTx6misP65bfkDX7b2rcIOnyDqXpRh51LVddz31vGibARsQCYG9J\nP+jA/t1K004ePW3Mr21lZmbdNyaWJzEzs3px5WFmZqW58jAzs9JceZiZWWn/H/uuKesDc6JZAAAA\nAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x12015a6d8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4HEXd9vHvTQIhAUIWkEXAoMKDCoIYFgUFxSXIIvq6\nAIbVx4gLIOoF4gb6ouD6irtREBBFEBBBUEHZHhc2AQkIPAKyyRYgEAggJuf3/tF1SDPMnOmeTM/p\nM3N/uOqip7qrq2bOpGuqqqtaEYGZmVkZy412AczMbOxx5WFmZqW58jAzs9JceZiZWWmuPMzMrDRX\nHmZmVporjxqTdIOk7TtMG5Je3OUi9R1Jn5T0owrO+x5J53f7vCXL8H1JnxnNMlj/kud5jA2Svg/M\nzkUtDzwdEau0OD6ADSLill6Ur0n+M4B/AstHxOKK8jgSeHFEzG53bDp+e+DkiFinivK0ybvSv4ek\nfYH/johtqzh/m7xLfTetP4wf7QJYMRFxAHDA8GtJJwBDo1agikkS2Y+bvn2PRUkaX1UF3A2D9t20\nJCIcahqA24E3NIlfCXgM2G6EtEH2qxxgJ+AaYCFwF3Bk7rhzgQMb0l4HvC1tvxq4Eng0/f/VrcoH\nHEn2yx7gzlSGx1N4VYH3ezHwBeBPwJPAi4G1gbOBh4FbgPelY2cBTwP/Sef/W4rfD7gxfT63Ae/P\nfWZPkl3Uhsu0dr7M6bhdgRuAR1J5XtLwfj+ePp9HgVOBFVu8l32BP6btS9NnsSjl++4UvzNwbcrr\nz8DLG/I6LOX1b7Ifep8Abk3v7e+5v9FLgKeAJen8j6T4E4Cjcud8X/oMH06f6doN35cDgH+k8nyH\n1DNR8jvb9rvp0B9h1AvgMMIfp3XlsXe6MLb8x82zK4/tgU3IxrheDtwP7Jb2vQu4PJduU+AhYAVg\nGrAA2CtdvPZIr6c3Kx/PrjxmpDKML/F+LyardF6W8ls+XXi/C6wIbAbMB17fmF/uHDsBLwIEbAc8\nAWye+xzubjg+X+YN0wX+jSnvQ9PFdoXc+72CrNKZRlZJHdDivexLqjwa/x7p9SuAB4CtgHHAPun8\nE3J5XQusC0xMce9MeS8HvDuVda1m+aW4E0iVB/B64EFgc2AC8C3g0oby/RqYAqyXPudZad96ZBXK\negX+hm2/mw79ETxgPjbtA5wU6V9rOxFxcUTMi4ihiLgOOIXswgrZL9ANJW2QXu8FnBoRT5NdiP8R\nET+JiMURcQpwE7BLV9/Ns50QETdE1k2zJrANcFhEPBUR1wI/IrtANRUR50bErZG5BDgfeE3BvN8N\nnBsRF0TEf4CvAhPJWl/DvhkR90TEw8A5ZBVaJ+YAP4iIyyNiSUScSNbC2Lohr7si4sn03n6R8h6K\niFPJWglbFszvPcDxEXF1RPwbOBx4VRqbGnZMRDwSEXcCFw2/t4i4MyKmpPh2Sn03bexy5THGSFqP\n7Bf0SSXSbCXpIknzJT1K1j2xGkBEPEXW/TJb0nJkrYufpKRrA3c0nO4O4PnL9CZGdldue23g4Yh4\nrGj+knaUdJmkhyU9AryF9F4LeNb7jWy85a6G/O7LbT8BrFzw3I1eAHxM0iPDgayVsXbumPxngaS9\nJV2bO35jOn9vj5O1MLv23jr5btrY5cpj7NkL+FNE3FYizc/IWhjrRsSqwPfJunWGnUj2y3QH4ImI\n+EuKv4fsIpe3HvCvtL0ImJTbt2Zuu9Nfnvl09wDTJOXv2snn/6w8JE0AziBrMawREVOA81j6XtuV\n6VnvNw3ar5vLr5vuAr6QftEPh0mpdTfsmfJKegHwQ+DDZN2GU4Dr6fy9rQRMp7vvrZPvpo1RrjzG\nnr3J+rLLWIXsF/xTkrYE9szvTJXFEPA1lrY6ILvwbihpT0njJb0beClZ3zhkffK7S1pe0kzgHbm0\n89M5XzgcIWlGmn8yo0ihI+IusoHkoyWtKOnlwHuBk9Mh9wMzUosJsnGaCSnvxZJ2BN6UO+X9wHRJ\nq7bI8jRgJ0k7SFoe+BhZV9Kfi5S3jfvJfRZkFcEBqVUoSStJ2qmhosxbiayCmA8gaT+ylkf+/OtI\nWqFF+lOA/SRtlirZL5KNdd3e+Vt6jk6+mzZGufIYQyS9ClgH+EXJpB8EPi/pMeCzZBfJRieRDaoP\nX5iJiIfI7gj6GFkXx6HAzhHxYDrkM2SD0wuAz5G1cIbTPkG6cyp1s2xN9iv+Dsr92t2DbPD9HuCX\nwBER8fu0b/hzeEjS1al766D0/haQVZJn58p0E9lF9LZUpnwXERFxM9l8hW+RDS7vAuySxn+W1ZHA\niSnfd0XEVWR3P307lfUWskHvpiLi72SV+1/IKopNyO5KG3Yh2V1i90l6sEn635P9vc4A7iX7u+1e\npOCS1pP0eOqWanVMp99NG6M8SdCArD8dmBMVTjKT9GlgfkT8oKo8zKw3XHkYkiaR/XL9bkR4sNPM\n2nK31YCT9GayfvT7yXU7mZmNxC0PMzMrzS0PMzMrrdYLIy46anapZpGmTy2dh6YVnWOVTF29fB5T\n1yifZspapY5fbuqa7Q9qMHHtohOvl5o8YVL7g3KmTCg/h27K8iuVOn7quHJlytKsWD6NJpQ6floH\n/7xWHxpX6vjpS0pnwbQl5dcsnEa5G86mTPx36TxWWfWp0mkmTS9XrhWeV/738rg1yn+HV/nGOWp/\nVDH/efC2wtfB5Vd7YdfybcctDzMzK63WLQ8zs4E31EHzsgdceZiZ1VlNH2njysPMrM6G6ll59HTM\nQ9K2kr7TyzzNzMayWLK4cOilylsekl5BtsbQO8meaX1m1XmamfWNQeq2krQh2YJ2e5AtMHcq2YTE\n11WRn5lZ36rpgHlV3VY3kT32cueI2DYivkX2fOW2JM2RdJWkq46/8h8VFc/MbIyIoeKhh6qqPN5O\ntuzzRZJ+KGkHnv3woZYiYm5EzIyImftvsUH7BGZm/WxoqHjooUoqj4g4KyJ2BzYiexbyR4DnSfqe\npDeNnNrMzIZFDBUOvVTp3VYRsSgifhYRu5A9KOYa4LAq8zQz6ys1bXn0bJ5HRCwA5qZgZmZFDNLd\nVmZm1iU1vdvKlYeZWZ31ePJfUa48zMzqzN1WZmZWWk3XtnLlYWZWYxEe8zAzs7LcbWVmZqW528rM\nzEpzywMkrQY8FBGFH+huZjbQajrPo7LlSSRtLeliSWdKeoWk64HrgfslzRohnVfVNTMbVtNVdats\neXwb+CSwKnAhsGNEXCZpI+AU4LfNEkXEM0uYLDpqtlsoZjbYBnCS4PiIOB9A0ucj4jKAiLhJKrQ6\nu5mZDeCAef4dP9mwzy0KM7MiBrDy2FTSQrKHQE1M26TXK1aYr5lZ3xi4SYIRMa6qc5uZDYwutjwk\nrQucBKxB1gM0NyKOlTQNOBWYAdwOvCs9RqOlSh8GZWZmy6i7d1stBj4WES8FtgY+JOmlwCeAP0TE\nBsAf0usRufIwM6uzLj5JMCLujYir0/ZjwI3A84G3Aiemw04Edmt3LlceZmZ1VqLlkZ8nl8KcVqeV\nNAN4BXA5sEZE3Jt23UfWrTUiL09iZlZnJcY88vPkRiJpZeAM4CMRsTA/fSIiQlLbO2JdeZiZ1VmX\nJwlKWp6s4vhpRJyZou+XtFZE3CtpLeCBdudxt5WZWZ11ccxDWRPjOODGiPh6btfZwD5pex/gV+3O\nVVnLQ9KLyfrR/tQQvw1wX0TcWlXeZmZ9o7trVm0D7AXMk3RtivskcAxwmqT3AncA72p3oiq7rb4B\nHN4kfmHat0uFeZuZ9YcuzvOIiD+STdRuZocy56qy22qNiJjXGJniZrRK5FV1zcxyBnBV3Skj7JvY\naodX1TUzy6np2lZVtjyukvS+xkhJ/w38tcJ8zcz6xwC2PD4C/FLSe1haWcwEVgDeVmG+Zmb9o6Yt\njyoXRrwfeLWk1wEbp+hzI+LCqvI0M+s7g1Z5DIuIi4CLqs7HzKwvLRmwJdnNzKwLBrXlYWZmy6DH\nA+FFufIwM6sztzzMzKy0qOd0N1ceZmZ15paHmZmV5srDzMxKG+QBc0mrA0TE/F7kZ2bWL2KonmMe\nla1tpcyRkh4Ebgb+V9J8SZ+tKk8zs76zZHHx0ENVLox4CNmDR7aIiGkRMRXYCthG0iGtEnlJdjOz\nnKEoHnqoyspjL2CPiPjncERE3AbMBvZulSgi5kbEzIiYuf8WG1RYPDOzMaCLj6HtpirHPJaPiAcb\nIyNifnoAu5mZtTOAd1s93eE+MzMbNoCTBDeVtLBJvIAVK8zXzKx/DFrLIyLGVXVuM7OBUdNbdT1J\n0MyszgZ5kqCZmXXILQ8zMysrFvtJgmZmVpa7rczMrDR3W5mZWWmDdquumZl1QU1bHlWuqntobvud\nDfu+WFW+ZmZ9JYaKhx6qcmHE3XPbhzfsm9UqkVfVNTPLqemqulV2W6nFdrPXz4iIucBcgEVHza5n\ne83MrEeipmMeVbY8osV2s9dmZtZMF1seko6X9ICk6xviD5R0k6QbJH25SLF6sTCigIm5RRK9MKKZ\nWVFLujpJ8ATg28BJwxGSXge8Fdg0Iv4t6XlFTuSFEc3M6qyLYxkRcamkGQ3RHwCOiYh/p2MeKHKu\nKrutzMxsGcVQFA4d2hB4jaTLJV0iaYsiiTzPw8yszkpUCpLmAHNyUXPTTUgjGQ9MA7YGtgBOk/TC\niJGfQuXKw8yszkrcbZW/W7WEu4EzU2VxhaQhYDVg/kiJ3G1lZlZn1c/zOAt4HYCkDYEVgAfbJXLL\nw8yszro4YC7pFGB7YDVJdwNHAMcDx6fbd58G9mnXZQWuPMzMaq3AdbzMufZosWt22XO58jAzq7Oa\nLozoysPMrMZi8YAtTyJpvarObWY2MGq6MGKVd1udNbwh6YwK8zEz619DJUIPVVl55FfOfWHhRF6S\n3czsGT2YYd6R0VpVt3WiiLkRMTMiZu6/xQYVFMvMbAypabfVaK2qGxExucK8zcz6Qz3Hy72qrplZ\nnfW6O6oo36prZlZng9byMDOzZeeWh5l13UPjYHpXHzRndROLR7sEzbnyMBvDXHEMAHdbmZlZWeHK\nw8zMSnPlYWZmZbnlYWZmpbnyMDOz0upaeVS5JPtbJX0o9/pySbel8I6q8jUz6yuh4qGHClcekv4o\n6QuSZklapUCSQ4Gzc68nAFuQPT/3AyPk41V1zcySGCoeeqlMy2Mv4Gbg/wB/Thf4/zfC8StExF25\n13+MiIci4k5gpVaJvKqumdlSMaTCoZcKj3lExD8lPQU8ncLrgJeMkGRqQ/oP516uXqaQZmaDamhJ\nbyuFosp0W91K9nTANYDjgI0jYtYISS6X9L4m53k/cEXZgpqZDaK6dluVudvqm8C2wB7AK4BLJF0a\nEbe2OP4Q4CxJewJXp7hXko197NZhec3MBkqvu6OKKtNtdSxwrKSVgf2AI4F1gKbP7YiIB4BXS3o9\n8LIUfW5EXLhMJTYzGyBRz0V1i1cekr5G1vJYGfgL8Fngf9qlS5WFKwwzsw6M+ZYHWYXx5Yi4v6rC\nmJnZs435yiMiTpe0q6TXpqhLIuKcisplZmb0R7fV0cCWwE9T1EGSXhURn6ykZGZmNvZbHsBOwGYR\n2Q1hkk4ErgFceZiZVSR6vOxIUWUXRpwCPJy2V+1yWczMrMGSmk4SLFN5HA1cI+kiQMBrgU9UUioz\nMwPGeMtDkoA/AluTLW4IcFhE3FdVwczMbIyPeURESDovIjbh2SvltiTpW0DL+wQi4qBiRTQzG1zd\nvNtK0vHAzsADEbFxivsKsAvZmoW3AvtFxCPtzlVmVd2rJW3R/rBnXAX8NYVdc9vDoSkvyW5mtlSX\nV9U9AWhck/ACsrUKXw78L3B4kROVGfPYCniPpDuARWTjHpEyfI6IOHF4W9JH8q9HEhFzgbkAi46a\nXdM7nM3MemOoi2MeEXGppBkNcefnXl4GFHpYX5nK480j7ZQ0NSIWtNjtSsDMrANlBswlzQHm5KLm\nph/kRe0PnFrkwDIzzO9oc8gfgM2Lns/MzNorM+aR77kpS9KngMUsnQg+orLzPEbMu6Egj7G0xTFJ\n0sLccRERk7uYt5lZX+pmt1UrkvYlG0jfIaJYddXNyuNZGUZEkeecm5nZCIYqvlVX0izgUGC7iHii\naLpuVh5mZtZl3Wx5SDoF2B5YTdLdwBFkd1dNAC7IpvRxWUQc0O5clXVbmZnZsuvmDPOI2KNJ9HGd\nnKvQPA9J4yTd1OawHTopgJmZtTYUKhx6qVDlERFLgJslrTfCMQ+32mdmZp2JEqGXynRbTQVukHQF\n2SRBACJi166XyszMgN7cbdWJMpXHZyorhZmZNTWmV9UFiIhLJL0A2CAifi9pEjCuuqKZmdnQaBeg\nhcILI0p6H3A68IMU9XzgrCoKZWZmmUCFQy+VWVX3Q8A2wEKAiPgH8LxWB0t6TNLCJuGx3GzzZum8\nqq6ZWbI4VDj0Upkxj39HxNNpEgmSxjPy8zo6mmHuVXXNzJbqdYuiqDItj0skfRKYKOmNwC+Ac6op\nlpmZQTbmUTT0UpnK4xPAfGAe8H7gvIj4VCWlMjMzoL5jHmW6rQ6MiGOBHw5HSDo4xZmZWQXG/N1W\nwD5N4vbtUjnMzKyJunZbtW15SNoD2BNYX9LZuV2rAF6SxMysQnUdMC/SbfVn4F5gNeBrufjHgOuq\nKJSZmWUqfpxHx9pWHunxs3dIujQiLsnvk/Ql4LCqCmdmNuiGatryKDPm8cYmcTt2qyBmZvZcS0qE\nXioy5vEB4IPAiyTlu6lWAf5UVcHMzAyGVM+WR5Exj58BvwGOJpvrMewxP8PDzKxadV1mo223VUQ8\nGhG3p8cXrgu8Po2DLCdp/WZpRljXaqGk+ZIuk+QnD5qZtTFmb9UdJukIYCbwX8CPgRWAk8kWS3yW\nkda1kjQO2Bj4afq/mZm1UNe7rcoMmL8N2JX0FMGIuIds3KOUiFgSEX8DvtVsv1fVNTNbaggVDr1U\npvJ4OiKeeVSupJWWJeOI+EGL+LkRMTMiZu6/xQbLkoWZ2ZhX12eYl6k8TpP0A2BKejDU78mtc2Vm\nZt03pOKhl8o8hvaraSn2hWTjHp+NiAsqK5mZmdV2YcQyq+qSKgtXGGZmPbKkpgPmRSYJPkbz7jQB\nERGTu14qMzMDxnDLo9PHyZqZ2bIbs5WHmZmNnhir3VZmZjZ63PIwM7PSXHmYmVlpY3ZhRDMzGz3d\nniQo6RBJN0i6XtIpklbspFyuPMzMaqybq+pKej5wEDAzIjYGxgG7d1KuyioPSeuOsG/nqvI1M+sn\nFTxJcDwwUdJ4YBJwTyflqrLlcYGkGY2RkvYHjq0wXzOzvlGm2yq/KnkKc/Lnioh/AV8F7gTuBR6N\niPM7KVeVlcdHgfMlPbM0rqTDgUOA7Vol8pLsZmZLlem2yq9KnsLc/LkkTQXeCqwPrA2sJGl2J+Wq\nrPKIiPOADwC/kbSxpG8AuwCvjYi7R0jnJdnNzJIuL8n+BuCfETE/Iv4DnAm8upNyVTpgHhF/APYD\nLgZeSPYI2wVV5mlm1k+GiMKhgDuBrSVNkiRgB+DGTspV2TyP3IKKAiaQFfKBVGAvqGhmVkA3JwlG\nxOWSTgeuBhYD1wBzR07VXGWVhxdUNDNbdt2eJBgRRwBHLOt5PMPczKzG6ro8iScJlrVg/miXwBos\nWPLEaBdh1Dw0brRLYFUb84+htWTq6qNdAmswddyk0S7CqJleYmaYjU1Larq6lSsPM7Maq2u3lSsP\nM7MaK3gLbs+58jAzq7F6Vh2uPMzMaq2u3VajcreVpI+MRr5mZmNNl2eYd81o3ar70VHK18xsTOny\n2lZdM1qVR8s7kr2qrpnZUt18GFQ3jVbl0bKS9Kq6ZmZLRYn/eqkXCyM+Zxcwsap8zcz6yeKa3m/l\nhRHNzGqsnlWHb9U1M6s1TxI0M7PS6jrPw5WHmVmN9XogvChXHmZmNeaWh5mZleaWh5mZleaWh5mZ\nlTYUbnmYmVlJfpKgmZmV5jEPMzMrbeDGPCSdPdL+iNi1qrzNzPrFIM4wfxVwF3AKcDkjLMOeJ2kO\nMAfgm7tuiVfWNbNBNojdVmsCbwT2APYEzgVOiYgbRkoUEXOBuQCLjppdz0/NzKxH6tptVdnzPCJi\nSUT8NiL2AbYGbgEulvThqvI0M+s3EVE49FKlA+aSJgA7kbU+ZgDfBH5ZZZ5mZv1k4MY8JJ0EbAyc\nB3wuIq6vKi8zs35V126rKlses4FFwMHAQdIz4+UCIiImV5i3mVlfWFLT6qPKJwmO1vPRzcz6Rq/H\nMoryBd7MrMaGSoSiJI2TdI2kX3daLs8wNzOrsYrmeRwM3Ah0PHzgloeZWY0NEYVDEZLWIbsL9kfL\nUi5XHmZmNVZmnoekOZKuyoU5TU75DeBQlvFGLndbmZnVWJl5HvkVOpqRtDPwQET8VdL2y1IuVx5m\nZjXW5TGPbYBdJb0FWBGYLOnkiJhd9kRVThL87Ai7IyL+b1V5m5n1i24+STAiDgcOB0gtj493UnFA\ntWMei5qEAN4LHNYqUb7P7vgr/1Fh8czM6i9KhF6qcpLg14a3Ja1CdmvY/sDPga+NkM6r6pqZJYsr\nmmEeERcDF3eavuqFEacBHwXeA5wIbB4RC6rM08ysn9R1hnmVYx5fAd5O1orYJCIeryovM7N+VddV\ndasc8/gYsDbwaeAeSQtTeEzSwgrzNTPrG1Hiv17ywohmZjU2cN1WZma27OrabeXKw8ysxtzyMDOz\n0tzyMDOz0no9EF6UKw8zsxpbEgP2GFozM1t23VzbqpsqrzwkrQi8OL28JSKeqjpPM7N+MXDdVpLG\nA18kW8/qDkDAupJ+DHwqIv5TVd5mZv2iri2PKifyfQWYBqwfEa+MiM2BFwFTgK+2SuRVdc3Mlhq4\nGebAzsCGkbtJOSIWSvoAcBPZKrvP4VV1zcyWqmvLo8rKI6LJ7JaIWCKpnp+GmVnN1HXMo8puq79L\n2rsxUtJsspaHmZm1ETFUOPRSlS2PDwFnStof+GuKmwlMBN5WYb5mZn1j4GaYR8S/gK0kvR54WYo+\nLyL+UFWeZmb9ZmAnCUbEhcCFVedjZtaPvDCimZmVNoh3W5mZ2TKq691WrjzMzGrM3VZmZlbawN1t\nZWZmy84tDzMzK80D5mZmVtrAtTzSczwOIHuWxzzguIhYXFV+Zmb9qK6TBKtc2+pEsuVI5gE7Al8r\nkshLspuZLTUUUTj0UpXdVi+NiE0AJB0HXFEkkZdkNzNbahDneTzzpMCIWCypwqzMzPrTIA6Ybypp\nYdoWMDG9FtmzPiZXmLeZWV+o64B5ZWMeETEuIiansEpEjM9tu+IwMyug24+hlTRL0s2SbpH0iU7L\n5Vt1zcxqrJstD0njgO8AbwTuBq6UdHZE/L3suaq828rMzJZRRBQOBWwJ3BIRt0XE08DPgbdWXrC6\nBGBOHdP0Sx4uV/3ycLnql0enaaoMwBzgqlyY07D/HcCPcq/3Ar7dUV6j/WY7/ICuqmOafsnD5apf\nHi5X/fLoNM1ohm5WHu62MjMbHP8C1s29XifFlebKw8xscFwJbCBpfUkrALsDZ3dyorF6t9Xcmqbp\nlzw6STPI5Rrk995Jmn7Jo9M0oyayCdsfBn4HjAOOj4gbOjmXUr+XmZlZYe62MjOz0lx5mJlZaa48\nzMystL6tPCRtJGkHSSs3xM9qcfyWkrZI2y+V9FFJbymZ50klj9825fOmFvu3kjQ5bU+U9DlJ50j6\nkqRVW6Q5SNK6zfa1OH4FSXtLekN6vaekb0v6kKTlR0j3Qkkfl3SspK9LOmC4rGbW/8b8gLmk/SLi\nxw1xBwEfAm4ENgMOjohfpX1XR8TmDccfQfbAqvHABcBWwEVk67/8LiK+0CTfxtvbBLwOuBAgInZt\nkuaKiNgybb8vlfGXwJuAcyLimIbjbwA2TXdIzAWeAE4Hdkjxb2+Sx6PAIuBW4BTgFxExv/G43PE/\nTe97EvAIsDJwZspDEbFPkzQHATsDlwJvAa5Jad8GfDAiLm6Vn1m/kPS8iHhgtMsxakZ7xmMXZkze\n2SRuHrBy2p5BNk3/4PT6mhbHjyO7gC4EJqf4icB1LfK9GjgZ2B7YLv3/3rS9XYs01+S2rwRWT9sr\nAfOaHH9jPr+Gfde2yoOsRfkm4DhgPvBbYB9glSbHX5f+Px64HxiXXmuE9z4vd9wk4OK0vV6zz3cQ\nAvC8HuQxfbTfZwdlXhU4BrgJeBh4iOxH3THAlJLn+k2L+MnA0cBPgD0b9n23RZo1ge+RLRI4HTgy\nfa9PA9Zqcvy0hjAduB2YCkwb7c95NMKY6LaSdF2LMA9Yo0mS5SLicYCIuJ3swr6jpK+TXRQbLY6I\nJRHxBHBrRCxMaZ8EWj1AeCbwV+BTwKOR/dp+MiIuiYhLWqRZTtJUSdPJLr7zUz6LgGbPd79e0n5p\n+2+SZqbPY0NyD9tqEBExFBHnR8R7gbWB7wKzgNtalGkFYBWyimC4O2wC0LLbiqVzhCaQtVaIiDtb\npZG0qqRjJN0k6WFJD0m6McVNGSGfpiT9pkncZElHS/qJpD0b9n23xXnWlPQ9Sd+RNF3SkZLmSTpN\n0lot0kxrCNOBK9LfdlqT42fltleVdFz6/v5MUrPvL+lzWS1tz5R0G3C5pDskbdfk+KslfVrSi5qd\nr0UeMyVdJOlkSetKukDSo5KulPSKFmlWlvR5STekY+dLukzSvi2yOQ1YAGwfEdMiYjpZC31B2td4\n/s1bhFeS9SI082Oyf9dnALtLOkPShLRv6xZpTgD+DtxF1svwJFkr+n+A7zc5/kGyf+/D4Srg+WQ/\nIq9qkUd/G+3aq0gg+0W8GfCChjADuKfJ8RcCmzXEjQdOApY0Of5yYFLaXi4XvyoNv/ibpF0H+AXw\nbZq0ghqOvZ3sAv7P9P+1UvzKNGlJpPxPIOuCupyswrgNuISs26pZHi1/+Q+/x4a4Q9I57wAOAv4A\n/JDsV9gRLc5zMHBdOu4mYL8UvzpwaYs0vwMOA9bMxa2Z4s5vkWbzFuGVwL1Njj+D7BftbmSzZs8A\nJqR9Tf+OZK2yA4FPpPd0GNnyDQcCv2qRZij9DfPhP8N/1ybHX53b/hFwVPr+HgKc1SKPebnti4At\n0vaGNFmxxiBcAAADX0lEQVRPKeX9VeBOskc+HwKs3eb7eAVZd+0eZBfRd6T4HYC/tEjzK2Df9L3/\nKPAZYAPgROCLTY6/eYT8n7MPWEL27/eiJuHJFue5tuH1p4A/kbUOWv3d870Ad450vhT3sfRd2ST/\nmY/0+fZ7GPUCFCpk1v2ybYt9P2sSt07+ItWwb5smcRNaHLta/svSpow7NfvHUzDtJGD9EfZPBjZN\nF8012pxrww7yX3v4QgNMIVs8bcs2aV6WjtuoYB6lLiIpvtSFpBcXkRRf6kLCsyuPxjK2yuNGYHza\nvqxhX7MuznweryFrbd6XPqumK7+2ee9Nf4QAf2t4fWX6/3LATU2OPx84NP+9JestOAz4fZPjrwc2\naJH3XSN8Vss1xO0L3ADc0e59AEe1+3xT/PAPxa+TtdSf80NhkMKoF8BhMELZi0jaX+pC0quLSNpX\n+EJC9tCdj6ZK55+kG1XSvlbjSgemz+z1ZP3xx5KNp30O+EmT459TOZKN480Cftwij7+QjY29k6zl\nuVuK344Wq8UCfyb9kAN2JbuhZHhfs5bEVOBLZC3UBWTjHjemuOeMFZD9IPmvFnnv1iL+y8AbmsTP\nAv7RIs3nSeOiDfEvBk5v813eFbgMuK+b/0bGWhj1AjgMRmi4iDzccBGZ2iJNqQtJry8i6bi2FxLg\niIYwfKPEmsBJI6TbHjiV7CaIecB5ZM9rGN/k2J938DfZlKw78TfARqmCeoSssn11izQvJ+vuWgD8\nkdTSJeuyPKhFmo2ANzR+zsCsEY7foejxbdLs2EGatuUiu5lm43bl6ucw6gVwcCCNmVSZpso8Gi4k\ntSlXL/NolYZsHO1m4CyyMb+35vY1ay2VOj7FH1h1mk7K1e9h1Avg4ECbGw26kaYXedS1XKP53uns\ntvnCx/cqTSd59HsYq0uy2xgj6bpWu2h+u3XpNL3Io67lqut7p+G2eUnbA6dLegHNb5sve3yv0nSS\nR19z5WG9sgbwZrK+8jyRDcJ2I00v8qhruer63u+XtFlEXAsQEY9L2hk4HtikC8f3Kk0nefQ1Vx7W\nK78ma/Zf27hD0sVdStOLPOparrq+971pmAAbEYuBvSX9oAvH9ypNJ3n0tTG/tpWZmfXemFiexMzM\n6sWVh5mZlebKw8zMSnPlYWZmpf1/kAhaLQykVZ0AAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x12015a7f0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xe8HUX9//HXOwmEUEIKSJESFPhaiBRDUfRLswSp+hUF\npMUSUQRBfYDYQL8qWH9fFAtRqgVBQURFBalflF4kIPAVkKK0UBOpJvfz+2Pnks3hnHt3T86eu/ec\n9zOPeWTP7M7OnHPv3TkzszOriMDMzKyMMSNdADMzG31ceZiZWWmuPMzMrDRXHmZmVporDzMzK82V\nh5mZlebKo8Yk3SJp2zbThqT1O1ykniPpU5J+WMF53yPp/E6ft2QZvi/psyNZButd8jyP0UHS94F9\nclHLAM9HxEotjg9gg4i4oxvla5L/NODvwDIRsbCiPI4G1o+IfYY7Nh2/LfDjiFirivIMk3elPw9J\nBwDvj4g3VHH+YfIW8N/ALGBF4AbgoIi4pdtlse5xy2OUiIgDI2LFwQCcDvx8pMtVFWX8+wlIGjfS\nZRjGHsB7gTcCU4ArgB+NaImsehHhUNMA3A28qUn8CsACYJsh0gbZt3KAnci+Dc4H7gOOzh33W+Dg\nhrQ3AW9P268HrgGeTP+/vlX5gKPJvtkD3JvK8K8UXlfg/V4CfAn4E/AMsD6wJnAu8BhwB/CBdOxM\n4Hng3+n8f0nxs4Bb0+dzF/DB3Gf2DDCQK9Oa+TKn43YFbgGeSOV5ZcP7/UT6fJ4EzgCWa/FeDgAu\nT9uXpc/iqZTvu1P8zsCNKa8/A69pyOuIlNdzwDjgk8Cd6b39NfczeiXwLLAonf+JFH8K8MXcOT+Q\nPsPH0me6ZsPvy4HA31J5vkPqmSjwczsCODP3+tXAsyP99+NQbRjxAjgM8cNpXXnsly6MLf+4WbLy\n2BaYTtbSfA3wELB72vcu4Kpcuo2BR4Flyb5FPg7smy5ee6XXU5uVjyUrj2mpDONKvN9LyCqdV6f8\nlkkX3u8CywGbAPOA7Rvzy51jJ+DlgIBtgKeBzXKfwz8ajs+XeUOyC/ybU96Hp4vtsrn3ezVZpTOF\nrJI6sMV7OYBUeTT+PNLrTYGHgS2BscD+6fzjc3ndCKwNTEhxe6S8xwDvTmVdo1l+Ke4UUuUBbA88\nAmwGjAe+DVzWUL7fAJOAddLnPDPtW4esQlmnxXtdF7gufX7LAF8Fzhnpvx+HaoO7BUan/YHTIv3l\nDiciLomIuRExEBE3kXV5bZN2nwtsKGmD9Hpf4IyIeJ7sQvy3iPhRRCyMiNOB24BdOvpulnRKRNwS\n2TjJ6sDWwBER8WxE3Aj8kKzybCoifhsRd0bmUuB8su6UIt4N/DYiLoiIfwNfByaQtb4GfSsi7o+I\nx4Bfk1Vo7ZgNnBARV0XEoog4layFsVVDXvdFxDPpvf085T0QEWeQtRK2KJjfe4CTIuL6iHgOOBJ4\nXRqbGnRsRDwREfcCFw++t4i4NyImpfhmHgAuB24na93tARxWsFw2SrnyGGUkrUP2Dfq0Emm2lHSx\npHmSniTrnlgFICKeJet+2SeNMezF4v7qNYF7Gk53D/DSpXoTQ7svt70m8FhELCiav6QdJV0p6TFJ\nTwBvI73XApZ4vxExkMqTz+/B3PbTZAPE7VgX+LikJwYDWStjzdwx+c8CSftJujF3/Ea0/97+RdbC\n7MR7+xxZJbY2WQvx88BFkpYvmN5GIVceo8++wJ8i4q4SaX5K1sJYOyJWBr5P1q0z6FSyb6Y7AE9H\nxBUp/n6yi1zeOsA/0/ZTQP4CsXpuu93b+PLp7gemSMrfUZbPf4k8JI0HziJrMawWEZOA81j8Xocr\n0xLvN91FtHYuv066D/hS+kY/GJZPrbtBL5RX0rrAD4CPkHUbTgJupv33tgIwlc68t02An0XEP1IL\n9RRgMvCqDpzbasqVx+izH1lfdhkrkX2Df1bSFsDe+Z2pshgAvsGSd8mcR9altbekcZLeTXZB+E3a\nfyOwp6RlJM0A3plLOy+d82WDEZKmpfkn04oUOiLuIxtIPkbScpJeA7wP+HE65CFgWu6urGXJ+vPn\nAQsl7Qi8JXfKh4CpklZukeWZwE6SdpC0DPBxsq6kPxcp7zAeIvdZkFUEB6ZWoSStIGmnhooybwWy\nCmIegKRZZC2P/PnXkrRsi/SnA7MkbZIq2S+TjXXd3f5besE1wB6SVpM0RtK+ZGMfI3KbuHWHK49R\nRNLrgLUof4vuh4EvSFpA1sVwZpNjTiMbVB+8MBMRj5LdEfRxsi6Ow4GdI+KRdMhnyQanHyfrqvhp\nLu3TpDunUjfLVmTf4u+h3LfdvcgG3+8HfgkcFRF/TPsGP4dHJV2furcOSe/vcbJK8txcmW4ju4je\nlcqU7yIiIm4nm0vzbbLB5V2AXdL4z9I6Gjg15fuuiLiW7O6n41NZ7yAb9G4qIv5KVrlfQVZRTCe7\nK23QRWR3iT0o6ZEm6f9I9vM6i2yM4uXAnkUKLmkdSf9KXabNfAX4C4vvHDsM+K+IeKLI+W108iRB\nA7L+dGB2VDjJTNJngHkRcUJVeZhZd7jyMNLA5kXAdyOi8EC8mfUvd1v1OUlvJetHf4hct5OZ2VDc\n8jAzs9Lc8jAzs9JqveDagkN3KdUsGrNKqzswW9PUyeWOn1J0TlbO5FVLJ9Hk1codP2mN0nmMmbz6\n8Ac1mLBm0cnamYnjy88TmzS+3Ly7ScusUDqPyWPLl2vy2OXKHa/xpfOYUvJPctWBsaXzmLqodBKm\nLBoodzzlb1CbNOG50mlWWvnZUscvP7V8uZZ9Sfnv2JNOv1jDH1XMvx+5q/B1cJlVXtaxfIfjloeZ\nmZVW65aHmVnfG2ijqdgFrjzMzOosynUZdosrDzOzOhuoZ+XR1TEPSW+Q9J1u5mlmNprFooWFQzdV\n3vKQtCnZGkN7kD3T+uyq8zQz6xn91G0laUOyBe32Iltg7gyyCYnbVZGfmVnPqumAeVXdVreRPfZy\n54h4Q0R8m+z5ysOSNFvStZKuPXlu43OIzMz6TAwUD11UVeXxDrJlny+W9ANJO7Dkw4daiog5ETEj\nImbMmt74HCIzsz4zMFA8dFEllUdEnBMRewKvIHsW8qHASyR9T9Jbhk5tZmaDIgYKh26q9G6riHgq\nIn4aEbuQPcToBuCIKvM0M+spNW15dG2eR0Q8DsxJwczMiuinu63MzKxDanq3lSsPM7M66/Lkv6Jc\neZiZ1Zm7rczMrLSarm3lysPMrMYiPOZhZmZludvKzMxKc7eVmZmV5pYHSFoFeDQiCj/Q3cysr9V0\nnkdly5NI2krSJZLOlrSppJuBm4GHJM0cIp1X1TUzG1TTVXWrbHkcD3wKWBm4CNgxIq6U9ArgdOD3\nzRJFxAtLmCw4dBe3UMysv/XhJMFxEXE+gKQvRMSVABFxm1RodXYzM+vDAfP8O36mYZ9bFGZmRfRh\n5bGxpPlkD4GakLZJr5erMF8zs57Rd5MEI2JsVec2M+sbHWx5SFobOA1YjawHaE5EHCdpCnAGMA24\nG3hXeoxGS5U+DMrMzJZSZ++2Wgh8PCJeBWwFHCTpVcAngQsjYgPgwvR6SK48zMzqrINPEoyIByLi\n+rS9ALgVeCmwG3BqOuxUYPfhzuXKw8yszkq0PPLz5FKY3eq0kqYBmwJXAatFxANp14Nk3VpD8vIk\nZmZ1VmLMIz9PbiiSVgTOAg6NiPn56RMREZKGvSPWlYeZWZ11eJKgpGXIKo6fRMTZKfohSWtExAOS\n1gAeHu487rYyM6uzDo55KGtinAjcGhHfzO06F9g/be8P/Gq4c1XW8pC0Plk/2p8a4rcGHoyIO6vK\n28ysZ3R2zaqtgX2BuZJuTHGfAo4FzpT0PuAe4F3DnajKbqv/AY5sEj8/7dulwrzNzHpDB+d5RMTl\nZBO1m9mhzLmq7LZaLSLmNkamuGmtEnlVXTOznD5cVXfSEPsmtNrhVXXNzHJqurZVlS2PayV9oDFS\n0vuB6yrM18ysd/Rhy+NQ4JeS3sPiymIGsCzw9grzNTPrHTVteVS5MOJDwOslbQdslKJ/GxEXVZWn\nmVnP6bfKY1BEXAxcXHU+ZmY9aVGfLcluZmYd0K8tDzMzWwpdHggvypWHmVmdueVhZmalRT2nu7ny\nMDOrM7c8zMysNFceZmZWWj8PmEtaFSAi5nUjPzOzXhED9RzzqGxtK2WOlvQIcDvwf5LmSfpcVXma\nmfWcRQuLhy6qcmHEw8gePLJ5REyJiMnAlsDWkg5rlchLspuZ5QxE8dBFVVYe+wJ7RcTfByMi4i5g\nH2C/VokiYk5EzIiIGbOmr1th8czMRoEOPoa2k6oc81gmIh5pjIyIeekB7GZmNpw+vNvq+Tb3mZnZ\noD6cJLixpPlN4gUsV2G+Zma9o99aHhExtqpzm5n1jZrequtJgmZmddbPkwTNzKxNbnmYmVlZsdBP\nEjQzs7LcbWVmZqW528rMzErrt1t1zcysA2ra8qhyVd3Dc9t7NOz7clX5mpn1lBgoHrqoyoUR98xt\nH9mwb2arRF5V18wsp6ar6lbZbaUW281evyAi5gBzABYcuks922tmZl0SNR3zqLLlES22m702M7Nm\nOtjykHSSpIcl3dwQf7Ck2yTdIumrRYrVjYURBUzILZLohRHNzIpa1NFJgqcAxwOnDUZI2g7YDdg4\nIp6T9JIiJ/LCiGZmddbBsYyIuEzStIboDwHHRsRz6ZiHi5yrym4rMzNbSjEQhUObNgTeKOkqSZdK\n2rxIIs/zMDOrsxKVgqTZwOxc1Jx0E9JQxgFTgK2AzYEzJb0sYuinULnyMDOrsxJ3W+XvVi3hH8DZ\nqbK4WtIAsAowb6hE7rYyM6uz6ud5nANsByBpQ2BZ4JHhErnlYWZWZx0cMJd0OrAtsIqkfwBHAScB\nJ6Xbd58H9h+uywpceZiZ1VqB63iZc+3VYtc+Zc/lysPMrM5qujCiKw8zsxqLhX22PImkdao6t5lZ\n36jpwohV3m11zuCGpLMqzMfMrHcNlAhdVGXlkV8592WFE3lJdjOzF3RhhnlbqhzzGGpV3daJvCS7\nmdlifThgPtSquhEREyvM28ysN9RzvNyr6pqZ1Vm3u6OK8q26ZmZ11m8tDzMzW3pueZhZx80bs4hV\nB9xD3Mti4UiXoDlXHmajmCuOPuBuKzMzKytceZiZWWmuPMzMrCy3PMzMrDRXHmZmVlpdK48ql2Tf\nTdJBuddXSborhXdWla+ZWU8JFQ9dVLjykHS5pC9JmilppQJJDgfOzb0eD2xO9vzcDw2Rj1fVNTNL\nYqB46KYyLY99gduB/wL+nC7w/2+I45eNiPtyry+PiEcj4l5ghVaJImJORMyIiBmzpq9bonhmZr0n\nBlQ4dFPhMY+I+LukZ4HnU9gOeOUQSSY3pP9I7uWqZQppZtavBhZ1t1Ioqky31Z1kTwdcDTgR2Cgi\nZg6R5CpJH2hyng8CV5ctqJlZP6prt1WZu62+BbwB2AvYFLhU0mURcWeL4w8DzpG0N3B9inst2djH\n7m2W18ysr3S7O6qoMt1WxwHHSVoRmAUcDawFNF1cJyIeBl4vaXvg1Sn6txFx0VKV2Mysj0Q9F9Ut\nXnlI+gZZy2NF4Argc8D/DpcuVRauMMzM2jDqWx5kFcZXI+KhqgpjZmZLGvWVR0T8QtKukv4zRV0a\nEb+uqFxmZkZvdFsdA2wB/CRFHSLpdRHxqUpKZmZmo7/lAewEbBKR3RAm6VTgBsCVh5lZRaLLy44U\nVXZhxEnAY2l75Q6XxczMGiyq6STBMpXHMcANki4GBPwn8MlKSmVmZsAob3lIEnA5sBXZ4oYAR0TE\ng1UVzMzMRvmYR0SEpPMiYjpLrpTbkqRvAy3vE4iIQ4oV0cysf3XybitJJwE7Aw9HxEYp7mvALmRr\nFt4JzIqIJ4Y7V5lVda+XtPnwh73gWuC6FHbNbQ+Gprwku5nZYh1eVfcUoHFNwgvI1ip8DfB/wJFF\nTlRmzGNL4D2S7gGeIhv3iJThi0TEqYPbkg7Nvx5KRMwB5gAsOHSXmt7hbGbWHQMdHPOIiMskTWuI\nOz/38kqg0MP6ylQebx1qp6TJEfF4i92uBMzM2lBmwFzSbGB2LmpO+kJe1HuBM4ocWGaG+XB9SBcC\nmxU9n5mZDa/MmEe+56YsSZ8GFrJ4IviQys7zGDLvhoIsYHGLY3lJ83PHRURM7GDeZmY9qZPdVq1I\nOoBsIH2HiGLVVScrjyUyjIgizzk3M7MhDFR8q66kmcDhwDYR8XTRdJ2sPMzMrMM62fKQdDqwLbCK\npH8AR5HdXTUeuCCb0seVEXHgcOeqrNvKzMyWXidnmEfEXk2iT2znXIXmeUgaK+m2YQ7boZ0CmJlZ\nawOhwqGbClUeEbEIuF3SOkMc81irfWZm1p4oEbqpTLfVZOAWSVeTTRIEICJ27XipzMwM6M7dVu0o\nU3l8trJSmJlZU6N6VV2AiLhU0rrABhHxR0nLA2OrK5qZmQ2MdAFaKLwwoqQPAL8ATkhRLwXOqaJQ\nZmaWCVQ4dFOZVXUPArYG5gNExN+Al7Q6WNICSfObhAW52ebN0nlVXTOzZGGocOimMmMez0XE82kS\nCZLGMfTzOtqaYe5Vdc3MFut2i6KoMi2PSyV9Cpgg6c3Az4FfV1MsMzODbMyjaOimMpXHJ4F5wFzg\ng8B5EfHpSkplZmZAfcc8ynRbHRwRxwE/GIyQ9NEUZ2ZmFRj1d1sB+zeJO6BD5TAzsybq2m01bMtD\n0l7A3sB6ks7N7VoJ8JIkZmYVquuAeZFuqz8DDwCrAN/IxS8AbqqiUGZmlqn4cR5tG7bySI+fvUfS\nZRFxaX6fpK8AR1RVODOzfjdQ05ZHmTGPNzeJ27FTBTEzsxdbVCJ0U5Exjw8BHwZeLinfTbUS8Keq\nCmZmZjCgerY8iox5/BT4HXAM2VyPQQv8DA8zs2rVdZmNYbutIuLJiLg7Pb5wbWD7NA4yRtJ6zdIM\nsa7VfEnzJF0pyU8eNDMbxqi9VXeQpKOAGcB/ACcDywI/JlsscQlDrWslaSywEfCT9L+ZmbVQ17ut\nygyYvx3YlfQUwYi4n2zco5SIWBQRfwG+3Wy/V9U1M1tsABUO3VSm8ng+Il54VK6kFZYm44g4oUX8\nnIiYEREzZk1fd2myMDMb9er6DPMylceZkk4AJqUHQ/2R3DpXZmbWeQMqHrqpzGNov56WYp9PNu7x\nuYi4oLKSmZlZbRdGLLOqLqmycIVhZtYli2o6YF5kkuACmnenCYiImNjxUpmZGTCKWx7tPk7WzMyW\n3qitPMzMbOTEaO22MjOzkeOWh5mZlebKw8zMShu1CyOamdnI6fQkQUmHSbpF0s2STpe0XDvlcuVh\nZlZjnVxVV9JLgUOAGRGxETAW2LOdclVWeUhae4h9O1eVr5lZL6ngSYLjgAmSxgHLA/e3U64qWx4X\nSJrWGCnpvcBxFeZrZtYzynRb5VclT2F2/lwR8U/g68C9wAPAkxFxfjvlqrLy+BhwvqQNBiMkHQkc\nBmzTKpGXZDczW6xMt1V+VfIU5uTPJWkysBuwHrAmsIKkfdopV2V3W0XEeZKeA34naXfg/cAWwH9G\nxONDpJsDzAFYcOgudb3RwMysKzp8EXwT8PeImAcg6Wzg9WQP9iul0gHziLgQmAVcAryM7BG2LSsO\nMzNb0gBROBRwL7CVpOUlCdgBuLWdclXW8sgtqChgPFkhH04F9oKKZmYFdHKSYERcJekXwPXAQuAG\nUk9PWVV2W3lBRTOzpdTpvvuIOAo4amnP4xnmZmY1VtflSTxJsKR47JGRLoI1eOLfT410EUbMvDEl\n7u63UWnUP4bWMpqyykgXwRpMWmaFkS7CiFl1YOxIF8Eqtqimq1u58jAzq7G6dlu58jAzq7GCt+B2\nnSsPM7Maq2fV4crDzKzW6tptNSJ3W0k6dCTyNTMbbTo8w7xjRupW3Y+NUL5mZqNKlAjdNFKVR8s7\nkr2qrpnZYp18GFQnjVTl0bKSzC8pPGv6ut0sk5lZ7USJf93UjYURX7QLmFBVvmZmvWRhTe+38sKI\nZmY1Vs+qw7fqmpnVmicJmplZaXWd5+HKw8ysxro9EF6UKw8zsxpzy8PMzEpzy8PMzEpzy8PMzEob\nCLc8zMysJD9J0MzMSvOYh5mZldZ3Yx6Szh1qf0TsWlXeZma9oh9nmL8OuA84HbiKIZZhz5M0G5gN\ncNz20/HKumbWz/qx22p14M3AXsDewG+B0yPilqESRcQcYA7AgkN3qeenZmbWJXXttqrseR4RsSgi\nfh8R+wNbAXcAl0j6SFV5mpn1mogoHLqp0gFzSeOBnchaH9OAbwG/rDJPM7Ne0ndjHpJOAzYCzgM+\nHxE3V5WXmVmvqmu3VZUtj32Ap4CPAodIL4yXC4iImFhh3mZmPWFRTauPKp8kOFLPRzcz6xndHsso\nyhd4M7MaGygRipI0VtINkn7Tbrk8w9zMrMYqmufxUeBWoO3hA7c8zMxqbIAoHIqQtBbZXbA/XJpy\nufIwM6uxMvM8JM2WdG0uzG5yyv8BDmcpb+Ryt5WZWY2VmeeRX6GjGUk7Aw9HxHWStl2acrnyMDOr\nsQ6PeWwN7CrpbcBywERJP46IfcqeqMpJgp8bYndExH9XlbeZWa/o5JMEI+JI4EiA1PL4RDsVB1Q7\n5vFUkxDA+4AjWiXK99mdPPeeCotnZlZ/USJ0U5WTBL8xuC1pJbJbw94L/Az4xhDpvKqumVmysKIZ\n5hFxCXBJu+mrXhhxCvAx4D3AqcBmEfF4lXmamfWSus4wr3LM42vAO8haEdMj4l9V5WVm1qvquqpu\nlWMeHwfWBD4D3C9pfgoLJM2vMF8zs54RJf51kxdGNDOrsb7rtjIzs6VX124rVx5mZjXmloeZmZXm\nloeZmZXW7YHwolx5mJnV2KLos8fQmpnZ0uvk2ladVHnlIWk5YP308o6IeLbqPM3MekXfdVtJGgd8\nmWw9q3sAAWtLOhn4dET8u6q8zcx6RV1bHlVO5PsaMAVYLyJeGxGbAS8HJgFfb5XIq+qamS3WdzPM\ngZ2BDSN3k3JEzJf0IeA2slV2X8Sr6pqZLVbXlkeVlUdEk9ktEbFIUj0/DTOzmqnrmEeV3VZ/lbRf\nY6SkfchaHmZmNoyIgcKhm6pseRwEnC3pvcB1KW4GMAF4e4X5mpn1jL6bYR4R/wS2lLQ98OoUfV5E\nXFhVnmZmvaZvJwlGxEXARVXnY2bWi7wwopmZldaPd1uZmdlSquvdVq48zMxqzN1WZmZWWt/dbWVm\nZkvPLQ8zMyvNA+ZmZlZa37U80nM8DiR7lsdc4MSIWFhVfmZmvaiukwSrXNvqVLLlSOYCOwLfKJLI\nS7KbmS02EFE4dFOV3VaviojpAJJOBK4ukshLspuZLdaP8zxeeFJgRCyUVGFWZma9qR8HzDeWND9t\nC5iQXovsWR8TK8zbzKwn1HXAvLIxj4gYGxETU1gpIsbltl1xmJkV0OnH0EqaKel2SXdI+mS75fKt\numZmNdbJloekscB3gDcD/wCukXRuRPy17LmqvNvKzMyWUkQUDgVsAdwREXdFxPPAz4DdKi9YXQIw\nu45peiUPl6t+ebhc9cuj3TRVBmA2cG0uzG7Y/07gh7nX+wLHt5XXSL/ZNj+ga+uYplfycLnql4fL\nVb882k0zkqGTlYe7rczM+sc/gbVzr9dKcaW58jAz6x/XABtIWk/SssCewLntnGi03m01p6ZpeiWP\ndtL0c7n6+b23k6ZX8mg3zYiJbML2R4A/AGOBkyLilnbOpdTvZWZmVpi7rczMrDRXHmZmVporDzMz\nK61nKw9Jr5C0g6QVG+Jntjh+C0mbp+1XSfqYpLeVzPO0kse/IeXzlhb7t5Q0MW1PkPR5Sb+W9BVJ\nK7dIc4iktZvta3H8spL2k/Sm9HpvScdLOkjSMkOke5mkT0g6TtI3JR04WFYz632jfsBc0qyIOLkh\n7hDgIOBWYBPgoxHxq7Tv+ojYrOH4o8geWDUOuADYEriYbP2XP0TEl5rk23h7m4DtgIsAImLXJmmu\njogt0vYHUhl/CbwF+HVEHNtw/C3AxukOiTnA08AvgB1S/Dua5PEk8BRwJ3A68POImNd4XO74n6T3\nvTzwBLAicHbKQxGxf5M0hwA7A5cBbwNuSGnfDnw4Ii5plZ9Zr5D0koh4eKTLMWJGesZjB2ZM3tsk\nbi6wYtqeRjZN/6Pp9Q0tjh9LdgGdD0xM8ROAm1rkez3wY2BbYJv0/wNpe5sWaW7IbV8DrJq2VwDm\nNjn+1nx+DftubJUHWYvyLcCJwDzg98D+wEpNjr8p/T8OeAgYm15riPc+N3fc8sAlaXudZp9vPwTg\nJV3IY+pIv882yrwycCxwG/AY8CjZl7pjgUklz/W7FvETgWOAHwF7N+z7bos0qwPfI1skcCpwdPq9\nPhNYo8nxUxrCVOBuYDIwZaQ/55EIo6LbStJNLcJcYLUmScZExL8AIuJusgv7jpK+SXZRbLQwIhZF\nxNPAnRExP6V9Bmj1AOEZwHXAp4EnI/u2/UxEXBoRl7ZIM0bSZElTyS6+81I+TwHNnu9+s6RZafsv\nkmakz2NDcg/bahARMRAR50fE+4A1ge8CM4G7WpRpWWAlsopgsDtsPNCy24rFc4TGk7VWiIh7W6WR\ntLKkYyXdJukxSY9KujXFTRoin6Yk/a5J3ERJx0j6kaS9G/Z9t8V5Vpf0PUnfkTRV0tGS5ko6U9Ia\nLdJMaQhTgavTz3ZKk+Nn5rZXlnRi+v39qaRmv7+kz2WVtD1D0l3AVZLukbRNk+Ovl/QZSS9vdr4W\necyQdLGkH0taW9IFkp6UdI2kTVukWVHSFyTdko6dJ+lKSQe0yOZM4HFg24iYEhFTyVroj6d9jeff\nrEV4LVkvQjMnk/1dnwXsKeksSePTvq1apDkF+CtwH1kvwzNkrej/Bb7f5PhHyP7eB8O1wEvJvkRe\n2yKP3jbStVeRQPaNeBNg3YYwDbi/yfEXAZs0xI0DTgMWNTn+KmD5tD0mF78yDd/4m6RdC/g5cDxN\nWkENx95NdgH/e/p/jRS/Ik1aEin/U8i6oK4iqzDuAi4l67ZqlkfLb/6D77Eh7rB0znuAQ4ALgR+Q\nfQs7qsVG3zJKAAAD0UlEQVR5PgrclI67DZiV4lcFLmuR5g/AEcDqubjVU9z5LdJs1iK8FnigyfFn\nkX2j3Z1s1uxZwPi0r+nPkaxVdjDwyfSejiBbvuFg4Fct0gykn2E+/Hvw59rk+Otz2z8Evph+fw8D\nzmmRx9zc9sXA5ml7Q5qsp5Ty/jpwL9kjnw8D1hzm9/Fqsu7avcguou9M8TsAV7RI8yvggPR7/zHg\ns8AGwKnAl5scf/sQ+b9oH7CI7O/34ibhmRbnubHh9aeBP5G1Dlr93PO9APcOdb4U9/H0uzI9/5kP\n9fn2ehjxAhQqZNb98oYW+37aJG6t/EWqYd/WTeLGtzh2lfwvyzBl3KnZH0/BtMsD6w2xfyKwcbpo\nrjbMuTZsI/81By80wCSyxdO2GCbNq9NxryiYR6mLSIovdSHpxkUkxZe6kLBk5dFYxlZ53AqMS9tX\nNuxr1sWZz+ONZK3NB9Nn1XTl12Hee9MvIcBfGl5fk/4fA9zW5PjzgcPzv7dkvQVHAH9scvzNwAYt\n8r5viM9qTEPcAcAtwD3DvQ/gi8N9vil+8IviN8la6i/6otBPYcQL4NAfoexFJO0vdSHp1kUk7St8\nISF76M7HUqXzd9KNKmlfq3Glg9Nntj1Zf/xxZONpnwd+1OT4F1WOZON4M4GTW+RxBdnY2B5kLc/d\nU/w2tFgtFvgz6YscsCvZDSWD+5q1JCYDXyFroT5ONu5xa4p70VgB2ReS/2iR9+4t4r8KvKlJ/Ezg\nby3SfIE0LtoQvz7wi2F+l3cFrgQe7OTfyGgLI14Ah/4IDReRxxouIpNbpCl1Ien2RSQdN+yFBDiq\nIQzeKLE6cNoQ6bYFziC7CWIucB7Z8xrGNTn2Z238TDYm6078HfCKVEE9QVbZvr5FmteQdXc9DlxO\naumSdVke0iLNK4A3NX7OwMwhjt+h6PHDpNmxjTTDlovsZpqNhitXL4cRL4CDA2nMpMo0VebRcCGp\nTbm6mUerNGTjaLcD55CN+e2W29estVTq+BR/cNVp2ilXr4cRL4CDA8PcaNCJNN3Io67lGsn3Tnu3\nzRc+vltp2smj18NoXZLdRhlJN7XaRfPbrUun6UYedS1XXd87DbfNS9oW+IWkdWl+23zZ47uVpp08\neporD+uW1YC3kvWV54lsELYTabqRR13LVdf3/pCkTSLiRoCI+JeknYGTgOkdOL5badrJo6e58rBu\n+Q1Zs//Gxh2SLulQmm7kUddy1fW970fDBNiIWAjsJ+mEDhzfrTTt5NHTRv3aVmZm1n2jYnkSMzOr\nF1ceZmZWmisPMzMrzZWHmZmV9v8Bvfw43AGsbQ8AAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11ff56898>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4XEWd//H3hwRCWEIWEAiLEYFxAUEMi+AMm0sQRJyf\nC0FWl4gLIDoPixvoz4UZlxnGZTQKAi4MKIioqCDruAAiIAGBEZBF2cISwo7J/c4fVZecNN339un0\n6Xtu9+eVp5501zl1qk7fe091VZ2qo4jAzMysjJXGugBmZjb+uPIwM7PSXHmYmVlprjzMzKw0Vx5m\nZlaaKw8zMyvNlUeNSbpB0i4dpg1Jm3a5SH1H0kckfauC475d0vndPm7JMnxd0sfHsgzWv+R5HuOD\npK8D+xeiVgaeiYg1W+wfwGYRcUsvytck/1nAX4CVI2JJRXkcD2waEfuPtm/efxfguxGxYRXlGSXv\nSn8ekg4G3hURr6ri+KPkPQk4AXgbMBk4HTgiIv7e67JY77jlMU5ExKERscZwIP2B/mCsy1UVJf79\nBCRNHOsyjOIYYDawBbA5sA3wsTEtkVUvIhxqGoDbgVc3iV8deBTYeYS0QfpWDrAncA2wGLgLOL6w\n38+AwxrSXge8Kb/eEfg98Ej+f8dW5QOOJ32zB7gzl+GxHF7ZxvleAnwG+A3wJLApMBM4F3gIuAV4\nd953DvAM8Pd8/D/m+EOAG/PncxvwnsJn9iQwVCjTzGKZ8357AzcAi3J5Xtxwvv+SP59HgDOAVVuc\ny8HAr/Pry/Jn8XjO9205fi/g2pzXb4GXNeR1dM7raWAi6SJ9az63PxV+Ri8GngKW5uMvyvGnAJ8u\nHPPd+TN8KH+mMxt+Xw4F/pzL81Vyz0QbP7ergLcW3u8H3DXWfz8O1YYxL4DDCD+c1pXHgfnC2PKP\nm+Urj12ALUktzZcB9wH75G1vBa4opNsKeBBYBZgOPAwckC9ec/P7Gc3Kx/KVx6xchoklzvcSUqXz\n0pzfyvnC+zVgVWBrYCGwW2N+hWPsCbwQELAz8ASwTeFz+GvD/sUyb066wL8m531UvtiuUjjfK0mV\nznRSJXVoi3M5mFx5NP488vuXA/cD2wMTgIPy8ScV8roW2AiYnOPekvNeidRF9DiwfrP8ctwp5MoD\n2A14gNQqmAR8GbisoXw/BaYCG+fPeU7etjGpQtm4xbk2Vh5vz8dba6z/hhyqC+4WGJ8OAk6L/Jc6\nmoi4JCIWRMRQRFxH6vLaOW8+F9hc0mb5/QHAGRHxDOlC/OeI+E5ELImI04GbgDd09WyWd0pE3BBp\nnGQ9YCfg6Ih4KiKuBb5FqjybioifRcStkVwKnA/8Y5t5vw34WURcEKm//gukPvwdC/v8Z0TcHREP\nAT8hVWidmAd8IyKuiIilEXEqqYWxQ0Ned0XEk/ncfpDzHoqIM0ithO3azO/twMkRcXVEPA0cC7wy\nj00NOyEiFkXEncDFw+cWEXdGxNQc38wvgCMkrSNpPeDwHL9am2WzcciVxzgjaWPSN+jTSqTZXtLF\nkhZKeoTUPbE2QEQ8Rep+2T+PMcwFvpOTzgTuaDjcHcAGK3QSI7ur8Hom8FBEPNpu/pL2kHS5pIck\nLQJeTz7XNix3vhExlMtTzO/ewusngDXaPHaj5wMflrRoOJBaGTML+xQ/CyQdKOnawv5b0Pm5PUZq\nYXbj3D5D6ha9ltT9dg6pO/G+NtPbOOTKY/w5APhNRNxWIs33SS2MjSJiLeDrpG6dYaeSvpnuDjwR\nEb/L8XeTLnJFGwN/y68fZ/lvl+sVXnd6G18x3d3AdEnFO8qK+S+XR77r5yxSi2HdiJgKnMeycx2t\nTMudrySRLuh/a5mic3cBn8nf6IfDarl1N+zZ8kp6PvBN4AOkbsOpwPV0fm6rAzPowrlFxJMR8YGI\n2CAiNiFVSn/Ila/1KVce48+BpL7sMtYkfYN/StJ2pAHNZ+XKYgj4IstaHZAuvJtL2k/SRElvA15C\n6huH9E1zX0krS5oNvLmQdmE+5ibDEZJm5fkns9opdETcRfom+zlJq0p6GfBO4Lt5l/uAWYW7slYh\n9ecvBJZI2gN4beGQ9wEzJK3VIsszgT0l7S5pZeDDpK6k37ZT3lHcR+GzIFUEh+ZWoSStLmnPhoqy\naHVSBbEQQNIhpJZH8fgbSlqlRfrTgUMkbZ0r2c+Sxrpu7/yUEkkbSJqZz2MH4OPAcSt6XKs3Vx7j\niKRXAhtS/hbd9wGfkvQo8AnSRbLRaaRB9eELMxHxIOmOoA+Tvk0eBewVEQ/kXT5OGpx+GPgkqYUz\nnPYJ8p1TuZtlB9K3+Dso9213Lmnw/W7gR8BxEfGrvG34c3hQ0tW5e+vwfH4PkyrJcwtluol0Eb0t\nl6nYRURE3EyaS/Nl0uDyG4A35PGfFXU8cGrO960RcRXp7qev5LLeQhr0bioi/kSq3H9Hqii2JN2V\nNuwi0l1i90p6oEn6X5F+XmcB95B+bvu2U3BJG0t6LHeZNvNCUgX7OKkVe0xEjOkESaueJwkakPrT\ngXlR4SQzSR8DFkbEN6rKw8x6w5WHIWk10jfXr0VE2wPxZja43G014CS9jtSPfh+Fbiczs5G45WFm\nZqW55WFmZqXVesG1RXN3LdUsmrBu+flaK63d6q7N5jRjWuk8NL3deVwF09Ypl8e0dUtnoanrl06z\n0rT1Rt+pYPLMdid3LzNlUrmJyVMnlf+5T1159dJppk0oV65pE1Ytn4cmldp/egd/wusMTSidZsbS\ncvtPX1p+isd0yt/UNnXy06X2X3Otp0rnsdqM8uV63oWXavS92vP3B25r+zq48tqbdC3f0bjlYWZm\npdW65WFmNvCGSjb7esSVh5lZndV0lRdXHmZmdTZUz8qjp2Mekl4l6au9zNPMbDyLpUvaDr1UectD\n0stJawy9hfRM67OrztPMrG8MUreVpM1JC9rNJS0wdwZpQuKuVeRnZta3ajpgXlW31U2kx17uFRGv\niogvk56vPCpJ8yRdJemqU265u6LimZmNEzHUfuihqiqPfyYt+3yxpG9K2p3lHz7UUkTMj4jZETH7\n4E1njp7AzKyfDQ21H3qoksojIs6JiH2BF5GehfxB4HmS/kvSa0dObWZmwyKG2g69VOndVhHxeER8\nPyLeQHqI0TXA0VXmaWbWV2ra8ujZPI+IeBiYn4OZmbVjkO62MjOzLqnp3VauPMzM6qzHk//a5crD\nzKzO3G1lZmal1XRtK1ceZmY1FuExDzMzK8vdVmZmVpq7rczMrDS3PEDS2sCDEdH2A93NzAZaTed5\nVLY8iaQdJF0i6WxJL5d0PXA9cJ+kOSOk86q6ZmbDarqqbpUtj68AHwHWAi4C9oiIyyW9CDgd+EWz\nRBHx7BImi+bu6haKmQ22AZwkODEizgeQ9KmIuBwgIm6S2lqd3czMBnDAvHjGTzZsc4vCzKwdA1h5\nbCVpMekhUJPza/L7VSvM18ysbwzcJMGImFDVsc3MBkYXWx6SNgJOA9Yl9QDNj4gTJU0HzgBmAbcD\nb82P0Wip0odBmZnZCuru3VZLgA9HxEuAHYD3S3oJcAxwYURsBlyY34/IlYeZWZ118UmCEXFPRFyd\nXz8K3AhsALwRODXvdiqwz2jHcuVhZlZnJVoexXlyOcxrdVhJs4CXA1cA60bEPXnTvaRurRF5eRIz\nszorMeZRnCc3EklrAGcBH4yIxcXpExERkka9I9aVh5lZnXV5kqCklUkVx/ci4uwcfZ+k9SPiHknr\nA/ePdhx3W5mZ1VkXxzyUmhgnATdGxJcKm84FDsqvDwJ+PNqxKmt5SNqU1I/2m4b4nYB7I+LWqvI2\nM+sb3V2zaifgAGCBpGtz3EeAE4AzJb0TuAN462gHqrLb6j+AY5vEL87b3lBh3mZm/aGL8zwi4tek\nidrN7F7mWFV2W60bEQsaI3PcrFaJvKqumVnBAK6qO3WEbZNbbfCqumZmBTVd26rKlsdVkt7dGCnp\nXcAfKszXzKx/DGDL44PAjyS9nWWVxWxgFeBNFeZrZtY/atryqHJhxPuAHSXtCmyRo38WERdVlaeZ\nWd8ZtMpjWERcDFxcdT5mZn1p6YAtyW5mZl0wqC0PMzNbAT0eCG+XKw8zszpzy8PMzEqLek53c+Vh\nZlZnbnmYmVlprjzMzKy0QR4wl7QOQEQs7EV+Zmb9IobqOeZR2dpWSo6X9ABwM/C/khZK+kRVeZqZ\n9Z2lS9oPPVTlwohHkh48sm1ETI+IacD2wE6SjmyVyEuym5kVDEX7oYeqrDwOAOZGxF+GIyLiNmB/\n4MBWiSJifkTMjojZB286s8LimZmNA118DG03VTnmsXJEPNAYGREL8wPYzcxsNAN4t9UzHW4zM7Nh\nAzhJcCtJi5vEC1i1wnzNzPrHoLU8ImJCVcc2MxsYNb1V15MEzczqbJAnCZqZWYfc8jAzs7JiiZ8k\naGZmZbnbyszMSnO3lZmZlTZot+qamVkX1LTlUeWqukcVXr+lYdtnq8rXzKyvxFD7oYeqXBhx38Lr\nYxu2zWmVyKvqmpkV1HRV3Sq7rdTidbP3z4qI+cB8gEVzd61ne83MrEeipmMeVbY8osXrZu/NzKyZ\nLrY8JJ0s6X5J1zfEHybpJkk3SPq3dorVi4URBUwuLJLohRHNzNq1tKuTBE8BvgKcNhwhaVfgjcBW\nEfG0pOe1cyAvjGhmVmddHMuIiMskzWqIfi9wQkQ8nfe5v51jVdltZWZmKyiGou3Qoc2Bf5R0haRL\nJW3bTiLP8zAzq7MSlYKkecC8QtT8fBPSSCYC04EdgG2BMyVtEjHyU6hceZiZ1VmJu62Kd6uW8Ffg\n7FxZXClpCFgbWDhSIndbmZnVWfXzPM4BdgWQtDmwCvDAaInc8jAzq7MuDphLOh3YBVhb0l+B44CT\ngZPz7bvPAAeN1mUFrjzMzGqtjet4mWPNbbFp/7LHcuVhZlZnNV0Y0ZWHmVmNxZIBW55E0sZVHdvM\nbGDUdGHEKu+2Omf4haSzKszHzKx/DZUIPVRl5VFcOXeTthN5SXYzs2f1YIZ5R6oc8xhpVd3Wibwk\nu5nZMgM4YD7SqroREVMqzNvMrD/Uc7zcq+qamdVZr7uj2uVbdc3M6mzQWh5mZrbi3PIws657iCVM\n959xX4slY12C5vxbZzaOueIYAO62MjOzssKVh5mZlebKw8zMynLLw8zMSnPlYWZmpdW18qhySfY3\nSnp/4f0Vkm7L4c1V5Wtm1ldC7YcearvykPRrSZ+RNEfSmm0kOQo4t/B+ErAt6fm57x0hH6+qa2aW\nxVD7oZfKtDwOAG4G/h/w23yB//cR9l8lIu4qvP91RDwYEXcCq7dKFBHzI2J2RMw+eNOZJYpnZtZ/\nYkhth15qe8wjIv4i6SngmRx2BV48QpJpDek/UHi7TplCmpkNqqGlva0U2lWm2+pW0tMB1wVOAraI\niDkjJLlC0rubHOc9wJVlC2pmNojq2m1V5m6r/wReBcwFXg5cKumyiLi1xf5HAudI2g+4Ose9gjT2\nsU+H5TUzGyi97o5qV5luqxOBEyWtARwCHA9sCDR9bkdE3A/sKGk34KU5+mcRcdEKldjMbIBEPRfV\nbb/ykPRFUstjDeB3wCeA/xktXa4sXGGYmXVg3Lc8SBXGv0XEfVUVxszMljfuK4+I+KGkvSX9U466\nNCJ+UlG5zMyM/ui2+hywHfC9HHW4pFdGxEcqKZmZmY3/lgewJ7B1RLohTNKpwDWAKw8zs4pEj5cd\naVfZhRGnAg/l12t1uSxmZtZgaU0nCZapPD4HXCPpYkDAPwHHVFIqMzMDxnnLQ5KAXwM7kBY3BDg6\nIu6tqmBmZjbOxzwiIiSdFxFbsvxKuS1J+jLQ8j6BiDi8vSKamQ2ubt5tJelkYC/g/ojYIsd9HngD\nac3CW4FDImLRaMcqs6ru1ZK2HX23Z10F/CGHvQuvh0NTXpLdzGyZLq+qewrQuCbhBaS1Cl8G/C9w\nbDsHKjPmsT3wdkl3AI+Txj0iZ/gcEXHq8GtJHyy+H0lEzAfmAyyau2tN73A2M+uNoS6OeUTEZZJm\nNcSdX3h7OdDWw/rKVB6vG2mjpGkR8XCLza4EzMw6UGbAXNI8YF4han7+Qt6udwBntLNjmRnmd4yy\ny4XANu0ez8zMRldmzKPYc1OWpI8CS1g2EXxEZed5jJh3Q0EeZVmLYzVJiwv7RURM6WLeZmZ9qZvd\nVq1IOpg0kL57RHvVVTcrj+UyjIh2nnNuZmYjGKr4Vl1Jc4CjgJ0j4ol203Wz8jAzsy7rZstD0unA\nLsDakv4KHEe6u2oScEGa0sflEXHoaMeqrNvKzMxWXDdnmEfE3CbRJ3VyrLbmeUiaIOmmUXbbvZMC\nmJlZa0OhtkMvtVV5RMRS4GZJG4+wz0OttpmZWWeiROilMt1W04AbJF1JmiQIQETs3fVSmZkZ0Ju7\nrTpRpvL4eGWlMDOzpsb1qroAEXGppOcDm0XEryStBkyormhmZjY01gVooe2FESW9G/gh8I0ctQFw\nThWFMjOzJFDboZfKrKr7fmAnYDFARPwZeF6rnSU9Kmlxk/BoYbZ5s3ReVdfMLFsSajv0Upkxj6cj\n4pk8iQRJExn5eR0dzTD3qrpmZsv0ukXRrjItj0slfQSYLOk1wA+An1RTLDMzgzTm0W7opTKVxzHA\nQmAB8B7gvIj4aCWlMjMzoL5jHmW6rQ6LiBOBbw5HSDoix5mZWQXG/d1WwEFN4g7uUjnMzKyJunZb\njdrykDQX2A94gaRzC5vWBLwkiZlZheo6YN5Ot9VvgXuAtYEvFuIfBa6rolBmZpZU/DiPjo1aeeTH\nz94h6bKIuLS4TdK/AkdXVTgzs0E3VNOWR5kxj9c0idujWwUxM7PnWloi9FI7Yx7vBd4HvFBSsZtq\nTeA3VRXMzMxgSPVsebQz5vF94OfA50hzPYY96md4mJlVq67LbIzabRURj0TE7fnxhRsBu+VxkJUk\nvaBZmhHWtVosaaGkyyX5yYNmZqMYt7fqDpN0HDAb+Afg28AqwHdJiyUuZ6R1rSRNALYAvpf/NzOz\nFup6t1WZAfM3AXuTnyIYEXeTxj1KiYilEfFH4MvNtntVXTOzZYZQ26GXyixP8kxEhKQAkLT6imQc\nEd9oEe9Vdc3MsrpeBMu0PM6U9A1gan4w1K8orHNlZmbdN6T2Qy+VeQztF/JS7ItJ4x6fiIgLKiuZ\nmZnVdmHEMt1W5MrCFYaZWY8sremAeTuTBB+lebebgIiIKV0vlZmZAeO45dHp42TNzGzFjdvKw8zM\nxk6M124rMzMbO255mJlZaa48zMystH6YJGhmZj3W7UmCko6UdIOk6yWdLmnVTsrlysPMrMa6uaqu\npA2Aw4HZEbEFMAHYt5NyVVZ5SNpohG17VZWvmVk/qeBJghOByZImAqsBHa1AW2XL4wJJsxojJb0D\nOLHCfM3M+kaZbqviquQ5zCseKyL+BnwBuBO4B3gkIs7vpFxVVh4fAs6XtNlwhKRjgSOBnVsl8pLs\nZmbLlOm2ioj5ETG7EOYXjyVpGvBG4AXATGB1Sft3Uq7K7raKiPMkPQ38XNI+wLuA7YB/ioiHR0jn\nJdnNzLIuXwRfDfwlIhYCSDob2JH0YL9SKh0wj4gLgUOAS4BNSI+wbVlxmJnZ8oaItkMb7gR2kLSa\nJAG7Azd2Uq7KWh6FBRUFTCIV8v5cYC+oaGbWhm5OEoyIKyT9ELgaWAJcQ+7pKavKbisvqGhmtoK6\n3XcfEccBx63ocTzD3Mysxuq6PIknCZYUD3rIpm4WPf3YWBdhzDzEkrEuglVs3D+G1hLNmDbWRbAG\nUyetMdZFGDPT/Sfc95bWdHUr/+aZmdVYXbutXHmYmdVYm7fg9pwrDzOzGqtn1eHKw8ys1urabTUm\nd1tJ+uBY5GtmNt50eYZ514zVrbofGqN8zczGlSgRemmsKo+WdyR7VV0zs2W6+TCobhqrMY+WlaRX\n1TUzWyZqOmTei4URn7MJmFxVvmZm/WTJoFUeXhjRzGzF1bPq8K26Zma15kmCZmZWWl3nebjyMDOr\nsYEbMDczsxXnloeZmZXmloeZmZXmloeZmZU2FG55mJlZSX6SoJmZleYxDzMzK23gxjwknTvS9ojY\nu6q8zcz6xSDOMH8lcBdwOnAFIyzDXiRpHjAP4N9nb87Bm86srIBmZnU3iN1W6wGvAeYC+wE/A06P\niBtGSuQl2c3Mlqlrt1VlD4OKiKUR8YuIOAjYAbgFuETSB6rK08ys30RE26GXKh0wlzQJ2JPU+pgF\n/CfwoyrzNDPrJwM35iHpNGAL4DzgkxFxfVV5mZn1q7p2W1XZ8tgfeBw4Ajhcena8XEBExJQK8zYz\n6wtLa1p9VPkkwcrGU8zMBkWvxzLa5Qu8mVmNDZUI7ZI0QdI1kn7aabk8w9zMrMYqmudxBHAj0PHw\ngVseZmY1NkS0HdohaUPSXbDfWpFyufIwM6uxMvM8JM2TdFUhzGtyyP8AjmIFb+Ryt5WZWY2VmedR\nXKGjGUl7AfdHxB8k7bIi5XLlYWZWY10e89gJ2FvS64FVgSmSvhsR+5c9UJWTBD8xwuaIiP9fVd5m\nZv2im08SjIhjgWMBcsvjXzqpOKDaMY/Hm4QA3gkc3SpRsc/ulFvurrB4Zmb1FyVCL1U5SfCLw68l\nrUm6NewdwH8DXxwhnVfVNTPLllQ0wzwiLgEu6TR91QsjTgc+BLwdOBXYJiIerjJPM7N+UtcZ5lWO\neXwe+GdSK2LLiHisqrzMzPpVXVfVrXLM48PATOBjwN2SFufwqKTFFeZrZtY3osS/XvLCiGZmNTZw\n3VZmZrbi6tpt5crDzKzG3PIwM7PS3PIwM7PSej0Q3i5XHmZmNbY0BuwxtGZmtuK6ubZVN1VeeUha\nFdg0v70lIp6qOk8zs34xcN1WkiYCnyWtZ3UHIGAjSd8GPhoRf68qbzOzflHXlkeVE/k+D0wHXhAR\nr4iIbYAXAlOBL7RK5FV1zcyWGbgZ5sBewOZRuEk5IhZLei9wE2mV3efwqrpmZsvUteVRZeUR0WR2\nS0QslVTPT8PMrGbqOuZRZbfVnyQd2BgpaX9Sy8PMzEYRMdR26KUqWx7vB86W9A7gDzluNjAZeFOF\n+ZqZ9Y2Bm2EeEX8Dtpe0G/DSHH1eRFxYVZ5mZv1mYCcJRsRFwEVV52Nm1o+8MKKZmZU2iHdbmZnZ\nCqrr3VauPMzMaszdVmZmVtrA3W1lZmYrzi0PMzMrzQPmZmZW2sC1PPJzPA4lPctjAXBSRCypKj8z\ns35U10mCVa5tdSppOZIFwB7AF9tJ5CXZzcyWGYpoO/RSld1WL4mILQEknQRc2U4iL8luZrbMIM7z\nePZJgRGxRFKFWZmZ9adBHDDfStLi/FrA5PxepGd9TKkwbzOzvlDXAfPKxjwiYkJETMlhzYiYWHjt\nisPMrA3dfgytpDmSbpZ0i6RjOi2Xb9U1M6uxbrY8JE0Avgq8Bvgr8HtJ50bEn8oeq8q7rczMbAVF\nRNuhDdsBt0TEbRHxDPDfwBsrL1hdAjCvjmn6JQ+Xq355uFz1y6PTNFUGYB5wVSHMa9j+ZuBbhfcH\nAF/pKK+xPtkOP6Cr6pimX/JwueqXh8tVvzw6TTOWoZuVh7utzMwGx9+AjQrvN8xxpbnyMDMbHL8H\nNpP0AkmrAPsC53ZyoPF6t9X8mqbplzw6STPI5Rrkc+8kTb/k0WmaMRNpwvYHgF8CE4CTI+KGTo6l\n3O9lZmbWNndbmZlZaa48zMysNFceZmZWWt9WHpJeJGl3SWs0xM9psf92krbNr18i6UOSXl8yz9NK\n7v+qnM9rW2zfXtKU/HqypE9K+omkf5W0Vos0h0vaqNm2FvuvIulASa/O7/eT9BVJ75e08gjpNpH0\nL5JOlPQlSYcOl9XM+t+4HzCXdEhEfLsh7nDg/cCNwNbAERHx47zt6ojYpmH/40gPrJoIXABsD1xM\nWv/llxHxmSb5Nt7eJmBX4CKAiNi7SZorI2K7/PrduYw/Al4L/CQiTmjY/wZgq3yHxHzgCeCHwO45\n/p+b5PEI8DhwK3A68IOIWNi4X2H/7+XzXg1YBKwBnJ3zUEQc1CTN4cBewGXA64Frcto3Ae+LiEta\n5WfWLyQ9LyLuH+tyjJmxnvHYhRmTdzaJWwCskV/PIk3TPyK/v6bF/hNIF9DFwJQcPxm4rkW+VwPf\nBXYBds7/35Nf79wizTWF178H1smvVwcWNNn/xmJ+DduubZUHqUX5WuAkYCHwC+AgYM0m+1+X/58I\n3AdMyO81wrkvKOy3GnBJfr1xs893EALwvB7kMWOsz7ODMq8FnADcBDwEPEj6UncCMLXksX7eIn4K\n8DngO8B+Ddu+1iLNesB/kRYJnAEcn3+vzwTWb7L/9IYwA7gdmAZMH+vPeSzCuOi2knRdi7AAWLdJ\nkpUi4jGAiLiddGHfQ9KXSBfFRksiYmlEPAHcGhGLc9ongVYPEJ4N/AH4KPBIpG/bT0bEpRFxaYs0\nK0maJmkG6eK7MOfzONDs+e7XSzokv/6jpNn589icwsO2GkREDEXE+RHxTmAm8DVgDnBbizKtAqxJ\nqgiGu8MmAS27rVg2R2gSqbVCRNzZKo2ktSSdIOkmSQ9JelDSjTlu6gj5NCXp503ipkj6nKTvSNqv\nYdvXWhxnPUn/JemrkmZIOl7SAklnSlq/RZrpDWEGcGX+2U5vsv+cwuu1JJ2Uf3+/L6nZ7y/5c1k7\nv54t6TbgCkl3SNq5yf5XS/qYpBc2O16LPGZLuljSdyVtJOkCSY9I+r2kl7dIs4akT0m6Ie+7UNLl\nkg5ukc2ZwMPALhExPSJmkFroD+dtjcffpkV4BakXoZlvk/6uzwL2lXSWpEl52w4t0pwC/Am4i9TL\n8CSpFf0/wNeb7P8A6e99OFwFbED6EnlVizz621jXXu0E0jfirYHnN4RZwN1N9r8I2LohbiJwGrC0\nyf5XAKvl1ysV4tei4Rt/k7QbAj8AvkKTVlDDvreTLuB/yf+vn+PXoElLIud/CqkL6gpShXEbcCmp\n26pZHi2/+Q+fY0PckfmYdwCHAxcC3yR9CzuuxXGOAK7L+90EHJLj1wEua5Hml8DRwHqFuPVy3Pkt\n0mzTIrxW0z8PAAADrElEQVQCuKfJ/meRvtHuQ5o1exYwKW9r+nMktcoOA47J53Q0afmGw4Aft0gz\nlH+GxfD34Z9rk/2vLrz+FvDp/Pt7JHBOizwWFF5fDGybX29Ok/WUct5fAO4kPfL5SGDmKL+PV5K6\na+eSLqJvzvG7A79rkebHwMH59/5DwMeBzYBTgc822f/mEfJ/zjZgKenv9+Im4ckWx7m24f1Hgd+Q\nWgetfu7FXoA7Rzpejvtw/l3ZsviZj/T59nsY8wK0VcjU/fKqFtu+3yRuw+JFqmHbTk3iJrXYd+3i\nL8soZdyz2R9Pm2lXA14wwvYpwFb5ornuKMfavIP8Zw5faICppMXTthslzUvzfi9qM49SF5EcX+pC\n0ouLSI4vdSFh+cqjsYyt8rgRmJhfX96wrVkXZzGPfyS1Nu/Nn1XTlV9HOfemX0KAPza8/33+fyXg\npib7nw8cVfy9JfUWHA38qsn+1wObtcj7rhE+q5Ua4g4GbgDuGO08gE+P9vnm+OEvil8itdSf80Vh\nkMKYF8BhMELZi0jeXupC0quLSN7W9oWE9NCdD+VK5y/kG1XytlbjSoflz2w3Un/8iaTxtE8C32my\n/3MqR9I43hzg2y3y+B1pbOwtpJbnPjl+Z1qsFgv8lvxFDtibdEPJ8LZmLYlpwL+SWqgPk8Y9bsxx\nzxkrIH0h+YcWee/TIv7fgFc3iZ8D/LlFmk+Rx0Ub4jcFfjjK7/LewOXAvd38GxlvYcwL4DAYoeEi\n8lDDRWRaizSlLiS9vojk/Ua9kADHNYThGyXWA04bId0uwBmkmyAWAOeRntcwscm+/93Bz2QrUnfi\nz4EX5QpqEamy3bFFmpeRurseBn5NbumSuiwPb5HmRcCrGz9nYM4I++/e7v6jpNmjgzSjlot0M80W\no5Wrn8OYF8DBgTxmUmWaKvNouJDUply9zKNVGtI42s3AOaQxvzcWtjVrLZXaP8cfVnWaTsrV72HM\nC+DgwCg3GnQjTS/yqGu5xvLc6ey2+bb371WaTvLo9zBel2S3cUbSda020fx269JpepFHXctV13On\n4bZ5SbsAP5T0fJrfNl92/16l6SSPvubKw3plXeB1pL7yIpEGYbuRphd51LVcdT33+yRtHRHXAkTE\nY5L2Ak4GtuzC/r1K00kefc2Vh/XKT0nN/msbN0i6pEtpepFHXctV13M/kIYJsBGxBDhQ0je6sH+v\n0nSSR18b92tbmZlZ742L5UnMzKxeXHmYmVlprjzMzKw0Vx5mZlba/wEzaBclS0jfrQAAAABJRU5E\nrkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11e833e48>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XEWd9/HPlwRCAoQsKDtGBcZRkMWwKMwEjTpBEHEe\nF0AI4JLBBRSdF4iOgj4uzLg8w7hHQRaVAQURFRWUbVwAEZCAwAjIIlsCBMKOyf09f1RdctJ039un\n06fvud3fd171yuk6p05V9733VFfVqTqKCMzMzMpYY6wLYGZm448rDzMzK82Vh5mZlebKw8zMSnPl\nYWZmpbnyMDOz0lx51Iik6yXt0WHakLRll4vUdyR9RNK3Kjjv2ySd3+3zlizD1yV9bCzLYINDnudR\nT5K+DhxYiFoTeDoi1mtxfABbRcTNvShfk/xnAX8B1oyI5RXlcRywZUQcONqx+fg9gO9ExGZVlGeU\nvCv9eUg6BHhnROxexflHyXsb4AvAy4CZEaGG/TOAE4HXAvcDx0TE93pdTquWWx41FRGHRcS6wwE4\nHfj+WJerKkr8+whImjjWZRjF34AzgXe02P8V4GlgQ+BtwNckvaRHZbNeiQiHmgTgNuDVTeLXAR4B\n5oyQNkjfygH2Aq4GlgF3AscVjvspcHhD2muBN+btVwC/Bx7O/7+iVfmA40jf7AHuyGV4NIeXt/F+\nLwY+DfwGeALYEtgEOBd4ELgZeFc+dh7pgvS3fP4/5vhDgRvy53Mr8C+Fz+wJYKhQpk2KZc7H7QNc\nDzyUy/P3De/3X/Pn8zBwBrB2i/dyCPDrvH1p/iwey/m+NcfvDVyT8/ot8NKGvI7OeT0FTAQ+DNyS\n39ufCj+jvweeBFbk8z+U408GPlU457vyZ/hg/kw3afh9OQz4cy7PV8g9ESV+X7cEosnv6tPA1oW4\nU4Hjx/rvy6G7YcwL4FD4YbSuPObnC2PLP25WrTz2ALYltSxfCtwH7Jv3vQW4vJBuO+ABYC1gBrAU\nOChfvPbPr2c2Kx+rVh6zchkmlni/F5MqnZfk/NbMF96vAmsD2wNLgFc15lc4x17ACwEBc4DHgR0L\nn8NfG44vlnlr0gX+NTnvo/LFdq3C+72CVOnMIFVSh7V4L4eQK4/Gn0d+vQOwGNgFmAAcnM8/qZDX\nNcDmwOQc9+ac9xrAW3NZN26WX447mVx5AK8idRntCEwCvgRc2lC+nwDTgC3y5zwv79uCVKFsMcrP\nr1nlsQPweEPch4Afj/Xfl0N3g7sJxoeDgVMj/yWOJiIujohFETEUEdeSurzm5N3nAltL2iq/Pgg4\nIyKeJl2I/xwRp0XE8og4HbgReH1X382qTo6I6yONk2wE7AYcHRFPRsQ1wLdIlWdTEfHTiLglkkuA\n84F/aDPvtwI/jYgLIuJvwOeByaTW17D/ioi7I+JB4MekCq0TC4BvRMTlEbEiIk4htTB2bcjrzoh4\nIr+37+e8hyLiDFIrYec283sbcFJEXBURTwHHAC/PY1PDjo+IhyLiDuCi4fcWEXdExLQcX9a6pBZv\n0TKg6VidjV+uPGpO0hakb9Cnlkizi6SLJC2R9DCpe2IDgIh4ktT9cmAeY9gfOC0n3QS4veF0twOb\nrtabGNmdhe1NgAcj4pF285e0p6TLJD0o6SHgdeT32oZV3m9EDOXyFPO7t7D9OOni2InnAR+S9NBw\nILUyNikcU/wskDRf0jWF47eh8/f2KKmFWcV7K3oUmNoQtz6p6836iCuP+jsI+E1E3FoizfdILYzN\nI2J94Oukbp1hp5C+mc4ldTH8LsffTbrIFW0B3JW3HwOmFPZtVNju9La9Yrq7gRmSit9Si/mvkoek\nScBZpBbDhhExDTiPle91tDKt8n4liXRBv6tlis7dCXw6f6MfDlNy627YM+WV9Dzgm8D7SN2G04Dr\n6Py9rQPMpJr3VvS/wMRCyxZS1+j1FedrPebKo/7mk/qyy1iP9A3+SUk7AwcUd+bKYoh0u+VphV3n\nkbq0DpA0UdJbgReT+sYh9cnvJ2lNSbOBNxXSLsnnfMFwhKRZef7JrHYKHRF3kgaSPytpbUkvJd3R\n8518yH3ArMJdWWuR+vOXAMsl7Um6PZTC8TMlrd8iyzOBvSTNlbQmqW/+qVyG1XUfhc+CVBEclluF\nkrSOpL0aKsqidUgVxBIASYeSWh7F828maa0W6U8HDpW0fa5kP0Ma67qt87eU5PKvTfr8yT+rSQAR\n8RhwNvDJ/B53J92UcFrLE9q45MqjxiS9HNiM8rfovof0x/sI8HHSRbLRqaRB9eELMxHxAOmOoA+R\nujiOAvaOiPvzIR8jDU4vBT5BauEMp32cfOdU7mbZlfQt/nbKfdvdnzT4fjfwQ+DYiPhl3jf8OTwg\n6arcvXVEfn9LSZXkuYUy3Ui6iN6ay1TsIiIibiLNpfkSaXD59cDr8/jP6joOOCXn+5aIuJJ099OX\nc1lvJg16NxURfyJV7r8jVRTbku5KG3Yh6dv8vZLub5L+l6Sf11nAPaSf237tFFzSFpIezV2mzTyP\ndCfbcGviCeCmwv73kMaOFpN+R94dEW559BlPEhxQkuYDC6LCSWaS/g1YEhHfqCoPMxsbrjwGkKQp\npG+uX42ItgfizcyGudtqwEj6J1I/+n0Uup3MzMpwy8PMzEpzy8PMzEqr9QJsi+fOKdUsWuu55evC\nCRuWmxe1xgat7vpsTTOnl08zo925YNn055TPY/qG5dNM27jU8WtM32j0gxpM3qTdCeLJ1ElTRj+o\nwbRJ5efDTVtznVLHT59QvlzTJ6xd7vh0h2wpMzr4s3/O0IRSx89cUToLZqwYKp+GcjfGTZv8VOk8\n1lv/ydJpZl1zgUY/qj1/u//Wtq+Da27wgq7lOxq3PMzMrLRatzzMzAbeUAfNuB5w5WFmVmdRvjuv\nF1x5mJnV2VA9K4+ejnlI2l3SV3qZp5nZeBYrlrcdeqnyloekHUhrDr2Z9Izrs6vO08ysbwxSt5Wk\nrUkL3O1PWnDuDNKExFdWkZ+ZWd+q6YB5Vd1WN5Ieg7l3ROweEV8iPW95VJIWSLpS0pWn3nVPRcUz\nMxsnYqj90ENVVR7/TFoG+iJJ35Q0l1UfRtRSRCyMiNkRMXv+puUmpJmZ9Z2hofZDD1VSeUTEORGx\nH/Ai0rORPwA8V9LXJL125NRmZjYsYqjt0EuV3m0VEY9FxPci4vWkhxpdDRxdZZ5mZn2lpi2Pns3z\niIilwMIczMysHYN0t5WZmXVJTe+2cuVhZlZnPZ781y5XHmZmdeZuKzMzK62ma1u58jAzq7EIj3mY\nmVlZ7rYyM7PS3G1lZmalueUBkjYAHoiIth/obmY20Go6z6Oy5Ukk7SrpYklnS9pB0nXAdcB9kuaN\nkM6r6pqZDavpqrpVtjy+DHwEWB+4ENgzIi6T9CLgdODnzRJFxDNLmCyeO8ctFDMbbAM4SXBiRJwP\nIOmTEXEZQETcKLW1OruZmQ3ggHnxHT/RsM8tCjOzdgxg5bGdpGWkh0BNztvk12tXmK+ZWd8YuEmC\nETGhqnObmQ2MLrY8JG0OnApsSOoBWhgRJ0iaAZwBzAJuA96SH6PRUqUPgzIzs9XU3butlgMfiogX\nA7sC75X0YuDDwK8iYivgV/n1iFx5mJnVWRefJBgR90TEVXn7EeAGYFPgDcAp+bBTgH1HO5crDzOz\nOivR8ijOk8thQavTSpoF7ABcDmwYEcMT6+4ldWuNyMuTmJnVWYkxj+I8uZFIWhc4C/hARCwrTp+I\niJA06h2xrjzMzOqsy5MEJa1Jqji+GxFn5+j7JG0cEfdI2hhYPNp53G1lZlZnXRzzUGpinAjcEBFf\nLOw6Fzg4bx8M/Gi0c1XW8pC0Jakf7TcN8bsB90bELVXlbWbWN7q7ZtVuwEHAIknX5LiPAMcDZ0p6\nB3A78JbRTlRlt9V/Asc0iV+W972+wrzNzPpDF+d5RMSvSRO1m5lb5lxVdlttGBGLGiNz3KxWibyq\nrplZwQCuqjtthH2TW+3wqrpmZgU1XduqypbHlZLe1Rgp6Z3AHyrM18ysfwxgy+MDwA8lvY2VlcVs\nYC3gjRXma2bWP2ra8qhyYcT7gFdIeiWwTY7+aURcWFWeZmZ9Z9Aqj2ERcRFwUdX5mJn1pRUDtiS7\nmZl1waC2PMzMbDX0eCC8Xa48zMzqzC0PMzMrLeo53c2Vh5lZnbnlYWZmpbnyMDOz0gZ5wFzScwAi\nYkkv8jMz6xcxVM8xj8rWtlJynKT7gZuA/5W0RNLHq8rTzKzvrFjefuihKhdGPJL04JGdImJGREwH\ndgF2k3Rkq0Rekt3MrGAo2g89VGXlcRCwf0T8ZTgiIm4FDgTmt0oUEQsjYnZEzJ6/6cYVFs/MbBzo\n4mNou6nKMY81I+L+xsiIWJIfwG5mZqMZwLutnu5wn5mZDRvASYLbSVrWJF7A2hXma2bWPwat5RER\nE6o6t5nZwKjprbqeJGhmVmeDPEnQzMw65JaHmZmVFcv9JEEzMyvL3VZmZlaau63MzKy0QbtV18zM\nuqCmLY8qV9U9qrD95oZ9n6kqXzOzvhJD7YceqnJhxP0K28c07JvXKpFX1TUzK6jpqrpVdlupxXaz\n18+IiIXAQoDFc+fUs71mZtYjUdMxjypbHtFiu9lrMzNrpostD0knSVos6bqG+MMl3Sjpekn/0U6x\nerEwooDJhUUSvTCimVm7VnR1kuDJwJeBU4cjJL0SeAOwXUQ8Jem57ZzICyOamdVZF8cyIuJSSbMa\not8NHB8RT+VjFrdzriq7rczMbDXFULQdOrQ18A+SLpd0iaSd2knkeR5mZnVWolKQtABYUIhamG9C\nGslEYAawK7ATcKakF0SM/BQqVx5mZnVW4m6r4t2qJfwVODtXFldIGgI2AJaMlMjdVmZmdVb9PI9z\ngFcCSNoaWAu4f7REbnmYmdVZFwfMJZ0O7AFsIOmvwLHAScBJ+fbdp4GDR+uyAlceZma11sZ1vMy5\n9m+x68Cy53LlYWZWZzVdGNGVh5lZjcXyAVueRNIWVZ3bzGxg1HRhxCrvtjpneEPSWRXmY2bWv4ZK\nhB6qsvIorpz7grYTeUl2M7Nn9GCGeUeqHPMYaVXd1om8JLuZ2UoDOGA+0qq6ERFTK8zbzKw/1HO8\n3KvqmpnVWa+7o9rlW3XNzOps0FoeZma2+tzyMLOuWxpPMV2TxroYVqFYPtYlaM6Vh9k45opjALjb\nyszMygpXHmZmVporDzMzK8stDzMzK82Vh5mZlVbXyqPKJdnfIOm9hdeXS7o1hzdVla+ZWV8JtR96\nqO3KQ9KvJX1a0jxJ67WR5Cjg3MLrScBOpOfnvnuEfLyqrplZFkPth14q0/I4CLgJ+D/Ab/MF/v+N\ncPxaEXFn4fWvI+KBiLgDWKdVoohYGBGzI2L2/E03LlE8M7P+E0NqO/RS22MeEfEXSU8CT+fwSuDv\nR0gyvSH9+wovn1OmkGZmg2poRW8rhXaV6ba6hfR0wA2BE4FtImLeCEkul/SuJuf5F+CKsgU1MxtE\nde22KnO31X8BuwP7AzsAl0i6NCJuaXH8kcA5kg4ArspxLyONfezbYXnNzAZKr7uj2lWm2+oE4ARJ\n6wKHAscBmwFNn9sREYuBV0h6FfCSHP3TiLhwtUpsZjZAop6L6rZfeUj6AqnlsS7wO+DjwP+Mli5X\nFq4wzMw6MO5bHqQK4z8i4r6qCmNmZqsa95VHRPxA0j6S/jFHXRIRP66oXGZmRn90W30W2Bn4bo46\nQtLLI+IjlZTMzMzGf8sD2AvYPiLdECbpFOBqwJWHmVlFosfLjrSr7MKI04AH8/b6XS6LmZk1WFHT\nSYJlKo/PAldLuggQ8I/AhysplZmZAeO85SFJwK+BXUmLGwIcHRH3VlUwMzMb52MeERGSzouIbVl1\npdyWJH0JaHmfQEQc0V4RzcwGVzfvtpJ0ErA3sDgitslxnwNeT1qz8Bbg0Ih4aLRzlVlV9ypJO41+\n2DOuBP6Qwz6F7eHQlJdkNzNbqcur6p4MNK5JeAFprcKXAv8LHNPOicqMeewCvE3S7cBjpHGPyBk+\nS0ScMrwt6QPF1yOJiIXAQoDFc+fU9A5nM7PeGOrimEdEXCppVkPc+YWXlwFtPayvTOXxTyPtlDQ9\nIpa22O1KwMysA2UGzCUtABYUohbmL+TtejtwRjsHlplhfvsoh/wK2LHd85mZ2ejKjHkUe27KkvRR\nYDkrJ4KPqOw8jxHzbijII6xscUyRtKxwXETE1C7mbWbWl7rZbdWKpENIA+lzI9qrrrpZeaySYUS0\n85xzMzMbwVDFt+pKmgccBcyJiMfbTdfNysPMzLqsmy0PSacDewAbSPorcCzp7qpJwAVpSh+XRcRh\no52rsm4rMzNbfd2cYR4R+zeJPrGTc7U1z0PSBEk3jnLY3E4KYGZmrQ2F2g691FblERErgJskbTHC\nMQ+22mdmZp2JEqGXynRbTQeul3QFaZIgABGxT9dLZWZmQG/utupEmcrjY5WVwszMmhrXq+oCRMQl\nkp4HbBURv5Q0BZhQXdHMzGxorAvQQtsLI0p6F/AD4Bs5alPgnCoKZWZmSaC2Qy+VWVX3vcBuwDKA\niPgz8NxWB0t6RNKyJuGRwmzzZum8qq6ZWbY81HbopTJjHk9FxNN5EgmSJjLy8zo6mmHuVXXNzFbq\ndYuiXWVaHpdI+ggwWdJrgO8DP66mWGZmBmnMo93QS2Uqjw8DS4BFwL8A50XERysplZmZAfUd8yjT\nbXV4RJwAfHM4QtL7c5yZmVVg3N9tBRzcJO6QLpXDzMyaqGu31agtD0n7AwcAz5d0bmHXeoCXJDEz\nq1BdB8zb6bb6LXAPsAHwhUL8I8C1VRTKzMySih/n0bFRK4/8+NnbJV0aEZcU90n6d+DoqgpnZjbo\nhmra8igz5vGaJnF7dqsgZmb2bCtKhF5qZ8zj3cB7gBdKKnZTrQf8pqqCmZkZDKmeLY92xjy+B/wM\n+CxprsewR/wMDzOzatV1mY1Ru60i4uGIuC0/vnBz4FV5HGQNSc9vlmaEda2WSVoi6TJJfvKgmdko\nxu2tusMkHQvMBv4O+DawFvAd0mKJqxhpXStJE4BtgO/m/83MrIW63m1VZsD8jcA+5KcIRsTdpHGP\nUiJiRUT8EfhSs/1eVdfMbKUh1HbopTLLkzwdESEpACStszoZR8Q3WsR7VV0zs6yuF8EyLY8zJX0D\nmJYfDPVLCutcmZlZ9w2p/dBLZR5D+/m8FPsy0rjHxyPigspKZmZmtV0YsUy3FbmycIVhZtYjK2o6\nYN7OJMFHaN7tJiAiYmrXS2VmZsA4bnl0+jhZMzNbfeO28jAzs7ET47XbyszMxo5bHmZmVporDzMz\nK60fJgmamVmPdXuSoKQjJV0v6TpJp0tau5NyufIwM6uxbq6qK2lT4AhgdkRsA0wA9uukXJVVHpI2\nH2Hf3lXla2bWTyp4kuBEYLKkicAU4O5OylVly+MCSbMaIyW9HTihwnzNzPpGmW6r4qrkOSwonisi\n7gI+D9wB3AM8HBHnd1KuKiuPDwLnS9pqOELSMcCRwJxWibwku5nZSmW6rSJiYUTMLoSFxXNJmg68\nAXg+sAmwjqQDOylXZXdbRcR5kp4CfiZpX+CdwM7AP0bE0hHSeUl2M7OsyxfBVwN/iYglAJLOBl5B\nerBfKZUOmEfEr4BDgYuBF5AeYduy4jAzs1UNEW2HNtwB7CppiiQBc4EbOilXZS2PwoKKAiaRCrk4\nF9gLKpqZtaGbkwQj4nJJPwCuApYDV5N7esqqstvKCyqama2mbvfdR8SxwLGrex7PMDczq7G6Lk/i\nSYIlDd3/8FgXwRose+rxsS7CmFkaT411Eaxi4/4xtJasscH6Y10EazB10pSxLsKYma5JY10Eq9iK\nmq5u5crDzKzG6tpt5crDzKzG2rwFt+dceZiZ1Vg9qw5XHmZmtVbXbqsxudtK0gfGIl8zs/GmyzPM\nu2asbtX94Bjla2Y2rkSJ0EtjVXm0vCPZq+qama3UzYdBddNYjXm0rCS9qq6Z2UpR0yHzXiyM+Kxd\nwOSq8jUz6yfLB63y8MKIZmarr55Vh2/VNTOrNU8SNDOz0uo6z8OVh5lZjQ3cgLmZma0+tzzMzKw0\ntzzMzKw0tzzMzKy0oXDLw8zMSvKTBM3MrDSPeZiZWWkDN+Yh6dyR9kfEPlXlbWbWLwZxhvnLgTuB\n04HLGWEZ9iJJC4AFAJ/7u62Yv+nGlRXQzKzuBrHbaiPgNcD+wAHAT4HTI+L6kRJ5SXYzs5Xq2m1V\n2cOgImJFRPw8Ig4GdgVuBi6W9L6q8jQz6zcR0XbopUoHzCVNAvYitT5mAf8F/LDKPM3M+snAjXlI\nOhXYBjgP+EREXFdVXmZm/aqu3VZVtjwOBB4D3g8cIT0zXi4gImJqhXmbmfWFFTWtPqp8kmBl4ylm\nZoOi12MZ7fIF3sysxoZKhHZJmiDpakk/6bRcnmFuZlZjFc3zeD9wA9Dx8IFbHmZmNTZEtB3aIWkz\n0l2w31qdcrnyMDOrsTLzPCQtkHRlISxocsr/BI5iNW/kcreVmVmNlZnnUVyhoxlJewOLI+IPkvZY\nnXK58jAzq7Euj3nsBuwj6XXA2sBUSd+JiAPLnqjKSYIfH2F3RMT/rSpvM7N+0c0nCUbEMcAxALnl\n8a+dVBxQ7ZjHY01CAO8Ajm6VqNhnd+pd91RYPDOz+osSoZeqnCT4heFtSeuRbg17O/DfwBdGSOdV\ndc3MsuUVzTCPiIuBiztNX/XCiDOADwJvA04BdoyIpVXmaWbWT+o6w7zKMY/PAf9MakVsGxGPVpWX\nmVm/quuqulWOeXwI2AT4N+BuSctyeETSsgrzNTPrG1HiXy95YUQzsxobuG4rMzNbfXXttnLlYWZW\nY255mJlZaW55mJlZab0eCG+XKw8zsxpbEQP2GFozM1t93VzbqpsqrzwkrQ1smV/eHBFPVp2nmVm/\nGLhuK0kTgc+Q1rO6HRCwuaRvAx+NiL9VlbeZWb+oa8ujyol8nwNmAM+PiJdFxI7AC4FpwOdbJfKq\numZmKw3cDHNgb2DrKNykHBHLJL0buJG0yu6zeFVdM7OV6tryqLLyiGgyuyUiVkiq56dhZlYzdR3z\nqLLb6k+S5jdGSjqQ1PIwM7NRRAy1HXqpypbHe4GzJb0d+EOOmw1MBt5YYb5mZn1j4GaYR8RdwC6S\nXgW8JEefFxG/qipPM7N+M7CTBCPiQuDCqvMxM+tHXhjRzMxKG8S7rczMbDXV9W4rVx5mZjXmbisz\nMytt4O62MjOz1eeWh5mZleYBczMzK23gWh75OR6HkZ7lsQg4MSKWV5WfmVk/quskwSrXtjqFtBzJ\nImBP4AvtJPKS7GZmKw1FtB16qcpuqxdHxLYAkk4ErmgnkZdkNzNbaRDneTzzpMCIWC6pwqzMzPrT\nIA6YbydpWd4WMDm/FulZH1MrzNvMrC/UdcC8sjGPiJgQEVNzWC8iJha2XXGYmbWh24+hlTRP0k2S\nbpb04U7L5Vt1zcxqrJstD0kTgK8ArwH+Cvxe0rkR8aey56rybiszM1tNEdF2aMPOwM0RcWtEPA38\nN/CGygtWlwAsqGOafsnD5apfHi5X/fLoNE2VAVgAXFkICxr2vwn4VuH1QcCXO8prrN9shx/QlXVM\n0y95uFz1y8Plql8enaYZy9DNysPdVmZmg+MuYPPC681yXGmuPMzMBsfvga0kPV/SWsB+wLmdnGi8\n3m21sKZp+iWPTtIMcrkG+b13kqZf8ug0zZiJNGH7fcAvgAnASRFxfSfnUu73MjMza5u7rczMrDRX\nHmZmVporDzMzK61vKw9JL5I0V9K6DfHzWhy/s6Sd8vaLJX1Q0utK5nlqyeN3z/m8tsX+XSRNzduT\nJX1C0o8l/buk9VukOULS5s32tTh+LUnzJb06vz5A0pclvVfSmiOke4Gkf5V0gqQvSjpsuKxm1v/G\n/YC5pEMj4tsNcUcA7wVuALYH3h8RP8r7roqIHRuOP5b0wKqJwAXALsBFpPVffhERn26Sb+PtbQJe\nCVwIEBH7NElzRUTsnLfflcv4Q+C1wI8j4viG468Htst3SCwEHgd+AMzN8f/cJI+HgceAW4DTge9H\nxJLG4wrHfze/7ynAQ8C6wNk5D0XEwU3SHAHsDVwKvA64Oqd9I/CeiLi4VX5m/ULScyNi8ViXY8yM\n9YzHLsyYvKNJ3CJg3bw9izRN//359dUtjp9AuoAuA6bm+MnAtS3yvQr4DrAHMCf/f0/entMizdWF\n7d8Dz8nb6wCLmhx/QzG/hn3XtMqD1KJ8LXAisAT4OXAwsF6T46/N/08E7gMm5Nca4b0vKhw3Bbg4\nb2/R7PMdhAA8twd5zBzr99lBmdcHjgduBB4EHiB9qTsemFbyXD9rET8V+CxwGnBAw76vtkizEfA1\n0iKBM4Hj8u/1mcDGTY6f0RBmArcB04EZY/05j0UYF91Wkq5tERYBGzZJskZEPAoQEbeRLux7Svoi\n6aLYaHlErIiIx4FbImJZTvsE0OoBwrOBPwAfBR6O9G37iYi4JCIuaZFmDUnTJc0kXXyX5HweA5o9\n3/06SYfm7T9Kmp0/j60pPGyrQUTEUEScHxHvADYBvgrMA25tUaa1gPVIFcFwd9gkoGW3FSvnCE0i\ntVaIiDtapZG0vqTjJd0o6UFJD0i6IcdNGyGfpiT9rEncVEmflXSapAMa9n21xXk2kvQ1SV+RNFPS\ncZIWSTpT0sYt0sxoCDOBK/LPdkaT4+cVtteXdGL+/f2epGa/v+TPZYO8PVvSrcDlkm6XNKfJ8VdJ\n+jdJL2x2vhZ5zJZ0kaTvSNpc0gWSHpb0e0k7tEizrqRPSro+H7tE0mWSDmmRzZnAUmCPiJgRETNJ\nLfSleV/j+XdsEV5G6kVo5tukv+uzgP0knSVpUt63a4s0JwN/Au4k9TI8QWpF/w/w9SbH30/6ex8O\nVwKbkr5EXtkij/421rVXO4H0jXh74HkNYRZwd5PjLwS2b4ibCJwKrGhy/OXAlLy9RiF+fRq+8TdJ\nuxnwfeDLNGkFNRx7G+kC/pf8/8Y5fl2atCRy/ieTuqAuJ1UYtwKXkLqtmuXR8pv/8HtsiDsyn/N2\n4AjgV8CFe9H8AAAD1UlEQVQ3Sd/Cjm1xnvcD1+bjbgQOzfHPAS5tkeYXwNHARoW4jXLc+S3S7Ngi\nvAy4p8nxZ5G+0e5LmjV7FjAp72v6cyS1yg4HPpzf09Gk5RsOB37UIs1Q/hkWw9+Gf65Njr+qsP0t\n4FP59/dI4JwWeSwqbF8E7JS3t6bJeko5788Dd5Ae+XwksMkov49XkLpr9yddRN+U4+cCv2uR5kfA\nIfn3/oPAx4CtgFOAzzQ5/qYR8n/WPmAF6e/3oibhiRbnuabh9UeB35BaB61+7sVegDtGOl+O+1D+\nXdm2+JmP9Pn2exjzArRVyNT9snuLfd9rErdZ8SLVsG+3JnGTWhy7QfGXZZQy7tXsj6fNtFOA54+w\nfyqwXb5objjKubbuIP9Nhi80wDTS4mk7j5LmJfm4F7WZR6mLSI4vdSHpxUUkx5e6kLBq5dFYxlZ5\n3ABMzNuXNexr1sVZzOMfSK3Ne/Nn1XTl11Hee9MvIcAfG17/Pv+/BnBjk+PPB44q/t6SeguOBn7Z\n5PjrgK1a5H3nCJ/VGg1xhwDXA7eP9j6AT432+eb44S+KXyS11J/1RWGQwpgXwGEwQtmLSN5f6kLS\nq4tI3tf2hYT00J0P5krnL+QbVfK+VuNKh+fP7FWk/vgTSONpnwBOa3L8sypH0jjePODbLfL4HWls\n7M2klue+OX4OLVaLBX5L/iIH7EO6oWR4X7OWxHTg30kt1KWkcY8bctyzxgpIX0j+rkXe+7aI/w/g\n1U3i5wF/bpHmk+Rx0Yb4LYEfjPK7vA9wGXBvN/9GxlsY8wI4DEZouIg82HARmd4iTakLSa8vIvm4\nUS8kwLENYfhGiY2AU0dItwdwBukmiEXAeaTnNUxscux/d/Az2Y7Unfgz4EW5gnqIVNm+okWal5K6\nu5YCvya3dEldlke0SPMi4NWNnzMwb4Tj57Z7/Chp9uwgzajlIt1Ms81o5ernMOYFcHAgj5lUmabK\nPBouJLUpVy/zaJWGNI52E3AOaczvDYV9zVpLpY7P8YdXnaaTcvV7GPMCODgwyo0G3UjTizzqWq6x\nfO90dtt828f3Kk0nefR7GK9Lsts4I+naVrtofrt16TS9yKOu5arre6fhtnlJewA/kPQ8mt82X/b4\nXqXpJI++5srDemVD4J9IfeVFIg3CdiNNL/Koa7nq+t7vk7R9RFwDEBGPStobOAnYtgvH9ypNJ3n0\nNVce1is/ITX7r2ncIeniLqXpRR51LVdd3/t8GibARsRyYL6kb3Th+F6l6SSPvjbu17YyM7PeGxfL\nk5iZWb248jAzs9JceZiZWWmuPMzMrLT/Dw2GCBGXgwEqAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11fd271d0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcHEX9//HXmwRCAoQcnDFAQOCLCnIYDkW/oIgGOfXn\nAcipElEERH1weIH+VPDA3xfFgyjIJQgKIgoqyCkql4CECHzlBoEQIBBuzO7n90fXks4wszs9mZ7t\nnXk/86hHeqq7umpmd7umqrqqFRGYmZkVsdRwF8DMzEYeVx5mZlaYKw8zMyvMlYeZmRXmysPMzApz\n5WFmZoW58qgQSXMkbdti2pC0bpuL1HUkfV7ST0s474clXdLu8xYsw48lfWk4y2C9Q57nUU2Sfgzs\nlYtaGng5IlZocHwA60XEXZ0oX538pwH3AktHxMKS8jgGWDci9hrq2HT8tsCZETG1jPIMkXepPw9J\n+wEfi4i3lnH+IfLeEDgeeBMwOSJUs/9TwH7ARsDZEbFfp8to5XPLo6Ii4sCIWH4gAGcDvxzucpVF\nGf8+ApJGD3cZhvAf4Fzgow32Pwx8DTilYyWyzosIh4oE4D7gnXXilwOeAbYZJG2QfSsH2BG4GVgA\nPAgckzvuIuDgmrS3Au9N228BbgCeTv+/pVH5gGPIvtkDPJDK8GwKb27i/V4JfB34C/ACsC4wBbgQ\neBK4CzggHTsDeJnswvUs8I8Uvz9we/p87gE+nvvMXgD6c2Waki9zOm4XYA7wVCrP62re7+fS5/M0\ncA6wbIP3sh9wTdq+On0Wz6V8P5TidwJuSXn9FXhjTV5HpLxeAkYDRwJ3p/f2z9zP6HXAi0BfOv9T\nKf5U4Gu5cx6QPsMn02c6peb35UDgX6k8PyD1RBT4fV0XiEH2fw04dbj/rhzKCcNeAIfcD6Nx5bFP\nujA2/ONm8cpjW7Iug6WANwJzgd3Svg8C1+XSbQw8ASwDTALmA3uni9ce6fXkeuVj8cpjWirD6ALv\n90qySucNKb+l04X3h8CywCbAPOAdtfnlzrEj8FpAwDbA88Bmuc/hoZrj82Ven+wCv33K+/B0sV0m\n936vJ6t0JpFVUgc2eC/7kSqP2p9Her0p8BiwJTAK2Dedf0wur1uANYCxKe4DKe+lgA+lsq5eL78U\ndyqp8gDeATwObAaMAb4PXF1Tvt8BE4A10+c8I+1bk6xCWXOIn58rjx4O7iYYGfYFTo/0FzmUiLgy\nImZHRH9E3ErW5bVN2n0hsL6k9dLrvYFzIuJlsgvxvyLijIhYGBFnA3cAO7f13Szu1IiYE9k4yWrA\n1sAREfFiRNwC/JSs8qwrIi6KiLsjcxVwCfC2JvP+EHBRRFwaEf8BvgOMJWt9DfheRDwcEU8CvyWr\n0FoxEzgpIq6LiL6IOI2shbFVTV4PRsQL6b39MuXdHxHnkLUStmgyvw8Dp0TETRHxEnAU8OY0NjXg\nuIh4KiIeAK4YeG8R8UBETEjxZnW58qg4SWuSfYM+vUCaLSVdIWmepKfJuidWAoiIF8m6X/ZKYwx7\nAGekpFOA+2tOdz/wmiV6E4N7MLc9BXgyIp5pNn9JO0i6VtKTkp4C3kN6r01Y7P1GRH8qTz6/R3Pb\nzwPLN3nuWmsBn5X01EAga2VMyR2T/yyQtI+kW3LHb0jr7+1ZshZmGe/NepArj+rbG/hLRNxTIM1Z\nZC2MNSJiReDHZN06A04j+2a6HfB8RPwtxT9MdpHLWxP4d9p+DhiX27dabrvV2/by6R4GJknK31GW\nz3+xPCSNAc4jazGsGhETgItZ9F6HKtNi71eSyC7o/26YonUPAl9P3+gHwrjUuhvwSnklrQX8BPgU\nWbfhBOA2Wn9vywGTKee9WQ9y5VF9+5D1ZRexAtk3+BclbQHsmd+ZKot+ststz8jtupisS2tPSaMl\nfQh4PVnfOGR98rtLWlrSdOD9ubTz0jnXGYiQNC3NP5nWTKEj4kGygeRjJS0r6Y1kd/ScmQ6ZC0zL\n3ZW1DFl//jxgoaQdgHflTjkXmCxpxQZZngvsKGk7SUsDnyXrSvprM+UdwlxynwVZRXBgahVK0nKS\ndqypKPOWI6sg5gFI2p+s5ZE//1RJyzRIfzawv6RNUiX7DbKxrvtaf0uZVP5lyT5/0s9qTG7/6LR/\nFDAq7a/6HWRWkCuPCpP0ZmAqxW/R/STwVUnPAF8mu0jWOp1sUH3gwkxEPEF2R9Bnybo4Dgd2iojH\n0yFfIhucng98hayFM5D2edKdU6mbZSuyb/H3U+zb7h5kg+8PA78Gjo6IP6V9A5/DE5JuSt1bh6T3\nN5+skrwwV6Y7yC6i96Qy5buIiIg7yebSfJ9scHlnYOc0/rOkjgFOS/l+MCJuJLv76cRU1rvIBr3r\nioh/klXufyOrKDYiuyttwOVkd4k9KunxOun/RPbzOg94hOzntnszBZe0pqRnU5dpPWuR3ck2J71+\nAbgzt/+LKe5Iss/3hRRnXcSTBHuUpH2AmVHiJDNJXwTmRcRJZeVhZsPDlUcPkjSO7JvrDyOi6YF4\nM7MB7rbqMZLeTdaPPpdct5OZWRFueZiZWWFueZiZWWGVvn3uvk22L9QsGje5+E0yy6xSrP4ctWrx\neVRLrdToTtHGNHliseMnNTt3LGfiyoWTaOKqxY6fsHrhPJaauNrQB+WMndLshPJFxo8ZN/RBNSaM\nKfazn7D0coXzmDiqWLkmjlq2eB6L7qpt2qSCl4qV+0cVzmNyX+EkTOrrL3Y8xa8RE8a+VDjNRvf+\nVkMf1Zz/PH5P09fBpVdap235DsUtDzMzK6zSLQ8zs57X30KTrANceZiZVVkU65rrFFceZmZV1l/N\nyqOjYx6S3irpB53M08xsJIu+hU2HTiq95SFpU7I1hz5A9ozr88vO08ysa/RSt5Wk9ckWuNuDbMG5\nc8gmJL69jPzMzLpWRQfMy+q2uoPsMZg7RcRbI+L7ZM9bHpKkmZJulHTjWU88VFLxzMxGiOhvPnRQ\nWZXH+8iWgb5C0k8kbcfiDyNqKCJmRcT0iJi+5+SpJRXPzGyE6O9vPnRQKZVHRFwQEbsDG5A9G/nT\nwCqSfiTpXYOnNjOzARH9TYdOKvVuq4h4LiLOioidyR5qdDNwRJl5mpl1lYq2PDo2zyMi5gOzUjAz\ns2b00t1WZmbWJhW928qVh5lZlXV48l+zXHmYmVWZu63MzKywiq5t5crDzKzCIjzmYWZmRbnbyszM\nCnO3lZmZFeaWB0haCXgiIpp+oLuZWU+r6DyP0pYnkbSVpCslnS9pU0m3AbcBcyXNGCSdV9U1MxtQ\n0VV1y2x5nAh8HlgRuBzYISKulbQBcDbwh3qJIuKVJUzu22R7t1DMrLf14CTB0RFxCYCkr0bEtQAR\ncYfU1OrsZmbWgwPm+Xf8Qs0+tyjMzJrRg5XHxpIWkD0EamzaJr1etsR8zcy6Rs9NEoyIUWWd28ys\nZ7Sx5SFpDeB0YFWyHqBZEXGCpEnAOcA04D7gg+kxGg2V+jAoMzNbQu2922oh8NmIeD2wFXCQpNcD\nRwKXRcR6wGXp9aBceZiZVVkbnyQYEY9ExE1p+xngduA1wK7Aaemw04DdhjqXKw8zsyor0PLIz5NL\nYWaj00qaBmwKXAesGhGPpF2PknVrDcrLk5iZVVmBMY/8PLnBSFoeOA/4dEQsyE+fiIiQNOQdsa48\nzMyqrM2TBCUtTVZx/Dwizk/RcyWtHhGPSFodeGyo87jbysysyto45qGsiXEycHtEfDe360Jg37S9\nL/Cboc5VWstD0rpk/Wh/qYnfGng0Iu4uK28zs67R3jWrtgb2BmZLuiXFfR44DjhX0keB+4EPDnWi\nMrut/gc4qk78grRv5xLzNjPrDm2c5xER15BN1K5nuyLnKrPbatWImF0bmeKmNUrkVXXNzHJ6cFXd\nCYPsG9toh1fVNTPLqejaVmW2PG6UdEBtpKSPAX8vMV8zs+7Rgy2PTwO/lvRhFlUW04FlgPeWmK+Z\nWfeoaMujzIUR5wJvkfR2YMMUfVFEXF5WnmZmXafXKo8BEXEFcEXZ+ZiZdaW+HluS3czM2qBXWx5m\nZrYEOjwQ3ixXHmZmVeaWh5mZFRbVnO7mysPMrMrc8jAzs8JceZiZWWG9PGAuaWWAiJjXifzMzLpF\n9FdzzKO0ta2UOUbS48CdwP9Kmifpy2XlaWbWdfoWNh86qMyFEQ8je/DI5hExKSImAlsCW0s6rFEi\nL8luZpbTH82HDiqz8tgb2CMi7h2IiIh7gL2AfRoliohZETE9IqbvOXlqicUzMxsB2vgY2nYqc8xj\n6Yh4vDYyIualB7CbmdlQevBuq5db3GdmZgN6cJLgxpIW1IkXsGyJ+ZqZdY9ea3lExKiyzm1m1jMq\nequuJwmamVVZL08SNDOzFrnlYWZmRcVCP0nQzMyKcreVmZkV5m4rMzMrrNdu1TUzszaoaMujzFV1\nD89tf6Bm3zfKytfMrKtEf/Ohg8pcGHH33PZRNftmNErkVXXNzHIquqpumd1WarBd7/UrImIWMAvg\nvk22r2Z7zcysQ6KiYx5ltjyiwXa912ZmVk8bWx6STpH0mKTbauIPlnSHpDmSvtVMsTqxMKKAsblF\nEr0woplZs/raOknwVOBE4PSBCElvB3YFNo6IlySt0syJvDCimVmVtXEsIyKuljStJvoTwHER8VI6\n5rFmzlVmt5WZmS2h6I+mQ4vWB94m6TpJV0navJlEnudhZlZlBSoFSTOBmbmoWekmpMGMBiYBWwGb\nA+dKWidi8KdQufIwM6uyAndb5e9WLeAh4PxUWVwvqR9YCZg3WCJ3W5mZVVn58zwuAN4OIGl9YBng\n8aESueVhZlZlbRwwl3Q2sC2wkqSHgKOBU4BT0u27LwP7DtVlBa48zMwqrYnreJFz7dFg115Fz+XK\nw8ysyiq6MKIrDzOzCouFPbY8iaQ1yzq3mVnPqOjCiGXebXXBwIak80rMx8yse/UXCB1UZuWRXzl3\nnaYTeUl2M7NXdGCGeUvKHPMYbFXdxom8JLuZ2SI9OGA+2Kq6ERHjS8zbzKw7VHO83KvqmplVWae7\no5rlW3XNzKqs11oeZma25NzyMLO2m9/3IhNH+cGc3SwWDncJ6nPlYTaCueLoAe62MjOzosKVh5mZ\nFebKw8zMinLLw8zMCnPlYWZmhVW18ihzSfZdJR2Ue32dpHtSeH9Z+ZqZdZVQ86GDmq48JF0j6euS\nZkhaoYkkhwMX5l6PATYne37uJwbJx6vqmpkl0d986KQiLY+9gTuB/wP8NV3g/98gxy8TEQ/mXl8T\nEU9ExAPAco0SRcSsiJgeEdP3nDy1QPHMzLpP9Kvp0ElNj3lExL2SXgReTuHtwOsGSTKxJv2nci9X\nLlJIM7Ne1d/X2UqhWUW6re4mezrgqsDJwIYRMWOQJNdJOqDOeT4OXF+0oGZmvaiq3VZF7rb6HvBW\nYA9gU+AqSVdHxN0Njj8MuEDSnsBNKe5NZGMfu7VYXjOzntLp7qhmFem2OgE4QdLywP7AMcBUoO5z\nOyLiMeAtkt4BvCFFXxQRly9Ric3MekhUc1Hd5isPSceTtTyWB/4GfBn481DpUmXhCsPMrAUjvuVB\nVmF8KyLmllUYMzNb3IivPCLiV5J2kfTfKeqqiPhtSeUyMzO6o9vqWGAL4Ocp6hBJb46Iz5dSMjMz\nG/ktD2BHYJOI7IYwSacBNwOuPMzMShIdXnakWUUXRpwAPJm2V2xzWczMrEZfRScJFqk8jgVulnQF\nIOC/gSNLKZWZmQEjvOUhScA1wFZkixsCHBERj5ZVMDMzG+FjHhERki6OiI1YfKXchiR9H2h4n0BE\nHNJcEc3Melc777aSdAqwE/BYRGyY4r4N7Ey2ZuHdwP4R8dRQ5yqyqu5NkjYf+rBX3Aj8PYVdctsD\noS4vyW5mtkibV9U9Fahdk/BSsrUK3wj8L3BUMycqMuaxJfBhSfcDz5GNe0TK8FUi4rSBbUmfzr8e\nTETMAmYB3LfJ9hW9w9nMrDP62zjmERFXS5pWE3dJ7uW1QFMP6ytSebx7sJ2SJkbE/Aa7XQmYmbWg\nyIC5pJnAzFzUrPSFvFkfAc5p5sAiM8zvH+KQy4DNmj2fmZkNrciYR77npihJXwAWsmgi+KCKzvMY\nNO+agjzDohbHOEkLcsdFRIxvY95mZl2pnd1WjUjaj2wgfbuI5qqrdlYei2UYEc0859zMzAbRX/Kt\nupJmAIcD20TE882ma2flYWZmbdbOloeks4FtgZUkPQQcTXZ31Rjg0mxKH9dGxIFDnau0biszM1ty\n7ZxhHhF71Ik+uZVzNTXPQ9IoSXcMcdh2rRTAzMwa6w81HTqpqcojIvqAOyWtOcgxTzbaZ2ZmrYkC\noZOKdFtNBOZIup5skiAAEbFL20tlZmZAZ+62akWRyuNLpZXCzMzqGtGr6gJExFWS1gLWi4g/SRoH\njCqvaGZm1j/cBWig6YURJR0A/Ao4KUW9BrigjEKZmVkmUNOhk4qsqnsQsDWwACAi/gWs0uhgSc9I\nWlAnPJObbV4vnVfVNTNLFoaaDp1UZMzjpYh4OU0iQdJoBn9eR0szzL2qrpnZIp1uUTSrSMvjKkmf\nB8ZK2h74JfDbcoplZmaQjXk0GzqpSOVxJDAPmA18HLg4Ir5QSqnMzAyo7phHkW6rgyPiBOAnAxGS\nDk1xZmZWghF/txWwb524/dpUDjMzq6Oq3VZDtjwk7QHsCawt6cLcrhUAL0liZlaiqg6YN9Nt9Vfg\nEWAl4Phc/DPArWUUyszMMiU/zqNlQ1Ye6fGz90u6OiKuyu+T9E3giLIKZ2bW6/or2vIoMuaxfZ24\nHdpVEDMze7W+AqGTmhnz+ATwSeC1kvLdVCsAfymrYGZmBv2qZsujmTGPs4DfA8eSzfUY8Iyf4WFm\nVq6qLrMxZLdVRDwdEfelxxeuAbwjjYMsJWntemkGWddqgaR5kq6V5CcPmpkNYcTeqjtA0tHAdOC/\ngJ8BywBnki2WuJjB1rWSNArYEPh5+t/MzBqo6t1WRQbM3wvsQnqKYEQ8TDbuUUhE9EXEP4Dv19vv\nVXXNzBbpR02HTiqyPMnLERGSAkDSckuScUSc1CDeq+qamSVVvQgWaXmcK+kkYEJ6MNSfyK1zZWZm\n7dev5kMnFXkM7XfSUuwLyMY9vhwRl5ZWMjMzq+zCiEW6rUiVhSsMM7MO6avogHkzkwSfoX63m4CI\niPFtL5WZmQEjuOXR6uNkzcxsyY3YysPMzIZPjNRuKzMzGz5ueZiZWWGuPMzMrLBumCRoZmYd1u5J\ngpIOkzRH0m2Szpa0bCvlcuVhZlZh7VxVV9JrgEOA6RGxITAK2L2VcpVWeUhaY5B9O5WVr5lZNynh\nSYKjgbGSRgPjgIdbKVeZLY9LJU2rjZT0EeCEEvM1M+saRbqt8quSpzAzf66I+DfwHeAB4BHg6Yi4\npJVylVl5fAa4RNJ6AxGSjgIOA7ZplMhLspuZLVKk2yoiZkXE9FyYlT+XpInArsDawBRgOUl7tVKu\n0u62ioiLJb0E/F7SbsDHgC2A/46I+YOk85LsZmZJmy+C7wTujYh5AJLOB95C9mC/QkodMI+Iy4D9\ngSuBdcgeYduw4jAzs8X1E02HJjwAbCVpnCQB2wG3t1Ku0loeuQUVBYwhK+RjqcBeUNHMrAntnCQY\nEddJ+hVwE7AQuJnU01NUmd1WXlDRzGwJtbvvPiKOBo5e0vN4hrmZWYVVdXkSTxIsqG/us8NdBKvx\nwsN/Hu4iDJv5fS8OdxGsZCP+MbSWGbXq8sNdBKsxdsrbhrsIw2biqJZWlrARpK+iq1u58jAzq7Cq\ndlu58jAzq7Amb8HtOFceZmYVVs2qw5WHmVmlVbXbaljutpL06eHI18xspGnzDPO2Ga5bdT8zTPma\nmY0oUSB00nBVHg3vSPaqumZmi7TzYVDtNFxjHg0rSa+qa2a2SFR0yLwTCyO+ahcwtqx8zcy6ycJe\nqzy8MKKZ2ZKrZtXhW3XNzCrNkwTNzKywqs7zcOVhZlZhPTdgbmZmS84tDzMzK8wtDzMzK8wtDzMz\nK6w/3PIwM7OC/CRBMzMrzGMeZmZWWM+NeUi6cLD9EbFLWXmbmXWLXpxh/mbgQeBs4DoGWYY9T9JM\nYCbA16duwJ6Tp5ZWQDOzquvFbqvVgO2BPYA9gYuAsyNizmCJvCS7mdkiVe22Ku1hUBHRFxF/iIh9\nga2Au4ArJX2qrDzNzLpNRDQdOqnUAXNJY4AdyVof04DvAb8uM08zs27Sc2Mekk4HNgQuBr4SEbeV\nlZeZWbeqardVmS2PvYDngEOBQ6RXxssFRESMLzFvM7Ou0FfR6qPMJwmWNp5iZtYrOj2W0Sxf4M3M\nKqy/QGiWpFGSbpb0u1bL5RnmZmYVVtI8j0OB24GWhw/c8jAzq7B+ounQDElTye6C/emSlMuVh5lZ\nhRWZ5yFppqQbc2FmnVP+D3A4S3gjl7utzMwqrMg8j/wKHfVI2gl4LCL+LmnbJSmXKw8zswpr85jH\n1sAukt4DLAuMl3RmROxV9ERlThL88iC7IyL+b1l5m5l1i3Y+STAijgKOAkgtj8+1UnFAuWMez9UJ\nAXwUOKJRonyf3VlPPFRi8czMqi8KhE4qc5Lg8QPbklYguzXsI8AvgOMHSedVdc3MkoUlzTCPiCuB\nK1tNX/bCiJOAzwAfBk4DNouI+WXmaWbWTao6w7zMMY9vA+8ja0VsFBHPlpWXmVm3quqqumWOeXwW\nmAJ8EXhY0oIUnpG0oMR8zcy6RhT410leGNHMrMJ6rtvKzMyWXFW7rVx5mJlVmFseZmZWmFseZmZW\nWKcHwpvlysPMrML6osceQ2tmZkuunWtbtVPplYekZYF108u7IuLFsvM0M+sWPddtJWk08A2y9azu\nBwSsIelnwBci4j9l5W1m1i2q2vIocyLft4FJwNoR8aaI2Ax4LTAB+E6jRF5V18xskZ6bYQ7sBKwf\nuZuUI2KBpE8Ad5CtsvsqXlXXzGyRqrY8yqw8IurMbomIPknV/DTMzCqmqmMeZXZb/VPSPrWRkvYi\na3mYmdkQIvqbDp1UZsvjIOB8SR8B/p7ipgNjgfeWmK+ZWdfouRnmEfFvYEtJ7wDekKIvjojLysrT\nzKzb9OwkwYi4HLi87HzMzLqRF0Y0M7PCevFuKzMzW0JVvdvKlYeZWYW528rMzArrubutzMxsybnl\nYWZmhXnA3MzMCuu5lkd6jseBZM/ymA2cHBELy8rPzKwbVXWSYJlrW51GthzJbGAH4PhmEnlJdjOz\nRfojmg6dVGa31esjYiMASScD1zeTyEuym5kt0ovzPF55UmBELJRUYlZmZt2pFwfMN5a0IG0LGJte\ni+xZH+NLzNvMrCtUdcC8tDGPiBgVEeNTWCEiRue2XXGYmTWh3Y+hlTRD0p2S7pJ0ZKvl8q26ZmYV\n1s6Wh6RRwA+A7YGHgBskXRgR/yx6rjLvtjIzsyUUEU2HJmwB3BUR90TEy8AvgF1LL1hVAjCzimm6\nJQ+Xq3p5uFzVy6PVNGUGYCZwYy7MrNn/fuCnudd7Aye2lNdwv9kWP6Abq5imW/JwuaqXh8tVvTxa\nTTOcoZ2Vh7utzMx6x7+BNXKvp6a4wlx5mJn1jhuA9SStLWkZYHfgwlZONFLvtppV0TTdkkcraXq5\nXL383ltJ0y15tJpm2EQ2YftTwB+BUcApETGnlXMp9XuZmZk1zd1WZmZWmCsPMzMrzJWHmZkV1rWV\nh6QNJG0nafma+BkNjt9C0uZp+/WSPiPpPQXzPL3g8W9N+byrwf4tJY1P22MlfUXSbyV9U9KKDdIc\nImmNevsaHL+MpH0kvTO93lPSiZIOkrT0IOnWkfQ5SSdI+q6kAwfKambdb8QPmEvaPyJ+VhN3CHAQ\ncDuwCXBoRPwm7bspIjarOf5osgdWjQYuBbYEriBb/+WPEfH1OvnW3t4m4O3A5QARsUudNNdHxBZp\n+4BUxl8D7wJ+GxHH1Rw/B9g43SExC3ge+BWwXYp/X508ngaeA+4GzgZ+GRHzao/LHf/z9L7HAU8B\nywPnpzwUEfvWSXMIsBNwNfAe4OaU9r3AJyPiykb5mXULSatExGPDXY5hM9wzHtswY/KBOnGzgeXT\n9jSyafqHptc3Nzh+FNkFdAEwPsWPBW5tkO9NwJnAtsA26f9H0vY2DdLcnNu+AVg5bS8HzK5z/O35\n/Gr23dIoD7IW5buAk4F5wB+AfYEV6hx/a/p/NDAXGJVea5D3Pjt33DjgyrS9Zr3PtxcCsEoH8pg8\n3O+zhTKvCBwH3AE8CTxB9qXuOGBCwXP9vkH8eOBY4Axgz5p9P2yQZjXgR2SLBE4Gjkm/1+cCq9c5\nflJNmAzcB0wEJg335zwcYUR0W0m6tUGYDaxaJ8lSEfEsQETcR3Zh30HSd8kuirUWRkRfRDwP3B0R\nC1LaF4BGDxCeDvwd+ALwdGTftl+IiKsi4qoGaZaSNFHSZLKL77yUz3NAvee73yZp/7T9D0nT0+ex\nPrmHbdWIiOiPiEsi4qPAFOCHwAzgngZlWgZYgawiGOgOGwM07LZi0RyhMWStFSLigUZpJK0o6ThJ\nd0h6UtITkm5PcRMGyacuSb+vEzde0rGSzpC0Z82+HzY4z2qSfiTpB5ImSzpG0mxJ50pavUGaSTVh\nMnB9+tlOqnP8jNz2ipJOTr+/Z0mq9/tL+lxWStvTJd0DXCfpfknb1Dn+JklflPTaeudrkMd0SVdI\nOlPSGpIulfS0pBskbdogzfKSvippTjp2nqRrJe3XIJtzgfnAthExKSImk7XQ56d9teffrEF4E1kv\nQj0/I/u7Pg/YXdJ5ksakfVs1SHMq8E/gQbJehhfIWtF/Bn5c5/jHyf7eB8KNwGvIvkTe2CCP7jbc\ntVczgewb8SbAWjVhGvBwneMvBzapiRsNnA701Tn+OmBc2l4qF78iNd/466SdCvwSOJE6raCaY+8j\nu4Dfm/5fPcUvT52WRMr/VLIuqOvIKox7gKvIuq3q5dHwm//Ae6yJOyyd837gEOAy4Cdk38KObnCe\nQ4Fb03F3APun+JWBqxuk+SNwBLBaLm61FHdJgzSbNQhvAh6pc/x5ZN9odyObNXseMCbtq/tzJGuV\nHQwcmd5SiOu3AAADkUlEQVTTEWTLNxwM/KZBmv70M8yH/wz8XOscf1Nu+6fA19Lv72HABQ3ymJ3b\nvgLYPG2vT531lFLe3wEeIHvk82HAlCF+H68n667dg+wi+v4Uvx3wtwZpfgPsl37vPwN8CVgPOA34\nRp3j7xwk/1ftA/rI/n6vqBNeaHCeW2pefwH4C1nroNHPPd8L8MBg50txn02/KxvlP/PBPt9uD8Ne\ngKYKmXW/vLXBvrPqxE3NX6Rq9m1dJ25Mg2NXyv+yDFHGHev98TSZdhyw9iD7xwMbp4vmqkOca/0W\n8p8ycKEBJpAtnrbFEGnekI7boMk8Cl1EUnyhC0knLiIpvtCFhMUrj9oyNsrjdmB02r62Zl+9Ls58\nHm8ja20+mj6ruiu/DvHe634JAf5R8/qG9P9SwB11jr8EODz/e0vWW3AE8Kc6x98GrNcg7wcH+ayW\nqonbD5gD3D/U+wC+NtTnm+IHvih+l6yl/qovCr0Uhr0ADr0Ril5E0v5CF5JOXUTSvqYvJGQP3flM\nqnTuJd2okvY1Glc6OH1m7yDrjz+BbDztK8AZdY5/VeVINo43A/hZgzz+RjY29gGyluduKX4bGqwW\nC/yV9EUO2IXshpKBffVaEhOBb5K1UOeTjXvcnuJeNVZA9oXkvxrkvVuD+G8B76wTPwP4V4M0XyWN\ni9bErwv8aojf5V2Aa4FH2/k3MtLCsBfAoTdCzUXkyZqLyMQGaQpdSDp9EUnHDXkhAY6uCQM3SqwG\nnD5Ium2Bc8hugpgNXEz2vIbRdY79RQs/k43JuhN/D2yQKqinyCrbtzRI80ay7q75wDWkli5Zl+Uh\nDdJsALyz9nMGZgxy/HbNHj9Emh1aSDNkuchuptlwqHJ1cxj2Ajg4kMZMykxTZh41F5LKlKuTeTRK\nQzaOdidwAdmY3665ffVaS4WOT/EHl52mlXJ1exj2Ajg4MMSNBu1I04k8qlqu4XzvtHbbfNPHdypN\nK3l0exipS7LbCCPp1ka7qH+7deE0ncijquWq6nun5rZ5SdsCv5K0FvVvmy96fKfStJJHV3PlYZ2y\nKvBusr7yPJENwrYjTSfyqGq5qvre50raJCJuAYiIZyXtBJwCbNSG4zuVppU8uporD+uU35E1+2+p\n3SHpyjal6UQeVS1XVd/7PtRMgI2IhcA+kk5qw/GdStNKHl1txK9tZWZmnTcilicxM7NqceVhZmaF\nufIwM7PCXHmYmVlh/x+BFQNSIIwspAAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x121a3aac8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4HFWd//H3h4SEBBKyIJssQYFhFAQxLIoOKC5BFnEG\nFZBVx4ijoOg8IG6gPxdmXH7DuEdBFpUBARFHnAFlGxdABCQgMAKyKFuAQMImJvc7f5xzSaXpvrer\n09W3bvfnlec8qT5Vp87pvvfW6bPUKUUEZmZmZaw21gUwM7Pxx5WHmZmV5srDzMxKc+VhZmalufIw\nM7PSXHmYmVlprjxqRNJNknbrMG1I2rzLReo7kj4i6dsVnPftki7q9nlLluEbkj4+lmWwwSHf51FP\nkr4BHFSIWh14JiKmtTg+gC0i4rZelK9J/nOAPwKrR8SyivI4Adg8Ig4a7dh8/G7AdyNioyrKM0re\nlf48JB0G/GNEvLKK84+S99bAF4GXAbMjQoV9k4GvAa8FZgG3A8dFxE97XU6rllseNRURR0TEWsMB\nOBP4wViXqypK/PsISJo41mUYxV+Bs4F3Ntk3EbgH2BVYG/gYcHb+cmH9JCIcahKAO4HXNolfE1gK\n7DpC2iB9KwfYE7gOWEL6Qz6hcNxPgCMb0t4AvDlvvwL4DfBY/v8VrcoHnED6Zg9wdy7D4zm8vI33\nexnwGeCXwFPA5sCGwAXAI8BtwLvysfOAZ0gXrseB3+X4w4Gb8+dzB/Duwmf2FDBUKNOGxTLn4/YB\nbgIezeX524b3+8/583kMOAtYo8V7OQz4Rd6+In8WT+R835bj9wKuz3n9CnhJQ17H5rz+QroIf5j0\nzX0p8PvCz+hvgaeB5fn8j+b4U4FPF875rvwZPpI/0w0bfl+OAP6Qy/NVck9Eid/XzYFo47gbgH8Y\n678vh+6GMS+AQ+GH0bryOCRfGFv+cbNy5bEbsA2pZfkS4AFg37zvrcBVhXTbAg8Dk0jdDIuBg/PF\n64D8enaz8rFy5TEnl2Fiifd7GanSeXHOb/V84f0asAawHbAIeE1jfoVz7Am8EBDp2+6TwPaFz+FP\nDccXy7wl6QL/upz3MfliO6nwfq8mVTqzSJXUES3ey2HkyqPx55FfvxR4ENgJmAAcms8/uZDX9cDG\nwJQc95ac92rA23JZN2iWX447lVx5AK8BHgK2ByYDXwauaCjffwIzgE3y5zwv79uEVKFsMsrPb9TK\nA1iPVNFtNdZ/Xw7dDe4mGB8OBU6P/Nc4moi4LCIWRsRQRNxA6vLaNe++ANhS0hb59cHAWRHxDOlC\n/IeIOCMilkXEmcAtwN5dfTcrOzUiboo0TrI+sAtwbEQ8HRHXA98mVZ5NRcRPIuL2SC4HLgJe1Wbe\nbwN+EhEXR8RfgS8AU0itr2H/HhH3RsQjwI9JFVon5gPfjIirImJ5RJxGamHs3JDXPRHxVH5vP8h5\nD0XEWaRWwo5t5vd24JSIuDYi/gIcB7y8ofvoxIh4NCLuBi4dfm8RcXdEzMjxHZO0OvA94LSIuGVV\nzmX148qj5iRtQvoGfXqJNDtJulTSIkmPkbon1gGIiKdJ3S8H5TGGA4AzctINgbsaTncX8PxVehMj\nu6ewvSHwSEQsbTd/SXtIulLSI5IeBd5Ifq9tWOn9RsRQLk8xv/sL208Ca7V57kabAh+S9OhwILUy\nNiwcU/wskHSIpOsLx29N5+/tcVILs4r39hz5d+sMUlfj+7p1XqsPVx71dzDwy4i4o0Sa75NaGBtH\nxNrAN0jdOsNOI30z3R14MiJ+nePvJV3kijYB/py3nwCmFvatX9judNpeMd29wCxJxRllxfxXyiPP\n7DmX1GJYLyJmABey4r2OVqaV3q8kkS7of26ZonP3AJ/J3+iHw9Tcuhv2bHklbQp8i3ThnZ3f2410\n/t7WBGZTzXtbSf4cTyZ1Wf1DbtVZn3HlUX+HkPqyy5hG+gb/tKQdgQOLO3NlMUSabnlGYdeFpC6t\nAyVNlPQ24EWkvnFIffL7S1pd0lxgv0LaRfmcLxiOkDQn338yp51CR8Q9pIHkz0laQ9JLSDN6vpsP\neQCYU5iVNYnUn78IWCZpD+D1hVM+AMyWtHaLLM8G9pS0e+5i+RCpK+lX7ZR3FA9Q+CxIFcERuVUo\nSWtK2rOhoixak1RBLAKQdDip5VE8/0aSJrVIfyZwuKTtciX7WdJY152dv6Ukl38N0udP/llNLhzy\nddKg/t7DXXDWf1x51JiklwMbUX6K7j8Bn5K0FPgE6SLZ6HTSoPrwhZmIeJg0I+hDpC6OY4C9IuKh\nfMjHSYPTi4FPklo4w2mfJM+cyt0sO5O+xd9FuW+7B5AG3+8FfggcHxE/y/uGP4eHJV2bu7eOyu9v\nMamSvKBQpltIF9E7cpmKXURExK2ke2m+TBpc3pt0wXumRHlbOQE4Lef71oi4hjT76Su5rLeRBr2b\niojfkyr3X5Mqim1Is9KGXUKaJXa/pIeapP8Z6ed1LnAf6ee2fzsFl7SJpMdzl2kzm5Jmst2UXz8F\n3JrTbgq8mzR+cn8+z+OS3t5O3jZ++CbBASXpEGB+VHiTmaSPAYsi4ptV5WFmY8OVxwCSNJX0zfVr\nEdH2QLyZ2TB3Ww0YSW8g9aM/QKHbycysDLc8zMysNLc8zMystFovwLZws71LNYumrf106Tymzi43\nsWbSuuXr2wnrlb/3arV1Ws0ubU6zZ5bOQ7Pavd+sYObzyuUxc73SWWjGBqWOX23m+qMf1GDKhu3e\nhL7C9MlTRz+oYMbk8j/3GauvWer4mRPKlSmlWaN8mpVm4o5uVgeXlucNTSidZvbycsfPWj5UOo9Z\nlJ9896r7z9HoR7Xnrw/d0fZ1cPV1XtC1fEfjloeZmZVW65aHmdnAGyrZvOoRVx5mZnUW5bvaesGV\nh5lZnQ3Vs/Lo6ZiHpFdK+mov8zQzG89i+bK2Qy9V3vKQ9FLSmkNvIT3j+ryq8zQz6xuD1G0laUvS\nAncHkBacO4t0Q+Krq8jPzKxv1XTAvKpuq1tIj8HcKyJeGRFfJj1veVSS5ku6RtI15yxtfC6RmdmA\niaH2Qw9VVXn8PWkZ6EslfUvS7qz8MKKWImJBRMyNiLn7TWt8LpGZ2YAZGmo/9FAllUdEnB8R+wNb\nkZ6N/AFgXUlfl/T6kVObmdmwiKG2Qy9VOtsqIp6IiO9HxN6khxpdBxxbZZ5mZn2lpi2Pnt3nERGL\ngQU5mJlZOwZptpWZmXVJTWdbufIwM6uzHt/81y5XHmZmdeZuKzMzK62ma1u58jAzq7EIj3mYmVlZ\n7rYyM7PS3G1lZmalueUBktYBHo6Ith/obmY20Gp6n0dly5NI2lnSZZLOk/RSSTcCNwIPSJo3Qjqv\nqmtmNqymq+pW2fL4CvARYG3gEmCPiLhS0lbAmcB/NUsUEc8uYbJws73dQjGzwTaANwlOjIiLACR9\nKiKuBIiIW6S2Vmc3M7MBHDAvvuOnGva5RWFm1o4BrDy2lbSE9BCoKXmb/HqNCvM1M+sbA3eTYERM\nqOrcZmYDo4stD0kbA6cD65F6gBZExEmSZgFnAXOAO4G35sdotFTpw6DMzGwVdXe21TLgQxHxImBn\n4L2SXgR8GPh5RGwB/Dy/HpErDzOzOuvikwQj4r6IuDZvLwVuBp4PvAk4LR92GrDvaOdy5WFmVmcl\nWh7F++RymN/qtJLmAC8FrgLWi4j78q77Sd1aI/LyJGZmdVZizKN4n9xIJK0FnAt8ICKWFG+fiIiQ\nNOqMWFceZmZ11uWbBCWtTqo4vhcR5+XoByRtEBH3SdoAeHC087jbysyszro45qHUxDgZuDkivlTY\ndQFwaN4+FPjRaOeqrOUhaXNSP9ovG+J3Ae6PiNurytvMrG90d82qXYCDgYWSrs9xHwFOBM6W9E7g\nLuCto52oym6rfwOOaxK/JO/bu8K8zcz6Qxfv84iIX5Bu1G5m9zLnqrLbar2IWNgYmePmtErkVXXN\nzAoGcFXdGSPsm9Jqh1fVNTMrqOnaVlW2PK6R9K7GSEn/CPy2wnzNzPrHALY8PgD8UNLbWVFZzAUm\nAW+uMF8zs/5R05ZHlQsjPgC8QtKrga1z9E8i4pKq8jQz6zuDVnkMi4hLgUurzsfMrC8tH7Al2c3M\nrAsGteVhZmaroMcD4e1y5WFmVmdueZiZWWlRz9vdXHmYmdWZWx5mZlaaKw8zMyttkAfMJT0PICIW\n9SI/M7N+EUP1HPOobG0rJSdIegi4FfhfSYskfaKqPM3M+s7yZe2HHqpyYcSjSQ8e2SEiZkXETGAn\nYBdJR7dK5CXZzcwKhqL90ENVVh4HAwdExB+HIyLiDuAg4JBWiSJiQUTMjYi5+03btMLimZmNA118\nDG03VTnmsXpEPNQYGRGL8gPYzcxsNAM42+qZDveZmdmwAbxJcFtJS5rEC1ijwnzNzPrHoLU8ImJC\nVec2MxsYNZ2q65sEzczqbJBvEjQzsw655WFmZmXFMj9J0MzMynK3lZmZleZuKzMzK23QpuqamVkX\n1LTlUeWquscUtt/SsO+zVeVrZtZXYqj90ENVLoy4f2H7uIZ981ol8qq6ZmYFNV1Vt8puK7XYbvb6\nWRGxAFgAsHCzvevZXjMz65Go6ZhHlS2PaLHd7LWZmTXTxZaHpFMkPSjpxob4IyXdIukmSf/aTrF6\nsTCigCmFRRK9MKKZWbuWd/UmwVOBrwCnD0dIejXwJmDbiPiLpHXbOZEXRjQzq7MujmVExBWS5jRE\nvwc4MSL+ko95sJ1zVdltZWZmqyiGou3QoS2BV0m6StLlknZoJ5Hv8zAzq7MSlYKk+cD8QtSCPAlp\nJBOBWcDOwA7A2ZJeEDHyU6hceZiZ1VmJ2VbF2aol/Ak4L1cWV0saAtYBFo2UyN1WZmZ1Vv19HucD\nrwaQtCUwCXhotERueZiZ1VkXB8wlnQnsBqwj6U/A8cApwCl5+u4zwKGjdVmBKw8zs1pr4zpe5lwH\ntNh1UNlzufIwM6uzmi6M6MrDzKzGYtmALU8iaZOqzm1mNjBqujBilbOtzh/ekHRuhfmYmfWvoRKh\nh6qsPIor576g7URekt3M7Fk9uMO8I1WOeYy0qm7rRF6S3cxshQEcMB9pVd2IiOkV5m1m1h/qOV7u\nVXXNzOqs191R7fJUXTOzOhu0loeZma06tzzMrOsWL3+SmROmjnUxrEKxbKxL0JwrD7NxzBXHAHC3\nlZmZlRWuPMzMrDRXHmZmVpZbHmZmVporDzMzK62ulUeVS7K/SdJ7C6+vknRHDvtVla+ZWV8JtR96\nqO3KQ9IvJH1G0jxJ09pIcgxwQeH1ZGAH0vNz3zNCPl5V18wsi6H2Qy+VaXkcDNwK/APwq3yB//8j\nHD8pIu4pvP5FRDwcEXcDa7ZKFBELImJuRMzdb9qmJYpnZtZ/Ykhth15qe8wjIv4o6WngmRxeDfzt\nCElmNqR/X+Hl88oU0sxsUA0t722l0K4y3Va3k54OuB5wMrB1RMwbIclVkt7V5DzvBq4uW1Azs0FU\n126rMrOt/h14JXAA8FLgcklXRMTtLY4/Gjhf0oHAtTnuZaSxj307LK+Z2UDpdXdUu8p0W50EnCRp\nLeBw4ARgI6Dpczsi4kHgFZJeA7w4R/8kIi5ZpRKbmQ2QqOeiuu1XHpK+SGp5rAX8GvgE8D+jpcuV\nhSsMM7MOjPuWB6nC+NeIeKCqwpiZ2crGfeUREedI2kfS3+WoyyPixxWVy8zM6I9uq88BOwLfy1FH\nSXp5RHykkpKZmdn4b3kAewLbRaQJYZJOA64DXHmYmVUkerzsSLvKLow4A3gkb6/d5bKYmVmD5TW9\nSbBM5fE54DpJlwIC/g74cCWlMjMzYJy3PCQJ+AWwM2lxQ4BjI+L+qgpmZmbjfMwjIkLShRGxDSuv\nlNuSpC8DLecJRMRR7RXRzGxwdXO2laRTgL2AByNi6xz3eWBv0pqFtwOHR8Sjo52rzKq610raYfTD\nnnUN8Nsc9ilsD4emvCS7mdkKXV5V91SgcU3Ci0lrFb4E+F/guHZOVGbMYyfg7ZLuAp4gjXtEzvA5\nIuK04W1JHyi+HklELAAWACzcbO+aznA2M+uNoS6OeUTEFZLmNMRdVHh5JdDWw/rKVB5vGGmnpJkR\nsbjFblcCZmYdKDNgLmk+ML8QtSB/IW/XO4Cz2jmwzB3mo/Uh/RzYvt3zmZnZ6MqMeRR7bsqS9FFg\nGStuBB9R2fs8Rsy7oSBLWdHimCppSeG4iIjpXczbzKwvdbPbqhVJh5EG0nePaK+66mblsVKGEdHO\nc87NzGwEQxVP1ZU0DzgG2DUinmw3XTcrDzMz67JutjwknQnsBqwj6U/A8aTZVZOBi9MtfVwZEUeM\ndq7Kuq3MzGzVdfMO84g4oEn0yZ2cq637PCRNkHTLKIft3kkBzMystaFQ26GX2qo8ImI5cKukTUY4\n5pFW+8zMrDNRIvRSmW6rmcBNkq4m3SQIQETs0/VSmZkZ0JvZVp0oU3l8vLJSmJlZU+N6VV2AiLhc\n0qbAFhHxM0lTgQnVFc3MzIbGugAttL0woqR3AecA38xRzwfOr6JQZmaWBGo79FKZVXXfC+wCLAGI\niD8A67Y6WNJSSUuahKWFu82bpfOqumZm2bJQ26GXyox5/CUinsk3kSBpIiM/r6OjO8y9qq6Z2Qq9\nblG0q0zL43JJHwGmSHod8APgx9UUy8zMII15tBt6qUzl8WFgEbAQeDdwYUR8tJJSmZkZUN8xjzLd\nVkdGxEnAt4YjJL0/x5mZWQXG/Wwr4NAmcYd1qRxmZtZEXbutRm15SDoAOBDYTNIFhV3TAC9JYmZW\noboOmLfTbfUr4D5gHeCLhfilwA1VFMrMzJKKH+fRsVErj/z42bskXRERlxf3SfoX4NiqCmdmNuiG\natryKDPm8bomcXt0qyBmZvZcy0uEXmpnzOM9wD8BL5RU7KaaBvyyqoKZmRkMqZ4tj3bGPL4P/BT4\nHOlej2FL/QwPM7Nq1XWZjVG7rSLisYi4Mz++cGPgNXkcZDVJmzVLM8K6VkskLZJ0pSQ/edDMbBTj\ndqruMEnHA3OBvwG+A0wCvktaLHElI61rJWkCsDXwvfy/mZm1UNfZVmUGzN8M7EN+imBE3Esa9ygl\nIpZHxO+ALzfb71V1zcxWGEJth14qU3k8ExHPPipX0pqrknFEfLNF/IKImBsRc/ebtumqZGFmNu7V\n9RnmZSqPsyV9E5iRHwz1MwrrXJmZWfcNqf3QS2UeQ/uFvBT7EtK4xyci4uLKSmZmZrVdGLHMqrrk\nysIVhplZjyyv6YB5OzcJLqV5d5qAiIjpXS+VmZkB47jl0enjZM3MbNWN28rDzMzGTozXbiszMxs7\nbnmYmVlprjzMzKy0cbswopmZjZ1u3yQo6WhJN0m6UdKZktbopFyuPMzMaqybq+pKej5wFDA3IrYG\nJgD7d1KuyioPSRuPsG+vqvI1M+snFTxJcCIwRdJEYCpwbyflqrLlcbGkOY2Rkt4BnFRhvmZmfaNM\nt1VxVfIc5hfPFRF/Br4A3A3cBzwWERd1Uq4qK48PAhdJ2mI4QtJxwNHArq0SeUl2M7MVynRbFVcl\nz2FB8VySZgJvAjYDNgTWlHRQJ+WqbLZVRFwo6S/ATyXtC/wjsCPwdxGxeIR0C4AFAAs327uuEw3M\nzHqiyxfB1wJ/jIhFAJLOA15BerBfKZUOmEfEz4HDgcuAF5AeYduy4jAzs5UNEW2HNtwN7CxpqiQB\nuwM3d1KuyloehQUVBUwmFfLBXGAvqGhm1oZu3iQYEVdJOge4FlgGXEfu6Smrym4rL6hoZraKut13\nHxHHA8ev6nl8h7mZWY3VdXkS3yRY0jMP1vVHObiGFt8/1kUYM4uXPznWRbCKjfvH0FoyaV3Xt3Wz\n2sz1x7oIY2bmhKljXQSr2PKarm7lysPMrMbq2tfhysPMrMbanILbc648zMxqrJ5VhysPM7Naq2u3\n1ZiM/kr6wFjka2Y23nT5DvOuGaupQx8co3zNzMaVKBF6aawqj5Yzkr2qrpnZCt18GFQ3jVXl0bKS\nLC4pvN+0TXtZJjOz2okS/3qpFwsjPmcXMKWqfM3M+smyms638sKIZmY1Vs+qw1N1zcxqzTcJmplZ\naXW9z8OVh5lZjfV6ILxdrjzMzGrMLQ8zMyvNLQ8zMyvNLQ8zMyttKNzyMDOzkvwkQTMzK81jHmZm\nVtrAjXlIumCk/RGxT1V5m5n1i0G8w/zlwD3AmcBVjLAMe5Gk+cB8gE/M3gavrGtmg2wQu63WB14H\nHAAcCPwEODMibhopUUQsABYALNxs73p+amZmPVLXbqvKnucREcsj4r8i4lBgZ+A24DJJ76sqTzOz\nfhMRbYdeqnTAXNJkYE9S62MO8O/AD6vM08ysnwzcmIek04GtgQuBT0bEjVXlZWbWr+rabVVly+Mg\n4Ang/cBR0rPj5QIiIqZXmLeZWV9YXtPqo8onCY7V89HNzPpGr8cy2uULvJlZjQ2VCO2SNEHSdZL+\ns9Ny+Q5zM7Maq+g+j/cDNwMdDx+45WFmVmNDRNuhHZI2Is2C/faqlMuVh5lZjZW5z0PSfEnXFML8\nJqf8N+AYVnEil7utzMxqrMx9HsUVOpqRtBfwYET8VtJuq1IuVx5mZjXW5TGPXYB9JL0RWAOYLum7\nEXFQ2RNVeZPgJ0bYHRHx/6rK28ysX3TzSYIRcRxwHEBuefxzJxUHVDvm8USTEMA7gWNbJSr22Z2z\n9K4Ki2dmVn9RIvRSlTcJfnF4W9I00tSwdwD/AXxxhHReVdfMLFtW0R3mEXEZcFmn6ateGHEW8EHg\n7cBpwPYRsbjKPM3M+kld7zCvcszj88Dfk1oR20TE41XlZWbWr+q6qm6VYx4fAjYEPgbcK2lJDksl\nLakwXzOzvhEl/vWSF0Y0M6uxgeu2MjOzVVfXbitXHmZmNeaWh5mZleaWh5mZldbrgfB2ufIwM6ux\n5TFgj6E1M7NV1821rbqp8spD0hrA5vnlbRHxdNV5mpn1i4HrtpI0EfgsaT2ruwABG0v6DvDRiPhr\nVXmbmfWLurY8qryR7/PALGCziHhZRGwPvBCYAXyhVSKvqmtmtsLA3WEO7AVsGYVJyhGxRNJ7gFtI\nq+w+h1fVNTNboa4tjyorj4gmd7dExHJJ9fw0zMxqpq5jHlV2W/1e0iGNkZIOIrU8zMxsFBFDbYde\nqrLl8V7gPEnvAH6b4+YCU4A3V5ivmVnfGLg7zCPiz8BOkl4DvDhHXxgRP68qTzOzfjOwNwlGxCXA\nJVXnY2bWj7wwopmZlTaIs63MzGwV1XW2lSsPM7Mac7eVmZmVNnCzrczMbNW55WFmZqV5wNzMzEob\nuJZHfo7HEaRneSwETo6IZVXlZ2bWj+p6k2CVa1udRlqOZCGwB/DFdhJ5SXYzsxWGItoOvVRlt9WL\nImIbAEknA1e3k8hLspuZrTCI93k8+6TAiFgmqcKszMz60yAOmG8raUneFjAlvxbpWR/TK8zbzKwv\n1HXAvLIxj4iYEBHTc5gWERML2644zMza0O3H0EqaJ+lWSbdJ+nCn5fJUXTOzGutmy0PSBOCrwOuA\nPwG/kXRBRPy+7LmqnG1lZmarKCLaDm3YEbgtIu6IiGeA/wDeVHnB6hKA+XVM0y95uFz1y8Plql8e\nnaapMgDzgWsKYX7D/v2AbxdeHwx8paO8xvrNdvgBXVPHNP2Sh8tVvzxcrvrl0WmasQzdrDzcbWVm\nNjj+DGxceL1RjivNlYeZ2eD4DbCFpM0kTQL2By7o5ETjdbbVgpqm6Zc8OkkzyOUa5PfeSZp+yaPT\nNGMm0g3b7wP+G5gAnBIRN3VyLuV+LzMzs7a528rMzEpz5WFmZqW58jAzs9L6tvKQtJWk3SWt1RA/\nr8XxO0raIW+/SNIHJb2xZJ6nlzz+lTmf17fYv5Ok6Xl7iqRPSvqxpH+RtHaLNEdJ2rjZvhbHT5J0\niKTX5tcHSvqKpPdKWn2EdC+Q9M+STpL0JUlHDJfVzPrfuB8wl3R4RHynIe4o4L3AzcB2wPsj4kd5\n37URsX3D8ceTHlg1EbgY2Am4lLT+y39HxGea5Ns4vU3Aq4FLACJinyZpro6IHfP2u3IZfwi8Hvhx\nRJzYcPxNwLZ5hsQC4EngHGD3HP/3TfJ4DHgCuB04E/hBRCxqPK5w/Pfy+54KPAqsBZyX81BEHNok\nzVHAXsAVwBuB63LaNwP/FBGXtcrPrF9IWjciHhzrcoyZsb7jsQt3TN7dJG4hsFbenkO6Tf/9+fV1\nLY6fQLqALgGm5/gpwA0t8r0W+C6wG7Br/v++vL1rizTXFbZ/Azwvb68JLGxy/M3F/Br2Xd8qD1KL\n8vXAycAi4L+AQ4FpTY6/If8/EXgAmJBfa4T3vrBw3FTgsry9SbPPdxACsG4P8pg91u+zgzKvDZwI\n3AI8AjxM+lJ3IjCj5Ll+2iJ+OvA54AzgwIZ9X2uRZn3g66RFAmcDJ+Tf67OBDZocP6shzAbuBGYC\ns8b6cx6LMC66rSTd0CIsBNZrkmS1iHgcICLuJF3Y95D0JdJFsdGyiFgeEU8Ct0fEkpz2KaDVA4Tn\nAr8FPgo8Funb9lMRcXlEXN4izWqSZkqaTbr4Lsr5PAE0e777jZIOz9u/kzQ3fx5bUnjYVoOIiKGI\nuCgi3glsCHwNmAfc0aJMk4BppIpguDtsMtCy24oV9whNJrVWiIi7W6WRtLakEyXdIukRSQ9LujnH\nzRghn6Yk/bRJ3HRJn5N0hqQDG/Z9rcV51pf0dUlflTRb0gmSFko6W9IGLdLMagizgavzz3ZWk+Pn\nFbbXlnRy/v39vqRmv7/kz2WdvD1X0h3AVZLukrRrk+OvlfQxSS9sdr4WecyVdKmk70raWNLFkh6T\n9BtJL22RZi1Jn5J0Uz52kaQrJR3WIpuzgcXAbhExKyJmk1roi/O+xvNv3yK8jNSL0Mx3SH/X5wL7\nSzpX0uS8b+cWaU4Ffg/cQ+pleIrUiv4f4BtNjn+I9Pc+HK4Bnk/6EnlNizz621jXXu0E0jfi7YBN\nG8Ic4N4mx18CbNcQNxE4HVje5PirgKl5e7VC/No0fONvknYj4AfAV2jSCmo49k7SBfyP+f8Ncvxa\nNGlJ5PwNbUdVAAAD9klEQVRPJXVBXUWqMO4ALid1WzXLo+U3/+H32BB3dD7nXcBRwM+Bb5G+hR3f\n4jzvB27Ix90CHJ7jnwdc0SLNfwPHAusX4tbPcRe1SLN9i/Ay4L4mx59L+ka7L+mu2XOByXlf058j\nqVV2JPDh/J6OJS3fcCTwoxZphvLPsBj+OvxzbXL8tYXtbwOfzr+/RwPnt8hjYWH7UmCHvL0lTdZT\nynl/Abib9Mjno4ENR/l9vJrUXXsA6SK6X47fHfh1izQ/Ag7Lv/cfBD4ObAGcBny2yfG3jpD/c/YB\ny0l/v5c2CU+1OM/1Da8/CvyS1Dpo9XMv9gLcPdL5ctyH8u/KNsXPfKTPt9/DmBegrUKm7pdXttj3\n/SZxGxUvUg37dmkSN7nFsesUf1lGKeOezf542kw7FdhshP3TgW3zRXO9Uc61ZQf5bzh8oQFmkBZP\n23GUNC/Ox23VZh6lLiI5vtSFpBcXkRxf6kLCypVHYxlb5XEzMDFvX9mwr1kXZzGPV5Fam/fnz6rp\nyq+jvPemX0KA3zW8/k3+fzXglibHXwQcU/y9JfUWHAv8rMnxNwJbtMj7nhE+q9Ua4g4DbgLuGu19\nAJ8e7fPN8cNfFL9Eaqk/54vCIIUxL4DDYISyF5G8v9SFpFcXkbyv7QsJ6aE7H8yVzh/JE1Xyvlbj\nSkfmz+w1pP74k0jjaZ8Ezmhy/HMqR9I43jzgOy3y+DVpbOwtpJbnvjl+V1qsFgv8ivxFDtiHNKFk\neF+zlsRM4F9ILdTFpHGPm3Pcc8YKSF9I/qZF3vu2iP9X4LVN4ucBf2iR5lPkcdGG+M2Bc0b5Xd4H\nuBK4v5t/I+MtjHkBHAYjNFxEHmm4iMxskabUhaTXF5F83KgXEuD4hjA8UWJ94PQR0u0GnEWaBLEQ\nuJD0vIaJTY79jw5+JtuSuhN/CmyVK6hHSZXtK1qkeQmpu2sx8AtyS5fUZXlUizRbAa9t/JyBeSMc\nv3u7x4+SZo8O0oxaLtJkmq1HK1c/hzEvgIMDecykyjRV5tFwIalNuXqZR6s0pHG0W4HzSWN+byrs\na9ZaKnV8jj+y6jSdlKvfw5gXwMGBUSYadCNNL/Koa7nG8r3T2bT5to/vVZpO8uj3MF6XZLdxRtIN\nrXbRfLp16TS9yKOu5arre6dh2ryk3YBzJG1K82nzZY/vVZpO8uhrrjysV9YD3kDqKy8SaRC2G2l6\nkUddy1XX9/6ApO0i4nqAiHhc0l7AKcA2XTi+V2k6yaOvufKwXvlPUrP/+sYdki7rUppe5FHXctX1\nvR9Cww2wEbEMOETSN7twfK/SdJJHXxv3a1uZmVnvjYvlSczMrF5ceZiZWWmuPMzMrDRXHmZmVtr/\nAa0fOF7eR4TnAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11eb03c88>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XvcZWP9//HX2wxjBmMOYghNQipyaByKonQYYVQ/FXKs\nr4mEVA+HTtSvg4p+6dwUIREhqVTkrEJChvDNmZzGcRxj5v78/ljXbZZt73vvtWevvde99/s5j+sx\na19rXeu69r7ve137uq51XUsRgZmZWRFL9LoAZmY2+rjyMDOzwlx5mJlZYa48zMysMFceZmZWmCsP\nMzMrzJVHhUi6QdJWbaYNSWt2uEh9R9JnJP20hPN+SNK5nT5vwTL8SNLne1kGGxzyPI9qkvQjYNdc\n1JLAcxGxXIPjA1grIm7pRvnq5D8duB1YMiIWlJTHEcCaEbFrs2PT8VsBJ0XEqmWUp0nepf48JO0J\n/E9EbFHG+ZvkvS5wNPAGYGpEqGb/ScDbgQnA/cA3IqLjFbb1llseFRUR+0TEssMBOAX4Va/LVRZl\n/PsISBrb6zI08TxwGvCRBvuPBNaIiInALODLkt7QrcJZl0SEQ0UCcAfw9jrxywBPAFuOkDbIvpUD\nbAtcA8wH7gaOyB33e2D/mrTXAe9N228C/g48nv5/U6PyAUeQfbMHuCuV4ckU3tjC+70I+ArwF+AZ\nYE1gFeBs4BHgFmDvdOxM4DmyC9eTwD9T/F7AjenzuQ34aO4zewYYypVplXyZ03GzgBuAx1J5XlPz\nfj+dPp/HgVOBpRu8lz2By9L2JemzeCrl+8EUvx1wbcrrr8Dra/I6JOX1X2AscChwa3pv/8r9jF4D\nPAssTOd/LMUfD3w5d86902f4SPpMV6n5fdkH+Hcqz/dJPREFfl/XBKLJMa8G7gM+0Ou/L4fOhp4X\nwCH3w2hceeyeLowN/7h5ceWxFbAeWcvy9cADwHvSvg8AV+TSrQ88DCwFTAEeBXZLF6+d0+up9crH\niyuP6akMYwu834vIKp3XpfyWTBfeHwBLAxsA84C31eaXO8e2wKsAAVsCTwMb5T6He2qOz5d5bbIL\n/DtS3geni+1Sufd7JVmlM4WsktqnwXvZk1R51P480usNgQeBTYExwB7p/ONyeV0LrAaMT3HvT3kv\nAXwwlXXlevmluONJlQfwNuAhYCNgHPBd4JKa8v0OmASsnj7nmWnf6mQVyupNfn4NK4/0M3w65XM1\nsGyv/74cOhvcTTA67AGcGOmvspmIuCgi5kbEUERcR9bltWXafTawtqS10uvdgFMj4jmyC/G/I+Ln\nEbEgIk4BbgK27+i7ebHjI+KGyMZJpgGbA4dExLMRcS3wU7LKs66I+H1E3BqZi4FzgTe3mPcHgd9H\nxHkR8TxwFDCerPU17DsRcW9EPAL8lqxCa8ds4McRcUVELIyIE8haGJvV5HV3RDyT3tuvUt5DEXEq\nWSthkxbz+xBwXERcHRH/BQ4D3pjGpoYdGRGPRcRdwIXD7y0i7oqISSm+LRHxMWA5sp/Fmem9Wh9x\n5VFxklYn+wZ9YoE0m0q6UNI8SY+TdU+sABARz5J1v+yaxhh2Bn6ekq4C3FlzujuBly/WmxjZ3bnt\nVYBHIuKJVvOXtI2kyyU9Iukx4N2k99qCF73fiBhK5cnnd39u+2lg2RbPXesVwKckPTYcyFoZq+SO\nyX8WSNpd0rW549el/ff2JFkLs4z3VleqJC8DVgX27eS5rfdceVTfbsBfIuK2AmlOJmthrBYRywM/\nIuvWGXYC2TfTrYGnI+JvKf5esotc3urAf9L2U2R30Ayblttu97a9fLp7gSmS8neU5fN/UR6SxgFn\nkLUYVoqIScA5LHqvzcr0ovcrSWQX9P80TNG+u4GvpG/0w2FCat0Ne6G8kl4B/AT4OFm34STgetp/\nb8sAUynnvTUzlqxr0fqIK4/q252sL7uI5ci+wT8raRNgl/zOVFkMkd1u+fPcrnPIurR2kTRW0geB\n15L1jUPWJ7+TpCUlzQB2zKWdl865xnCEpOlp/sn0VgodEXeTDSR/TdLSkl5PdkfPSemQB4Dpubuy\nliLrz58HLJC0DfDO3CkfAKZKWr5BlqcB20raWtKSwKfIulf+2kp5m3iA3GdBVhHsk1qFkrSMpG1r\nKsq8ZcgqiHkAkvYia3nkz7+qpKUapD8F2EvSBqmS/SrZWNcd7b+lTCr/0mSfP+lnNS5tryhpJ0nL\nShoj6V1krdvzFzdfqxZXHhUm6Y1kTf6it+h+DPiSpCeAL5BdJGudSDaoPnxhJiIeJrsj6FNkXRwH\nA9tFxEPpkM+TfYN8FPgiWQtnOO3TpDunUjfLZmTf4u+k2LfdnckG3+8Ffg0cHhF/TvuGP4eHJV2d\nurcOSO/vUbJK8uxcmW4iu4jelsqU7yIiIm4mm0vzXbLB5e2B7dP4z+I6Ajgh5fuBiLiK7O6n76Wy\n3kI26F1XRPyLrHL/G1lFsR7ZXWnDLiC7S+x+SQ/VSf9nsp/XGWR3O70K2KmVgktaXdKTqcu0nleQ\n3cl2Q3r9DHDzcNZkXVT3kL3Po4BPRMTZtSex0c2TBAeUpN2B2VHiJDNJnwPmRcSPy8rDzHrDlccA\nkjSB7JvrDyKi5YF4M7Nh7rYaMKkPeh5ZV8jJTQ43M6vLLQ8zMyvMLQ8zMyus0guwXTptx0LNoknj\ni09iXW75ZwsdP2Fq8RtxllqxeB09ZqVi87WWWKHR3aiNaerk4mmmtDpHLZn8suJ5TF6p2PGTVi6c\nxxKTpzU/qMb4VVqduJ6ZOG5C84NqTBpX7Oc+acllCucxeUzxck0es3Sx47M7dwuZ0sbl6GVDYwod\nP3Vh4SyYsnCocJod7j9ZzY9qzfMP3dbydXDJFdboWL7NuOVhZmaFVbrlYWY28IbaaC51gSsPM7Mq\ni+LdZt3gysPMrMqGqll5dHXMQ9IWkr7fzTzNzEazWLig5dBNpbc8JG1ItubQ+8mecX1m2XmamfWN\nQeq2krQ22QJ3O5MtOHcq2YTEt5aRn5lZ36rogHlZ3VY3kT0Gc7uI2CIivkv2vOWmJM2WdJWkq85+\nusgjLMzM+lAMtR66qKzK431ky0BfKOknkrbmxQ8jaigi5kTEjIiYMWvCGs0TmJn1s6Gh1kMXlVJ5\nRMRZEbETsA7Zs5E/Aawo6YeS3jlyajMzGxYx1HLoplLvtoqIpyLi5IjYnuyhRtcAh5SZp5lZX6lo\ny6Nr8zwi4lFgTgpmZtaKQbrbyszMOqSid1u58jAzq7IuT/5rlSsPM7Mqc7eVmZkVVtG1rVx5mJlV\nWITHPMzMrCh3W5mZWWHutjIzs8Lc8gBJKwAPR0TLD3Q3MxtoFZ3nUdryJJI2k3SRpDMlbSjpeuB6\n4AFJM0dI51V1zcyGVXRV3TJbHt8DPgMsD1wAbBMRl0taBzgF+GO9RBHxwhIml07b0S0UMxtsAzhJ\ncGxEnAsg6UsRcTlARNwktbQ6u5mZDeCAef4dP1Ozzy0KM7NWDGDlsb6k+WQPgRqftkmvly4xXzOz\nvjFwkwQjYkxZ5zYzGxgdbHlIWg04EViJrAdoTkQcI2kKcCowHbgD+EB6jEZDpT4MyszMFlNn77Za\nAHwqIl4LbAbsJ+m1wKHA+RGxFnB+ej0iVx5mZlXWwScJRsR9EXF12n4CuBF4ObADcEI67ATgPc3O\n5crDzKzKCrQ88vPkUpjd6LSSpgMbAlcAK0XEfWnX/WTdWiPy8iRmZlVWYMwjP09uJJKWBc4APhER\n8/PTJyIiJDW9I9aVh5lZlXV4kqCkJckqjl9ExJkp+gFJK0fEfZJWBh5sdh53W5mZVVkHxzyUNTGO\nBW6MiG/ldp0N7JG29wB+0+xcpbU8JK1J1o/2l5r4zYH7I+LWsvI2M+sbnV2zanNgN2CupGtT3GeA\nI4HTJH0EuBP4QLMTldlt9W3gsDrx89O+7UvM28ysP3RwnkdEXEY2UbuerYucq8xuq5UiYm5tZIqb\n3iiRV9U1M8up6Kq6ZVYek0bYN77RjoiYExEzImLGrAlrlFAsM7NRpINjHp1UZuVxlaS9ayMl/Q/w\njxLzNTPrHxVteZQ55vEJ4NeSPsSiymIGsBTw3hLzNTPrH4O2qm5EPAC8SdJbgXVT9O8j4oKy8jQz\n6zuDVnkMi4gLgQvLzsfMrC8tHLAl2c3MrAMGteVhZmaLocsD4a1y5WFmVmVueZiZWWHRdIHbnnDl\nYWZWZW55mJlZYa48zMyssEEeMJf0MoCImNeN/MzM+kUMVXPMo7S1rZQ5QtJDwM3A/0qaJ+kLZeVp\nZtZ3Fi5oPXRRmQsjHkT24JGNI2JKREwGNgU2l3RQo0Rekt3MLGcoWg9dVGblsRuwc0TcPhwREbcB\nuwK7N0rkJdnNzHIquiR7mWMeS0bEQ7WRETEvPYDdzMyaGcC7rZ5rc5+ZmQ0bwEmC60uaXydewNIl\n5mtm1j8GreUREWPKOreZ2cCo6K26niRoZlZlgzxJ0MzM2uSWh5mZFRUL/CRBMzMryt1WZmZWmLut\nzMyssEG7VdfMzDqgoi2PMlfVPTi3/f6afV8tK18zs74SQ62HLipzYcSdctuH1eyb2SiRV9U1M8up\n6Kq6ZXZbqcF2vdcviIg5wByAS6ftWM32mplZl0RFxzzKbHlEg+16r83MrJ4OtjwkHSfpQUnX18Tv\nL+kmSTdI+kYrxerGwogCxucWSfTCiGZmrVrY0UmCxwPfA04cjpD0VmAHYP2I+K+kFVs5kRdGNDOr\nsg6OZUTEJZKm10TvCxwZEf9NxzzYyrnK7LYyM7PFFEPRcmjT2sCbJV0h6WJJG7eSyPM8zMyqrECl\nIGk2MDsXNSfdhDSSscAUYDNgY+A0SWtEjPwUKlceZmZVVuBuq/zdqgXcA5yZKosrJQ0BKwDzRkrk\nbiszsyorf57HWcBbASStDSwFPNQskVseZmZV1sEBc0mnAFsBK0i6BzgcOA44Lt2++xywR7MuK3Dl\nYWZWaS1cx4uca+cGu3Ytei5XHmZmVVbRhRFdeZiZVVgsGLDlSSStXta5zcwGRkUXRizzbquzhjck\nnVFiPmZm/WuoQOiiMiuP/Mq5a7ScyEuym5m9oAszzNvSq1V1GyeKmBMRMyJixqwJLdc5Zmb9qaLd\nVr1aVTciYmKJeZuZ9Ydqjpd7VV0zsyrrdndUq3yrrplZlQ1ay8PMzBafWx5m1nGPPf8Uk5ZcptfF\nsBLFgl6XoD5XHmajmCuOAeBuKzMzKypceZiZWWGuPMzMrCi3PMzMrDBXHmZmVlhVK48yl2TfQdJ+\nuddXSLothR3LytfMrK+EWg9d1HLlIekySV+RNFPSci0kORg4O/d6HLAx2fNz9x0hH6+qa2aWxFDr\noZuKtDx2A24G/g/w13SB/38jHL9URNyde31ZRDwcEXcBDW9O96q6ZmaLxJBaDt3U8phHRNwu6Vng\nuRTeCrxmhCSTa9J/PPfyZUUKaWY2qIYWdrdSaFWRbqtbyZ4OuBJwLLBuRMwcIckVkvauc56PAlcW\nLaiZ2SCqardVkbutvgNsAewMbAhcLOmSiLi1wfEHAWdJ2gW4OsW9gWzs4z1tltfMbKB0uzuqVUW6\nrY4BjpG0LLAXcASwKlD3uR0R8SDwJklvA16Xon8fERcsVonNzAZIVHNR3dYrD0lHk7U8lgX+BnwB\nuLRZulRZuMIwM2vDqG95kFUY34iIB8oqjJmZvdiorzwi4nRJsyS9JUVdHBG/LalcZmZGf3RbfQ3Y\nBPhFijpA0hsj4jOllMzMzEZ/ywPYFtggIrshTNIJwDWAKw8zs5JEl5cdaVXRhREnAY+k7eU7XBYz\nM6uxsKKTBItUHl8DrpF0ISDgLcChpZTKzMyAUd7ykCTgMmAzssUNAQ6JiPvLKpiZmY3yMY+ICEnn\nRMR6vHil3IYkfRdoeJ9ARBzQWhHNzAZXJ++2knQcsB3wYESsm+K+CWxPtmbhrcBeEfFYs3MVWVX3\nakkbNz/sBVcB/0hhVm57ONTlJdnNzBbp8Kq6xwO1axKeR7ZW4euB/wUOa+VERcY8NgU+JOlO4Cmy\ncY9IGb5ERJwwvC3pE/nXI4mIOcAcgEun7VjRO5zNzLpjqINjHhFxiaTpNXHn5l5eDrT0sL4ilce7\nRtopaXJEPNpgtysBM7M2FBkwlzQbmJ2LmpO+kLfqw8CprRxYZIb5nU0OOR/YqNXzmZlZc0XGPPI9\nN0VJ+iywgEUTwUdUdJ7HiHnXFOQJFrU4JkianzsuImJiB/M2M+tLney2akTSnmQD6VtHtFZddbLy\neFGGEdHKc87NzGwEQyXfqitpJnAwsGVEPN1quk5WHmZm1mGdbHlIOgXYClhB0j3A4WR3V40Dzsum\n9HF5ROzT7FyldVuZmdni6+QM84jYuU70se2cq6V5HpLGSLqpyWFbt1MAMzNrbCjUcuimliqPiFgI\n3Cxp9RGOeaTRPjMza08UCN1UpNtqMnCDpCvJJgkCEBGzOl4qMzMDunO3VTuKVB6fL60UZmZW16he\nVRcgIi6W9ApgrYj4s6QJwJjyimZmZkO9LkADLS+MKGlv4HTgxynq5cBZZRTKzMwygVoO3VRkVd39\ngM2B+QAR8W9gxUYHS3pC0vw64YncbPN66byqrplZsiDUcuimImMe/42I59IkEiSNZeTndbQ1w9yr\n6pqZLdLtFkWrirQ8Lpb0GWC8pHcAvwJ+W06xzMwMsjGPVkM3Fak8DgXmAXOBjwLnRMRnSymVmZkB\n1R3zKNJttX9EHAP8ZDhC0oEpzszMSjDq77YC9qgTt2eHymFmZnVUtduqactD0s7ALsArJZ2d27Uc\n4CVJzMxKVNUB81a6rf4K3AesABydi38CuK6MQpmZWabkx3m0rWnlkR4/e6ekSyLi4vw+SV8HDimr\ncGZmg26ooi2PImMe76gTt02nCmJmZi+1sEDoplbGPPYFPga8SlK+m2o54C9lFczMzGBI1Wx5tDLm\ncTLwB+BrZHM9hj3hZ3iYmZWrqstsNO22iojHI+KO9PjC1YC3pXGQJSS9sl6aEda1mi9pnqTLJfnJ\ng2ZmTYzaW3WHSTocmAG8GvgZsBRwEtliiS8y0rpWksYA6wK/SP+bmVkDVb3bqsiA+XuBWaSnCEbE\nvWTjHoVExMKI+Cfw3Xr7vaqumdkiQ6jl0E1FKo/nIuKFR+VKWmZxMo6IHzeInxMRMyJixqwJayxO\nFmZmo15Vn2FepPI4TdKPgUnpwVB/JrfOlZmZdd6QWg/dVOQxtEelpdjnk417fCEiziutZGZmVtmF\nEYusqkuqLFxhmJl1ycKKDpi3MknwCep3pwmIiJjY8VKZmRkwilse7T5O1szMFt+orTzMzKx3YrR2\nW5mZWe+45WFmZoW58jAzs8JG7cKIZmbWO52eJCjpIEk3SLpe0imSlm6nXK48zMwqrJOr6kp6OXAA\nMCMi1gXGADu1U67SKg9Jq42wb7uy8jUz6yclPElwLDBe0lhgAnBvO+Uqs+VxnqTptZGSPgwcU2K+\nZmZ9o0i3VX5V8hRm588VEf8BjgLuAu4DHo+Ic9spV5mVxyeBcyWtNRwh6TDgIGDLRom8JLuZ2SJF\nuq3yq5KnMCd/LkmTgR2AVwKrAMtI2rWdcpVWeUTEOcC+wB8krSvp28D2wFsi4p4R0nlJdjOzpMNL\nsr8duD0i5kXE88CZwJvaKVepA+YRcT6wF3ARsAbZI2wfLTNPM7N+MkS0HFpwF7CZpAmSBGwN3NhO\nuUqb55FbUFHAOLJCPpgK7AUVzcxa0MlJghFxhaTTgauBBcA1wJyRU9VXWuXhBRXNzBZfpycJRsTh\nwOGLex7PMDczq7CqLk/iSYIFPf3wUr0ugtWIx+7rdRF65rHnn+p1Eaxko/4xtJaZMPW5XhfBamjS\nyr0uQs9MWnKZXhfBSrawoqtbufIwM6uwqnZbufIwM6uwFm/B7TpXHmZmFVbNqsOVh5lZpVW126on\nd1tJ+kQv8jUzG206PMO8Y3p1q+4ne5Svmdmo0uG1rTqmV5VHwzuSvaqumdkinXwYVCf1qvJoWEl6\nVV0zs0WiwL9u6sbCiC/ZBYwvK18zs36yoKL3W3lhRDOzCqtm1eFbdc3MKs2TBM3MrLCqzvNw5WFm\nVmHdHghvlSsPM7MKc8vDzMwKc8vDzMwKc8vDzMwKGwq3PMzMrCA/SdDMzArzmIeZmRU2cGMeks4e\naX9EzCorbzOzfjGIM8zfCNwNnAJcwQjLsOdJmg3MBvj0chvilXXNbJANYrfVNOAdwM7ALsDvgVMi\n4oaREkXEHGAOwKXTdqzmp2Zm1iVV7bYq7XkeEbEwIv4YEXsAmwG3ABdJ+nhZeZqZ9ZuIaDl0U6kD\n5pLGAduStT6mA98Bfl1mnmZm/WTgxjwknQisC5wDfDEiri8rLzOzflXVbqsyWx67Ak8BBwIHSC+M\nlwuIiJhYYt5mZn1hYUWrjzKfJNir56ObmfWNbo9ltMoXeDOzChsqEFolaYykayT9rt1yeYa5mVmF\nlTTP40DgRqDt4QO3PMzMKmyIaDm0QtKqZHfB/nRxyuXKw8ysworM85A0W9JVuTC7zim/DRzMYt7I\n5W4rM7MKKzLPI79CRz2StgMejIh/SNpqccrlysPMrMI6POaxOTBL0ruBpYGJkk6KiF2LnqjMSYJf\nGGF3RMT/LStvM7N+0cknCUbEYcBhAKnl8el2Kg4od8zjqTohgI8AhzRKlO+zO/vp20osnplZ9UWB\n0E1lThI8enhb0nJkt4Z9GPglcPQI6byqrplZsqCkGeYRcRFwUbvpy14YcQrwSeBDwAnARhHxaJl5\nmpn1k6rOMC9zzOObwPvIWhHrRcSTZeVlZtavqrqqbpljHp8CVgE+B9wraX4KT0iaX2K+ZmZ9Iwr8\n6yYvjGhmVmED121lZmaLr6rdVq48zMwqzC0PMzMrzC0PMzMrrNsD4a1y5WFmVmELY8AeQ2tmZouv\nk2tbdVLplYekpYE108tbIuLZsvM0M+sXA9dtJWks8FWy9azuBASsJulnwGcj4vmy8jYz6xdVbXmU\nOZHvm8AU4JUR8YaI2Ah4FTAJOKpRIq+qa2a2SFVnmJdZeWwH7B0RTwxHRMR8YF/g3Y0SRcSciJgR\nETNmTVijxOKZmVXfUETLoZvKHPOIqDO7JSIWSqpmO8zMrGKqOuZRZsvjX5J2r42UtCtwU4n5mpn1\njYihlkM3ldny2A84U9KHgX+kuBnAeOC9JeZrZtY3Bm6GeUT8B9hU0tuA16XocyLi/LLyNDPrNwM7\nSTAiLgAuKDsfM7N+5IURzcyssKrO83DlYWZWYVW928qVh5lZhbnbyszMChu4u63MzGzxueVhZmaF\necDczMwKG7iWR3qOxz5kz/KYCxwbEQvKys/MrB9VdZJgmWtbnUC2HMlcYBvg6FYSeUl2M7NFBnFV\n3ddGxHoAko4FrmwlUUTMAeYAXDptx2q218zMumQQ53m88KTAiFggqcSszMz60yAOmK8vaX7aFjA+\nvRbZsz4mlpi3mVlfqOqAeWljHhExJiImprBcRIzNbbviMDNrQacfQytppqSbJd0i6dB2y+Vbdc3M\nKqyTLQ9JY4DvA+8A7gH+LunsiPhX0XOVebeVmZktpohoObRgE+CWiLgtIp4DfgnsUHrBqhKA2VVM\n0y95uFzVy8Plql4e7aYpMwCzgatyYXbN/h2Bn+Ze7wZ8r628ev1m2/yArqpimn7Jw+WqXh4uV/Xy\naDdNL0MnKw93W5mZDY7/AKvlXq+a4gpz5WFmNjj+Dqwl6ZWSlgJ2As5u50Sj9W6rORVN0y95tJNm\nkMs1yO+9nTT9kke7aXomsgnbHwf+BIwBjouIG9o5l1K/l5mZWcvcbWVmZoW58jAzs8JceZiZWWF9\nW3lIWkfS1pKWrYmf2eD4TSRtnLZfK+mTkt5dMM8TCx6/RcrnnQ32byppYtoeL+mLkn4r6euSlm+Q\n5gBJq9Xb1+D4pSTtLunt6fUukr4naT9JS46Qbg1Jn5Z0jKRvSdpnuKxm1v9G/YC5pL0i4mc1cQcA\n+wE3AhsAB0bEb9K+qyNio5rjDyd7YNVY4DxgU+BCsvVf/hQRX6mTb+3tbQLeClwAEBGz6qS5MiI2\nSdt7pzL+Gngn8NuIOLLm+BuA9dMdEnOAp4HTga1T/Pvq5PE48BRwK3AK8KuImFd7XO74X6T3PQF4\nDFgWODPloYjYo06aA4DtgEuAdwPXpLTvBT4WERc1ys+sX0haMSIe7HU5eqbXMx47MGPyrjpxc4Fl\n0/Z0smn6B6bX1zQ4fgzZBXQ+MDHFjweua5Dv1cBJwFbAlun/+9L2lg3SXJPb/jvwsrS9DDC3zvE3\n5vOr2XdtozzIWpTvBI4F5gF/BPYAlqtz/HXp/7HAA8CY9FojvPe5ueMmABel7dXrfb6DEIAVu5DH\n1F6/zzbKvDxwJHAT8AjwMNmXuiOBSQXP9YcG8ROBrwE/B3ap2feDBmmmAT8kWyRwKnBE+r0+DVi5\nzvFTasJU4A5gMjCl159zL8Ko6LaSdF2DMBdYqU6SJSLiSYCIuIPswr6NpG+RXRRrLYiIhRHxNHBr\nRMxPaZ8BGj1AeAbwD+CzwOORfdt+JiIujoiLG6RZQtJkSVPJLr7zUj5PAfWe7369pL3S9j8lzUif\nx9rkHrZVIyJiKCLOjYiPAKsAPwBmAvWe67tEmiy0HFlFMNwdNg5o2G3FojlC48haK0TEXY3SSFpe\n0pGSbpL0iKSHJd2Y4iaNkE9dkv5QJ26ipK9J+rmkXWr2/aDBeaZJ+qGk70uaKukISXMlnSZp5QZp\nptSEqcCV6Wc7pc7xM3Pby0s6Nv3+niyp3u8v6XNZIW3PkHQbcIWkOyVtWef4qyV9TtKr6p2vQR4z\nJF0o6SRJq0k6T9Ljkv4uacMGaZaV9CVJN6Rj50m6XNKeDbI5DXgU2CoipkTEVLIW+qNpX+35N2oQ\n3kDWi1DPz8j+rs8AdpJ0hqRxad9mDdIcD/wLuJusl+EZslb0pcCP6hz/ENnf+3C4Cng52ZfIqxrk\n0d96XXu1Esi+EW8AvKImTAfurXP8BcAGNXFjgROBhXWOvwKYkLaXyMUvT803/jppVwV+BXyPOq2g\nmmPvILukIeQuAAAEBUlEQVSA357+XznFL0udlkTK/3iyLqgryCqM24CLybqt6uXR8Jv/8HusiTso\nnfNO4ADgfOAnZN/CDm9wngOB69JxNwF7pfiXAZc0SPMn4BBgWi5uWoo7t0GajRqENwD31Tn+DLJv\ntO8hmzV7BjAu7av7cyRrle0PHJre0yFkyzfsD/ymQZqh9DPMh+eHf651jr86t/1T4Mvp9/cg4KwG\neczNbV8IbJy216bOekop76OAu8ge+XwQsEqT38crybprdya7iO6Y4rcG/tYgzW+APdPv/SeBzwNr\nAScAX61z/M0j5P+SfcBCsr/fC+uEZxqc59qa158F/kLWOmj0c8/3Atw10vlS3KfS78p6+c98pM+3\n30PPC9BSIbPuly0a7Du5Ttyq+YtUzb7N68SNa3DsCvlfliZl3LbeH0+LaScArxxh/0Rg/XTRXKnJ\nudZuI/9Vhi80wCSyxdM2aZLmdem4dVrMo9BFJMUXupB04yKS4gtdSHhx5VFbxkZ53AiMTduX1+yr\n18WZz+PNZK3N+9NnVXfl1ybvve6XEOCfNa//nv5fAripzvHnAgfnf2/JegsOAf5c5/jrgbUa5H33\nCJ/VEjVxewI3AHc2ex/Al5t9vil++Ivit8ha6i/5ojBIoecFcBiMUPQikvYXupB06yKS9rV8ISF7\n6M4nU6VzO+lGlbSv0bjS/ukzextZf/wxZONpXwR+Xuf4l1SOZON4M4GfNcjjb2RjY+8na3m+J8Vv\nSYPVYoG/kr7IAbPIbigZ3levJTEZ+DpZC/VRsnGPG1PcS8YKyL6QvLpB3u9pEP8N4O114mcC/26Q\n5kukcdGa+DWB05v8Ls8CLgfu7+TfyGgLPS+Aw2CEmovIIzUXkckN0hS6kHT7IpKOa3ohAQ6vCcM3\nSkwDThwh3VbAqWQ3QcwFziF7XsPYOsf+so2fyfpk3Yl/ANZJFdRjZJXtmxqkeT1Zd9ejwGWkli5Z\nl+UBDdKsA7y99nMGZo5w/NatHt8kzTZtpGlaLrKbadZtVq5+Dj0vgIMDacykzDRl5lFzIalMubqZ\nR6M0ZONoNwNnkY357ZDbV6+1VOj4FL9/2WnaKVe/h54XwMGBJjcadCJNN/Koarl6+d5p77b5lo/v\nVpp28uj3MFqXZLdRRtJ1jXZR/3brwmm6kUdVy1XV907NbfOStgJOl/QK6t82X/T4bqVpJ4++5srD\numUl4F1kfeV5IhuE7USabuRR1XJV9b0/IGmDiLgWICKelLQdcBywXgeO71aadvLoa648rFt+R9bs\nv7Z2h6SLOpSmG3lUtVxVfe+7UzMBNiIWALtL+nEHju9Wmnby6Gujfm0rMzPrvlGxPImZmVWLKw8z\nMyvMlYeZmRXmysPMzAr7/zzul72FdvieAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11f443748>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4HEW9xvHvSwIhIQlZUAICRgSuCwhiWAS9oKAEBVyu\nCyCy6CXiAor6iOACel1wveJuFAREEQQEVFSQ9YKyCUhAQAHZZAuQkLCTnN/9o+skzTBzTvdkek6f\nmffDUw891V1dNTMnXVNVXdWKCMzMzMpYaaQLYGZmo48rDzMzK82Vh5mZlebKw8zMSnPlYWZmpbny\nMDOz0lx51Iik6yVt32bakLRBh4vUcyQdJuknFZz3XZLO7vR5S5bhh5I+M5JlsP4hz/OoJ0k/BPbK\nRa0MPBURk1ocH8CGEXFzN8rXJP+ZwL+AlSNiSUV5HAFsEBF7DXdsOn574ISIWKeK8gyTd6Xfh6R9\ngf+OiFdVcf5h8t4Y+AbwCmB6RKjFcRsC84BTin5nNnq45VFTEXFAREwcDMCJwK9GulxVUcZ/j4Ck\nsSNdhmE8DZwMvHeY474HXFF9cWwk+B9rjUi6TdKOTeJXA/4LOK7ged4o6WpJiyTdmX6xD+77naQD\nG46/VtJb0vY2kq6Q9HD6/zatyifpCEknpJcXpf8vlPSIpFcWKOcFkr4o6RLgMWB9SWtLOlPSQ5Ju\nlrR/OnY2cBjwznT+v6X4/STdIGmxpFslvS/3mf0eWDsd/0g6d77MSNotdRcuTOV5ccP7/Xj6fB6W\ndJKkVVu8l30lXZy2Bz+Lv6V835nid5F0Tcrrz5Je1pDXIZKuBR6VNFbSJyXdkt7b33Pf0YuBHwKv\nTOdfmOKPlfSF3Dn3T5/hQ+kzXTu3LyQdIOmfqTzfk9S0BdEoIm6KiKOB61sdI2l3YCFwbpFz2igU\nEQ41CcBtwI5N4vcGbiV1M7ZIG2RdOgDbA5uQ/Th4GXAf8Oa07x3AZbl0mwIPAqsA04AFwLuBscAe\n6fX0ZuUDjiDrFgKYmcowtsT7vQC4A3hpym9lskro+8CqwGbAfOC1jfnlzvFG4IWAgO3IKqHNc5/D\nXQ3H58u8EfAo8LqU9yeAm4FVcu/3cmDt9NncABzQ4r3sC1zc7PtIr18O3A9sBYwB9knnH5fL6xpg\nXWB8int7ynsl4J2prGs1yy/FHQt8IW2/FngA2BwYB3wHuKihfL8FpgDrpc95dtq3HtmFf71hvr8N\ngGgSPxn4B7BOs+/MoTeCWx6jwz7A8ZH+ZQ4nIi6IiHkRMRAR15J1eW2Xdp8JbJT6oyGrKE6KiKfI\nLsT/jIifRcSSiDgRuBHYtaPv5pmOjYjrIxsnmQFsCxwSEU9ExDXAT8gqz6Yi4ncRcUtkLgTOBl5d\nMO93Ar+LiHMi4mng68B4YJvcMd+OiLsj4iHgN2QVWjvmAD+KiMsiYmlEHAc8CWzdkNedEfF4em+/\nSnkPRMRJwD+BLQvm9y7gmIi4KiKeBA4la6nMzB1zZEQsjIg7gPMH31tE3BERU1J8O/4HODoi7moz\nvY0CrjxqTtJ6ZL+gjy+RZitJ50uaL+lh4ABgDYCIeAI4CdgrjTHsAfwsJV0buL3hdLcDz1uhNzG0\nO3PbawMPRcTiovlL2lnSpalrZiHwBtJ7LeAZ7zciBlJ58vndm9t+DJhY8NyNng98LHURLUxlXTeV\nYVD+s0DS3rluroXAxrT/3h4ha2FW8d6WkbQZsCPwvyt6Lqu3ug/MWdYyuCQibi2R5hfAd4GdI+IJ\nSd/imRed48gqjIuBxyLiLyn+brKLXN56wB/S9qPAhNy+Gbntdm/by6e7G5gmaVKuAlkP+HezPCSN\nA04la5mcERFPSzqdrAurSJnuJuveGzyfyC7o/26Zon13Al+MiC8Occyy8kp6PvBjYAfgLxGxVNI1\nlHtvy77LNAY0nWreW972ZF2Yd6QhlInAGEkviYjNK87busgtj/rbm6wvu4xJZL/gn5C0JbBnfmeq\nLAbIbrf8WW7XWWRdWnumAdt3Ai8h6xuHrE9+d0krS5oFvC2Xdn465/qDEZJmpoHZmUUKHRF3An8G\nvixp1TSg/F5gcID7PmCmlt+VtQpZf/58YImknYHX5055HzBd0uotsjwZeKOkHSStDHyMrCvpz0XK\nO4z7yH0WZBXBAalVKEmrKbuxoemt18BqZBXEfMhuDCBreeTPv46kVVqkPxHYT9JmqZL9EtlY123t\nv6VMKv+qZJ8/6bsal3bPJRuD2iyFHwK/A3Za0XytXlx51JiyO5bWofwtuh8APi9pMfBZsotko+PJ\nfnUvu/MoIh4EdiG7iD5INoC8S0Q8kA75DNmFYQHwObIWzmDax4AvApekbpatyX7F3065X7t7kP1y\nvRv4NXB4RPwp7Rv8HB6UdFVqnRyU3t8CskryzFyZbiS7iN6aypTvIiIibiKbS/MdssHlXYFd0/jP\nijoCOC7l+46IuBLYn6xFuIBsYH7fVokj4u9klftfyCqKTYBLcoecR3a3072SHmiS/k9k39epwD1k\n39vuRQouab10F9d6LQ55PvA4y++2ehy4KeX7WETcOxiAR4AnImJ+kbxt9PAkwT4laW9gTlQ4yUzS\np4H5EfGjqvIws5HhyqMPSZpA9sv1+xFReCDezGyQu636jKSdyPrR7yPX7WRmVoZbHmZmVppbHmZm\nVlqt53mcMWPPUs2iaZS/SWbK+CdLHT9p9SdK5zFhevlyrfLccvX6mDXLz+9aaY1Wd7C2pulTyx0/\nreictpypzymXx9Q1S2ehKWuVTrPS1BnDH5Qzfu2iE92XmzxuwvAH5UwZV/57n7LyaqXTTB1TrlxT\nxzRdAmzoNMvu9i1uWslL2HMGxpTOY/rS0knY798nFFonrIinH7i18HVw5TXW71i+w3HLw8zMSqt1\ny8PMrO8NtNH06QJXHmZmdRYDI12Cplx5mJnV2UA9K4+ujnlIepWk73UzTzOz0SyWLikcuqnyloek\nl5OtOfR2smdcn1Z1nmZmPaOfuq0kbUS2wN0eZAvOnUQ2IfE1VeRnZtazajpgXlW31Y1kj8HcJSJe\nFRHfAQp9ApLmSLpS0pV/fOzmiopnZjZKxEDx0EVVVR5vJVsG+nxJP5a0A8sfYjOkiJgbEbMiYtZO\nEzaoqHhmZqPEwEDx0EWVVB4RcXpE7A68iOzZyB8BnivpB5JeP3RqMzMbFDFQOHRTpXdbRcSjEfGL\niNiV7KFGVwOHVJmnmVlPqWnLo2vzPCJiAdkjKud2K08zs1Gvn+62MjOzDqnp3VauPMzM6qzLk/+K\ncuVhZlZn7rYyM7PSarq2lSsPM7Mai/CYh5mZleVuKzMzK83dVmZmVppbHiBpDeDBiCj8QHczs75W\n03kelS1PImlrSRdIOk3SyyVdB1wH3Cdp9hDpvKqumdmgmq6qW2XL47vAYcDqwHnAzhFxqaQXAScC\nf2iWKCKWLWFyxow93UIxs/7Wh5MEx0bE2QCSPh8RlwJExI1SodXZzcysDwfM8+/48YZ9blGYmRXR\nh5XHppIWkT0EanzaJr1etcJ8zcx6Rt9NEoyIMVWd28ysb3Sw5SFpXeB4YE2yHqC5EXGUpGnAScBM\n4DbgHekxGi1V+jAoMzNbQZ2922oJ8LGIeAmwNfBBSS8BPgmcGxEbAuem10Ny5WFmVmcdfJJgRNwT\nEVel7cXADcDzgDcBx6XDjgPePNy5XHmYmdVZiZZHfp5cCnNanVbSTODlwGXAmhFxT9p1L1m31pC8\nPImZWZ2VGPPIz5MbiqSJwKnARyJiUX76RESEpGHviHXlYWZWZx2eJChpZbKK4+cRcVqKvk/SWhFx\nj6S1gPuHO4+7rczM6qyDYx7KmhhHAzdExDdzu84E9knb+wBnDHeuyloekjYg60e7pCF+W+DeiLil\nqrzNzHpGZ9es2hZ4NzBP0jUp7jDgSOBkSe8FbgfeMdyJquy2+hZwaJP4RWnfrhXmbWbWGzo4zyMi\nLiabqN3MDmXOVWW31ZoRMa8xMsXNbJXIq+qameXUdFXdKiuPKUPsG99qR0TMjYhZETFrpwkbVFAs\nM7NRpINjHp1UZeVxpaT9GyMl/Tfw1wrzNTPrHTVteVQ55vER4NeS3sXyymIWsArwlgrzNTPrHf22\nqm5E3AdsI+k1wMYp+ncRcV5VeZqZ9Zx+qzwGRcT5wPlV52Nm1pOW9tmS7GZm1gH92vIwM7MV0OWB\n8KJceZiZ1ZlbHmZmVloMu8DtiHDlYWZWZ255mJlZaa48zMystH4eMJf0HICImN+N/MzMekUM1HPM\no7K1rZQ5QtIDwE3APyTNl/TZqvI0M+s5S5cUD11U5cKIB5M9eGSLiJgWEVOBrYBtJR3cKpGXZDcz\nyxmI4qGLqqw83g3sERH/GoyIiFuBvYC9WyXykuxmZjk1XZK9yjGPlSPigcbIiJifHsBuZmbD6cO7\nrZ5qc5+ZmQ3qw0mCm0pa1CRewKoV5mtm1jv6reUREWOqOreZWd+o6a26niRoZlZn/TxJ0MzM2uSW\nh5mZlRVL/CRBMzMry91WZmZWmrutzMystH67VdfMzDqgpi2PKlfV/URu++0N+75UVb5mZj0lBoqH\nLqpyYcTdc9uHNuyb3SqRV9U1M8vpw1V11WK72etlvKqumdlyMTBQOHRTlZVHtNhu9trMzJrpYMtD\n0jGS7pd0XUP8gZJulHS9pK8WKVY3FkYUMD63SKIXRjQzK2ppRycJHgt8Fzh+MELSa4A3AZtGxJOS\nnlvkRF4Y0cyszjo4lhERF0ma2RD9fuDIiHgyHXN/kXNV2W1lZmYrKAaicGjTRsCrJV0m6UJJWxRJ\n5HkeZmZ1VqJSkDQHmJOLmhsRc4dJNhaYBmwNbAGcLGn9iKGfQuXKw8yszkrcRZUqiuEqi0Z3Aael\nyuJySQPAGsD8oRK528rMrM6qn+dxOvAaAEkbAasADwyXyC0PM7M66+CAuaQTge2BNSTdBRwOHAMc\nk27ffQrYZ7guK3DlYWZWawWu42XOtUeLXXuVPZcrDzOzOqvpwoiuPMzMaiyW1HNJ9ipX1V2vqnOb\nmfWNPlwY8fTBDUmnVpiPmVnvGigRuqhbq+quXziRl2Q3M1umCzPM2zJSq+q2TuQl2c3Mlqtpt9VI\nraobETG5wrzNzHpDPcfLvaqumVmddbs7qijfqmtmVmf91vIwM7MV55aHmXXcwicfYcq4iSNdDKtQ\nLBnpEjTnysNsFHPF0QfcbWVmZmWFKw8zMyvNlYeZmZXlloeZmZXmysPMzEqra+VR5ZLsb5L0wdzr\nyyTdmsLbqsrXzKynhIqHLipceUi6WNIXJc2WNKlAkk8AZ+ZejwO2IHt+7vuHyMer6pqZJTFQPHRT\nmZbHu4GbgP8C/pwu8P87xPGrRMSdudcXR8SDEXEHsFqrRF5V18xsuRhQ4dBNhcc8IuJfkp4Ankrh\nNcCLh0gytSH9h3Ivn1OmkGZm/WpgaXcrhaLKdFvdQvZ0wDWBo4GNI2L2EEkuk7R/k/O8D7i8bEHN\nzPpRXbutytxt9W3gVcAewMuBCyVdFBG3tDj+YOB0SXsCV6W4V5CNfby5zfKamfWVbndHFVWm2+oo\n4ChJE4H9gCOAdYCmz+2IiPuBbSS9Fnhpiv5dRJy3QiU2M+sjUc9FdYtXHpK+QdbymAj8Bfgs8H/D\npUuVhSsMM7M2jPqWB1mF8dWIuK+qwpiZ2TON+sojIk6RtJuk/0xRF0bEbyoql5mZ0RvdVl8GtgR+\nnqIOkvTKiDiskpKZmdnob3kAbwQ2i8huCJN0HHA14MrDzKwi0eVlR4oquzDiFOChtL16h8tiZmYN\nltZ0kmCZyuPLwNWSzgcE/CfwyUpKZWZmwChveUgScDGwNdnihgCHRMS9VRXMzMxG+ZhHRISksyJi\nE565Um5Lkr4DtLxPICIOKlZEM7P+1cm7rSQdA+wC3B8RG6e4rwG7kq1ZeAuwX0QsHO5cZVbVvUrS\nFsMftsyVwF9T2C23PRia8pLsZmbLdXhV3WOBxjUJzyFbq/BlwD+AQ4ucqMyYx1bAuyTdDjxKNu4R\nKcNniYjjBrclfST/eigRMReYC3DGjD1reoezmVl3DHRwzCMiLpI0syHu7NzLS4FCD+srU3nsNNRO\nSVMjYkGL3a4EzMzaUGbAXNIcYE4uam76QV7Ue4CTihxYZob57cMcci6wedHzmZnZ8MqMeeR7bsqS\n9ClgCcsngg+p7DyPIfNuKMhilrc4JkhalDsuImJyB/M2M+tJney2akXSvmQD6TtEFKuuOll5PCPD\niCjynHMzMxvCQMW36kqaDXwC2C4iHiuarpOVh5mZdVgnWx6STgS2B9aQdBdwONndVeOAc7IpfVwa\nEQcMd67Kuq3MzGzFdXKGeUTs0ST66HbOVWieh6Qxkm4c5rAd2imAmZm1NhAqHLqpUOUREUuBmySt\nN8QxD7XaZ2Zm7YkSoZvKdFtNBa6XdDnZJEEAImK3jpfKzMyA7txt1Y4ylcdnKiuFmZk1NapX1QWI\niAslPR/YMCL+JGkCMKa6opmZ2cBIF6CFwgsjStofOAX4UYp6HnB6FYUyM7NMoMKhm8qsqvtBYFtg\nEUBE/BN4bquDJS2WtKhJWJybbd4snVfVNTNLloQKh24qM+bxZEQ8lSaRIGksQz+vo60Z5l5V18xs\nuW63KIoq0/K4UNJhwHhJrwN+BfymmmKZmRlkYx5FQzeVqTw+CcwH5gHvA86KiE9VUiozMwPqO+ZR\nptvqwIg4CvjxYISkD6c4MzOrwKi/2wrYp0ncvh0qh5mZNVHXbqthWx6S9gD2BF4g6czcrkmAlyQx\nM6tQXQfMi3Rb/Rm4B1gD+EYufjFwbRWFMjOzTMWP82jbsJVHevzs7ZIuiogL8/skfQU4pKrCmZn1\nu4GatjzKjHm8rknczp0qiJmZPdvSEqGbiox5vB/4APBCSfluqknAJVUVzMzMYED1bHkUGfP4BfB7\n4Mtkcz0GLfYzPMzMqlXXZTaG7baKiIcj4rb0+MJ1gdemcZCVJL2gWZoh1rVaJGm+pEsl+cmDZmbD\nGLW36g6SdDgwC/gP4KfAKsAJZIslPsNQ61pJGgNsDPw8/d/MzFqo691WZQbM3wLsRnqKYETcTTbu\nUUpELI2IvwHfabbfq+qamS03gAqHbipTeTwVEcselStptRXJOCJ+1CJ+bkTMiohZO03YYEWyMDMb\n9er6DPMylcfJkn4ETEkPhvoTuXWuzMys8wZUPHRTmcfQfj0txb6IbNzjsxFxTmUlMzOz2i6MWGZV\nXVJl4QrDzKxLltZ0wLzIJMHFNO9OExARMbnjpTIzM2AUtzzafZysmZmtuFFbeZiZ2ciJ0dptZWZm\nI8ctDzMzK82Vh5mZlTZqF0Y0M7OR0+lJgpIOlnS9pOsknShp1XbK5crDzKzGOrmqrqTnAQcBsyJi\nY2AMsHs75aqs8pC07hD7dqkqXzOzXlLBkwTHAuMljQUmAHe3U64qWx7nSJrZGCnpPcBRFeZrZtYz\nynRb5VclT2FO/lwR8W/g68AdwD3AwxFxdjvlqrLy+ChwtqQNByMkHQocDGzXKpGXZDczW65Mt1V+\nVfIU5ubPJWkq8CbgBcDawGqS9mqnXJVVHhFxFvB+4PeSNpb0LWBX4D8j4q4h0nlJdjOzpMNLsu8I\n/Csi5kfE08BpwDbtlKvSAfOIOBfYD7gAWJ/sEbYLqszTzKyXDBCFQwF3AFtLmiBJwA7ADe2Uq7J5\nHrkFFQWMIyvk/anAXlDRzKyATk4SjIjLJJ0CXAUsAa4G5g6dqrnKKg8vqGhmtuI6PUkwIg4HDl/R\n83iGuZlZjdV1eRJPEixp8cNtTca0CsWC+0a6CCNm4ZOPjHQRrGKj/jG0lpm0+hMjXQRroKlrjnQR\nRsyUcRNHughWsaU1Xd3KlYeZWY3VtdvKlYeZWY0VvAW361x5mJnVWD2rDlceZma1VtduqxG520rS\nR0YiXzOz0abDM8w7ZqRu1f3oCOVrZjaqdHhtq44Zqcqj5R3JXlXXzGy5Tj4MqpNGqvJoWUl6VV0z\ns+WixH/d1I2FEZ+1CxhfVb5mZr1kSU3vt/LCiGZmNVbPqsO36pqZ1ZonCZqZWWl1nefhysPMrMa6\nPRBelCsPM7Mac8vDzMxKc8vDzMxKc8vDzMxKGwi3PMzMrCQ/SdDMzErzmIeZmZXWd2Meks4can9E\n7FZV3mZmvaIfZ5i/ErgTOBG4jCGWYc+TNAeYA/D+SVvglXXNrJ/VtduqyiXZZwCHARsDRwGvAx6I\niAsj4sJWibwku5nZcn33PI+IWBoRf4iIfYCtgZuBCyR9qKo8zcx6TUQUDt1U6YC5pHHAG4E9gJnA\nt4FfV5mnmVkv6bsxD0nHk3VZnQV8LiKuqyovM7Ne1Xd3WwF7AY8CHwYOkpaNlwuIiJhcYd5mZj1h\naU2rjyqfJDhSz0c3M+sZ3R7LKMoXeDOzGqvibitJYyRdLem37ZbLM8zNzGqsonkeHwZuANoePnDL\nw8ysxgaIwqEISeuQ3QX7kxUplysPM7MaKzPPQ9IcSVfmwpwmp/wW8AlW8EYud1uZmdVYmXkeETEX\nmNtqv6RdgPsj4q+Stl+RcrnyMDOrsQ6PeWwL7CbpDcCqwGRJJ0TEXmVPVOUkwc8OsTsi4n+qytvM\nrFd08kmCEXEocChAanl8vJ2KA6od83i0SQjgvcAhrRLl++z++NjNFRbPzKz+okTopionCX5jcFvS\nJLJbw94D/BL4xhDplvXZnTFjz3rOjjEz65IlFc0wj4gLgAvaTV/1wojTgI8C7wKOAzaPiAVV5mlm\n1kvqOsO8yjGPrwFvJWtFbBIRj1SVl5lZr6rrqrpVjnl8DFgb+DRwt6RFKSyWtKjCfM3MekaU+K+b\nvDCimVmN9V23lZmZrbi6dlu58jAzqzG3PMzMrDS3PMzMrLRuD4QX5crDzKzGlkafPYbWzMxWXCfX\ntuqkyisPSasCG6SXN0fEE1XnaWbWK/qu20rSWOBLZOtZ3Q4IWFfST4FPRcTTVeVtZtYr6tryqHIi\n39eAacALIuIVEbE58EJgCvD1Vom8qq6Z2XJ1nWFeZeWxC7B/RCwejIiIRcD7gTe0ShQRcyNiVkTM\n2mnCBq0OMzPrCwMRhUM3VTnmEdFkdktELJVUz3aYmVnN1HXMo8qWx98l7d0YKWkv4MYK8zUz6xkR\nA4VDN1XZ8vggcJqk9wB/TXGzgPHAWyrM18ysZ/TdDPOI+DewlaTXAi9N0WdFxLlV5Wlm1mv6dpJg\nRJwHnFd1PmZmvcgLI5qZWWl1nefhysPMrMbqereVKw8zsxpzt5WZmZXWd3dbmZnZinPLw8zMSvOA\nuZmZldZ3LY/0HI8DyJ7lMQ84OiKWVJWfmVkvquskwSrXtjqObDmSecDOwDeKJPKS7GZmy/Xjqrov\niYhNACQdDVxeJFFEzAXmApwxY896ttfMzLqkH+d5LHtSYEQskVRhVmZmvakfB8w3lbQobQsYn16L\n7FkfkyvM28ysJ9R1wLyyMY+IGBMRk1OYFBFjc9uuOMzMCuj0Y2glzZZ0k6SbJX2y3XL5Vl0zsxrr\nZMtD0hjge8DrgLuAKySdGRF/L3uuKu+2MjOzFRQRhUMBWwI3R8StEfEU8EvgTZUXrC4BmFPHNL2S\nh8tVvzxcrvrl0W6aKgMwB7gyF+Y07H8b8JPc63cD320rr5F+s21+QFfWMU2v5OFy1S8Pl6t+ebSb\nZiRDJysPd1uZmfWPfwPr5l6vk+JKc+VhZtY/rgA2lPQCSasAuwNntnOi0Xq31dyapumVPNpJ08/l\n6uf33k6aXsmj3TQjJrIJ2x8C/giMAY6JiOvbOZdSv5eZmVlh7rYyM7PSXHmYmVlprjzMzKy0nq08\nJL1I0g6SJjbEz25x/JaStkjbL5H0UUlvKJnn8SWPf1XK5/Ut9m8laXLaHi/pc5J+I+krklZvkeYg\nSes229fi+FUk7S1px/R6T0nflfRBSSsPkW59SR+XdJSkb0o6YLCsZtb7Rv2AuaT9IuKnDXEHAR8E\nbgA2Az4cEWekfVdFxOYNxx9O9sCqscA5wFbA+WTrv/wxIr7YJN/G29sEvAY4DyAidmuS5vKI2DJt\n75/K+Gvg9cBvIuLIhuOvBzZNd0jMBR4DTgF2SPFvbZLHw8CjwC3AicCvImJ+43G543+e3vcEYCEw\nETgt5aGI2KdJmoOAXYCLgDcAV6e0bwE+EBEXtMrPrFdIem5E3D/S5RgxIz3jsQMzJu9oEjcPmJi2\nZ5JN0/9wen11i+PHkF1AFwGTU/x44NoW+V4FnABsD2yX/n9P2t6uRZqrc9tXAM9J26sB85ocf0M+\nv4Z917TKg6xF+XrgaGA+8AdgH2BSk+OvTf8fC9wHjEmvNcR7n5c7bgJwQdper9nn2w8BeG4X8pg+\n0u+zjTKvDhwJ3Ag8BDxI9qPuSGBKyXP9vkX8ZODLwM+APRv2fb9FmhnAD8gWCZwOHJH+rk8G1mpy\n/LSGMB24DZgKTBvpz3kkwqjotpJ0bYswD1izSZKVIuIRgIi4jezCvrOkb5JdFBstiYilEfEYcEtE\nLEppHwdaPUB4FvBX4FPAw5H92n48Ii6MiAtbpFlJ0lRJ08kuvvNTPo8CzZ7vfp2k/dL23yTNSp/H\nRuQettUgImIgIs6OiPcCawPfB2YDt7Yo0yrAJLKKYLA7bBzQstuK5XOExpG1VoiIO1qlkbS6pCMl\n3SjpIUkPSrohxU0ZIp+mJP2+SdxkSV+W9DNJezbs+36L88yQ9ANJ35M0XdIRkuZJOlnSWi3STGsI\n04HL03c7rcnxs3Pbq0s6Ov39/kJSs79f0ueyRtqeJelW4DJJt0varsnxV0n6tKQXNjtfizxmSTpf\n0gmS1pV0jqSHJV0h6eUt0kyU9HlJ16dj50u6VNK+LbI5GVgAbB8R0yJiOlkLfUHa13j+zVuEV5D1\nIjTzU7J/16cCu0s6VdK4tG/rFmmOBf4O3EnWy/A4WSv6/4AfNjn+AbJ/74PhSuB5ZD8ir2yRR28b\n6dqrSCD7RbwZ8PyGMBO4u8nx5wGbNcSNBY4HljY5/jJgQtpeKRe/Og2/+JukXQf4FfBdmrSCGo69\njewC/q//+RyoAAAEBUlEQVT0/7VS/ESatCRS/seSdUFdRlZh3ApcSNZt1SyPlr/8B99jQ9zB6Zy3\nAwcB5wI/JvsVdniL83wYuDYddyOwX4p/DnBRizR/BA4BZuTiZqS4s1uk2bxFeAVwT5PjTyX7Rftm\nslmzpwLj0r6m3yNZq+xA4JPpPR1CtnzDgcAZLdIMpO8wH54e/F6bHH9VbvsnwBfS3+/BwOkt8piX\n2z4f2CJtb0ST9ZRS3l8H7iB75PPBwNrD/D1eTtZduwfZRfRtKX4H4C8t0pwB7Jv+7j8KfAbYEDgO\n+FKT428aIv9n7QOWkv37Pb9JeLzFea5peP0p4BKy1kGr7z3fC3DHUOdLcR9Lfyub5D/zoT7fXg8j\nXoBChcy6X17VYt8vmsStk79INezbtkncuBbHrpH/YxmmjG9s9o+nYNoJwAuG2D8Z2DRdNNcc5lwb\ntZH/2oMXGmAK2eJpWw6T5qXpuBcVzKPURSTFl7qQdOMikuJLXUh4ZuXRWMZWedwAjE3blzbsa9bF\nmc/j1WStzXvTZ9V05ddh3nvTHyHA3xpeX5H+vxJwY5PjzwY+kf+7JestOAT4U5PjrwM2bJH3nUN8\nVis1xO0LXA/cPtz7AL4w3Oeb4gd/KH6TrKX+rB8K/RRGvAAO/RHKXkTS/lIXkm5dRNK+whcSsofu\nfDRVOv8i3aiS9rUaVzowfWavJeuPP4psPO1zwM+aHP+sypFsHG828NMWefyFbGzs7WQtzzen+O1o\nsVos8GfSDzlgN7IbSgb3NWtJTAW+QtZCXUA27nFDinvWWAHZD5L/aJH3m1vEfxXYsUn8bOCfLdJ8\nnjQu2hC/AXDKMH/LuwGXAvd28t/IaAsjXgCH/ggNF5GHGi4iU1ukKXUh6fZFJB037IUEOLwhDN4o\nMQM4foh02wMnkd0EMQ84i+x5DWObHPvLNr6TTcm6E38PvChVUAvJKtttWqR5GVl31wLgYlJLl6zL\n8qAWaV4E7Nj4OQOzhzh+h6LHD5Nm5zbSDFsusptpNh6uXL0cRrwADg6kMZMq01SZR8OFpDbl6mYe\nrdKQjaPdBJxONub3pty+Zq2lUsen+AOrTtNOuXo9jHgBHBwY5kaDTqTpRh51LddIvnfau22+8PHd\nStNOHr0eRuuS7DbKSLq21S6a325dOk038qhruer63mm4bV7S9sApkp5P89vmyx7frTTt5NHTXHlY\nt6wJ7ETWV54nskHYTqTpRh51LVdd3/t9kjaLiGsAIuIRSbsAxwCbdOD4bqVpJ4+e5srDuuW3ZM3+\naxp3SLqgQ2m6kUddy1XX9743DRNgI2IJsLekH3Xg+G6laSePnjbq17YyM7PuGxXLk5iZWb248jAz\ns9JceZiZWWmuPMzMrLT/B7PceeNz/t25AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x118fae828>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4HEW9//H3hwRCEghZQHaMCLiBIIZF8EoElyCrXhfA\nsOkl4gKK+ojgAvpTwfUn7kTZUQQFERQUFAIXFBABCQjIIouyhTUREEzO9/7RdUgzzJzTPZme02fm\n88pTT3qqu7pq5pzTNVXVVa2IwMzMrIzlRroAZmY2+rjyMDOz0lx5mJlZaa48zMysNFceZmZWmisP\nMzMrzZVHjUi6UdLMNtOGpA06XKSeI+lwST+q4LzvlnRBp89bsgw/kPSZkSyD9Q95nkc9SfoBMDsX\ntTzwTESs3OL4ADaMiNu6Ub4m+U8H/g4sHxGLK8rjSGCDiJg93LHp+JnAqRGxThXlGSbvSn8ekvYD\n/iciXlvF+YfJe2Pg68CrgWkRoYb984CtgcHfg39GxEu6WkirnFseNRURB0bESoMBOA342UiXqyrK\n+PcRkDR2pMswjP8AZwDvHeKYD+V+f11x9CD/sdaIpDslvaFJ/ETgv4GTCp5nJ0nXSloo6Z70jX1w\n368lHdRw/PWS3pq2t5H0J0mPp/+3aVU+SUdKOjW9vDT9/5ikf0l6TYFyzpP0RUmXA08C60taS9I5\nkh6RdJukA9Kxs4DDgXel8/8lxe8v6SZJiyTdIel9uc/sfGCtdPy/0rnzZUbSrqm78LFUnpc1vN+P\np8/ncUmnS1qxxXvZT9JlaXvws/hLyvddKX5nSdelvP4g6ZUNeR0q6XrgCUljJX1S0u3pvf019zN6\nGfAD4DXp/I+l+BMlfSF3zgPSZ/hI+kzXyu0LSQdKujWV57uSntOCaCUibomI44AbixxvPSoiHGoS\ngDuBNzSJ3we4g9TN2CJtkHXpAMwENiH7cvBK4AFg97TvncCVuXSbAg8DKwBTgUeBvYGxwJ7p9bRm\n5QOOJOsWApieyjC2xPudB9wNvCLltzxZJfQ9YEVgM2ABsH1jfrlz7AS8GBCwHVkltHnuc/hHw/H5\nMm8EPAG8MeX9CeA2YIXc+70KWCt9NjcBB7Z4L/sBlzX7eaTXrwIeBLYCxgD7pvOPy+V1HbAuMD7F\nvSPlvRzwrlTWNZvll+JOBL6QtrcHHgI2B8YB3wYubSjfr4DJwHrpc56V9q0HPAasN8zPbwMgWvxc\nF6T8LwdmjvTflkPng1seo8O+wMmR/jKHExHzImJ+RAxExPVkXV7bpd3nABtJ2jC93hs4PSKeIbsQ\n3xoRp0TE4og4DbgZ2KWj7+a5ToyIGyMbJ1kD2BY4NCL+HRHXAT8iqzybiohfR8TtkbkEuAD4r4J5\nvwv4dURcGBH/Ab4GjAe2yR3zrYi4NyIeAc4lq9DaMQc4NiKujIglEXES8DTZ2EA+r3si4qn03n6W\n8h6IiNOBW4EtC+b3buD4iLgmIp4GDiNrqUzPHXN0RDwWEXcDFw++t4i4OyImp/h2HAqsD6wNzAXO\nlfTiNs9lNeXKo+YkrUf2DfrkEmm2knSxpAWSHgcOBFYFiIh/A6cDs9MYw57AKSnpWsBdDae7i+wi\nUJV7cttrAY9ExKKi+UvaUdIVqWvmMeAtpPdawHPeb0QMpPLk87s/t/0ksFLBczd6IfCx1EX0WCrr\nuqkMg/KfBZL2yXVzPQZsTPvv7V9kLcwq3ttzpApyUUQ8nSrJy8l+LtZDXHnU397A5RFxR4k0PyFr\nYawbEauQ9Y/n+7NPIvtmugPwZET8McXfS3aRy1sP+GfafgKYkNu3Rm673dv28unuBaZKyt9Rls//\nOXlIGgecSdZiWD0iJgPnsfS9Dlem57zf1Oe/bi6/TroH+GL6Rj8YJqTW3aBnyyvphcAPgQ+RdRtO\nBm6g/fc2EZhGNe9tOMFzf/+sB7jyqL99yPqyy1iZ7Bv8vyVtCeyV35kqiwGy2y1Pye06j6xLa680\nYPsu4OVkfeOQ9cnvIWl5STOAt+fSLkjnXH8wQtL0NDA7vUihI+Ie4A/AUZJWTAPK7wUGB7gfAKZr\n6V1ZK5D15y8AFkvaEXhT7pQPANMkrdIiyzOAnSTtIGl54GNkXUl/KFLeYTxA7rMgqwgOTK1CSZqo\n7MaGprdeAxPJLroLILsxgKzlkT//OpJWaJH+NGB/SZulSvZLZGNdd7b/ljKp/CuSff6kn9W4tD1Z\n0ptT3FhJ7wZeB/xmWfO1enHlUWPK7lhah/K36H4A+LykRcBnyS6SjU4mG1R/9s6jiHgY2JnsIvow\n2QDyzhHxUDrkM2SD048CnyNr4QymfRL4InB56mbZmuxb/F2U+7a7J9ng+73AL4AjIuJ3ad/g5/Cw\npGtS99bB6f09SlZJnpMr081kF9E7UpnyXURExC1kc2m+TTa4uwuwSxr/WVZHAielfN8ZEVcDBwDf\nSWW9jWzQu6mI+CtZ5f5HsopiE7Lun0EXkd3tdL+kh5qk/x3Zz+tM4D6yn9seRQouab10F9d6LQ55\nIfAUS++2egq4JW0vD3yBpQPmB5HdrPG3Innb6OFJgn1K0j7AnKhwkpmkTwMLIuLYqvIws5HhyqMP\nSZpA9s31exFReCDezGyQu636jKQ3k3UpPECu28nMrAy3PMzMrDS3PMzMrLRaL8B2wtqzSzWLpi4Z\nKJ3HVMrdWDN5/NOl81h5lX+XTjNhWrlyrfCC8t8Dxqxefk7Ycqu2uuu1OU2bUjoPTS06Dy6Zslr5\nPKasXj7N5DVLHb/clDWGP6jB+LWKTo7PTBo3YfiDGkweV/7nPnn5iaWOnzKmfLmmjGm6bNjQabI7\nhAub2sYlb7WBMaXTfPzuUzs2r+U/D91R+Dq4/Krrd20+jVseZmZWWq1bHmZmfW9gyUiXoClXHmZm\ndRblu+O7wZWHmVmdDdSz8ujqmIek10r6bjfzNDMbzWLJ4sKhmypveUh6FdmaQ+8ge8b1WVXnaWbW\nM/qp20rSRmQL3O1Jtjja6WQTEl9fRX5mZj2rpgPmVXVb3Uz2GMydI+K1EfFtoNAnIGmOpKslXT3v\niVsrKp6Z2SgRA8VDF1VVebyNbBnoiyX9UNIOFHwYTETMjYgZETFj5sQNh09gZtbLBgaKhy6qpPKI\niLMjYg/gpWTPRv4I8AJJ35f0pqFTm5nZoIiBwqGbKr3bKiKeiIifRMQuZA81uhY4tMo8zcx6Sk1b\nHl2b5xERjwJzUzAzsyL66W4rMzPrkJrebeXKw8yszro8+a8oVx5mZnXmbiszMyutpmtbufIwM6ux\nCI95mJlZWe62MjOz0txtZWZmpbnlAZJWBR6OiMIPdDcz62s1nedR2fIkkraWNE/SWZJeJekG4Abg\nAUmzhkjnVXXNzAbVdFXdKlse3wEOB1YBLgJ2jIgrJL0UOA34TbNEEfHsEiYnrD3bLRQz6299OElw\nbERcACDp8xFxBUBE3CwVWp3dzMz6cMA8/46fatjnFoWZWRF9WHlsKmkh2UOgxqdt0usVK8zXzKxn\n9N0kwYgYU9W5zcz6RgdbHpLWBU4GVifrAZobEcdImgqcDkwH7gTemR6j0VKlD4MyM7Nl1Nm7rRYD\nH4uIlwNbAx+U9HLgk8DvI2JD4Pfp9ZBceZiZ1VkHnyQYEfdFxDVpexFwE7A2sBtwUjrsJGD34c7l\nysPMrM5KtDzy8+RSmNPqtJKmA68CrgRWj4j70q77ybq1huTlSczM6qzEmEd+ntxQJK0EnAl8JCIW\n5qdPRERIGvaOWFceZmZ11uFJgpKWJ6s4fhwRZ6XoByStGRH3SVoTeHC487jbysyszjo45qGsiXEc\ncFNEfCO36xxg37S9L/DL4c5VWctD0gZk/WiXN8RvC9wfEbdXlbeZWc/o7JpV2wJ7A/MlXZfiDgeO\nBs6Q9F7gLuCdw52oym6rbwKHNYlfmPbtUmHeZma9oYPzPCLiMrKJ2s3sUOZcVXZbrR4R8xsjU9z0\nVom8qq6ZWU5NV9WtsvKYPMS+8a12RMTciJgRETNmTtywgmKZmY0iHRzz6KQqK4+rJR3QGCnpf4A/\nV5ivmVnvqGnLo8oxj48Av5D0bpZWFjOAFYC3VpivmVnv6LdVdSPiAWAbSa8HNk7Rv46Ii6rK08ys\n5/Rb5TEoIi4GLq46HzOznrSkz5ZkNzOzDujXloeZmS2DLg+EF+XKw8ysztzyMDOz0mLYBW5HhCsP\nM7M6c8vDzMxKc+VhZmal9fOAuaTVACJiQTfyMzPrFTFQzzGPyta2UuZISQ8BtwB/k7RA0merytPM\nrOcsWVw8dFGVCyMeQvbgkS0iYmpETAG2AraVdEirRF6S3cwsZyCKhy6qsvLYG9gzIv4+GBERdwCz\ngX1aJfKS7GZmOTVdkr3KMY/lI+KhxsiIWJAewG5mZsPpw7utnmlzn5mZDerDSYKbSlrYJF7AihXm\na2bWO/qt5RERY6o6t5lZ36jprbqeJGhmVmf9PEnQzMza5JaHmZmVFYv9JEEzMyvL3VZmZlaau63M\nzKy0frtV18zMOqCmLY8qV9X9RG77HQ37vlRVvmZmPSUGiocuqnJhxD1y24c17JvVKpFX1TUzy+nD\nVXXVYrvZ62d5VV0zs6ViYKBw6KYqK49osd3stZmZNdPBloek4yU9KOmGhviDJN0s6UZJXylSrG4s\njChgfG6RRC+MaGZW1JKOThI8EfgOcPJghKTXA7sBm0bE05JeUOREXhjRzKzOOjiWERGXSpreEP1+\n4OiIeDod82CRc1XZbWVmZssoBqJwaNNGwH9JulLSJZK2KJLI8zzMzOqsRKUgaQ4wJxc1NyLmDpNs\nLDAV2BrYAjhD0voRQz+FypWHmVmdlbiLKlUUw1UWjf4BnJUqi6skDQCrAguGSuRuKzOzOqt+nsfZ\nwOsBJG0ErAA8NFwitzzMzOqsgwPmkk4DZgKrSvoHcARwPHB8un33GWDf4bqswJWHmVmtFbiOlznX\nni12zS57LlceZmZ1VtOFEV15mJnVWCyu55LsVa6qu15V5zYz6xt9uDDi2YMbks6sMB8zs941UCJ0\nUbdW1V2/cCIvyW5m9qwuzDBvy0itqts6kZdkNzNbqqbdViO1qm5ExKQK8zYz6w31HC/3qrpmZnXW\n7e6oonyrrplZnfVby8PMzJadWx5m1nELn36SSeMmjHQxrEKxeKRL0JwrD7NRzBVHH3C3lZmZlRWu\nPMzMrDRXHmZmVpZbHmZmVporDzMzK62ulUeVS7LvJumDuddXSrojhbdXla+ZWU8JFQ9dVLjykHSZ\npC9KmiVp5QJJPgGck3s9DtiC7Pm57x8iH6+qa2aWxEDx0E1lWh57A7cA/w38IV3g//8Qx68QEffk\nXl8WEQ9HxN3AxFaJvKqumdlSMaDCoZsKj3lExN8l/Rt4JoXXAy8bIsmUhvQfyr1crUwhzcz61cCS\n7lYKRZXptrqd7OmAqwPHARtHxKwhklwp6YAm53kfcFXZgpqZ9aO6dluVudvqW8BrgT2BVwGXSLo0\nIm5vcfwhwNmS9gKuSXGvJhv72L3N8pqZ9ZVud0cVVabb6hjgGEkrAfsDRwLrAE2f2xERDwLbSNoe\neEWK/nVEXLRMJTYz6yNRz0V1i1cekr5O1vJYCfgj8Fngf4dLlyoLVxhmZm0Y9S0PsgrjKxHxQFWF\nMTOz5xr1lUdE/FzSrpJel6IuiYhzKyqXmZnRG91WRwFbAj9OUQdLek1EHF5JyczMbPS3PICdgM0i\nshvCJJ0EXAu48jAzq0h0edmRosoujDgZeCRtr9LhspiZWYMlNZ0kWKbyOAq4VtLFgIDXAZ+spFRm\nZgaM8paHJAGXAVuTLW4IcGhE3F9VwczMbJSPeURESDovIjbhuSvltiTp20DL+wQi4uBiRTQz61+d\nvNtK0vHAzsCDEbFxivsqsAvZmoW3A/tHxGPDnavMqrrXSNpi+MOedTXw5xR2zW0Phqa8JLuZ2VId\nXlX3RKBxTcILydYqfCXwN+CwIicqM+axFfBuSXcBT5CNe0TK8Hki4qTBbUkfyb8eSkTMBeYCnLD2\n7Jre4Wxm1h0DHRzziIhLJU1viLsg9/IKoNDD+spUHm8eaqekKRHxaIvdrgTMzNpQZsBc0hxgTi5q\nbvpCXtR7gNOLHFhmhvldwxzye2DzouczM7PhlRnzyPfclCXpU8Bilk4EH1LZeR5D5t1QkEUsbXFM\nkLQwd1xExKQO5m1m1pM62W3ViqT9yAbSd4goVl11svJ4ToYRUeQ552ZmNoSBim/VlTQL+ASwXUQ8\nWTRdJysPMzPrsE62PCSdBswEVpX0D+AIsrurxgEXZlP6uCIiDhzuXJV1W5mZ2bLr5AzziNizSfRx\n7Zyr0DwPSWMk3TzMYTu0UwAzM2ttIFQ4dFOhyiMilgC3SFpviGMeabXPzMzaEyVCN5XptpoC3Cjp\nKrJJggBExK4dL5WZmQHduduqHWUqj89UVgozM2tqVK+qCxARl0h6IbBhRPxO0gRgTHVFMzOzgZEu\nQAuFF0aUdADwc+DYFLU2cHYVhTIzs0ygwqGbyqyq+0FgW2AhQETcCryg1cGSFkla2CQsys02b5bO\nq+qamSWLQ4VDN5UZ83g6Ip5Jk0iQNJahn9fR1gxzr6prZrZUt1sURZVpeVwi6XBgvKQ3Aj8Dzq2m\nWGZmBtmYR9HQTWUqj08CC4D5wPuA8yLiU5WUyszMgPqOeZTptjooIo4BfjgYIenDKc7MzCow6u+2\nAvZtErdfh8phZmZN1LXbatiWh6Q9gb2AF0k6J7drZcBLkpiZVaiuA+ZFuq3+ANwHrAp8PRe/CLi+\nikKZmVmm4sd5tG3YyiM9fvYuSZdGxCX5fZK+DBxaVeHMzPrdQE1bHmXGPN7YJG7HThXEzMyeb0mJ\n0E1FxjzeD3wAeLGkfDfVysDlVRXMzMxgQPVseRQZ8/gJcD5wFNlcj0GL/AwPM7Nq1XWZjWG7rSLi\n8Yi4Mz2+cF1g+zQOspykFzVLM8S6VgslLZB0hSQ/edDMbBij9lbdQZKOAGYALwFOAFYATiVbLPE5\nhlrXStIYYGPgx+l/MzNroa53W5UZMH8rsCvpKYIRcS/ZuEcpEbEkIv4CfLvZfq+qa2a21AAqHLqp\nTOXxTEQ8+6hcSROXJeOIOLZF/NyImBERM2ZO3HBZsjAzG/Xq+gzzMpXHGZKOBSanB0P9jtw6V2Zm\n1nkDKh66qcxjaL+WlmJfSDbu8dmIuLCykpmZWW0XRiyzqi6psnCFYWbWJUtqOmBeZJLgIpp3pwmI\niJjU8VKZmRkwilse7T5O1szMlt2orTzMzGzkxGjttjIzs5HjloeZmZXmysPMzEobtQsjmpnZyOn0\nJEFJh0i6UdINkk6TtGI75XLlYWZWY51cVVfS2sDBwIyI2BgYA+zRTrkqqzwkrTvEvp2rytfMrJdU\n8CTBscB4SWOBCcC97ZSrypbHhZKmN0ZKeg9wTIX5mpn1jDLdVvlVyVOYkz9XRPwT+BpwN3Af8HhE\nXNBOuaqsPD4KXCDp2aVxJR0GHAJs1yqRl2Q3M1uqTLdVflXyFObmzyVpCrAb8CJgLWCipNntlKuy\nyiMizgPeD5wvaWNJ3wR2AV4XEf8YIp2XZDczSzq8JPsbgL9HxIKI+A9wFrBNO+WqdMA8In4P7A/M\nA9Yne4Tto1XmaWbWSwaIwqGAu4GtJU2QJGAH4KZ2ylXZPI/cgooCxpEV8sFUYC+oaGZWQCcnCUbE\nlZJ+DlwDLAauBeYOnaq5yioPL6hoZrbsOj1JMCKOAI5Y1vN4hrmZWY3VdXkSTxIs6bGnxo10EazR\nowtGugQjZuHTT450Eaxio/4xtJaZPP7pkS6CNZqy2kiXYMRMGjdhpItgFVtS09WtXHmYmdVYXbut\nXHmYmdVYwVtwu86Vh5lZjdWz6nDlYWZWa3XtthqRu60kfWQk8jUzG206PMO8Y0bqVt2PjlC+Zmaj\nSofXtuqYkao8Wt6R7FV1zcyW6uTDoDpppCqPlpWkV9U1M1sqSvzrpm4sjPi8XcD4qvI1M+sli2t6\nv5UXRjQzq7F6Vh2+VdfMrNY8SdDMzEqr6zwPVx5mZjXW7YHwolx5mJnVmFseZmZWmlseZmZWmlse\nZmZW2kC45WFmZiX5SYJmZlaaxzzMzKy0vhvzkHTOUPsjYteq8jYz6xX9OMP8NcA9wGnAlQyxDHue\npDnAHIB9VtkSr6xrZv2srt1WVS7JvgZwOLAxcAzwRuChiLgkIi5plchLspuZLdV3z/OIiCUR8ZuI\n2BfYGrgNmCfpQ1XlaWbWayKicOimSgfMJY0DdgL2BKYD3wJ+UWWeZma9pO/GPCSdTNZldR7wuYi4\noaq8zMx6Vd/dbQXMBp4APgwcLD07Xi4gImJShXmbmfWEJTWtPqp8kuBIPR/dzKxndHssoyhf4M3M\naqyKu60kjZF0raRftVsuzzA3M6uxiuZ5fBi4CWh7+MAtDzOzGhsgCociJK1Ddhfsj5alXK48zMxq\nrMw8D0lzJF2dC3OanPKbwCdYxhu53G1lZlZjZeZ5RMRcYG6r/ZJ2Bh6MiD9Lmrks5XLlYWZWYx0e\n89gW2FXSW4AVgUmSTo2I2WVPVOUkwc8OsTsi4v9VlbeZWa/o5JMEI+Iw4DCA1PL4eDsVB1Q75vFE\nkxDAe4FDWyXK99nNe+LWCotnZlZ/USJ0U5WTBL8+uC1pZbJbw94D/BT4+hDpnu2zO2Ht2fWcHWNm\n1iWLK5phHhHzgHntpq96YcSpwEeBdwMnAZtHxKNV5mlm1kvqOsO8yjGPrwJvI2tFbBIR/6oqLzOz\nXlXXVXWrHPP4GLAW8GngXkkLU1gkaWGF+ZqZ9Ywo8a+bvDCimVmN9V23lZmZLbu6dlu58jAzqzG3\nPMzMrDS3PMzMrLRuD4QX5crDzKzGlkSfPYbWzMyWXSfXtuqkyisPSSsCG6SXt0XEv6vO08ysV/Rd\nt5WkscCXyNazugsQsK6kE4BPRcR/qsrbzKxX1LXlUeVEvq8CU4EXRcSrI2Jz4MXAZOBrrRJ5VV0z\ns6XqOsO8yspjZ+CAiFg0GBERC4H3A29plSgi5kbEjIiYMXPihhUWz8ys/gYiCoduqnLMI6LJ7JaI\nWCKpnu0wM7OaqeuYR5Utj79K2qcxUtJs4OYK8zUz6xkRA4VDN1XZ8vggcJak9wB/TnEzgPHAWyvM\n18ysZ/TdDPOI+CewlaTtgVek6PMi4vdV5Wlm1mv6dpJgRFwEXFR1PmZmvcgLI5qZWWl1nefhysPM\nrMbqereVKw8zsxpzt5WZmZXWd3dbmZnZsnPLw8zMSvOAuZmZldZ3LY/0HI8DyZ7lMR84LiIWV5Wf\nmVkvquskwSrXtjqJbDmS+cCOwNeLJPKS7GZmS/Xjqrovj4hNACQdB1xVJFFEzAXmApyw9ux6ttfM\nzLqkH+d5PPukwIhYLKnCrMzMelM/DphvKmlh2hYwPr0W2bM+JlWYt5lZT6jrgHllYx4RMSYiJqWw\nckSMzW274jAzK6DTj6GVNEvSLZJuk/TJdsvlW3XNzGqsky0PSWOA7wJvBP4B/EnSORHx17LnqvJu\nKzMzW0YRUTgUsCVwW0TcERHPAD8Fdqu8YHUJwJw6pumVPFyu+uXhctUvj3bTVBmAOcDVuTCnYf/b\ngR/lXu8NfKetvEb6zbb5AV1dxzS9kofLVb88XK765dFumpEMnaw83G1lZtY//gmsm3u9ToorzZWH\nmVn/+BOwoaQXSVoB2AM4p50Tjda7rebWNE2v5NFOmn4uVz+/93bS9Eoe7aYZMZFN2P4Q8FtgDHB8\nRNzYzrmU+r3MzMwKc7eVmZmV5srDzMxKc+VhZmal9WzlIemlknaQtFJD/KwWx28paYu0/XJJH5X0\nlpJ5nlzy+NemfN7UYv9Wkial7fGSPifpXElflrRKizQHS1q32b4Wx68gaR9Jb0iv95L0HUkflLT8\nEOnWl/RxScdI+oakAwfLama9b9QPmEvaPyJOaIg7GPggcBOwGfDhiPhl2ndNRGzecPwRZA+sGgtc\nCGwFXEy2/stvI+KLTfJtvL1NwOuBiwAiYtcmaa6KiC3T9gGpjL8A3gScGxFHNxx/I7BpukNiLvAk\n8HNghxT/tiZ5PA48AdwOnAb8LCIWNB6XO/7H6X1PAB4DVgLOSnkoIvZtkuZgYGfgUuAtwLUp7VuB\nD0TEvFb5mfUKSS+IiAdHuhwjZqRnPHZgxuTdTeLmAyul7elk0/Q/nF5f2+L4MWQX0IXApBQ/Hri+\nRb7XAKcCM4Ht0v/3pe3tWqS5Nrf9J2C1tD0RmN/k+Jvy+TXsu65VHmQtyjcBxwELgN8A+wIrNzn+\n+vT/WOABYEx6rSHe+/zccROAeWl7vWafbz8E4AVdyGPaSL/PNsq8CnA0cDPwCPAw2Ze6o4HJJc91\nfov4ScBRwCnAXg37vtcizRrA98kWCZwGHJl+r88A1mxy/NSGMA24E5gCTB3pz3kkwqjotpJ0fYsw\nH1i9SZLlIuJfABFxJ9mFfUdJ3yC7KDZaHBFLIuJJ4PaIWJjSPgW0eoDwDODPwKeAxyP7tv1URFwS\nEZe0SLOcpCmSppFdfBekfJ4Amj3f/QZJ+6ftv0iakT6Pjcg9bKtBRMRARFwQEe8F1gK+B8wC7mhR\nphWAlckqgsHusHFAy24rls4RGkfWWiEi7m6VRtIqko6WdLOkRyQ9LOmmFDd5iHyaknR+k7hJko6S\ndIqkvRr2fa/FedaQ9H1J35U0TdKRkuZLOkPSmi3STG0I04Cr0s92apPjZ+W2V5F0XPr9/YmkZr+/\npM9l1bQ9Q9IdwJWS7pK0XZPjr5H0aUkvbna+FnnMkHSxpFMlrSvpQkmPS/qTpFe1SLOSpM9LujEd\nu0DSFZL2a5HNGcCjwMyImBoR08ha6I+mfY3n37xFeDVZL0IzJ5D9XZ8J7CHpTEnj0r6tW6Q5Efgr\ncA9ZL8NTZK3o/wV+0OT4h8j+3gfD1cDaZF8ir26RR28b6dqrSCD7RrwZ8MKGMB24t8nxFwGbNcSN\nBU4GljQ5/kpgQtpeLhe/Cg3f+JukXQf4GfAdmrSCGo69k+wC/vf0/5opfiWatCRS/ieSdUFdSVZh\n3AFcQtahXGrfAAAD7UlEQVRt1SyPlt/8B99jQ9wh6Zx3AQcDvwd+SPYt7IgW5/kwcH067mZg/xS/\nGnBpizS/BQ4F1sjFrZHiLmiRZvMW4dXAfU2OP5PsG+3uZLNmzwTGpX1Nf45krbKDgE+m93Qo2fIN\nBwG/bJFmIP0M8+E/gz/XJsdfk9v+EfCF9Pt7CHB2izzm57YvBrZI2xvRZD2llPfXgLvJHvl8CLDW\nML+PV5F11+5JdhF9e4rfAfhjizS/BPZLv/cfBT4DbAicBHypyfG3DJH/8/YBS8j+fi9uEp5qcZ7r\nGl5/CricrHXQ6uee7wW4e6jzpbiPpd+VTfKf+VCfb6+HES9AoUJm3S+vbbHvJ03i1slfpBr2bdsk\nblyLY1fN/7IMU8admv3xFEw7AXjREPsnAZumi+bqw5xrozbyX2vwQgNMJls8bcth0rwiHffSgnmU\nuoik+FIXkm5cRFJ8qQsJz608GsvYKo+bgLFp+4qGfc26OPN5/BdZa/P+9Fk1Xfl1mPfe9EsI8JeG\n139K/y8H3Nzk+AuAT+R/b8l6Cw4Fftfk+BuADVvkfc8Qn9VyDXH7ATcCdw33PoAvDPf5pvjBL4rf\nIGupP++LQj+FES+AQ3+EsheRtL/UhaRbF5G0r/CFhOyhOx9Nlc7fSTeqpH2txpUOSp/Z9mT98ceQ\njad9DjilyfHPqxzJxvFmASe0yOOPZGNj7yBree6e4rejxWqxwB9IX+SAXcluKBnc16wlMQX4MlkL\n9VGycY+bUtzzxgrIvpC8pEXeu7eI/wrwhibxs4BbW6T5PGlctCF+A+Dnw/wu7wpcAdzfyb+R0RZG\nvAAO/REaLiKPNFxEprRIU+pC0u2LSDpu2AsJcERDGLxRYg3g5CHSzQROJ7sJYj5wHtnzGsY2Ofan\nbfxMNiXrTjwfeGmqoB4jq2y3aZHmlWTdXY8Cl5FaumRdlge3SPNS4A2NnzMwa4jjdyh6/DBpdmwj\nzbDlIruZZuPhytXLYcQL4OBAGjOpMk2VeTRcSGpTrm7m0SoN2TjaLcDZZGN+u+X2NWstlTo+xR9U\ndZp2ytXrYcQL4ODAMDcadCJNN/Koa7lG8r3T3m3zhY/vVpp28uj1MFqXZLdRRtL1rXbR/Hbr0mm6\nkUddy1XX907DbfOSZgI/l/RCmt82X/b4bqVpJ4+e5srDumV14M1kfeV5IhuE7USabuRR13LV9b0/\nIGmziLgOICL+JWln4Hhgkw4c36007eTR01x5WLf8iqzZf13jDknzOpSmG3nUtVx1fe/70DABNiIW\nA/tIOrYDx3crTTt59LRRv7aVmZl136hYnsTMzOrFlYeZmZXmysPMzEpz5WFmZqX9H2FDf5B2vEaL\nAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11f608828>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4XEWd//H3h4SEhBCyIEuEGBUYR0EQw6KooKgTZXEZ\nF8Cw6ZDBUVB0HhA30BkFR/QnI25REHBhQEHEEWdA2dwAEZCAwAjIJltYwyom9/v7o+qSk6b73j6d\nPn3P7f688tST7jqnTtXpe++prqpTdRQRmJmZlbHGWBfAzMzGH1ceZmZWmisPMzMrzZWHmZmV5srD\nzMxKc+VhZmalufKoEUnXStq5w7QhadMuF6nvSPqopG9VcNx3STq328ctWYavS/rEWJbBBoc8z6Oe\nJH0dWFiIWhN4KiLWabF/AJtFxI29KF+T/OcBfwbWjIjlFeVxFLBpRCwcbd+8/87AdyNi4yrKM0re\nlf48JO0P/FNEvKKK44+S9xbAF4CXArMjQk322RM4EpgL3A3sHxG/7GlBrVJuedRURBwUEdOGA3Aq\n8IOxLldVlPj3EZA0cazLMIq/AacD72m2UdLrgM8BBwDrAK8Cbu5Z6aw3IsKhJgG4BXhtk/i1gUeA\nnUZIG6Rv5QC7AlcCy4DbgaMK+/0UOLgh7dXAW/LrlwO/Ax7O/7+8VfmAo0jf7AFuy2V4NIeXtXG+\nFwKfAX4NPAFsCswBzgYeAG4EDsz7LgCeIl24HgX+kOMPAK7Ln8/NwD8XPrMngKFCmeYUy5z32wO4\nFngol+fvG873X/Pn8zBwGrBWi3PZH/hVfn1x/iwey/m+M8fvBlyV8/oN8OKGvA7Pef0VmAh8BLgp\nn9sfCz+jvweeBFbk4z+U408C/r1wzAPzZ/hA/kznNPy+HAT8KZfnK+SeiBK/r5sC0ST+N8B7xvrv\nyaHaMOYFcCj8MFpXHvvmC2PLP25WrTx2BrYktSxfDNwDvDlvewdwaSHdVsD9wCRgFvAgsE++eO2V\n389uVj5WrTzm5TJMLHG+F5IqnRfl/NbMF96vAmsBWwNLgdc05lc4xq7A8wEBOwGPA9sUPoc7GvYv\nlnlz0gX+dTnvw/LFdlLhfC8jVTqzSJXUQS3OZX9y5dH488jvXwLcC2wPTAD2y8efXMjrKmATYEqO\ne3vOew3gnbmsGzXLL8edRK48gNcA9wHbAJOBLwMXN5Tvv4EZpK6lpcCCvG0uqUKZO8rP7xmVRz63\np0gV343AHcDxw+fk0D/B3QTjw37AKZH/OkcTERdGxJKIGIqIq0ldXjvlzWcDm0vaLL/fBzgtIp4i\nXYj/FBHfiYjlEXEqcD2we1fPZlUnRcS1kcZJNgR2BA6PiCcj4irgW6TKs6mI+GlE3BTJRcC5wCvb\nzPudwE8j4ryI+BtwLDCF1Poa9p8RcWdEPAD8hFShdWIR8I2IuDQiVkTEyaQWxg4Ned0eEU/kc/tB\nznsoIk4jtRK2azO/dwEnRsQVEfFX4AjgZXlsatgxEfFQRNwGXDB8bhFxW0TMyPFlbUCqiN9G+jls\nTao4P97BsazGXHnUnKS5pG/Qp5RIs72kCyQtlfQwqXtiPYCIeJLU/bIwjzHsBXwnJ50D3NpwuFuB\nZ6/WSYzs9sLrOcADEfFIu/lLeoOkSyQ9IOkh4I3kc23DKucbEUO5PMX87i68fhyY1uaxGz0H+LCk\nh4YDqZUxp7BP8bNA0r6SrirsvwWdn9ujpBZmFedW9ET+/8sRcVdE3Ad8kfRzsT7iyqP+9gF+HRFl\nBhy/T2phbBIR6wJfJ3XrDDuZ9M10F+DxiPhtjr+TdJErmgv8Jb9+DJha2LZh4XWnt+0V090JzJJU\nvKOsmP8qeUiaDJxBajFsEBEzgHNYea6jlWmV85Uk0gX9Ly1TdO524DP5G/1wmJpbd8OeLq+k5wDf\nBN5P6jacAVxD5+e2NjCbas7taRHxIKmrqlg+39LZh1x51N++pL7sMtYhfYN/UtJ2wN7FjbmyGCLd\nbvmdwqZzSF1ae0uaKOmdwAtJfeOQ+uT3lLSmpPmkrolhS/MxnzccIWlenn8yr51CR8TtpMHWoyWt\nJenFpDt6vpt3uQeYV7graxKpP38psFzSG4DXFw55DzBb0rotsjwd2FXSLpLWBD5M6kr6TTvlHcU9\nFD4LUkVwUG4VStLaknZtqCiL1iZddJcCSDqA1PIoHn9jSZNapD8VOEDS1rmS/SxprOuWzk8pyeVf\ni/T5k39Wkwu7fBs4WNL6kmYCh7Lyd8j6hCuPGpP0MmBjyt+i+y/ApyU9AnySdJFsdAppUH34wkxE\n3E+6I+jDpC6Ow4DdctcDwCdIg9MPAp8itXCG0z5OvnMqd7PsQPoWfyvlvu3uRRp8vxP4EXBkRPw8\nbxv+HO6XdEXu3jokn9+DpEry7EKZriddRG/OZSp2ERERN5Dm0nyZNLi8O7B7Hv9ZXUcBJ+d83xER\nl5Pufjo+l/VG0qB3UxHxR1Ll/ltSRbEl6a60YeeT7hK7W9J9TdL/nPTzOgO4i/Rz27OdgkuaK+nR\n3GXazHNI3VPX5vdPADcUtv8b6U69/yPdZHAl6XfD+ognCQ4oSfsCi6LCSWaSPg4sjYhvVJWHmY0N\nVx4DSNJU0jfXr0ZE2wPxZmbD3G01YCT9A6kf/R4K3U5mZmW45WFmZqW55WFmZqXVegG2Y+cuLNUs\nmr2ifB6zVgyV25/yN+LMmPLX0mnWWffJUvtPnV2+XJPWL//dYcIG5eaRrbFeq7tkW9PsmeX2n9Xu\nvLmCmc8qnUQzNyi3/4yNSuexxswNR9+pYMqcdifTrzR98tTRd2owY3K5n/uMNdcuncfMCeXLNXPC\nWuX2X+WO4vbM6uAy+blbTn3GSsOd+tt9N7d9HVxzved1Ld/RuOVhZmal1brlYWY28IY66FLpAVce\nZmZ1FuW61nvFlYeZWZ0N1bPy6OmYh6RXSPpKL/M0MxvPYsXytkMvVd7ykPQS0ppDbyc94/rMqvM0\nM+sbg9RtJWlz0gJ3e5EWnDuNNCHx1VXkZ2bWt2o6YF5Vt9X1pMdg7hYRr4iIL5OetzwqSYskXS7p\n8kse/VNFxTMzGydiqP3QQ1VVHm8lLQN9gaRvStqFVR9G1FJELI6I+RExf4dpm42ewMysnw0NtR96\nqJLKIyLOiog9gReQno38QWB9SV+T9PqRU5uZ2bCIobZDL1V6t1VEPBYR34+I3UkPNboSOLzKPM3M\n+kpNWx49m+eRn228OAczM2vHIN1tZWZmXVLTu61ceZiZ1VmPJ/+1y5WHmVmdudvKzMxKq+naVq48\nzMxqLMJjHmZmVpa7rczMrDR3W5mZWWlueYCk9YD7I6LtB7qbmQ20ms7zqGx5Ekk7SLpQ0pmSXiLp\nGuAa4B5JC0ZI51V1zcyGDdiqugDHA58FTgXOB/4pIjYEXgUc3SqRV9U1MytYsbz90ENVdltNjIhz\nASR9OiIuAYiI66W2Vmc3M7MBHDAvnvETDds85mFm1o4BrDy2krSM9BCoKfk1+f1aFeZrZtY3Bm6S\nYERMqOrYZmYDo4stD0mbAKcAG5B6gBZHxHGSZgGnAfOAW4B35MdotFTpw6DMzGw1dfduq+XAhyPi\nhcAOwPskvRD4CPCLiNgM+EV+PyJXHmZmddbFJwlGxF0RcUV+/QhwHfBs4E3AyXm3k4E3j3YsVx5m\nZnVWouVRnCeXw6JWh5U0D3gJcCmwQUTclTfdTerWGpGXJzEzq7MSYx4R0dajviVNA84APhgRy4rT\nJyIiJI16R6wrDzOzOuvy5D9Ja5Iqju9FxJk5+h5JG0XEXZI2Au4d7TjutjIzq7MujnkoNTFOAK6L\niC8WNp0N7Jdf7wf8eLRjVdbykLQpqR/t1w3xOwJ3R8RNVeVtZtY3urtm1Y7APsASSVfluI8CxwCn\nS3oPcCvwjtEOVGW31ZeAI5rEL8vbdq8wbzOz/tDFeR4R8SvSRO1mdilzrCq7rTaIiCWNkTluXqtE\nXlXXzKxgAFfVnTHCtimtNnhVXTOzgi6OeXRTlZXH5ZIObIyU9E/A7yvM18ysf9S05VHlmMcHgR9J\nehcrK4v5wCTgLRXma2bWPwZtVd2IuAd4uaRXA1vk6J9GxPlV5Wlm1ncGrfIYFhEXABdUnY+ZWV9a\nMWBLspuZWRcMasvDzMxWQ48HwtvlysPMrM7c8jAzs9Ji1AVux4QrDzOzOnPLw8zMSnPlYWZmpQ3y\ngLmkZwFExNJe5Gdm1i9iqJ5jHpWtbaXkKEn3ATcA/ydpqaRPVpWnmVnfWbG8/dBDVS6MeCjpwSPb\nRsSsiJgJbA/sKOnQVom8JLuZWcFQtB96qMrKYx9gr4j483BERNwMLAT2bZXIS7KbmRXUdEn2Ksc8\n1oyI+xojI2JpfgC7mZmNZgDvtnqqw21mZjZsACcJbiVpWZN4AWtVmK+ZWf8YtJZHREyo6thmZgOj\nprfqepKgmVmdDfIkQTMz65BbHmZmVlYs95MEzcysLHdbmZlZae62MjOz0gbtVl0zM+uCmrY8qlxV\n97DC67c3bPtsVfmamfWVGGo/9FCVCyPuWXh9RMO2Ba0SeVVdM7OCAVxVVy1eN3v/NK+qa2a2UgwN\ntR16qcrKI1q8bvbezMya6WLLQ9KJku6VdE1D/MGSrpd0raT/aKdYvVgYUcCUwiKJXhjRzKxdK7o6\nSfAk4HjglOEISa8G3gRsFRF/lbR+OwfywohmZnXWxbGMiLhY0ryG6PcCx0TEX/M+97ZzrCq7rczM\nbDXFULQdOrQ58EpJl0q6SNK27STyPA8zszorUSlIWgQsKkQtjojFoySbCMwCdgC2BU6X9LyIkZ9C\n5crDzKzOStxFlSuK0SqLRncAZ+bK4jJJQ8B6wNKRErnbysyszqqf53EW8GoASZsDk4D7RkvkloeZ\nWZ11ccBc0qnAzsB6ku4AjgROBE7Mt+8+Bew3WpcVuPIwM6u1Nq7jZY61V4tNC8sey5WHmVmd1XRh\nRFceZmY1FsvruSR7lavqzq3q2GZmA2MAF0Y8a/iFpDMqzMfMrH8NlQg91KtVdZ/XdiIvyW5m9rQe\nzDDvyFitqts6kZdkNzNbqabdVmO1qm5ExPQK8zYz6w/1HC/3qrpmZnXW6+6odvlWXTOzOhu0loeZ\nma2+urY8vDCi2Tj2xJ2/HOsiWMViefuhl9zyMBvHpsx55VgXwarmbiszMysrXHmYmVlprjzMzKws\ntzzMzKw0Vx5mZlZaXSuPKpdkf5Ok9xXeXyrp5hzeVlW+ZmZ9JdR+6KG2Kw9Jv5L0GUkLJK3TRpLD\ngLML7ycD25Ken/veEfLxqrpmZlkMtR96qUzLYx/gBuAfgd/kC/z/G2H/SRFxe+H9ryLi/oi4DVi7\nVSKvqmtmtlIMqe3QS22PeUTEnyU9CTyVw6uBvx8hycyG9O8vvH1WmUKamQ2qoRW9rRTaVabb6ibS\n0wE3AE4AtoiIBSMkuVTSgU2O88/AZWULamY2iOrabVXmbqv/BF4B7AW8BLhI0sURcVOL/Q8FzpK0\nN3BFjnspaezjzR2W18xsoPS6O6pdZbqtjgOOkzQNOAA4CtgYaPrcjoi4F3i5pNcAL8rRP42I81er\nxGZmAyTquahu+5WHpC+QWh7TgN8CnwRGXdIzVxauMMzMOjDuWx6kCuM/IuKeqgpjZmarGveVR0T8\nUNIekl6Voy6KiJ9UVC4zM6M/uq2OBrYDvpejDpH0soj4aCUlMzOz8d/yAHYFto5IN4RJOhm4EnDl\nYWZWkejxsiPtKrsw4gzggfx63S6XxczMGqyo6STBMpXH0cCVki4ABLwK+EglpTIzM2CctzwkCfgV\nsANpcUOAwyPi7qoKZmZm43zMIyJC0jkRsSWrrpTbkqQvAy3vE4iIQ9oropnZ4Orm3VaSTgR2A+6N\niC1y3OeB3UlrFt4EHBARD412rDKr6l4hadvRd3va5cDvc9ij8Ho4NOUl2c3MVuryqronAY1rEp5H\nWqvwxcD/AUe0c6AyYx7bA++SdCvwGGncI3KGzxARJw+/lvTB4vuRRMRiYDHAsXMX1vQOZzOz3hjq\n4phHRFwsaV5D3LmFt5cAbT2sr0zl8Q8jbZQ0MyIebLHZlYCZWQfKDJhLWgQsKkQtzl/I2/Vu4LR2\ndiwzw/zWUXb5BbBNu8czM7PRlRnzKPbclCXpY8ByVk4EH1HZeR4j5t1QkEdY2eKYKmlZYb+IiOld\nzNvMrC91s9uqFUn7kwbSd4lor7rqZuWxSoYR0c5zzs3MbARDFd+qK2kBcBiwU0Q83m66blYeZmbW\nZd1seUg6FdgZWE/SHcCRpLurJgPnpSl9XBIRB412rMq6rczMbPV1c4Z5ROzVJPqETo7V1jwPSRMk\nXT/Kbrt0UgAzM2ttKNR26KW2Ko+IWAHcIGnuCPs80GqbmZl1JkqEXirTbTUTuFbSZaRJggBExB5d\nL5WZmQG9uduqE2Uqj09UVgozM2tqXK+qCxARF0l6DrBZRPxc0lRgQnVFMzOzobEuQAttL4wo6UDg\nh8A3ctSzgbOqKJSZmSWB2g69VGZV3fcBOwLLACLiT8D6rXaW9IikZU3CI4XZ5s3SeVVdM7Nseajt\n0Etlxjz+GhFP5UkkSJrIyM/r6GiGuVfVNTNbqdctinaVaXlcJOmjwBRJrwN+APykmmKZmRmkMY92\nQy+VqTw+AiwFlgD/DJwTER+rpFRmZgbUd8yjTLfVwRFxHPDN4QhJH8hxZmZWgXF/txWwX5O4/btU\nDjMza6Ku3Vajtjwk7QXsDTxX0tmFTesAXpLEzKxCdR0wb6fb6jfAXcB6wBcK8Y8AV1dRKDMzSyp+\nnEfHRq088uNnb5V0cURcVNwm6XPA4VUVzsxs0A3VtOVRZszjdU3i3tCtgpiZ2TOtKBF6qZ0xj/cC\n/wI8X1Kxm2od4NdVFczMzGBI9Wx5tDPm8X3gZ8DRpLkewx7xMzzMzKpV12U2Ru22ioiHI+KW/PjC\nTYDX5HGQNSQ9t1maEda1WiZpqaRLJPnJg2Zmoxi3t+oOk3QkMB/4O+DbwCTgu6TFElcx0rpWkiYA\nWwDfy/+bmVkLdb3bqsyA+VuAPchPEYyIO0njHqVExIqI+APw5WbbvaqumdlKQ6jt0EtlKo+nIuLp\nR+VKWnt1Mo6Ib7SIXxwR8yNi/g7TNludLMzMxr26PsO8TOVxuqRvADPyg6F+TmGdKzMz674htR96\nqcxjaI/NS7EvI417fDIizqusZGZmVtuFEcusqkuuLFxhmJn1yIqaDpi3M0nwEZp3pwmIiJje9VKZ\nmRkwjlsenT5O1szMVt+4rTzMzGzsxHjttjIzs7HjloeZmZXmysPMzEobtwsjmpnZ2On2JEFJh0q6\nVtI1kk6VtFYn5XLlYWZWY91cVVfSs4FDgPkRsQUwAdizk3JVVnlI2mSEbbtVla+ZWT+p4EmCE4Ep\nkiYCU4E7OylXlS2P8yTNa4yU9G7guArzNTPrG2W6rYqrkuewqHisiPgLcCxwG3AX8HBEnNtJuaqs\nPD4EnCvp6aVxJR0BHArs1CqRl2Q3M1upTLdVcVXyHBYXjyVpJvAm4LnAHGBtSQs7KVdllUdEnAO8\nF/iZpC0kfQnYHXhVRNwxQjovyW5mlnV5SfbXAn+OiKUR8TfgTODlnZSr0gHziPgFcABwIfA80iNs\nH6wyTzOzfjJEtB3acBuwg6SpkgTsAlzXSbkqm+dRWFBRwGRSIe/NBfaCimZmbejmJMGIuFTSD4Er\ngOXAlcDikVM1V1nl4QUVzcxWX7cnCUbEkcCRq3sczzA3M6uxui5P4kmCJT3ApLEugjWIB+4b6yKM\nmSfu/OVYF8EqNu4fQ2vJLJ4a6yJYA81ab6yLMGamzHnlWBfBKraipqtbufIwM6uxunZbufIwM6ux\nNm/B7TlXHmZmNVbPqsOVh5lZrdW122pM7raS9MGxyNfMbLzp8gzzrhmrW3U/NEb5mpmNK11e26pr\nxqryaHlHslfVNTNbqZsPg+qmsao8WlaSXlXXzGylKPGvl3qxMOIzNgFTqsrXzKyfLK/p/VZeGNHM\nrMbqWXX4Vl0zs1rzJEEzMyutrvM8XHmYmdVYrwfC2+XKw8ysxtzyMDOz0tzyMDOz0tzyMDOz0obC\nLQ8zMyvJTxI0M7PSPOZhZmalDdyYh6SzR9oeEXtUlbeZWb8YxBnmLwNuB04FLmWEZdiLJC0CFgH8\n48zt8Mq6ZjbI6tptVeWS7BsCHwW2AI4DXgfcFxEXRcRFrRJ5SXYzs5UG7nkeEbEiIv4nIvYDdgBu\nBC6U9P6q8jQz6zcR0XbopUoHzCVNBnYF9gLmAf8J/KjKPM3M+snAjXlIOoXUZXUO8KmIuKaqvMzM\n+tXA3W0FLAQeAz4AHCI9PV4uICJieoV5m5n1hRU1rT6qfJLgWD0f3cysb/R6LKNdvsCbmdVYFXdb\nSZog6UpJ/91puTzD3Mysxiqa5/EB4Dqg4+EDtzzMzGpsiGg7tEPSxqS7YL+1OuVy5WFmVmNl5nlI\nWiTp8kJY1OSQXwIOYzVv5HK3lZlZjZWZ5xERi4HFrbZL2g24NyJ+L2nn1SmXKw8zsxrr8pjHjsAe\nkt4IrAVMl/TdiFhY9kBVThL85AibIyL+raq8zcz6RTefJBgRRwBHAOSWx792UnFAtWMejzUJAbwH\nOLxVomKf3SWP/qnC4pmZ1V+UCL1U5STBLwy/lrQO6dawdwP/BXxhhHRP99kdO3dhPWfHmJn1yPKK\nZphHxIXAhZ2mr3phxFnAh4B3AScD20TEg1XmaWbWT+o6w7zKMY/PA28ltSK2jIhHq8rLzKxf1XVV\n3SrHPD4MzAE+DtwpaVkOj0haVmG+ZmZ9I0r86yUvjGhmVmMD121lZmarr67dVq48zMxqzC0PMzMr\nzS0PMzMrrdcD4e1y5WFmVmMrYsAeQ2tmZquvm2tbdVPllYektYBN89sbI+LJqvM0M+sXA9dtJWki\n8FnSela3AgI2kfRt4GMR8beq8jYz6xd1bXlUOZHv88As4LkR8dKI2AZ4PjADOLZVIq+qa2a2Ul1n\nmFdZeewGHBgRjwxHRMQy4L3AG1sliojFETE/IubvMG2zCotnZlZ/QxFth16qcswjosnslohYIame\n7TAzs5qp65hHlS2PP0ratzFS0kLg+grzNTPrGxFDbYdeqrLl8T7gTEnvBn6f4+YDU4C3VJivmVnf\nGLgZ5hHxF2B7Sa8BXpSjz4mIX1SVp5lZvxnYSYIRcT5wftX5mJn1Iy+MaGZmpdV1nocrDzOzGqvr\n3VauPMzMaszdVmZmVtrA3W1lZmarzy0PMzMrzQPmZmZW2sC1PPJzPA4iPctjCXBCRCyvKj8zs35U\n10mCVa5tdTJpOZIlwBuAL7STyEuym5mtNIir6r4wIrYEkHQCcFk7iSJiMbAY4Ni5C+vZXjMz65FB\nnOfx9JMCI2K5pAqzMjPrT4M4YL6VpGX5tYAp+b1Iz/qYXmHeZmZ9oa4D5pWNeUTEhIiYnsM6ETGx\n8NoVh5lZG7r9GFpJCyTdIOlGSR/ptFy+VdfMrMa62fKQNAH4CvA64A7gd5LOjog/lj1WlXdbmZnZ\naoqItkMbtgNujIibI+Ip4L+AN1VesLoEYFEd0/RLHi5X/fJwueqXR6dpqgzAIuDyQljUsP1twLcK\n7/cBju8or7E+2Q4/oMvrmKZf8nC56peHy1W/PDpNM5ahm5WHu63MzAbHX4BNCu83znGlufIwMxsc\nvwM2k/RcSZOAPYGzOznQeL3banFN0/RLHp2kGeRyDfK5d5KmX/LoNM2YiTRh+/3A/wITgBMj4tpO\njqXc72VmZtY2d1uZmVlprjzMzKw0Vx5mZlZa31Yekl4gaRdJ0xriF7TYfztJ2+bXL5T0IUlvLJnn\nKSX3f0XO5/Uttm8vaXp+PUXSpyT9RNLnJK3bIs0hkjZptq3F/pMk7Svptfn93pKOl/Q+SWuOkO55\nkv5V0nGSvijpoOGymln/G/cD5pIOiIhvN8QdArwPuA7YGvhARPw4b7siIrZp2P9I0gOrJgLnAdsD\nF5DWf/nfiPhMk3wbb28T8GrgfICI2KNJmssiYrv8+sBcxh8Brwd+EhHHNOx/LbBVvkNiMfA48ENg\nlxz/1iZ5PAw8BtwEnAr8ICKWNu5X2P97+bynAg8B04Azcx6KiP2apDkE2A24GHgjcGVO+xbgXyLi\nwlb5mfULSetHxL1jXY4xM9YzHrswY/K2JnFLgGn59TzSNP0P5PdXtth/AukCugyYnuOnAFe3yPcK\n4LvAzsBO+f+78uudWqS5svD6d8Cz8uu1gSVN9r+umF/Dtqta5UFqUb4eOAFYCvwPsB+wTpP9r87/\nTwTuASbk9xrh3JcU9psKXJhfz232+Q5CANbvQR6zx/o8OyjzusAxwPXAA8D9pC91xwAzSh7rZy3i\npwNHA98B9m7Y9tUWaTYEvkZaJHA2cFT+vT4d2KjJ/rMawmzgFmAmMGusP+exCOOi20rS1S3CEmCD\nJknWiIhHASLiFtKF/Q2Svki6KDZaHhErIuJx4KaIWJbTPgG0eoDwfOD3wMeAhyN9234iIi6KiIta\npFlD0kxJs0kX36U5n8eAZs93v0bSAfn1HyTNz5/H5hQettUgImIoIs6NiPcAc4CvAguAm1uUaRKw\nDqkiGO4Omwy07LZi5RyhyaTWChFxW6s0ktaVdIyk6yU9IOl+SdfluBkj5NOUpJ81iZsu6WhJ35G0\nd8O2r7Y4zoaSvibpK5JmSzpK0hJJp0vaqEWaWQ1hNnBZ/tnOarL/gsLrdSWdkH9/vy+p2e8v+XNZ\nL7+eL+lm4FJJt0raqcn+V0j6uKTnNzteizzmS7pA0nclbSLpPEkPS/qdpJe0SDNN0qclXZv3XSrp\nEkn7t8jmdOBBYOeImBURs0kt9Afztsbjb9MivJTUi9DMt0l/12cAe0o6Q9LkvG2HFmlOAv4I3E7q\nZXiC1Ir+JfD1JvvfR/p7Hw6XA88mfYm8vEUe/W2sa692Aukb8dbAcxrCPODOJvufD2zdEDcROAVY\n0WT/S4Gp+fUahfh1afjG3yTtxsAPgONp0gpq2PcW0gX8z/n/jXL8NJq0JHL+J5G6oC4lVRg3AxeR\nuq2a5dGBt5pQAAAD50lEQVTym//wOTbEHZqPeStwCPAL4Jukb2FHtjjOB4Cr837XAwfk+GcBF7dI\n87/A4cCGhbgNc9y5LdJs0yK8FLiryf5nkL7Rvpk0a/YMYHLe1vTnSGqVHQx8JJ/T4aTlGw4Gftwi\nzVD+GRbD34Z/rk32v6Lw+lvAv+ff30OBs1rksaTw+gJg2/x6c5qsp5TzPha4jfTI50OBOaP8Pl5G\n6q7di3QRfVuO3wX4bYs0Pwb2z7/3HwI+AWwGnAx8tsn+N4yQ/zO2AStIf78XNAlPtDjOVQ3vPwb8\nmtQ6aPVzL/YC3DbS8XLch/PvypbFz3ykz7ffw5gXoK1Cpu6XV7TY9v0mcRsXL1IN23ZsEje5xb7r\nFX9ZRinjrs3+eNpMOxV47gjbpwNb5YvmBqMca/MO8p8zfKEBZpAWT9tulDQvyvu9oM08Sl1Ecnyp\nC0kvLiI5vtSFhFUrj8YytsrjOmBifn1Jw7ZmXZzFPF5Jam3enT+rpiu/jnLuTb+EAH9oeP+7/P8a\nwPVN9j8XOKz4e0vqLTgc+HmT/a8BNmuR9+0jfFZrNMTtD1wL3DraeQD/Ptrnm+OHvyh+kdRSf8YX\nhUEKY14Ah8EIZS8ieXupC0mvLiJ5W9sXEtJDdz6UK50/k29UydtajSsdnD+z15D6448jjad9CvhO\nk/2fUTmSxvEWAN9ukcdvSWNjbye1PN+c43eixWqxwG/IX+SAPUg3lAxva9aSmAl8jtRCfZA07nFd\njnvGWAHpC8nftcj7zS3i/wN4bZP4BcCfWqT5NHlctCF+U+CHo/wu7wFcAtzdzb+R8RbGvAAOgxEa\nLiIPNFxEZrZIU+pC0uuLSN5v1AsJcGRDGL5RYkPglBHS7QycRroJYglwDul5DROb7PtfHfxMtiJ1\nJ/4MeEGuoB4iVbYvb5HmxaTurgeBX5FbuqQuy0NapHkB8NrGzxlYMML+u7S7/yhp3tBBmlHLRbqZ\nZovRytXPYcwL4OBAHjOpMk2VeTRcSGpTrl7m0SoNaRztBuAs0pjfmwrbmrWWSu2f4w+uOk0n5er3\nMOYFcHBglBsNupGmF3nUtVxjee50dtt82/v3Kk0nefR7GK9Lsts4I+nqVptofrt16TS9yKOu5arr\nudNw27yknYEfSnoOzW+bL7t/r9J0kkdfc+VhvbIB8A+kvvIikQZhu5GmF3nUtVx1Pfd7JG0dEVcB\nRMSjknYDTgS27ML+vUrTSR59zZWH9cp/k5r9VzVukHRhl9L0Io+6lquu574vDRNgI2I5sK+kb3Rh\n/16l6SSPvjbu17YyM7PeGxfLk5iZWb248jAzs9JceZiZWWmuPMzMrLT/D43j8P4Mut8YAAAAAElF\nTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1208bbfd0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4HEXd9vHvTQIhgYQsKAFZIgKPCwhiWAQVFMUoi8vr\nQpBVJeICinoRcQN9VXB9xd0oCLggKIio+AjK9rgAIiABgUd2lC1AIGETk/N7/+g6pDPMnOmeTM/p\nM3N/ctWVnuqqrpo553RNVXVXKyIwMzMrY7XRroCZmY09bjzMzKw0Nx5mZlaaGw8zMyvNjYeZmZXm\nxsPMzEpz41Ejkq6VtGuHeUPSZl2uUt+R9BFJ36vguG+VdG63j1uyDt+W9PHRrIMNDvk+j3qS9G1g\nv1zU6sATETG5RfoANo+IG3tRvyblzwJuAVaPiGUVlXEMsFlE7NcubUq/K/DDiNiwivq0KbvSn4ek\ng4B3RMSLqzh+m7K3BL4EvBCYERFq2P9wQ5aJwDcj4rAeVdF6wD2PmoqIQyNi7eEAnAr8dLTrVRVl\n/PsISBo/2nVo4z/A6cDbm+1s+L2dCTxGH//uDqyIcKhJAG4FXtEkfi1gKbDLCHmD7Fs5wB7AlcAS\n4A7gmFy6XwOHNeS9Gnh92t4J+AvwUPp/p1b1A44h+2YPcHuqw8MpvKjA+70Q+AzwR7ITzGbABsDZ\nwAPAjcAhKe0c4AmyE9fDwN9S/MHAdenzuRl4Z+4zewwYytVpg3ydU7q9gWuBB1N9ntPwfj+UPp+H\ngNOANVu8l4OAP6Tti9Nn8Ugq9y0pfk/gqlTWn4DnN5Q1P5X1b2A88GHgpvTe/p77GT0HeBxYno7/\nYIo/Cfh07piHpM/wgfSZbtDw+3Io8I9Un2+QRiJK/L5uBkSbNAemn0upYzvUP4x6BRxyP4zWjccB\n7f4AWbnx2BXYiqxn+XzgHuB1ad+bgUtz+bYG7gfWAKYDi4H908lrbno9o1n9WLnxmJXqML7E+72Q\nrNF5Xipv9XTi/SawJrANsAh4eWN5uWPsATwLELAL8Ciwbe5z+GdD+nydtyA7wb8ylX1kOtmukXu/\nl5E1OtPJGqlDW7yXg0iNR+PPI71+AXAvsAMwLp1UbwUm5Mq6CtgImJji3pTKXg14S6rr+s3KS3En\nkRoP4OXAfcC2wATga8DFDfX7FTAV2Dh9znPSvo3JGpSN2/z8ijQe55P78uLQP8HDBGPDgcApkf4a\n24mICyNiYUQMRcTVZENeu6TdZwNbSNo8vd4fOC0iniA7Ef8jIn4QEcsi4lTgemCvrr6blZ0UEddG\nNk8yE9gZmB8Rj0fEVcD3yBrPpiLi1xFxU2QuAs4FXlKw7LcAv46I8yLiP8AXycbnd8ql+WpE3BkR\nDwC/JGvQOjEP+E5EXBoRyyPiZLIexo4NZd0REY+l9/bTVPZQRJxG1kvYvmB5bwVOjIgrIuLfwFHA\ni9Lc1LDjIuLBiLgduGD4vUXE7RExNcV3TNImZL93J6/Kcaye3HjUnKSNyb5Bn1Iizw6SLpC0SNJD\nZMMT6wJExONkwy/7pTmGucAPUtYNgNsaDncb8IxVehMjuyO3vQHwQEQsLVq+pFdLukTSA5IeBF5D\neq8FrPR+I2Io1Sdf3t257UeBtQseu9EmwAclPTgcyHoZG+TS5D8LJB0g6apc+i3p/L09TNbDrOK9\ntbI/We/oli4f12rAjUf97Q/8MSJuLpHnx2Q9jI0iYh3g22TDOsNOJvtmuhvwaET8OcXfSXaSy9sY\n+FfafgSYlNs3M7fd6WV7+Xx3AtMl5a8oy5e/UhmSJgBnkPUY1ouIqcA5rHiv7eq00vuVJLIT+r9a\n5ujcHcBn0jf64TAp9e6GPVnf9K39u8B7yYYNpwLX0Pl7WwuYQTXvrZUDcK+jb7nxqL8DyMayy5hM\n9g3+cUnbA/vmd6bGYojscssf5HadQzakta+k8ZLeAjyXbGwcsjH5fSStLmk28MZc3kXpmJsOR0ia\nle4/mVWk0hFxB9lE8rGS1pT0fLIren6YktwDzMpdlbUG2Xj+ImCZpFcDu+cOeQ8wQ9I6LYo8HdhD\n0m6SVgc+SDaU9Kci9W3jHnKfBVlDcGjqFUrSWpL2aGgo89YiayAWAUg6mKznkT/+hpLWaJH/VOBg\nSdukRvazZHNdt3b+ljKp/muSff6kn9WEhjQ7kfVyfJVVn3LjUWOSXgRsSPk/wHcDn5K0FPgE2Umy\n0Slkk+rDJ2Yi4n6yK4I+SDbEcSSwZ0Tcl5J8nGxyejHwSbIeznDeR0lXTqVhlh3JvsXfRrlvu3PJ\nJt/vBH4OHB0Rv0v7hj+H+yVdkYa3Dk/vbzFZI3l2rk7Xk51Eb051yg8RERE3kN1L8zWyyeW9gL3S\n/M+qOgY4OZX75oi4nOzqp6+nut5INundVET8naxx/zNZQ7EV2VVpw84nu0rsbkn3Ncn/O7Kf1xnA\nXWQ/t32KVFzSxpIeTkOmzWxCdiXbten1Y8ANDWkOBM5sGIK0PuKbBAeUpAOAeVHhTWaSPgYsiojv\nVFWGmY0ONx4DSNIksm+u34yIwhPxZmbDPGw1YCS9imwc/R5yw05mZmW452FmZqW552FmZqXVegG2\n+bPmluoWPW1oXOkyZiwvl3768qHSZUyn/MU7Uyf+u1T6yes8XrqMSTPK12uNp5f7vjFuvfL3na22\nbqsra5vTjGmly9D0ovfa5Ux7Wrkypq1XughNXb9U+tWmzWyfqMHEDYregL/ClAmT2ifKmTqh/M99\n6uprlc4zbVy5ek0bt2b5Mla+CrmQ7976U7VPVcx/7ru58Hlw9XU37Vq57bjnYWZmpdW652FmNvCG\nSg6P9IgbDzOzOovyQ+W94MbDzKzOhurZePR0zkPSiyV9o5dlmpmNZbF8WeHQS5X3PCS9gGzNoTeR\nPeP6zKrLNDPrG4M0bCVpC7IF7uaSLTh3GtkNiS+rojwzs75V0wnzqoatrid7DOaeEfHiiPga2fOW\n25I0T9Llki6/aumNFVXPzGyMiKHioYeqajzeQLYM9AWSvitpN1Z+GFFLEbEgImZHxOxtJm9WUfXM\nzMaIoaHioYcqaTwi4qyI2Ad4Ntmzkd8PPF3StyTtPnJuMzMbFjFUOPRSpVdbRcQjEfHjiNiL7KFG\nVwLzqyzTzKyv1LTn0bP7PCJiMbAgBTMzK2KQrrYyM7MuqenVVm48zMzqrMc3/xXlxsPMrM48bGVm\nZqXVdG0rNx5mZjUW4TkPMzMry8NWZmZWmoetzMysNPc8QNK6wP0RUfiB7mZmA62m93lUtjyJpB0l\nXSjpTEkvkHQNcA1wj6Q5I+TzqrpmZsMGbFVdgK8DnwVOBc4H3hERM4GXAse2yuRVdc3McpYvKx56\nqMphq/ERcS6ApE9FxCUAEXG9VGh1djMzG8AJ8/w7fqxhn+c8zMyKGMDGY2tJS8geAjUxbZNer1lh\nuWZmfWPgbhKMiHFVHdvMbGB0sechaSPgFGA9shGgBRFxvKTpwGnALOBW4M3pMRotVfowKDMzW0Xd\nvdpqGfDBiHgusCPwHknPBT4M/D4iNgd+n16PyI2HmVmddfFJghFxV0RckbaXAtcBzwBeC5yckp0M\nvK7dsdx4mJnVWYmeR/4+uRTmtTqspFnAC4BLgfUi4q60626yYa0ReXkSM7M6KzHnERGFHvUtaW3g\nDOD9EbEkf/tERISktlfEuvEwM6uzLt/8J2l1sobjRxFxZoq+R9L6EXGXpPWBe9sdx8NWZmZ11sU5\nD2VdjBOA6yLiy7ldZwMHpu0DgV+0O1ZlPQ9Jm5GNo/2xIX5n4O6IuKmqss3M+kZ316zaGdgfWCjp\nqhT3EeA44HRJbwduA97c7kBVDlt9BTiqSfyStG+vCss2M+sPXbzPIyL+QHajdjO7lTlWlcNW60XE\nwsbIFDerVSavqmtmljOAq+pOHWHfxFY7vKqumVlOF+c8uqnKxuNySYc0Rkp6B/DXCss1M+sfNe15\nVDnn8X7g55LeyorGYjawBvD6Css1M+sfg7aqbkTcA+wk6WXAlin61xFxflVlmpn1nUFrPIZFxAXA\nBVWXY2bWl5YP2JLsZmbWBYPa8zAzs1XQ44nwotx4mJnVmXseZmZWWrRd4HZUuPEwM6sz9zzMzKw0\nNx5mZlbaIE+YS3oaQEQs6kV5Zmb9IobqOedR2dpWyhwj6T7gBuB/JS2S9ImqyjQz6zvLlxUPPVTl\nwohHkD14ZLuImB4R04AdgJ0lHdEqk5dkNzPLGYrioYeqbDz2B+ZGxC3DERFxM7AfcECrTF6S3cws\np6ZLslc557F6RNzXGBkRi9ID2M3MrJ0BvNrqiQ73mZnZsAG8SXBrSUuaxAtYs8Jyzcz6x6D1PCJi\nXFXHNjMbGDW9VNc3CZqZ1dkg3yRoZmYdcs/DzMzKimV+kqCZmZXlYSszMyvNw1ZmZlbaoF2qa2Zm\nXVDTnkeVq+oemdt+U8O+z1ZVrplZX4mh4qGHqlwYcZ/c9lEN++a0yuRVdc3McgZwVV212G72+kle\nVdfMbIUYGioceqnKxiNabDd7bWZmzXSx5yHpREn3SrqmIf4wSddLulbS54tUqxcLIwqYmFsk0Qsj\nmpkVtbyrNwmeBHwdOGU4QtLLgNcCW0fEvyU9vciBvDCimVmddXEuIyIuljSrIfpdwHER8e+U5t4i\nx6py2MrMzFZRDEXh0KEtgJdIulTSRZK2K5LJ93mYmdVZiUZB0jxgXi5qQUQsaJNtPDAd2BHYDjhd\n0qYRIz+Fyo2HmVmdlbiKKjUU7RqLRv8EzkyNxWWShoB1gUUjZfKwlZlZnVV/n8dZwMsAJG0BrAHc\n1y6Tex5mZnXWxQlzSacCuwLrSvoncDRwInBiunz3CeDAdkNW4MbDzKzWCpzHyxxrbotd+5U9lhsP\nM7M6q+nCiG48zMxqLJbVc0n2KlfV3biqY5uZDYwBXBjxrOENSWdUWI6ZWf8aKhF6qFer6m5aOJOX\nZDcze1IP7jDvyGitqts6k5dkNzNboabDVqO1qm5ExJQKyzYz6w/1nC/3qrpmZnXW6+GoonyprplZ\nnQ1az8PMzFadex5m1nVDi+9mtWkzR7saVqFYNto1aM6Nh9kY5oZjAHjYyszMygo3HmZmVpobDzMz\nK8s9DzMzK82Nh5mZlVbXxqPKJdlfK+k9udeXSro5hTdWVa6ZWV8JFQ89VLjxkPQHSZ+RNEfS5AJZ\njgTOzr2eAGxH9vzcd41QjlfVNTNLYqh46KUyPY/9gRuA/wP8KZ3g/98I6deIiDtyr/8QEfdHxO3A\nWq0yeVVdM7MVYkiFQy8VnvOIiFskPQ48kcLLgOeMkGVaQ/735l4+rUwlzcwG1dDy3jYKRZUZtrqJ\n7OmA6wEnAFtGxJwRslwq6ZAmx3kncFnZipqZDaK6DluVudrqq8CLgbnAC4CLJF0cETe1SH8EcJak\nfYErUtwLyeY+Xtdhfc3MBkqvh6OKKjNsdTxwvKS1gYOBY4ANgabP7YiIe4GdJL0ceF6K/nVEnL9K\nNTYzGyBRz0V1izcekr5E1vNYG/gz8Angf9rlS42FGwwzsw6M+Z4HWYPx+Yi4p6rKmJnZysZ84xER\nP5O0t6SXpqiLIuKXFdXLzMzoj2GrY4HtgR+lqMMlvSgiPlJJzczMbOz3PIA9gG0isgvCJJ0MXAm4\n8TAzq0j0eNmRosoujDgVeCBtr9PlupiZWYPlNb1JsEzjcSxwpaQLAAEvBT5cSa3MzAwY4z0PSQL+\nAOxItrghwPyIuLuqipmZ2Rif84iIkHRORGzFyivltiTpa0DL6wQi4vBiVTQzG1zdvNpK0onAnsC9\nEbFlivsCsBfZmoU3AQdHxIPtjlVmVd0rJG3XPtmTLgf+msLeue3h0JSXZDczW6HLq+qeBDSuSXge\n2VqFzwf+FziqyIHKzHnsALxV0m3AI2TzHpEKfIqIOHl4W9L7869HEhELgAUA82fNrekVzmZmvTHU\nxTmPiLhY0qyGuHNzLy8BCj2sr0zj8aqRdkqaFhGLW+x2I2Bm1oEyE+aS5gHzclEL0hfyot4GnFYk\nYZk7zG9rk+T3wLZFj2dmZu2VmfPIj9yUJemjwDJW3Ag+orL3eYxYdkNFlrKixzFJ0pJcuoiIKV0s\n28ysL3Vz2KoVSQeRTaTvFlGsuepm47FSgRFR5DnnZmY2gqGKL9WVNAc4EtglIh4tmq+bjYeZmXVZ\nN3sekk4FdgXWlfRP4Giyq6smAOdlt/RxSUQc2u5YlQ1bmZnZquvmHeYRMbdJ9AmdHKvQfR6Sxkm6\nvk2y3TqpgJmZtTYUKhx6qVDjERHLgRskbTxCmgda7TMzs85EidBLZYatpgHXSrqM7CZBACJi767X\nyszMgN5cbdWJMo3HxyurhZmZNTWmV9UFiIiLJG0CbB4Rv5M0CRhXXdXMzGxotCvQQuGFESUdAvwM\n+E6KegZwVhWVMjOzTKDCoZfKrKr7HmBnYAlARPwDeHqrxJKWSlrSJCzN3W3eLJ9X1TUzS5aFCode\nKtN4/Dsinhh+IWk8Iz+vY3JETGkSJo+0NElELIiI2RExe5vJm5WonplZ/+mHnsdFkj4CTJT0SuCn\nwC+rqZaZmUE251E09FKZxuPDwCJgIfBO4JyI+GgltTIzM6C+PY8yl+oeFhHHA98djpD0vhRnZmYV\nGPNXWwEHNok7qEv1MDOzJuo6bNW25yFpLrAv8ExJZ+d2TQa8JImZWYV6PRxVVJFhqz8BdwHrAl/K\nxS8Frq6iUmZmlqn4cR4da9t4pMfP3ibp4oi4KL9P0ueA+VVVzsxs0A3VtOdRZs7jlU3iXt2tipiZ\n2VMtLxF6qcicx7uAdwPPkpQfppoM/LGqipmZGQypnj2PInMePwZ+AxxLdq/HsKV+hoeZWbV6/ZyO\notoOW0XEQxFxa3p84UbAy9M8yGqSntkszwjrWi2RtEjSJZL85EEzszbG7KW6wyQdDcwG/gv4PrAG\n8EOyxRJXEhGTRzjOOGBL4EfpfzMza6GuV1uVmTB/PbA36SmCEXEn2bxHKRGxPCL+Bnyt2X6vqmtm\ntsIQKhx6qUzj8UREPPmoXElrrUrBEfGdFvFeVdfMLKnrM8zLNB6nS/oOMDU9GOp35Na5MjOz7htS\n8dBLZR5D+8W0FPsSsnmPT0TEeZXVzMzMarswYplVdUmNhRsMM7MeWV7TCfMiNwkupflwmoAY6amA\nZma2asZsz2Oky27NzKxaY7bxMDOz0RNjddjKzMxGj3seZmZWmhsPMzMrbcwujGhmZqOn2zcJSjpC\n0rWSrpF0qqQ1O6mXGw8zsxrr5qq6kp4BHA7MjogtgXHAPp3Uq7LGQ9JGI+zbs6pyzcz6SQVPEhwP\nTJQ0HpgE3NlJvarseZwnaVZjpKS3AcdXWK6ZWd8oM2yVX5U8hXn5Y0XEv4AvArcDdwEPRcS5ndSr\nysbjA8C5kjYfjpB0FHAEsEurTF6S3cxshTLDVvlVyVNYkD+WpGnAa4FnAhsAa0nar5N6VdZ4RMQ5\nwLuA30jaUtJXgL2Al0bEP0fI5yXZzcySLi/J/grglohYFBH/Ac4EduqkXpVOmEfE74GDgQuBTcke\nYbu4yjLNzPrJEFE4FHA7sKOkSZIE7AZc10m9KrvPI7egooAJZJW8N1XYCyqamRXQzZsEI+JSST8D\nrgCWAVcCC0bO1VxljYcXVDQzW3XdvkkwIo4Gjl7V4/gOczOzGqvr8iS+SbCkB8b5I6ubuH9wp9GG\nFt892lWwio35x9BaZvryun4PGFyaMW20qzBqVps2c7SrYBVbXtPVrdx4mJnVWF2/rrrxMDOrsYKX\n4PacGw8zsxqrZ9PhxsPMrNbqOmw1KpcOSXr/aJRrZjbWdPkO864ZretOPzBK5ZqZjSldXtuqa0ar\n8Wh5RbJX1TUzW6GbD4PqptFqPFo2kl5V18xshSjxr5d6sTDiU3YBE6sq18ysnyyr6fVWXhjRzKzG\n6tl0+FJdM7Na802CZmZWWl3v83DjYWZWY72eCC/KjYeZWY2552FmZqW552FmZqW552FmZqUNhXse\nZmZWkp8kaGZmpXnOw8zMShu4OQ9JZ4+0PyL2rqpsM7N+MYh3mL8IuAM4FbiUEZZhz5M0D5gHsPv0\n2XhlXTMbZHUdtqpySfaZwEeALYHjgVcC90XERRFxUatMXpLdzGyFgXueR0Qsj4j/jogDgR2BG4EL\nJb23qjLNzPpNRBQOvVTphLmkCcAewFxgFvBV4OdVlmlm1k8Gbs5D0ilkQ1bnAJ+MiGuqKsvMrF8N\n3NVWwH7AI8D7gMOlJ+fLBURETKmwbDOzvrC8ps1HlU8SHK3no5uZ9Y1ez2UU5RO8mVmNVXG1laRx\nkq6U9KtO6+U7zM3Maqyi+zzeB1wHdDx94J6HmVmNDRGFQxGSNiS7CvZ7q1IvNx5mZjVW5j4PSfMk\nXZ4L85oc8ivAkazihVwetjIzq7Ey93lExAJgQav9kvYE7o2Iv0radVXq5cbDzKzGujznsTOwt6TX\nAGsCUyT9MCL2K3ugKm8S/MQIuyMi/m9VZZuZ9YtuPkkwIo4CjgJIPY8PddJwQLVzHo80CQG8HZjf\nKlN+zO6qpTdWWD0zs/qLEqGXqrxJ8EvD25Imk10a9jbgJ8CXRsj35Jjd/Flz63l3jJlZjyyr6A7z\niLgQuLDT/FUvjDgd+ADwVuBkYNuIWFxlmWZm/aSud5hXOefxBeANZL2IrSLi4arKMjPrV3VdVbfK\nOY8PAhsAHwPulLQkhaWSllRYrplZ34gS/3rJCyOamdXYwA1bmZnZqqvrsJUbDzOzGnPPw8zMSnPP\nw8zMSuv1RHhRbjzMzGpseQzYY2jNzGzVdXNtq26qvPGQtCawWXp5Y0Q8XnWZZmb9YuCGrSSNBz5L\ntp7VbYCAjSR9H/hoRPynqrLNzPpFXXseVd7I9wVgOvDMiHhhRGwLPAuYCnyxVSavqmtmtkJd7zCv\nsvHYEzgkIpYOR0TEEuBdwGtaZYqIBRExOyJmbzN5s1bJzMwGwlBE4dBLVc55RDS5uyUilkuqZz/M\nzKxm6jrnUWXP4++SDmiMlLQfcH2F5ZqZ9Y2IocKhl6rsebwHOFPS24C/prjZwETg9RWWa2bWNwbu\nDvOI+Bewg6SXA89L0edExO+rKtPMrN8M7E2CEXE+cH7V5ZiZ9SMvjGhmZqXV9T4PNx5mZjVW16ut\n3HiYmdWYh63MzKy0gbvayszMVp17HmZmVponzM3MrLSB63mk53gcSvYsj4XACRGxrKryzMz6UV1v\nEqxybauTyZYjWQi8GvhSkUxekt3MbIVBXFX3uRGxFYCkE4DLimSKiAXAAoD5s+bWs79mZtYjg3if\nx5NPCoyIZZIqLMrMrD8N4oT51pKWpG0BE9NrkT3rY0qFZZuZ9YW6TphXNucREeMiYkoKkyNifG7b\nDYeZWQHdfgytpDmSbpB0o6QPd1ovX6prZlZj3ex5SBoHfAN4JfBP4C+Szo6Iv5c9VpVXW5mZ2SqK\niMKhgO2BGyPi5oh4AvgJ8NrKK1aXAMyrY55+KcP1ql8Zrlf9yug0T5UBmAdcngvzGva/Efhe7vX+\nwNc7Kmu032yHH9DldczTL2W4XvUrw/WqXxmd5hnN0M3Gw8NWZmaD41/ARrnXG6a40tx4mJkNjr8A\nm0t6pqQ1gH2Aszs50Fi92mpBTfP0Sxmd5Bnkeg3ye+8kT7+U0WmeURPZDdvvBX4LjANOjIhrOzmW\n0riXmZlZYR62MjOz0tx4mJlZaW48zMystL5tPCQ9W9JuktZuiJ/TIv32krZL28+V9AFJrylZ5ikl\n0784lbN7i/07SJqStidK+qSkX0r6nKR1WuQ5XNJGzfa1SL+GpAMkvSK93lfS1yW9R9LqI+TbVNKH\nJB0v6cuSDh2uq5n1vzE/YS7p4Ij4fkPc4cB7gOuAbYD3RcQv0r4rImLbhvRHkz2wajxwHrADcAHZ\n+i+/jYjPNCm38fI2AS8DzgeIiL2b5LksIrZP24ekOv4c2B34ZUQc15D+WmDrdIXEAuBR4GfAbin+\nDU3KeAh4BLgJOBX4aUQsakyXS/+j9L4nAQ8CawNnpjIUEQc2yXM4sCdwMfAa4MqU9/XAuyPiwlbl\nmfULSU+PiHtHux6jZrTveOzCHZO3N4lbCKydtmeR3ab/vvT6yhbpx5GdQJcAU1L8RODqFuVeAfwQ\n2BXYJf1/V9repUWeK3PbfwGelrbXAhY2SX9dvryGfVe1KoOsR7k7cAKwCPhv4EBgcpP0V6f/xwP3\nAOPSa43w3hfm0k0CLkzbGzf7fAchAE/vQRkzRvt9dlDndYDjgOuBB4D7yb7UHQdMLXms37SInwIc\nC/wA2Ldh3zdb5JkJfItskcAZwDHp9/p0YP0m6ac3hBnArcA0YPpof86jEcbEsJWkq1uEhcB6TbKs\nFhEPA0TErWQn9ldL+jLZSbHRsohYHhGPAjdFxJKU9zGg1QOEZwN/BT4KPBTZt+3HIuKiiLioRZ7V\nJE2TNIPs5LsolfMI0Oz57tdIOjht/03S7PR5bEHuYVsNIiKGIuLciHg7sAHwTWAOcHOLOq0BTCZr\nCIaHwyYALYetWHGP0ASy3goRcXurPJLWkXScpOslPSDpfknXpbipI5TTlKTfNImbIulYST+QtG/D\nvm+2OM5MSd+S9A1JMyQdI2mhpNMlrd8iz/SGMAO4LP1spzdJPye3vY6kE9Lv748lNfv9JX0u66bt\n2ZJuBi6VdJukXZqkv0LSxyQ9q9nxWpQxW9IFkn4oaSNJ50l6SNJfJL2gRZ61JX1K0rUp7SJJl0g6\nqEUxpwOLgV0jYnpEzCDroS9O+xqPv22L8EKyUYRmvk/2d30GsI+kMyRNSPt2bJHnJODvwB1kowyP\nkfWi/wf4dpP095H9vQ+Hy4FnkH2JvLxFGf1ttFuvIoHsG/E2wCYNYRZwZ5P05wPbNMSNB04BljdJ\nfykwKW2vlotfh4Zv/E3ybgj8FPg6TXpBDWlvJTuB35L+Xz/Fr02TnkQq/ySyIahLyRqMm4GLyIat\nmpXR8pv/8HtsiDsiHfM24HDg98B3yb6FHd3iOO8Drk7prgcOTvFPAy5ukee3wHxgZi5uZoo7t0We\nbVuEFwKdTwXdAAADq0lEQVR3NUl/Btk32teR3TV7BjAh7Wv6cyTrlR0GfDi9p/lkyzccBvyiRZ6h\n9DPMh/8M/1ybpL8it/094NPp9/cI4KwWZSzMbV8AbJe2t6DJekqp7C8Ct5M98vkIYIM2v4+XkQ3X\nziU7ib4xxe8G/LlFnl8AB6Xf+w8AHwc2B04GPtsk/Q0jlP+UfcBysr/fC5qEx1oc56qG1x8F/kjW\nO2j1c8+PAtw+0vFS3AfT78pW+c98pM+338OoV6BQJbPhlxe32PfjJnEb5k9SDft2bhI3oUXadfO/\nLG3quEezP56CeScBzxxh/xRg63TSXK/NsbbooPwNhk80wFSyxdO2b5PneSndswuWUeokkuJLnUh6\ncRJJ8aVOJKzceDTWsVUZ1wHj0/YlDfuaDXHmy3gJWW/z7vRZNV35tc17b/olBPhbw+u/pP9XA65v\nkv5c4Mj87y3ZaMF84HdN0l8DbN6i7DtG+KxWa4g7CLgWuK3d+wA+3e7zTfHDXxS/TNZTf8oXhUEK\no14Bh8EIZU8iaX+pE0mvTiJpX+ETCdlDdz6QGp1bSBeqpH2t5pUOS5/Zy8nG448nm0/7JPCDJumf\n0jiSzePNAb7foow/k82NvYms5/m6FL8LLVaLBf5E+iIH7E12QcnwvmY9iWnA58h6qIvJ5j2uS3FP\nmSsg+0LyXy3Kfl2L+M8Dr2gSPwf4R4s8nyLNizbEbwb8rM3v8t7AJcDd3fwbGWth1CvgMBih4STy\nQMNJZFqLPKVOJL0+iaR0bU8kwNENYfhCiZnAKSPk2xU4jewiiIXAOWTPaxjfJO1POviZbE02nPgb\n4NmpgXqQrLHdqUWe55MNdy0G/kDq6ZINWR7eIs+zgVc0fs7AnBHS71Y0fZs8r+4gT9t6kV1Ms2W7\nevVzGPUKODiQ5kyqzFNlGQ0nktrUq5dltMpDNo92A3AW2Zzfa3P7mvWWSqVP8YdVnaeTevV7GPUK\nODjQ5kKDbuTpRRl1rddovnc6u2y+cPpe5emkjH4PY3VJdhtjJF3dahfNL7cunacXZdS1XnV97zRc\nNi9pV+Bnkjah+WXzZdP3Kk8nZfQ1Nx7WK+sBryIbK88T2SRsN/L0ooy61quu7/0eSdtExFUAEfGw\npD2BE4GtupC+V3k6KaOvufGwXvkVWbf/qsYdki7sUp5elFHXetX1vR9Aww2wEbEMOEDSd7qQvld5\nOimjr435ta3MzKz3xsTyJGZmVi9uPMzMrDQ3HmZmVpobDzMzK+3/AygjB0zsAQ/xAAAAAElFTkSu\nQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11ecb8be0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XEWd9/HPlwRCAglZUBYBIwLDKAhiWBRGUNQJsrg8\nooCsKhEXUHReIjoK+oyC4/IMiqhREHBhQEBERQVlGxdABCQgYQRkky2sCbvJ/T1/VF1yaLrv7dPp\n0/fc7u87r3rldJ1Tp6r73nuqq+pUHUUEZmZmZaw01gUwM7Pxx5WHmZmV5srDzMxKc+VhZmalufIw\nM7PSXHmYmVlprjxqRNL1knbqMG1I2qjLReo7kj4h6TsVnPedks7v9nlLluGbkj41lmWwwSHP86gn\nSd8E9i1ErQw8HRFTWxwfwMYRcVMvytck/9nA34CVI2JpRXkcDWwUEfuOdmw+fifg+xGxXhXlGSXv\nSn8ekg4E3hMRO1Rx/lHy3gz4MvAKYFZEqGH/bOAE4JXAU8CZwIer+r2wseGWR01FxCERsfpwAE4D\nfjTW5aqKEv8+ApImjnUZRvEP4Azg3S32nwAsAtYBtgR2BN7fm6JZz0SEQ00CcCvwuibxqwFLgB1H\nSBukb+UAuwJXA4uBO4CjC8f9HDi0Ie21wFvy9quAPwKP5P9f1ap8wNGkb/YAt+cyPJrDK9t4vxcD\nnwN+BzwBbASsC5wLPAjcBBycj50LPE26cD0K/DnHHwTckD+fW4D3Fj6zJ4ChQpnWLZY5H7cHcD3w\ncC7PPze833/Ln88jwOnAqi3ey4HAb/P2pfmzeCzn+44cvxtwTc7r98DLGvI6Iuf1FDAR+Dhwc35v\nfyn8jP4ZeBJYls//cI4/GfiPwjkPzp/hg/kzXbfh9+UQ4K+5PF8n90SU+H3dCIgm8TcAbyy8/iLw\nrbH++3LobhjzAjgUfhitK4/984Wx5R83z648dgI2J7UsXwbcC7w573s7cHkh3RbAA8AqwEzgIWC/\nfPHaO7+e1ax8PLvymJ3LMLHE+72YVOm8NOe3cr7wngCsSvrWugh4bWN+hXPsCrwYEOkb7uPAVoXP\n4c6G44tl3oR0gX99zvtj+WK7SuH9XkGqdGbmi+IhLd7LgeTKo/HnkV+/HLgP2BaYAByQzz+pkNc1\nwPrA5By3Z857JeAduazrNMsvx51MrjyA1wL3A1sBk4CvAZc2lO9nwHRgg/w5z837NiBVKBuM8vNr\nVXm8FzgFmAK8ALiOXPE59E9wN8H4cABwauS/zNFExMURsSAihiLiWlKX145597nAJpI2zq/3A06P\niKdJF+K/RsT3ImJpRJwGLAR27+q7ebaTI+L6SP3hawPbA0dExJMRcQ3wHVLl2VRE/Dwibo7kEuB8\n4F/azPsdwM8j4oKI+AfwJWAyqfU17KsRcVdEPAj8lFShdWIe6dv35RGxLCJOIbUwtmvI646IeCK/\ntx/lvIci4nRSK2GbNvN7J3BSRFwVEU8BRwKvzOMRw46NiIcj4nbgouH3FhG3R8T0HN+JS4HNSC3f\nO4ErgXM6PJfVlCuPmpO0Aekb9Kkl0mwr6SJJiyQ9QuqeWBMgIp4kdb/sm8cY9ga+l5OuC9zWcLrb\nSN8eq3JHYXtd4MGIWNJu/pJ2kXSZpAclPQy8kfxe2/Cs9xsRQ7k8xfzuKWw/Dqze5rkbvRD4qKSH\nhwOplbFu4ZjiZ4Gk/SVdUzh+Mzp/b4+SWphVvLdn5N+pXwJnk7oO1wRmAF9Y0XNbvbjyqL/9gN9F\nxC0l0vyQ1MJYPyLWAL5J6tYZdgrpm+nOwOMR8YccfxfpIle0AfD3vP0YqSti2NqF7U5v2yumuwuY\nKal4R1kx/2flIWkScBapxbBWREwHzmP5ex2tTM96v5JEuqD/vWWKzt0BfC5/ox8OU3Lrbtgz5ZX0\nQuDbwAdJ3YbTSd0/nb631YBZVPPeimaSfmbHR8RTEfEA8F1SpW59xJVH/e1P6ssuYyrpG/yTkrYB\n9inuzJXFEOl2y+8Vdp1H6tLaR9JESe8AXkLqG4fUJ7+XpJUlzQHeVki7KJ9zw+EISbPz/JPZ7RQ6\nIu4gDSQfI2lVSS8j3dHz/XzIvcDswl1Zq5D68xcBSyXtAryhcMp7gVmS1miR5RnArpJ2lrQy8FFS\nV9Lv2ynvKO6l8FmQKoJDcqtQklaTtGtDRVm0GqmCWAQg6SBSy6N4/vUkrdIi/WnAQZK2zJXs50lj\nXbd2/paSXP5VSZ8/+Wc1CSAi7ifdsn1I/h2aTup2vXZF87V6ceVRY5JeCaxH+Vt03w98VtIS4NOk\ni2SjU0mD6sMXZvK3xN1IF9EHSAPIu+ULAsCnSIPTDwGfIbVwhtM+Tr5zKnezbEf6Fn8b5b7t7k0a\nfL8L+DFwVET8Ou8b/hwekHRV7t46LL+/h0iV5LmFMi0kXURvyWUqdhERETeS5tJ8jTS4vDuwex7/\nWVFHA6fkfN8eEVeS7n46Ppf1JtKgd1MR8RdS5f4HUkWxOemutGEXku4Su0fS/U3S/5r08zoLuJv0\nc9urnYJL2kDSo7nLtJkXku5kuz6/fgK4sbD/rcAupIrvJtIdcoe3k7eNH54kOKAk7Q/MiwonmUn6\nd2BRRHyrqjzMbGy48hhAkqaQvrmeEBFtD8SbmQ1zt9WAkfSvpO6Eeyl0O5mZleGWh5mZleaWh5mZ\nlVbrBdgOnr1nqWbRzA7ezvOGJpQ6ftay0lkwc9lQ+TSUu+Fn+uSnSucxdY0nS6eZMqtcuVZ5fvnv\nJxPWKjdXbaU1W92J25pmzSifZma78/OyGc8rn8eMtcodP32d0nmsNGPt0Q9qMHnddiftJ9MmTRn9\noAbTJ5Wfozh95dVKHT9jQvlyzZiwauk0Z952rkY/qj3/uP+Wtq+DK6+5YdfyHY1bHmZmVlqtWx5m\nZgNvqIPujh5w5WFmVmdRvtu7F1x5mJnV2VA9K4+ejnlI2kHS13uZp5nZeBbLlrYdeqnyloekl5PW\nHNqTtGDa2VXnaWbWNwap20rSJqQF7vYmLTh3OmlC4muqyM/MrG/VdMC8qm6rhaTHYO4WETtExNdI\nz1selaR5kq6UdOXCJWUeYWFm1odiqP3QQ1VVHm8lLQN9kaRvS9qZZz+MqKWImB8RcyJizqZTNxw9\ngZlZPxsaaj/0UCWVR0ScExF7AZuSno38YeD5kr4h6Q0jpzYzs2ERQ22HXqr0bquIeCwifhgRu5Me\nanQ1cESVeZqZ9ZWatjx6Ns8jIh4C5udgZmbtGKS7rczMrEtqereVKw8zszrr8eS/drnyMDOrM3db\nmZlZaTVd28qVh5lZjUV4zMPMzMpyt5WZmZXmbiszMyvNLQ+QtCbwQES0/UB3M7OBVtN5HpUtTyJp\nO0kXSzpb0sslXQdcB9wrae4I6byqrpnZsAFbVRfgeODzwGnAhcB7ImJt4NXAMa0SeVVdM7OCZUvb\nDz1UZbfVxIg4H0DSZyPiMoCIWCi1tTq7mZkN4IB58R0/0bDPYx5mZu0YwMpjC0mLSQ+Bmpy3ya9X\nrTBfM7O+MXCTBCNiQlXnNjMbGF1seUhaHzgVWIvUAzQ/Io6TNBM4HZgN3Aq8PT9Go6VKHwZlZmYr\nqLt3Wy0FPhoRLwG2Az4g6SXAx4HfRMTGwG/y6xG58jAzq7MuPkkwIu6OiKvy9hLgBuAFwJuAU/Jh\npwBvHu1crjzMzOqsRMujOE8uh3mtTitpNvBy4HJgrYi4O++6h9StNSIvT2JmVmclxjwioq1HfUta\nHTgL+HBELC5On4iIkDTqHbGuPMzM6qzLk/8krUyqOH4QEWfn6HslrRMRd0taB7hvtPO428rMrM66\nOOah1MQ4EbghIr5S2HUucEDePgD4yWjnqqzlIWkjUj/a7xritwfuiYibq8rbzKxvdHfNqu2B/YAF\nkq7JcZ8AjgXOkPRu4Dbg7aOdqMpuq/8CjmwSvzjv273CvM3M+kMX53lExG9JE7Wb2bnMuarstlor\nIhY0Rua42a0SeVVdM7OCAVxVd/oI+ya32uFVdc3MCro45tFNVVYeV0o6uDFS0nuAP1WYr5lZ/6hp\ny6PKMY8PAz+W9E6WVxZzgFWAt1SYr5lZ/xi0VXUj4l7gVZJeA2yWo38eERdWlaeZWd8ZtMpjWERc\nBFxUdT5mZn1p2YAtyW5mZl0wqC0PMzNbAT0eCG+XKw8zszpzy8PMzEqLURe4HROuPMzM6swtDzMz\nK82Vh5mZlTbIA+aSngcQEYt6kZ+ZWb+IoXqOeVS2tpWSoyXdD9wI/K+kRZI+XVWeZmZ9Z9nS9kMP\nVbkw4uGkB49sHREzI2IGsC2wvaTDWyXykuxmZgVD0X7ooSorj/2AvSPib8MREXELsC+wf6tEXpLd\nzKygpkuyVznmsXJE3N8YGRGL8gPYzcxsNAN4t9XTHe4zM7NhAzhJcAtJi5vEC1i1wnzNzPrHoLU8\nImJCVec2MxsYNb1V15MEzczqbJAnCZqZWYfc8jAzs7JiqZ8kaGZmZbnbyszMSnO3lZmZlTZot+qa\nmVkX1LTlUeWquh8rbO/ZsO/zVeVrZtZXYqj90ENVLoy4V2H7yIZ9c1sl8qq6ZmYFA7iqrlpsN3v9\nDK+qa2a2XAwNtR16qcrKI1psN3ttZmbNdLHlIekkSfdJuq4h/lBJCyVdL+k/2ylWLxZGFDC5sEii\nF0Y0M2vXsq5OEjwZOB44dThC0muANwFbRMRTkp7fzom8MKKZWZ11cSwjIi6VNLsh+n3AsRHxVD7m\nvnbOVWW3lZmZraAYirZDhzYB/kXS5ZIukbR1O4k8z8PMrM5KVAqS5gHzClHzI2L+KMkmAjOB7YCt\ngTMkbRgx8lOoXHmYmdVZibuockUxWmXR6E7g7FxZXCFpCFgTWDRSIndbmZnVWfXzPM4BXgMgaRNg\nFeD+0RK55WFmVmddHDCXdBqwE7CmpDuBo4CTgJPy7btPAweM1mUFrjzMzGqtjet4mXPt3WLXvmXP\n5crDzKzOarowoisPM7Mai6X1XJK9ylV1N6jq3GZmA2MAF0Y8Z3hD0lkV5mNm1r+GSoQe6tWqum0v\nj+sl2c3MluvBDPOOjNWquq0TeUl2M7PlatptNVar6kZETKswbzOz/lDP8XKvqmtmVme97o5ql2/V\nNTOrs0FreZiZ2Ypzy8PMui4evhtNX2esi2EViqVjXYLmXHmYjWOuOAaAu63MzKyscOVhZmalufIw\nM7Oy3PIwM7PSXHmYmVlpda08qlyS/U2SPlB4fbmkW3J4W1X5mpn1lVD7oYfarjwk/VbS5yTNlTS1\njSQfA84tvJ4EbE16fu77RsjHq+qamWUx1H7opTItj/2AG4H/A/w+X+D/3wjHrxIRdxRe/zYiHoiI\n24HVWiXyqrpmZsvFkNoOvdT2mEdE/E3Sk8DTObwG+OcRksxoSP/BwsvnlSmkmdmgGlrW20qhXWW6\nrW4mPR1wLeBEYLOImDtCksslHdzkPO8FrihbUDOzQVTXbqsyd1t9FdgB2Bt4OXCJpEsj4uYWxx8O\nnCNpH+CqHPcK0tjHmzssr5nZQOl1d1S7ynRbHQccJ2l14CDgaGA9oOlzOyLiPuBVkl4LvDRH/zwi\nLlyhEpuZDZCo56K67Vcekr5ManmsDvwB+DTwP6Oly5WFKwwzsw6M+5YHqcL4z4i4t6rCmJnZs437\nyiMizpS0h6RX56hLIuKnFZXLzMzoj26rY4BtgB/kqMMkvTIiPlFJyczMbPy3PIBdgS0j0g1hkk4B\nrgZceZiZVSR6vOxIu8oujDgdeDBvr9HlspiZWYNlNZ0kWKbyOAa4WtJFgIBXAx+vpFRmZgaM85aH\nJAG/BbYjLW4IcERE3FNVwczMbJyPeURESDovIjbn2SvltiTpa0DL+wQi4rD2imhmNri6ebeVpJOA\n3YD7ImKzHPdFYHfSmoU3AwdFxMOjnavMqrpXSdp69MOecSXwpxz2KGwPh6a8JLuZ2XJdXlX3ZKBx\nTcILSGsVvgz4X+DIdk5UZsxjW+Cdkm4DHiONe0TO8Dki4pThbUkfLr4eSUTMB+YDHDx7z5re4Wxm\n1htDXRzziIhLJc1uiDu/8PIyoK2H9ZWpPP51pJ2SZkTEQy12uxIwM+tAmQFzSfOAeYWo+fkLebve\nBZzezoFlZpjfNsohvwG2avd8ZmY2ujJjHsWem7IkfRJYyvKJ4CMqO89jxLwbCrKE5S2OKZIWF46L\niJjWxbzNzPpSN7utWpF0IGkgfeeI9qqrblYez8owItp5zrmZmY1gqOJbdSXNBT4G7BgRj7ebrpuV\nh5mZdVk3Wx6STgN2AtaUdCdwFOnuqknABWlKH5dFxCGjnauybiszM1tx3ZxhHhF7N4k+sZNztTXP\nQ9IESQtHOWznTgpgZmatDYXaDr3UVuUREcuAGyVtMMIxD7baZ2ZmnYkSoZfKdFvNAK6XdAVpkiAA\nEbFH10tlZmZAb+626kSZyuNTlZXCzMyaGter6gJExCWSXghsHBG/ljQFmFBd0czMbGisC9BC2wsj\nSjoYOBP4Vo56AXBOFYUyM7MkUNuhl8qsqvsBYHtgMUBE/BV4fquDJS2RtLhJWFKYbd4snVfVNTPL\nlobaDr1UZszjqYh4Ok8iQdJERn5eR0czzL2qrpnZcr1uUbSrTMvjEkmfACZLej3wI+Cn1RTLzMwg\njXm0G3qpTOXxcWARsAB4L3BeRHyyklKZmRlQ3zGPMt1Wh0bEccC3hyMkfSjHmZlZBcb93VbAAU3i\nDuxSOczMrIm6dluN2vKQtDewD/AiSecWdk0FvCSJmVmF6jpg3k631e+Bu4E1gS8X4pcA11ZRKDMz\nSyp+nEfHRq088uNnb5N0aURcUtwn6QvAEVUVzsxs0A3VtOVRZszj9U3idulWQczM7LmWlQi91M6Y\nx/uA9wMvllTsppoK/K6qgpmZGQypni2PdsY8fgj8AjiGNNdj2BI/w8PMrFp1XWZj1G6riHgkIm7N\njy9cH3htHgdZSdKLmqUZYV2rxZIWSbpMkp88aGY2inF7q+4wSUcBc4B/Ar4LrAJ8n7RY4rOMtK6V\npAnAZsAP8v9mZtZCXe+2KjNg/hZgD/JTBCPiLtK4RykRsSwi/gx8rdl+r6prZrbcEGo79FKZyuPp\niHjmUbmSVluRjCPiWy3i50fEnIiYs+nUDVckCzOzca+uzzAvU3mcIelbwPT8YKhfU1jnyszMum9I\n7YdeKvMY2i/lpdgXk8Y9Ph0RF1RWMjMzq+3CiGVW1SVXFq4wzMx6ZFlNB8zbmSS4hObdaQIiIqZ1\nvVRmZgaM45ZHp4+TNTOzFTduKw8zMxs7MV67rczMbOy45WFmZqW58jAzs9LG7cKIZmY2dro9SVDS\n4ZKul3SdpNMkrdpJuVx5mJnVWDdX1ZX0AuAwYE5EbAZMAPbqpFyVVR6S1h9h325V5Wtm1k8qeJLg\nRGCypInAFOCuTspVZcvjAkmzGyMlvQs4rsJ8zcz6Rpluq+Kq5DnMK54rIv4OfAm4HbgbeCQizu+k\nXFVWHh8Bzpe08XCEpCOBw4EdWyXykuxmZsuV6bYqrkqew/ziuSTNAN4EvAhYF1hN0r6dlKuyyiMi\nzgPeB/xC0maS/gvYHXh1RNw5QjovyW5mlnV5SfbXAX+LiEUR8Q/gbOBVnZSr0gHziPgNcBBwMbAh\n6RG2D1WZp5lZPxki2g5tuB3YTtIUSQJ2Bm7opFyVzfMoLKgoYBKpkPflAntBRTOzNnRzkmBEXC7p\nTOAqYClwNTB/5FTNVVZ5eEFFM7MV1+1JghFxFHDUip7HM8zNzGqsrsuTeJJgSQ9MGOsSWKOh+x8Z\n6yKMmXj47rEuglVs3D+G1pJZJWbiWG+stOYaY12EMaPp64x1Eaxiy2q6upUrDzOzGqtrt5UrDzOz\nGmvzFtyec+VhZlZj9aw6XHmYmdVaXbutxuRuK0kfHot8zczGmy7PMO+asbpV9yNjlK+Z2bjS5bWt\numasKo+WdyR7VV0zs+W6+TCobhqryqNlJelVdc3MlosS/3qpFwsjPmcXMLmqfM3M+snSmt5v5YUR\nzcxqrJ5Vh2/VNTOrNU8SNDOz0uo6z8OVh5lZjfV6ILxdrjzMzGrMLQ8zMyvNLQ8zMyvNLQ8zMytt\nKNzyMDOzkvwkQTMzK81jHmZmVtrAjXlIOnek/RGxR1V5m5n1i0GcYf5K4A7gNOByRliGvUjSPGAe\nwA4zt8Ir65rZIKtrt1WVS7KvDXwC2Aw4Dng9cH9EXBIRl7RK5CXZzcyWG7jneUTEsoj4ZUQcAGwH\n3ARcLOmDVeVpZtZvIqLt0EuVDphLmgTsCuwNzAa+Cvy4yjzNzPrJwI15SDqV1GV1HvCZiLiuqrzM\nzPrVwN1tBewLPAZ8CDhMema8XEBExLQK8zYz6wvLalp9VPkkwbF6PrqZWd/o9VhGu3yBNzOrsSru\ntpI0QdLVkn7Wabk8w9zMrMYqmufxIeAGoOPhA7c8zMxqbIhoO7RD0nqku2C/syLlcuVhZlZjZeZ5\nSJon6cpCmNfklP8FfIwVvJHL3VZmZjVWZp5HRMwH5rfaL2k34L6I+JOknVakXK48zMxqrMtjHtsD\ne0h6I7AqME3S9yNi37InqnKS4KdH2B0R8X+rytvMrF9080mCEXEkcCRAbnn8WycVB1Q75vFYkxDA\nu4EjWiUq9tktXHJLhcUzM6u/KBF6qcpJgl8e3pY0lXRr2LuA/wa+PEK6Z/rsDp69Zz1nx5iZ9cjS\nimaYR8TFwMWdpq96YcSZwEeAdwKnAFtFxENV5mlm1k/qOsO8yjGPLwJvJbUiNo+IR6vKy8ysX9V1\nVd0qxzw+CqwL/Dtwl6TFOSyRtLjCfM3M+kaU+NdLXhjRzKzGBq7byszMVlxdu61ceZiZ1ZhbHmZm\nVppbHmZmVlqvB8Lb5crDzKzGlsWAPYbWzMxWXDfXtuqmyisPSasCG+WXN0XEk1XnaWbWLwau20rS\nRODzpPWsbgMErC/pu8AnI+IfVeVtZtYv6tryqHIi3xeBmcCLIuIVEbEV8GJgOvClVom8qq6Z2XJ1\nnWFeZeWxG3BwRCwZjoiIxcD7gDe2ShQR8yNiTkTM2XTqhhUWz8ys/oYi2g69VOWYR0ST2S0RsUxS\nPdthZmY1U9cxjypbHn+RtH9jpKR9gYUV5mtm1jcihtoOvVRly+MDwNmS3gX8KcfNASYDb6kwXzOz\nvjFwM8wj4u/AtpJeC7w0R58XEb+pKk8zs34zsJMEI+JC4MKq8zEz60deGNHMzEqr6zwPVx5mZjVW\n17utXHmYmdWYu63MzKy0gbvbyszMVpxbHmZmVpoHzM3MrLSBa3nk53gcQnqWxwLgxIhYWlV+Zmb9\nqK6TBKtc2+oU0nIkC4BdgC+3k8hLspuZLTeIq+q+JCI2B5B0InBFO4kiYj4wH+Dg2XvWs71mZtYj\ngzjP45knBUbEUkkVZmVm1p8GccB8C0mL87aAyfm1SM/6mFZh3mZmfaGuA+aVjXlExISImJbD1IiY\nWNh2xWFm1oZuP4ZW0lxJN0q6SdLHOy2Xb9U1M6uxbrY8JE0Avg68HrgT+KOkcyPiL2XPVeXdVmZm\ntoIiou3Qhm2AmyLiloh4Gvhv4E2VF6wuAZhXxzT9kofLVb88XK765dFpmioDMA+4shDmNex/G/Cd\nwuv9gOM7ymus32yHH9CVdUzTL3m4XPXLw+WqXx6dphnL0M3Kw91WZmaD4+/A+oXX6+W40lx5mJkN\njj8CG0t6kaRVgL2Aczs50Xi922p+TdP0Sx6dpBnkcg3ye+8kTb/k0WmaMRNpwvYHgV8BE4CTIuL6\nTs6l3O9lZmbWNndbmZlZaa48zMysNFceZmZWWt9WHpI2lbSzpNUb4ue2OH4bSVvn7ZdI+oikN5bM\n89SSx++Q83lDi/3bSpqWtydL+oykn0r6gqQ1WqQ5TNL6zfa1OH4VSftLel1+vY+k4yV9QNLKI6Tb\nUNK/STpO0lckHTJcVjPrf+N+wFzSQRHx3Ya4w4APADcAWwIfioif5H1XRcRWDccfRXpg1UTgAmBb\n4CLS+i+/iojPNcm38fY2Aa8BLgSIiD2apLkiIrbJ2wfnMv4YeAPw04g4tuH464Et8h0S84HHgTOB\nnXP8W5vk8QjwGHAzcBrwo4hY1Hhc4fgf5Pc9BXgYWB04O+ehiDigSZrDgN2AS4E3AlfntG8B3h8R\nF7fKz6xfSHp+RNw31uUYM2M947ELMyZvbxK3AFg9b88mTdP/UH59dYvjJ5AuoIuBaTl+MnBti3yv\nAr4P7ATsmP+/O2/v2CLN1YXtPwLPy9urAQuaHH9DMb+Gfde0yoPUonwDcCKwCPglcAAwtcnx1+b/\nJwL3AhPya43w3hcUjpsCXJy3N2j2+Q5CAJ7fgzxmjfX77KDMawDHAguBB4EHSF/qjgWmlzzXL1rE\nTwOOAb4H7NOw74QWadYGvkFaJHAWcHT+vT4DWKfJ8TMbwizgVmAGMHOsP+exCOOi20rStS3CAmCt\nJklWiohHASLiVtKFfRdJXyFdFBstjYhlEfE4cHNELM5pnwBaPUB4DvAn4JPAI5G+bT8REZdExCUt\n0qwkaYakWaSL76Kcz2NAs+e7XyfpoLz9Z0lz8uexCYWHbTWIiBiKiPMj4t3AusAJwFyg2XN9V8qT\nhaaSKoLh7rBJQMtuK5bPEZpEaq0QEbe3SiNpDUnHSloo6UFJD0i6IcdNHyGfpiT9okncNEnHSPqe\npH0a9p3Q4jxrS/qGpK9LmiXpaEkLJJ0haZ0WaWY2hFnAFflnO7PJ8XML22tIOjH//v5QUrPfX/Ln\nsmbeniPpFuBySbdJ2rHJ8VdJ+ndJL252vhZ5zJF0kaTvS1pf0gWSHpH0R0kvb5FmdUmflXR9PnaR\npMskHdgimzOAh4CdImJmRMwitdAfyvsaz79Vi/AKUi9CM98l/V2fBewl6SxJk/K+7VqkORn4C3AH\nqZfhCVIr+n+AbzY5/n7S3/twuBJ4AelL5JUt8uhvY117tRNI34i3BF7YEGYDdzU5/kJgy4a4icCp\nwLImx18OTMnbKxXi16DhG3+TtOsBPwKOp0krqOHYW0kX8L/l/9fJ8avTpCWR8z+Z1AV1OanCuAW4\nhNRt1SxDdCMoAAAD6ElEQVSPlt/8h99jQ9zh+Zy3AYcBvwG+TfoWdlSL83wIuDYftxA4KMc/D7i0\nRZpfAUcAaxfi1s5x57dIs1WL8Arg7ibHn0X6Rvtm0qzZs4BJeV/TnyOpVXYo8PH8no4gLd9wKPCT\nFmmG8s+wGP4x/HNtcvxVhe3vAP+Rf38PB85pkceCwvZFwNZ5exOarKeU8/4ScDvpkc+HA+uO8vt4\nBam7dm/SRfRtOX5n4A8t0vwEODD/3n8E+BSwMXAK8Pkmx984Qv7P2QcsI/39XtQkPNHiPNc0vP4k\n8DtS66DVz73YC3D7SOfLcR/NvyubFz/zkT7ffg9jXoC2Cpm6X3Zose+HTeLWK16kGvZt3yRuUotj\n1yz+soxSxl2b/fG0mXYK8KIR9k8DtsgXzbVGOdcmHeS/7vCFBphOWjxtm1HSvDQft2mbeZS6iOT4\nUheSXlxEcnypCwnPrjway9gqjxuAiXn7soZ9zbo4i3n8C6m1eU/+rJqu/DrKe2/6JQT4c8PrP+b/\nVwIWNjn+fOBjxd9bUm/BEcCvmxx/HbBxi7zvGOGzWqkh7kDgeuC20d4H8B+jfb45fviL4ldILfXn\nfFEYpDDmBXAYjFD2IpL3l7qQ9Ooikve1fSEhPXTnI7nS+Rv5RpW8r9W40qH5M3stqT/+ONJ42meA\n7zU5/jmVI2kcby7w3RZ5/IE0NrYnqeX55hy/Iy1WiwV+T/4iB+xBuqFkeF+zlsQM4AukFupDpHGP\nG3Lcc8YKSF9I/qlF3m9uEf+fwOuaxM8F/toizWfJ46IN8RsBZ47yu7wHcBlwTzf/RsZbGPMCOAxG\naLiIPNhwEZnRIk2pC0mvLyL5uFEvJMBRDWH4Rom1gVNHSLcTcDrpJogFwHmk5zVMbHLsf3fwM9mC\n1J34C2DTXEE9TKpsX9UizctI3V0PAb8lt3RJXZaHtUizKfC6xs8ZmDvC8Tu3e/woaXbpIM2o5SLd\nTLPZaOXq5zDmBXBwII+ZVJmmyjwaLiS1KVcv82iVhjSOdiNwDmnM702Ffc1aS6WOz/GHVp2mk3L1\nexjzAjg4MMqNBt1I04s86lqusXzvdHbbfNvH9ypNJ3n0exivS7LbOCPp2la7aH67dek0vcijruWq\n63un4bZ5STsBZ0p6Ic1vmy97fK/SdJJHX3PlYb2yFvCvpL7yIpEGYbuRphd51LVcdX3v90raMiKu\nAYiIRyXtBpwEbN6F43uVppM8+porD+uVn5Ga/dc07pB0cZfS9CKPuparru99fxomwEbEUmB/Sd/q\nwvG9StNJHn1t3K9tZWZmvTculicxM7N6ceVhZmalufIwM7PSXHmYmVlp/x+ClNxvLUiImgAAAABJ\nRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x120e58d68>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8HEW9/vHPQ0JCQghZgAACiQhcF3bDoqCAuASBiP5Q\nAVn1EnEBBL1sLqDXBdefuBsFAVEUZREVFWQJF5UlAhIQuEJkEwgBAmHH5HzvH12HdIaZc6Yn03P6\nzDzvvOqVnuqurpo553RNVXVVKyIwMzMrYqWhLoCZmQ0/rjzMzKwwVx5mZlaYKw8zMyvMlYeZmRXm\nysPMzApz5VEhkm6RtHOLaUPSRm0uUteRdIKkH5Zw3vdIurjd5y1Yhu9J+uRQlsF6hzzPo5okfQ/Y\nPxe1MvB8RKzW4PgANo6IOzpRvjr5TwP+CawcEUtKyuMkYKOI2H+wY9PxOwNnRcR6ZZRnkLxL/XlI\nOhj4z4jYsYzzD5L3psBXgVcDkyNCNftfAXw77V8I/FdEnN/pclq53PKoqIg4LCLG9QfgbOAXQ12u\nsijj30dA0sihLsMg/g2cA7yvdkcq+6+A3wCTgFnAWZI26WgJrXwR4VCRANwFvLFO/KrAE8BOA6QN\nsm/lALsDNwCLgXuBk3LH/RY4vCbtTcDb0/ZrgeuAx9P/r21UPuAksm/2APekMjyZwmuaeL9XAJ8D\n/gQ8A2wErAtcCDwK3AEcmo6dATxPduF6Evhbij8EuDV9PvOB9+c+s2eAvlyZ1s2XOR03E7gFeCyV\n5xU17/dj6fN5HPg5sEqD93IwcFXavjJ9Fk+lfN+d4vcAbkx5/RnYvCavY1NezwEjgeOAO9N7+3vu\nZ/QK4FlgaTr/Yyn+dOCzuXMemj7DR9Nnum7N78thwD9Seb5N6oko8Pu6ERA1cZumMikXdzHw30P9\n9+XQ3jDkBXDI/TAaVx4Hpgtjwz9ulq88dgY2I2tZbg4sAPZK+94FXJNLtwXwCDCK7JviIuCAdPHa\nN72eXK98LF95TEtlGFng/V5BVum8KuW3crrwfgdYBdiSrNvjDbX55c6xO/AyQMBOwNPA1rnP4b6a\n4/Nl3oTsAv+mlPcx6WI7Kvd+ryWrdCaRVVKHNXgvB5Mqj9qfR3q9FfAQsB0wAjgonX90Lq8bgfWB\nMSnunSnvlYB3p7KuUy+/FHc6qfIA3gA8DGwNjAa+CVxZU77fABOADdLnPCPt24CsQtlgkJ9fs5XH\nJcD5Q/335dDe4G6C4eEg4MxIf4mDiYgrImJeRPRFxE1kXV47pd0XAptI2ji9PgD4eUQ8T3Yh/kdE\n/DgilkTE2cBtwJ5tfTfLOz0ibolsnGRtYAfg2Ih4NiJuBH5IVnnWFRG/jYg7IzOH7Fvu65rM+93A\nbyPikoj4N/AVYAxZ66vfNyLi/oh4FPg1WYXWilnA9yPimohYGhFnkLUwtq/J696IeCa9t1+kvPsi\n4udkrYRtm8zvPcBpEXF9RDwHHA+8Jo1N9Ts5Ih6LiHuAy/vfW0TcExETUnxRt5NVkv8laWVJbyb7\n3Rvbwrmswlx5VJykDci+QZ9ZIM12ki6XtFDS42TdE2sARMSzZN0v+6cxhn2BH6ek6wJ315zubuAl\nK/QmBnZvbntd4NGIeKLZ/CXtJulqSY9Kegx4K+m9NmG59xsRfak8+fwezG0/DYxr8ty1pgIflfRY\nfyBrZaybOyb/WSDpQEk35o7flNbf25NkLcwy3tsLUiW8F9kXkQeBj5KNj9y3oue2anHlUX0HAH+K\niPkF0vyUrIWxfkSsDnyPrFun3xlk30x3BZ6OiL+k+PvJLnJ5GwD/SttPsfw3yLVz263etpdPdz8w\nSVL+jrJ8/svlIWk0cC5Zi2FKREwALmLZex2sTMu9X0kiu6D/q2GK1t0LfC59o+8PY1Prrt8L5ZU0\nFfgB8GGybsMJwM20/t5WBSZTzntbTkTcFBE7RcTkiHgLsCFZ9591EVce1XcgWV92EauRfYN/VtK2\nwH75namy6CO73fLHuV0XkXVp7SdppKR3A68k6xuHrE9+n9QdMR3YO5d2YTrnhv0Rkqal+SfTmil0\nRNxLNpD8BUmrSNqc7I6es9IhC4BpubuyRpH15y8ElkjaDXhz7pQLgMmSVm+Q5TnA7pJ2lbQy2bfk\n51IZVtQCcp8FWUVwWGoVStKqknavqSjzViWrIBYCSDqErOWRP/96kkY1SH82cIikLVMl+3mysa67\nWn9LmVT+Vcg+f9LPanRu/+YpbqykjwHrUPx32CrOlUeFSXoNsB7Fb9H9IPAZSU8AnyK7SNY6k2xQ\nvf/CTEQ8QnZH0EfJujiOAfaIiIfTIZ8kG5xeBHyarIXTn/Zp0p1TqZtle7Jv8XdT7NvuvmSD7/cD\n5wMnRsQf077+z+ERSden7q0j0vtbRFZJXpgr021kF9H5qUz5LiIi4nayuTTfJBtc3hPYM43/rKiT\ngDNSvu+KiLlkdz99K5X1DrJB77oi4u9klftfyCqKzcjuSut3GdldYg9KerhO+j+S/bzOBR4g+7nt\n00zBJW0g6cnUZVrPVLI72W5Jr58hG+vod0DK8yGy1u2b0riLdRFPEuxRkg4EZkWJk8wkfQJYGBHf\nLysPMxsarjx6kKSxZN9cvxMRTQ/Em5n1c7dVj5H0FrJ+9AXkup3MzIpwy8PMzApzy8PMzAqr9AJs\ne0+dWahZNHHZ3YJNm1TwI1izb0ThPCYvLZyESUv7ih1P8RuEJowpfgPMaqs/W+j4sZOLl2vUWsW+\n04yYUnxu20prNLp7tzFNnljs+EnNzufLmbhmsTwmTimchSasUzjNShPXHvygnDHrNjvJf5nxo4tP\nQp8wutjPfsLKqxbOY+KI4uW69L6LNfhRzfn3w/Obvg6uvMaGbct3MG55mJlZYZVueZiZ9by+Frou\nOsCVh5lZlUWxLuxOceVhZlZlfdWsPDo65iFpR0nf7mSeZmbDWSxd0nTopNJbHpK2Iltz6J1kz7g+\nr+w8zcy6Ri91W6XnFe+bwsNkz49QROxSRn5mZl2rogPmZXVb3Ub2GMw9ImLHiPgm2fOWByVplqS5\nkubOf7L2uURmZj0m+poPHVRW5fEOsiWZL5f0A0m7svzDiBqKiNkRMT0ipm84rva5RGZmPaavr/nQ\nQaVUHhFxQUTsA7yc7NnIHwHWkvTd9ExjMzNrQkRf06GTSr3bKiKeioifRsSeZA81ugE4tsw8zcy6\nSkVbHh2b5xERi4DZKZiZWTN66W4rMzNrk4rebeXKw8ysyjo8+a9ZrjzMzKrM3VZmZlZYRde2cuVh\nZlZhER7zMDOzotxtZWZmhbnbyszMCnPLAyStATwSEU0/0N3MrKdVdJ5HacuTSNpe0hWSzpO0laSb\ngZuBBZJmDJDOq+qamfWr6Kq6ZbY8vgWcAKwOXAbsFhFXS3o5cDbw+3qJIuKFJUz2njrTLRQz6209\nOElwZERcDCDpMxFxNUBE3CY1tTq7mZn14IB5/h0/U7PPLQozs2b0YOWxhaTFZA+BGpO2Sa9XKTFf\nM7Ou0XOTBCNiRFnnNjPrGW1seUhaHzgTmELWAzQ7Ik6RNAn4OTANuAt4V3qMRkOlPgzKzMxWUHvv\ntloCfDQiXglsD3xI0iuB44BLI2Jj4NL0ekCuPMzMqqyNTxKMiAci4vq0/QRwK/AS4G3AGemwM4C9\nBjuXKw8zsyor0PLIz5NLYVaj00qaBmwFXANMiYgH0q4Hybq1BuTlSczMqqzAmEd+ntxAJI0DzgU+\nEhGL89MnIiIkDXpHrCsPM7Mqa/MkQUkrk1UcP4mI81L0AknrRMQDktYBHhrsPO62MjOrsjaOeShr\nYpwK3BoRX8vtuhA4KG0fBPxqsHOV1vKQtBFZP9qfauJ3AB6MiDvLytvMrGu0d82qHYADgHmSbkxx\nJwAnA+dIeh9wN/CuwU5UZrfV14Hj68QvTvv2LDFvM7Pu0MZ5HhFxFdlE7Xp2LXKuMrutpkTEvNrI\nFDetUSKvqmtmllPRVXXLrDwmDLBvTKMdETE7IqZHxPQNx00toVhmZsNIG8c82qnMymOupENrIyX9\nJ/DXEvM1M+seFW15lDnm8RHgfEnvYVllMR0YBby9xHzNzLpHr62qGxELgNdK2gXYNEX/NiIuKytP\nM7Ou02uVR7+IuBy4vOx8zMy60tIeW5LdzMzaoFdbHmZmtgI6PBDeLFceZmZV5paHmZkVFoMucDsk\nXHmYmVWZWx5mZlaYKw8zMyuslwfMJa0JEBELO5GfmVm3iL5qjnmUtraVMidJehi4HfhfSQslfaqs\nPM3Mus7SJc2HDipzYcSjyB48sk1ETIqIicB2wA6SjmqUyEuym5nl9EXzoYPKrDwOAPaNiH/2R0TE\nfGB/4MBGibwku5lZTkWXZC9zzGPliHi4NjIiFqYHsJuZ2WB68G6r51vcZ2Zm/XpwkuAWkhbXiRew\nSon5mpl1j15reUTEiLLObWbWMyp6q64nCZqZVVkvTxI0M7MWueVhZmZFxRI/SdDMzIpyt5WZmRXm\nbiszMyus127VNTOzNqhoy6PMVXWPyW2/s2bf58vK18ysq0Rf86GDylwYcZ/c9vE1+2Y0SuRVdc3M\ncnpwVV012K73+gVeVdfMbJno62s6dFKZlUc02K732szM6mljy0PSaZIeknRzTfzhkm6TdIukLzVT\nrE4sjChgTG6RRC+MaGbWrKVtnSR4OvAt4Mz+CEm7AG8DtoiI5ySt1cyJvDCimVmVtXEsIyKulDSt\nJvoDwMkR8Vw65qFmzlVmt5WZma2g6IumQ4s2AV4n6RpJcyRt00wiz/MwM6uyApWCpFnArFzU7IiY\nPUiykcAkYHtgG+AcSRtGDPwUKlceZmZVVuAuqlRRDFZZ1LoPOC9VFtdK6gPWABYOlMjdVmZmVVb+\nPI8LgF0AJG0CjAIeHiyRWx5mZlXWxgFzSWcDOwNrSLoPOBE4DTgt3b77PHDQYF1W4MrDzKzSmriO\nFznXvg127V/0XK48zMyqrKILI7ryMDOrsFhSzSXZy1xVd4Oyzm1m1jN6cGHEC/o3JJ1bYj5mZt2r\nr0DooE6tqrth04m8JLuZ2Qs6MMO8JUO1qm7jRF6S3cxsmYp2Ww3VqroREeNLzNvMrDtUc7zcq+qa\nmVVZp7ujmuVbdc3MqqzXWh5mZrbi3PIws7aLRQvQxClDXQwrUSwZ6hLU58rDbBhzxdED3G1lZmZF\nhSsPMzMrzJWHmZkV5ZaHmZkV5srDzMwKq2rlUeaS7G+T9KHc62skzU9h77LyNTPrKqHmQwc1XXlI\nukrS5yTNkLRaE0mOAS7MvR4NbEP2/NwPDJCPV9U1M0uir/nQSUVaHgcAtwP/D/hzusD//wGOHxUR\n9+ZeXxURj0TEPcCqjRJ5VV0zs2WiT02HTmp6zCMi/inpWeD5FHYBXjFAkok16T+ce7lmkUKamfWq\nvqWdrRSaVaTb6k6ypwNOAU4FNo2IGQMkuUbSoXXO837g2qIFNTPrRVXttipyt9U3gB2BfYGtgDmS\nroyIOxscfxRwgaT9gOtT3KvJxj72arG8ZmY9pdPdUc0q0m11CnCKpHHAIcBJwHpA3ed2RMRDwGsl\nvQF4VYr+bURctkIlNjPrIVHNRXWbrzwkfZWs5TEO+AvwKeB/BkuXKgtXGGZmLRj2LQ+yCuNLEbGg\nrMKYmdnyhn3lERG/lDRT0utT1JyI+HVJ5TIzM7qj2+oLwLbAT1LUEZJeExEnlFIyMzMb/i0PYHdg\ny4jshjBJZwA3AK48zMxKEh1edqRZRRdGnAA8mrZXb3NZzMysxtKKThIsUnl8AbhB0uWAgNcDx5VS\nKjMzA4Z5y0OSgKuA7ckWNwQ4NiIeLKtgZmY2zMc8IiIkXRQRm7H8SrkNSfom0PA+gYg4orkimpn1\nrnbebSXpNGAP4KGI2DTFfRnYk2zNwjuBQyLiscHOVWRV3eslbTP4YS+YC/w1hZm57f5Ql5dkNzNb\nps2r6p4O1K5JeAnZWoWbA/8LHN/MiYqMeWwHvEfS3cBTZOMekTJ8kYg4o39b0kfyrwcSEbOB2QB7\nT51Z0Tuczcw6o6+NYx4RcaWkaTVxF+deXg009bC+IpXHWwbaKWliRCxqsNuVgJlZC4oMmEuaBczK\nRc1OX8ib9V7g580cWGSG+WB9SJcCWzd7PjMzG1yRMY98z01Rkj4OLGHZRPABFZ3nMWDeNQV5gmUt\njrGSFueOi4gY38a8zcy6Uju7rRqRdDDZQPquEc1VV+2sPJbLMCKaec65mZkNoK/kW3UlzQCOAXaK\niKebTdfOysPMzNqsnS0PSWcDOwNrSLoPOJHs7qrRwCXZlD6ujojDBjtXad1WZma24to5wzwi9q0T\nfWor52pqnoekEZJuG+SwXVspgJmZNdYXajp0UlOVR0QsBW6XtMEAxzzaaJ+ZmbUmCoROKtJtNRG4\nRdK1ZJMEAYiImW0vlZmZAZ2526oVRSqPT5ZWCjMzq2tYr6oLEBFzJE0FNo6IP0oaC4wor2hmZtY3\n1AVooOmFESUdCvwS+H6KeglwQRmFMjOzTKCmQycV6bb6ENkzzK8BiIh/SFqr0cE1M8yX28UAM8zz\na7NsNWlzNhw3tUARzcy6y5Lh3m0FPBcRz6dJJEgaycDP62hphrlX1TUzW6bTLYpmFXmexxxJJwBj\nJL0J+AXw63KKZWZmkI15NBs6qUjlcRywEJgHvB+4KCI+XkqpzMwM6I4xj8Mj4hTgB/0Rko5McWZm\nVoJhf7cVcFCduIPbVA4zM6ujqt1Wg7Y8JO0L7Ae8VNKFuV2rAV6SxMysRFUdMG+m2+rPwAPAGsBX\nc/FPADeVUSgzM8uU/DiPlg1aeaTHz94t6cqImJPfJ+mLwLFlFc7MrNf1VbTlUWTM40114nZrV0HM\nzOzFlhYIndTMmMcHgA8CL5OU76ZaDfhTWQUzMzPoUzVbHs2MefwU+B3wBbK5Hv2e8DM8zMzKVdVl\nNgbttoqIxyPirvT4wvWBN6RxkJUkvbReGklPSFrcICyUdLUkP3nQzGwQw/ZW3X6STgSmA/8B/AgY\nBZwF7FB77EDrWkkaAWwK/CT9b2ZmDVT1bqsiA+ZvB2aSniIYEfeTjXsUEhFLI+JvwDfr7Zc0S9Jc\nSXPnP3l30dObmXWVPtR06KQilcfzEfHCo3IlrboiGUfE9xvEz46I6REx3cuxm1mvq+ozzItUHudI\n+j4wIT0Y6o/k1rkyM7P261PzoZOKPIb2K2kp9sVk4x6fiohLSiuZmZlVdmHEIqvqkioLVxhmZh2y\ntKID5s1MEmzpcbJmZrbihm3Lo9XHyZqZ2YobtpWHmZkNnRiu3VZmZjZ03PIwM7PCXHmYmVlhw3Zh\nRDMzGzrtniQo6ShJt0i6WdLZklZppVyuPMzMKqydq+pKeglwBDA9IjYFRgD7tFKu0ioPSesPsG+P\nsvI1M+smJTxJcCQwRtJIYCxwfyvlKrPlcYmkabWRkt4LnFJivmZmXaNIt1V+VfIUZuXPFRH/Ar4C\n3AM8ADweERe3Uq4yK4+jgYslbdwfIel44Chgp0aJvCS7mdkyRbqt8quSpzA7fy5JE4G3AS8F1gVW\nlbR/K+UqrfKIiIuADwC/k7SppK8DewKvj4j7BkjnJdnNzJI2L8n+RuCfEbEwIv4NnAe8tpVylTpg\nHhGXAocAVwAbkj3CdlGZeZqZdZM+ounQhHuA7SWNlSRgV+DWVspV2jyP3IKKAkaTFfKhVGAvqGhm\n1oR2ThKMiGsk/RK4HlgC3ADMHjhVfaVVHl5Q0cxsxbV7kmBEnAicuKLn8QxzM7MKq+ryJJ4kWNDC\nlQrcTW0dsXTBk0NdhCETixYMdRGsZMP+MbSWWbNvxFAXwWqMmDJuqIswZDRxylAXwUq2tKKrW7ny\nMDOrsKp2W7nyMDOrsCZvwe04Vx5mZhVWzarDlYeZWaVVtdtqSO62kvSRocjXzGy4afMM87YZqlt1\njx6ifM3MhpU2r23VNkNVeTS8I9mr6pqZLdPOh0G101BVHg0rSa+qa2a2TBT410mdWBjxRbuAMWXl\na2bWTZZU9H4rL4xoZlZh1aw6fKuumVmleZKgmZkVVtV5Hq48zMwqrNMD4c1y5WFmVmFueZiZWWFu\neZiZWWFueZiZWWF94ZaHmZkV5CcJmplZYR7zMDOzwnpuzEPShQPtj4iZZeVtZtYtenGG+WuAe4Gz\ngWsYYBn2PEmzgFkAW03aHK+sa2a9rKrdVmUuyb42cAKwKXAK8Cbg4YiYExFzGiXykuxmZsv03PM8\nImJpRPw+Ig4CtgfuAK6Q9OGy8jQz6zYR0XTopFIHzCWNBnYH9gWmAd8Azi8zTzOzbtJzYx6SziTr\nsroI+HRE3FxWXmZm3arn7rYC9geeAo4EjpBeGC8XEBExvsS8zcy6wtKKVh9lPklwqJ6PbmbWNTo9\nltEsX+DNzCqsjLutJI2QdIOk37RaLs8wNzOrsJLmeRwJ3Aq0PHzgloeZWYX1EU2HZkhaj+wu2B+u\nSLlceZiZVViReR6SZkmamwuz6pzy68AxrOCNXO62MjOrsCLzPCJiNjC70X5JewAPRcRfJe28IuVy\n5WFmVmFtHvPYAZgp6a3AKsB4SWdFxP5FT1TmJMFPDbA7IuK/y8rbzKxbtPNJghFxPHA8QGp5fKyV\nigPKHfN4qk4I4H3AsY0S5fvs5j95d4nFMzOrvigQOqnMSYJf7d+WtBrZrWHvBX4GfHWAdC/02e09\ndWY1Z8eYmXXIkpJmmEfEFcAVraYve2HEScDRwHuAM4CtI2JRmXmamXWTqs4wL3PM48vAO8haEZtF\nxJNl5WVm1q2quqpumWMeHwXWBT4B3C9pcQpPSFpcYr5mZl0jCvzrJC+MaGZWYT3XbWVmZiuuqt1W\nrjzMzCrMLQ8zMyvMLQ8zMyus0wPhzXLlYWZWYUujxx5Da2ZmK66da1u1U+mVh6RVgI3Syzsi4tmy\n8zQz6xY9120laSTwebL1rO4GBKwv6UfAxyPi32XlbWbWLara8ihzIt+XgUnASyPi1RGxNfAyYALw\nlUaJvKqumdkyVZ1hXmblsQdwaEQ80R8REYuBDwBvbZQoImZHxPSImL7huKklFs/MrPr6IpoOnVTm\nmEdEndktEbFUUjXbYWZmFVPVMY8yWx5/l3RgbaSk/YHbSszXzKxrRPQ1HTqpzJbHh4DzJL0X+GuK\nmw6MAd5eYr5mZl2j52aYR8S/gO0kvQF4VYq+KCIuLStPM7Nu07OTBCPiMuCysvMxM+tGXhjRzMwK\nq+o8D1ceZmYVVtW7rVx5mJlVmLutzMyssJ6728rMzFacWx5mZlaYB8zNzKywnmt5pOd4HEb2LI95\nwKkRsaSs/MzMulFVJwmWubbVGWTLkcwDdgO+2kwiL8luZrZML66q+8qI2AxA0qnAtc0kiojZwGyA\nvafOrGZ7zcysQ3pxnscLTwqMiCWSSszKzKw79eKA+RaSFqdtAWPSa5E962N8iXmbmXWFqg6Ylzbm\nEREjImJ8CqtFxMjctisOM7MmtPsxtJJmSLpd0h2Sjmu1XL5V18yswtrZ8pA0Avg28CbgPuA6SRdG\nxN+LnqvMu63MzGwFRUTToQnbAndExPyIeB74GfC20gtWlQDMqmKabsnD5apeHi5X9fJoNU2ZAZgF\nzM2FWTX79wZ+mHt9APCtlvIa6jfb4gc0t4ppuiUPl6t6ebhc1cuj1TRDGdpZebjbysysd/wLWD/3\ner0UV5grDzOz3nEdsLGkl0oaBewDXNjKiYbr3VazK5qmW/JoJU0vl6uX33srabolj1bTDJnIJmx/\nGPgDMAI4LSJuaeVcSv1eZmZmTXO3lZmZFebKw8zMCnPlYWZmhXVt5SHp5ZJ2lTSuJn5Gg+O3lbRN\n2n6lpKMlvbVgnmcWPH7HlM+bG+zfTtL4tD1G0qcl/VrSFyWt3iDNEZLWr7evwfGjJB0o6Y3p9X6S\nviXpQ5JWHiDdhpI+JukUSV+TdFh/Wc2s+w37AXNJh0TEj2rijgA+BNwKbAkcGRG/Svuuj4ita44/\nkeyBVSOBS4DtgMvJ1n/5Q0R8rk6+tbe3CdgFuAwgImbWSXNtRGybtg9NZTwfeDPw64g4ueb4W4At\n0h0Ss4GngV8Cu6b4d9TJ43HgKeBO4GzgFxGxsPa43PE/Se97LPAYMA44L+WhiDioTpojgD2AK4G3\nAjektG8HPhgRVzTKz6xbSForIh4a6nIMmaGe8diGGZP31ImbB4xL29PIpukfmV7f0OD4EWQX0MXA\n+BQ/BripQb7XA2cBOwM7pf8fSNs7NUhzQ277OmDNtL0qMK/O8bfm86vZd2OjPMhalG8GTgUWAr8H\nDgJWq3P8Ten/kcACYER6rQHe+7zccWOBK9L2BvU+314IwFodyGPyUL/PFsq8OnAycBvwKPAI2Ze6\nk4EJBc/1uwbx44EvAD8G9qvZ950GadYGvku2SOBk4KT0e30OsE6d4yfVhMnAXcBEYNJQf85DEYZF\nt5WkmxqEecCUOklWiognASLiLrIL+26SvkZ2Uay1JCKWRsTTwJ0RsTilfQZo9ADh6cBfgY8Dj0f2\nbfuZiJgTEXMapFlJ0kRJk8kuvgtTPk8B9Z7vfrOkQ9L23yRNT5/HJuQetlUjIqIvIi6OiPcB6wLf\nAWYA8xuUaRSwGllF0N8dNhpo2G3FsjlCo8laK0TEPY3SSFpd0smSbpP0qKRHJN2a4iYMkE9dkn5X\nJ268pC9I+rGk/Wr2fafBedaW9F1J35Y0WdJJkuZJOkfSOg3STKoJk4Fr0892Up3jZ+S2V5d0avr9\n/amker+/pM9ljbQ9XdJ84BpJd0vaqc7x10v6hKSX1TtfgzymS7pc0lmS1pd0iaTHJV0naasGacZJ\n+oykW9KxCyVdLengBtmcAywCdo6ISRExmayFvijtqz3/1g3Cq8l6Eer5Ednf9bnAPpLOlTQ67du+\nQZrTgb8D95L1MjxD1or+H+B7dY5/mOzvvT/MBV5C9iVyboM8uttQ117NBLJvxFsCU2vCNOD+Osdf\nBmxZEzcSOBNYWuf4a4CxaXulXPzq1Hzjr5N2PeAXwLeo0wqqOfYusgv4P9P/66T4cdRpSaT8Tyfr\ngrqGrMJPdWCmAAAD8klEQVSYD8wh67aql0fDb/7977Em7qh0zruBI4BLgR+QfQs7scF5jgRuSsfd\nBhyS4tcErmyQ5g/AscDaubi1U9zFDdJs3SC8GnigzvHnkn2j3Yts1uy5wOi0r+7PkaxVdjhwXHpP\nx5It33A48KsGafrSzzAf/t3/c61z/PW57R8Cn02/v0cBFzTIY15u+3Jgm7S9CXXWU0p5fwW4h+yR\nz0cB6w7y+3gtWXftvmQX0b1T/K7AXxqk+RVwcPq9Pxr4JLAxcAbw+TrH3z5A/i/aBywl+/u9vE54\npsF5bqx5/XHgT2Stg0Y/93wvwD0DnS/FfTT9rmyW/8wH+ny7PQx5AZoqZNb9smODfT+tE7de/iJV\ns2+HOnGjGxy7Rv6XZZAy7l7vj6fJtGOBlw6wfzywRbpoThnkXJu0kP+6/RcaYALZ4mnbDpLmVem4\nlzeZR6GLSIovdCHpxEUkxRe6kLB85VFbxkZ53AqMTNtX1+yr18WZz+N1ZK3NB9NnVXfl10Hee90v\nIcDfal5fl/5fCbitzvEXA8fkf2/JeguOBf5Y5/ibgY0b5H3vAJ/VSjVxBwO3AHcP9j6Azw72+ab4\n/i+KXyNrqb/oi0IvhSEvgENvhKIXkbS/0IWkUxeRtK/pCwnZQ3eOTpXOP0k3qqR9jcaVDk+f2RvI\n+uNPIRtP+zTw4zrHv6hyJBvHmwH8qEEefyEbG3snWctzrxS/Ew1WiwX+TPoiB8wku6Gkf1+9lsRE\n4ItkLdRFZOMet6a4F40VkH0h+Y8Gee/VIP5LwBvrxM8A/tEgzWdI46I18RsBvxzkd3kmcDXwYDv/\nRoZbGPICOPRGqLmIPFpzEZnYIE2hC0mnLyLpuEEvJMCJNaH/Rom1gTMHSLcz8HOymyDmAReRPa9h\nZJ1jf9bCz2QLsu7E3wEvTxXUY2SV7WsbpNmcrLtrEXAVqaVL1mV5RIM0LwfeWPs5AzMGOH7XZo8f\nJM1uLaQZtFxkN9NsOli5ujkMeQEcHEhjJmWmKTOPmgtJZcrVyTwapSEbR7sduIBszO9tuX31WkuF\njk/xh5edppVydXsY8gI4ODDIjQbtSNOJPKparqF877R223zTx3cqTSt5dHsYrkuy2zAj6aZGu6h/\nu3XhNJ3Io6rlqup7p+a2eUk7A7+UNJX6t80XPb5TaVrJo6u58rBOmQK8hayvPE9kg7DtSNOJPKpa\nrqq+9wWStoyIGwEi4klJewCnAZu14fhOpWklj67mysM65Tdkzf4ba3dIuqJNaTqRR1XLVdX3fiA1\nE2AjYglwoKTvt+H4TqVpJY+uNuzXtjIzs84bFsuTmJlZtbjyMDOzwlx5mJlZYa48zMyssP8DTm+y\n9PLqs4UAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11f7b7f28>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4HEW9//H3h4SEJBCysBMwIuACCGJYFLwsUQyy6nVh\nX/QSQWTVh80F9Krg+hPFhSjIoiIoiKCgoGwXFRABCQioIPsWIBAIm8n5/v7oOqQzzJwzPZme02fm\n88pTT3qqu7pq5pzTNVXVVa2IwMzMrIilhroAZmY2/LjyMDOzwlx5mJlZYa48zMysMFceZmZWmCsP\nMzMrzJVHhUi6XdLWLaYNSWu3uUhdR9Jxkn5Ywnn3lHRZu89bsAzfl/SZoSyD9Q5XHhUSEetFxFXw\nyoXguVx4SdKzQ1zEhiRNTRXYyBLzOEHSjwscv7WkB/NxEfGliPifdpctIn4SEdvl8i61Mpe0n6Rr\na8pwYET8b1l55vLeV9JfJc2T9KCkr+R/7pImSfqlpPmS7pO0R9llss5z5VFR6UKwbH8AzgF+PtTl\nKosy/n0EyqyA22QscDiwArAZMB34ZG7/d4CXgZWBPYHvSVqv04W0kkWEQ0UCcC/wzjrx44Bnga0G\nSBvA2ml7B+BmYB7wAHBC7rjfAIfUpL0VeG/afjvwF+CZ9P/bG5UPOAH4cdq+P5XhuRTe1sT7vQr4\nIvBH4AVgbWA14CLgKeBfwAHp2BlkF6T/pPP/LcXvD9yRPp97gI/mPrMXgL5cmVbLlzkdtzNwO/B0\nKs8ba97vJ9Pn8wxwLrBMg/eyH3Bt2r4mfRbzU74fSvE7ArekvP4EvLkmr6NTXi8BI4FjgLvTe/t7\n7mf0RuBFYGE6/9Mp/gzgC7lzHpA+w6fSZ7paze/LgcA/U3m+A6jF39sjgYtzn/vLwLq5/WcBJw31\n35dDe8OQF8Ah98NoXHnsky6MDf+4Wbzy2BrYgKxl+WbgMWDXtO+DwPW5dBsCTwKjgEnAXGDvdPHa\nPb2eXK98LF55TE1lGFng/V5FVumsl/JbOl14vwssA2wEzAG2rc0vd44dgNcBArYCngc2zn0OD9Yc\nny/zumQX+HelvI9KF9tRufd7A1mlM4mskjqwwXvZj1R51P480uu3AI+TfVMfAeybzj86l9ctwBrA\nmBT3gZT3UsCHUllXrZdfijuDVHkA2wJPABsDo4FvA9fUlO/XwARgzfQ5z0j71iSrUNZs8ud4Ialy\nSO/z+Zr9nyBVLg7dE9xNMDzsC5wV6S9xMBFxVUTMjoi+iLiVrMtrq7T7ImBdSeuk13sD50bEy2QX\n4n9GxNkRsSAizgHuBHZq67tZ3BkRcXtELABWAbYAjo6IFyPiFuCHZJVnXRHxm4i4OzJXA5cB72gy\n7w8Bv4mIyyPiP8DXgDFkra9+34qIhyPiKeBisgqtFTOBUyPi+ohYGBFnkrUwNq/J64GIeCG9t5+n\nvPsi4lyyVsKmTea3J3B6RNwUES8BxwJvkzQ1d8xJEfF0RNwPXNn/3iLi/oiYkOIHJOnDwDSyzw5g\nWbIWb948YLkmy23DhCuPipO0Jtk36LMKpNlM0pWS5kh6hqx7YgWAiHiRrPtlrzTGsDtwdkq6GnBf\nzenuA1ZfojcxsAdy26sBT0VE/saAAfOXtL2k6yQ9Jelp4D2k99qExd5vRPSl8uTzezS3/TzZxbEV\nrwE+Ienp/kDWylgtd0z+s0DSPpJuyR2/Pq2/t+fIWphte2+SdgVOBLaPiCdS9HPA+JpDlyfrerMu\n4sqj+vYG/hgR9xRI81OyFsYaEbE88H2ybp1+Z5J9M51O1sXw5xT/MNlFLm9N4KG0PZ9ssLTfKrnt\nVpdnzqd7GJgkKf8tNZ//YnlIGg2cT/atd+WImABcwqL3OliZFnu/kkR2QX+oYYrWPQB8MX2j7w9j\nU+uu3yvllfQa4AfAx8m6DScAt9H6exsHTKZN703SjFS+nSJidm7XP4CRuZYtZF2jt7cjX6sOVx7V\ntw9ZX3YRy5F9g39R0qbAYrdKpsqiD/g6i1odkF1415W0h6SRkj4EvImsbxyyPvndJC0taRrw/lza\nOemca/VH5G7fndpMoSPiAbKB5BMlLSPpzcBHgP7bcx8DpubuyhpF1p8/B1ggaXtgu9wpHwMmS1q+\nQZbnATtImi5pabK++ZdSGZbUY+Q+C7IL7YGpVShJ4yTtUFNR5o0jqyDmAEjan6zlkT//FEmjGqQ/\nB9hf0kapkv0S2VjXva2/pYykbYGfAP8dETfk90XEfOAC4PPpPW5JdlPC2a8+kw1nrjwqTNLbgCkU\nv0X3Y2R/vM8CnyW7SNY6i2xQ/ZV5ExHxJNkdQZ8g6+I4Ctgx1yXxGbLB6bnA58haOP1pnyfdOZW6\nWTYn+xZ/H8W+7e5ONvj+MPBL4PiI+H3a1/85PCnpptS9dWh6f3PJKsmLcmW6k+wiek8qU76LiIi4\nC9iLbDD5CbKxnZ3S+M+SOgE4M+X7wYi4kezup1NSWf9FNuhdV0T8naxy/zNZRbEB2V1p/a4g+zb/\nqKQn6qT/PdnP63zgEbKf227NFFzSmmlu0ZoNDvkMWVfUJbl5SJfm9n+MbOzocbLfkYMiwi2PLqMm\nx2Cty0jaB5gZEVuWmMengTkRcWpZeZjZ0HDl0YMkjSX75vrdiGh6IN7MrJ+7rXqMpHeT9aM/Rq7b\nycysCLc8zMysMLc8zMyssEovwDZ9ynaFmkUTRyxTOI+JGl3o+EktfGQr9o0onGbywmLHT1rYVziP\nSRS/qWjCmJcKHb/c8i8WzmPs5GLlGrVS8e9AI1YuPtdvqRUa3fFbnyZPLJyHJjU7BzCZuGLxPCau\nXDzNhFULHb/UxFUGP6jGmNWaXRhgkfGjxw5+UM6E0cV/7hOWHlc4zU2PXKvBj2rOf564p+nr4NIr\nrNW2fAfjloeZmRVW6ZaHmVnP6yvYDdEhrjzMzKosindJd4IrDzOzKuurZuXR0TEPSVtK+k4n8zQz\nG85i4YKmQyeV3vKQ9BayNYc+APybbNE0MzNrRi91W0lal2yBu93JFpw7l2xC4jZl5Gdm1rUqOmBe\nVrfVnWSPwdwxIraMiG+TPW95UJJmSrpR0o0PzX+wpOKZmQ0T0dd86KCyKo/3kS0DfaWkH0iazuIP\nI2ooImZFxLSImLb6uCklFc/MbJjo62s+dFAplUdEXBgRuwFvIHs28uHASpK+J2m7gVObmVm/iL6m\nQyeVerdVRMyPiJ9GxE5kDzW6GTi6zDzNzLpKRVseHZvnERFzgVkpmJlZM3rpbiszM2uTit5t5crD\nzKzKOjz5r1muPMzMqszdVmZmVlhF17Zy5WFmVmERHvMwM7Oi3G1lZmaFudvKzMwKc8sDJK0APBkR\nTT/Q3cysp1V0nkdpy5NI2lzSVZIukPQWSbcBtwGPSZoxQDqvqmtm1q+iq+qW2fI4BTgOWB64Atg+\nIq6T9AbgHOC39RJFxCtLmEyfsp1bKGbW23pwkuDIiLgMQNLnI+I6gIi4U2pqdXYzM+vBAfP8O36h\nZp9bFGZmzejBymNDSfPIHgI1Jm2TXi9TYr5mZl2j5yYJRsSIss5tZtYz2tjykLQGcBawMlkP0KyI\nOFnSJOBcYCpwL/DB9BiNhkp9GJSZmS2h9t5ttQD4RES8CdgcOFjSm4BjgD9ExDrAH9LrAbnyMDOr\nsjY+STAiHomIm9L2s8AdwOrALsCZ6bAzgV0HO5crDzOzKivQ8sjPk0thZqPTSpoKvAW4Hlg5Ih5J\nux4l69YakJcnMTOrsgJjHvl5cgORtCxwPnB4RMzLT5+IiJA06B2xrjzMzKqszZMEJS1NVnH8JCIu\nSNGPSVo1Ih6RtCrw+GDncbeVmVmVtXHMQ1kT4zTgjoj4Rm7XRcC+aXtf4FeDnau0loektcn60f5Y\nE78F8GhE3F1W3mZmXaO9a1ZtAewNzJZ0S4o7DjgJOE/SR4D7gA8OdqIyu62+CRxbJ35e2rdTiXmb\nmXWHNs7ziIhrySZq1zO9yLnK7LZaOSJm10amuKmNEnlVXTOznIquqltm5TFhgH1jGu2IiFkRMS0i\npq0+bkoJxTIzG0baOObRTmVWHjdKOqA2UtL/AH8tMV8zs+5R0ZZHmWMehwO/lLQniyqLacAo4L0l\n5mtm1j16bVXdiHgMeLukbYD1U/RvIuKKsvI0M+s6vVZ59IuIK4Ery87HzKwrLeyxJdnNzKwNerXl\nYWZmS6DDA+HNcuVhZlZlbnmYmVlhMegCt0PClYeZWZW55WFmZoW58jAzs8J6ecBc0ooAETGnE/mZ\nmXWL6KvmmEdpa1spc4KkJ4C7gH9ImiPps2XlaWbWdRYuaD50UJkLIx5B9uCRTSJiUkRMBDYDtpB0\nRKNEXpLdzCynL5oPHVRm5bE3sHtE/Ls/IiLuAfYC9mmUyEuym5nlVHRJ9jLHPJaOiCdqIyNiTnoA\nu5mZDaYH77Z6ucV9ZmbWrwcnCW4oaV6deAHLlJivmVn36LWWR0SMKOvcZmY9o6K36nqSoJlZlfXy\nJEEzM2uRWx5mZlZULPCTBM3MrCh3W5mZWWHutjIzs8J67VZdMzNrg4q2PMpcVfeo3PYHavZ9qax8\nzcy6SvQ1HzqozIURd8ttH1uzb0ajRF5V18wspwdX1VWD7XqvX+FVdc3MFom+vqZDJ5VZeUSD7Xqv\nzcysnja2PCSdLulxSbfVxB8i6U5Jt0v6SjPF6sTCiALG5BZJ9MKIZmbNWtjWSYJnAKcAZ/VHSNoG\n2AXYMCJekrRSMyfywohmZlXWxrGMiLhG0tSa6IOAkyLipXTM482cq8xuKzMzW0LRF02HFq0LvEPS\n9ZKulrRJM4k8z8PMrMoKVAqSZgIzc1GzImLWIMlGApOAzYFNgPMkrRUx8FOoXHmYmVVZgbuoUkUx\nWGVR60HgglRZ3CCpD1gBmDNQIndbmZlVWfnzPC4EtgGQtC4wCnhisERueZiZVVkbB8wlnQNsDawg\n6UHgeOB04PR0++7LwL6DdVmBKw8zs0pr4jpe5Fy7N9i1V9FzufIwM6uyii6M6MrDzKzCYkE1l2Qv\nc1XdNcs6t5lZz+jBhREv7N+QdH6J+ZiZda++AqGDOrWq7lpNJ/KS7GZmr+jADPOWDNWquo0TeUl2\nM7NFKtptNVSr6kZEjC8xbzOz7lDN8XKvqmtmVmWd7o5qlm/VNTOrsl5reZiZ2ZJzy8PM2m/uHJi4\n4lCXwkoUC4a6BPW58jAbzlxxdD93W5mZWVHhysPMzApz5WFmZkW55WFmZoW58jAzs8KqWnmUuST7\nLpIOzr2+XtI9Kby/rHzNzLpKqPnQQU1XHpKulfRFSTMkLddEkqOAi3KvRwObkD0/96AB8vGqumZm\nSfQ1HzqpSMtjb+Au4L+BP6UL/P8b4PhREfFA7vW1EfFkRNwPjGuUyKvqmpktEn1qOnRS02MeEfFv\nSS8CL6ewDfDGAZJMrEn/8dxLz2wyM2tC38LOVgrNKtJtdTfZ0wFXBk4D1o+IGQMkuV7SAXXO81Hg\nhqIFNTPrRVXttipyt9W3gC2B3YG3AFdLuiYi7m5w/BHAhZL2AG5KcW8lG/vYtcXympn1lE53RzWr\nSLfVycDJkpYF9gdOAKYAdZ/bERGPA2+XtC2wXor+TURcsUQlNjPrIVHNRXWbrzwkfZ2s5bEs8Gfg\ns8D/DZYuVRauMMzMWjDsWx5kFcZXIuKxsgpjZmaLG/aVR0T8QtLOkv4rRV0dEReXVC4zM6M7uq1O\nBDYFfpKiDpX0tog4rpSSmZnZ8G95ADsAG0VkN4RJOhO4GXDlYWZWkujwsiPNKrow4gTgqbS9fJvL\nYmZmNRZWdJJgkcrjROBmSVcCAv4LOKaUUpmZGTDMWx6SBFwLbE62uCHA0RHxaFkFMzOzYT7mEREh\n6ZKI2IDFV8ptSNK3gYb3CUTEoc0V0cysd7XzbitJpwM7Ao9HxPop7qvATmRrFt4N7B8RTw92riKr\n6t4kaZPBD3vFjcBfU9g5t90f6vKS7GZmi7R5Vd0zgNo1CS8nW6vwzcA/gGObOVGRMY/NgD0l3QfM\nJxv3iJThq0TEmf3bkg7Pvx5IRMwCZgFMn7JdRe9wNjPrjL42jnlExDWSptbEXZZ7eR3Q1MP6ilQe\n7x5op6SJETG3wW5XAmZmLSgyYC5pJjAzFzUrfSFv1oeBc5s5sMgM8/sGOeQPwMbNns/MzAZXZMwj\n33NTlKRPAQtYNBF8QEXneQyYd01BnmVRi2OspHm54yIixrcxbzOzrtTObqtGJO1HNpA+PaK56qqd\nlcdiGUZEM885NzOzAfSVfKuupBnAUcBWEfF8s+naWXmYmVmbtbPlIekcYGtgBUkPAseT3V01Grg8\nm9LHdRFx4GDnKq3byszMllw7Z5hHxO51ok9r5VxNzfOQNELSnYMcNr2VApiZWWN9oaZDJzVVeUTE\nQuAuSWsOcMxTjfaZmVlrokDopCLdVhOB2yXdQDZJEICI2LntpTIzM6Azd1u1okjl8ZnSSmFmZnUN\n61V1ASLiakmvAdaJiN9LGguMKK9oZmbWN9QFaKDphRElHQD8Ajg1Ra0OXFhGoczMLBOo6dBJRbqt\nDiZ7hvn1ABHxT0krNTq4Zob5YrsYYIZ5fm2W1094I6uPm1KgiGZm3WXBcO+2Al6KiJfTJBIkjWTg\n53W0NMPcq+qamS3S6RZFs4o8z+NqSccBYyS9C/g5cHE5xTIzM8jGPJoNnVSk8jgGmAPMBj4KXBIR\nnyqlVGZmBnTHmMchEXEy8IP+CEmHpTgzMyvBsL/bCti3Ttx+bSqHmZnVUdVuq0FbHpJ2B/YAXivp\notyu5QAvSWJmVqKqDpg30231J+ARYAXg67n4Z4FbyyiUmZllSn6cR8sGrTzS42fvk3RNRFyd3yfp\ny8DRZRXOzKzX9VW05VFkzONddeK2b1dBzMzs1RYWCJ3UzJjHQcDHgNdJyndTLQf8sayCmZkZ9Kma\nLY9mxjx+ClwKnEg216Pfs36Gh5lZuaq6zMag3VYR8UxE3JseX7gGsG0aB1lK0mvrpZH0rKR5DcIc\nSddJ8pMHzcwGMWxv1e0n6XhgGvB64EfAKODHwBa1xw60rpWkEcD6wE/S/2Zm1kBV77YqMmD+XmBn\n0lMEI+JhsnGPQiJiYUT8Dfh2vf2SZkq6UdKND81/sOjpzcy6Sh9qOnRSkcrj5Yh45VG5ksYtScYR\ncWqD+FkRMS0ipnk5djPrdVV9hnmRyuM8SacCE9KDoX5Pbp0rMzNrvz41HzqpyGNov5aWYp9HNu7x\n2Yi4vLSSmZlZZRdGLLKqLqmycIVhZtYhCys6YN7MJMGWHidrZmZLbti2PFp9nKyZmS25YVt5mJnZ\n0Inh2m1lZmZDxy0PMzMrzJWHmZkVNmwXRjQzs6HT7kmCko6QdLuk2ySdI2mZVsrlysPMrMLauaqu\npNWBQ4FpEbE+MALYrZVylVZ5SFpjgH07lpWvmVk3KeFJgiOBMZJGAmOBh1spV5ktj8slTa2NlPRh\n4OQS8zUz6xpFuq3yq5KnMDN/roh4CPgacD/wCPBMRFzWSrnKrDyOBC6TtE5/hKRjgSOArRol8pLs\nZmaLFOm2yq9KnsKs/LkkTQR2AV4LrAaMk7RXK+UqrfKIiEuAg4BLJa0v6ZvATsB/RUTDWsFLspuZ\nLdLmJdnfCfw7IuZExH+AC4C3t1KuUgfMI+IPwP7AVcBaZI+wnVtmnmZm3aSPaDo04X5gc0ljJQmY\nDtzRSrlKm+eRW1BRwGiyQj6eCuwFFc3MmtDOSYIRcb2kXwA3AQuAm4FZA6eqr7TKwwsqmpktuXZP\nEoyI44Hjl/Q8nmFuZlZhVV2exJMEC3qKBUNdBKvx8uNV/fPqgLlzhroEVrJh/xhay0zyR1Y5o1bq\n4e9AE1cc6hJYyRZWdHUrXwnNzCqsqu1qVx5mZhXW5C24HefKw8yswqpZdbjyMDOrtKp2Ww3JSKOk\nw4ciXzOz4abNM8zbZqhuUzlyiPI1MxtW2ry2VdsMVeXR8I5kr6prZrZIOx8G1U5DVXk0rCS9qq6Z\n2SJR4F8ndWJhxFftAsaUla+ZWTdZUNH7rbwwoplZhVWz6vCtumZmleZJgmZmVlhV53m48jAzq7BO\nD4Q3y5WHmVmFueVhZmaFueVhZmaFueVhZmaF9YVbHmZmVpCfJGhmZoV5zMPMzArruTEPSRcNtD8i\ndi4rbzOzbtGLM8zfBjwAnANczwDLsOdJmgnMBHj9hDfilXXNrJdVtduqzCXZVwGOA9YHTgbeBTwR\nEVdHxNWNEnlJdjOzRXrueR4RsTAifhsR+wKbA/8CrpL08bLyNDPrNhHRdOikUgfMJY0GdgB2B6YC\n3wJ+WWaeZmbdpOfGPCSdRdZldQnwuYi4ray8zMy6Vc/dbQXsBcwHDgMOlV4ZLxcQETG+xLzNzLrC\nwopWH2U+SXCono9uZtY1Oj2W0Sxf4M3MKqyMu60kjZB0s6Rft1ouzzA3M6uwkuZ5HAbcAbQ8fOCW\nh5lZhfURTYdmSJpCdhfsD5ekXK48zMwqrMg8D0kzJd2YCzPrnPKbwFEs4Y1c7rYyM6uwIvM8ImIW\nMKvRfkk7Ao9HxF8lbb0k5XLlYWZWYW0e89gC2FnSe4BlgPGSfhwRexU9UZmTBD87wO6IiP8tK28z\ns27RzicJRsSxwLEAqeXxyVYqDih3zGN+nRDAR4CjGyXK99k9NP/BEotnZlZ9USB0UpmTBL/evy1p\nObJbwz4M/Az4+gDpXumzmz5lu2rOjjEz65AFJc0wj4irgKtaTV/2woiTgCOBPYEzgY0jYm6ZeZqZ\ndZOqzjAvc8zjq8D7yFoRG0TEc2XlZWbWraq6qm6ZYx6fAFYDPg08LGleCs9KmldivmZmXSMK/Osk\nL4xoZlZhPddtZWZmS66q3VauPMzMKswtDzMzK8wtDzMzK6zTA+HNcuVhZlZhC6PHHkNrZmZLrp1r\nW7VT6ZWHpGWAtdPLf0XEi2XnaWbWLXqu20rSSOBLZOtZ3QcIWEPSj4BPRcR/ysrbzKxbVLXlUeZE\nvq8Ck4DXRsRbI2Jj4HXABOBrjRJ5VV0zs0WqOsO8zMpjR+CAiHi2PyIi5gEHAe9plCgiZkXEtIiY\ntvq4KSUWz8ys+voimg6dVOaYR0Sd2S0RsVBSNdthZmYVU9UxjzJbHn+XtE9tpKS9gDtLzNfMrGtE\n9DUdOqnMlsfBwAWSPgz8NcVNA8YA7y0xXzOzrtFzM8wj4iFgM0nbAuul6Esi4g9l5Wlm1m16dpJg\nRFwBXFF2PmZm3cgLI5qZWWFVnefhysPMrMKqereVKw8zswpzt5WZmRXWc3dbmZnZknPLw8zMCvOA\nuZmZFdZzLY/0HI8DyZ7lMRs4LSIWlJWfmVk3quokwTLXtjqTbDmS2cD2wNebSeQl2c3MFunFVXXf\nFBEbAEg6DbihmUQRMQuYBTB9ynbVbK+ZmXVIL87zeOVJgRGxQFKJWZmZdadeHDDfUNK8tC1gTHot\nsmd9jC8xbzOzrlDVAfPSxjwiYkREjE9huYgYmdt2xWFm1oR2P4ZW0gxJd0n6l6RjWi2Xb9U1M6uw\ndrY8JI0AvgO8C3gQ+IukiyLi70XPVebdVmZmtoQiounQhE2Bf0XEPRHxMvAzYJfSC1aVAMysYppu\nycPlql4eLlf18mg1TZkBmAncmAsza/a/H/hh7vXewCkt5TXUb7bFD+jGKqbpljxcrurl4XJVL49W\n0wxlaGfl4W4rM7Pe8RCwRu71lBRXmCsPM7Pe8RdgHUmvlTQK2A24qJUTDde7rWZVNE235NFKml4u\nVy+/91bSdEseraYZMpFN2P448DtgBHB6RNzeyrmU+r3MzMya5m4rMzMrzJWHmZkV5srDzMwK69rK\nQ9IbJE2XtGxN/IwGx28qaZO0/SZJR0p6T8E8zyp4/JYpn+0a7N9M0vi0PUbS5yRdLOnLkpZvkOZQ\nSWvU29fg+FGS9pH0zvR6D0mnSDpY0tIDpFtL0iclnSzpG5IO7C+rmXW/YT9gLmn/iPhRTdyhwMHA\nHcBGwGER8au076aI2Ljm+OPJHlg1Ergc2Ay4kmz9l99FxBfr5Ft7e5uAbYArACJi5zppboiITdP2\nAamMvwS2Ay6OiJNqjr8d2DDdITELeB74BTA9xb+vTh7PAPOBu4FzgJ9HxJza43LH/yS977HA08Cy\nwAUpD0XEvnXSHArsCFwDvAe4OaV9L/CxiLiqUX5m3ULSShHx+FCXY8gM9YzHNsyYvL9O3Gxg2bQ9\nlWya/mHp9c0Njh9BdgGdB4xP8WOAWxvkexPwY2BrYKv0/yNpe6sGaW7Obf8FWDFtjwNm1zn+jnx+\nNftuaZQHWYtyO+A0YA7wW2BfYLk6x9+a/h8JPAaMSK81wHufnTtuLHBV2l6z3ufbCwFYqQN5TB7q\n99lCmZcHTgLuBJ4CniT7UncSMKHguS5tED8eOBE4G9ijZt93G6RZBfge2SKBk4ET0u/1ecCqdY6f\nVBMmA/cCE4FJQ/05D0UYFt1Wkm5tEGYDK9dJslREPAcQEfeSXdi3l/QNsotirQURsTAingfujoh5\nKe0LQKMHCE8D/gp8Cngmsm/bL0TE1RFxdYM0S0maKGky2cV3TspnPlDv+e63Sdo/bf9N0rT0eaxL\n7mFbNSIi+iLisoj4CLAa8F1gBnBPgzKNApYjqwj6u8NGAw27rVg0R2g0WWuFiLi/URpJy0s6SdKd\nkp6S9KSkO1LchAHyqUvSpXXixks6UdLZkvao2ffdBudZRdL3JH1H0mRJJ0iaLek8Sas2SDOpJkwG\nbkg/20l1jp+R215e0mnp9/enkur9/pI+lxXS9jRJ9wDXS7pP0lZ1jr9J0qclva7e+RrkMU3SlZJ+\nLGkNSZdLekbSXyS9pUGaZSV9XtLt6dg5kq6TtF+DbM4D5gJbR8SkiJhM1kKfm/bVnn/jBuGtZL0I\n9fyI7O/6fGA3SedLGp32bd4gzRnA34EHyHoZXiBrRf8f8P06xz9B9vfeH24EVif7Enljgzy621DX\nXs0Esm/EGwGvqQlTgYfrHH8FsFFN3EjgLGBhneOvB8am7aVy8ctT842/TtopwM+BU6jTCqo59l6y\nC/i/0/+czhQDAAAEA0lEQVSrpvhlqdOSSPmfQdYFdT1ZhXEPcDVZt1W9PBp+8+9/jzVxR6Rz3gcc\nCvwB+AHZt7DjG5znMODWdNydwP4pfkXgmgZpfgccDaySi1slxV3WIM3GDcJbgUfqHH8+2TfaXclm\nzZ4PjE776v4cyVplhwDHpPd0NNnyDYcAv2qQpi/9DPPhP/0/1zrH35Tb/iHwhfT7ewRwYYM8Zue2\nrwQ2SdvrUmc9pZT314D7yR75fASw2iC/jzeQddfuTnYRfX+Knw78uUGaXwH7pd/7I4HPAOsAZwJf\nqnP8XQPk/6p9wEKyv98r64QXGpznlprXnwL+SNY6aPRzz/cC3D/Q+VLcJ9Lvygb5z3ygz7fbw5AX\noKlCZt0vWzbY99M6cVPyF6mafVvUiRvd4NgV8r8sg5Rxh3p/PE2mHQu8doD944EN00Vz5UHOtW4L\n+a/Wf6EBJpAtnrbpIGnWS8e9ock8Cl1EUnyhC0knLiIpvtCFhMUrj9oyNsrjDmBk2r6uZl+9Ls58\nHu8ga20+mj6ruiu/DvLe634JAf5W8/ov6f+lgDvrHH8ZcFT+95ast+Bo4Pd1jr8NWKdB3g8M8Fkt\nVRO3H3A7cN9g7wP4wmCfb4rv/6L4DbKW+qu+KPRSGPICOPRGKHoRSfsLXUg6dRFJ+5q+kJA9dOfI\nVOn8m3SjStrXaFzpkPSZbUvWH38y2Xja54Cz6xz/qsqRbBxvBvCjBnn8mWxs7ANkLc9dU/xWNFgt\nFvgT6YscsDPZDSX9++q1JCYCXyZroc4lG/e4I8W9aqyA7AvJ6xvkvWuD+K8A76wTPwP4Z4M0nyeN\ni9bErw38YpDf5Z2B64BH2/k3MtzCkBfAoTdCzUXkqZqLyMQGaQpdSDp9EUnHDXohAY6vCf03SqwC\nnDVAuq2Bc8lugpgNXEL2vIaRdY79WQs/kw3JuhMvBd6QKqinySrbtzdI82ay7q65wLWkli5Zl+Wh\nDdK8AXhn7ecMzBjg+OnNHj9Imu1bSDNouchupll/sHJ1cxjyAjg4kMZMykxTZh41F5LKlKuTeTRK\nQzaOdhdwIdmY3y65ffVaS4WOT/GHlJ2mlXJ1exjyAjg4MMiNBu1I04k8qlquoXzvtHbbfNPHdypN\nK3l0exiuS7LbMCPp1ka7qH+7deE0ncijquWq6nun5rZ5SVsDv5D0GurfNl/0+E6laSWPrubKwzpl\nZeDdZH3leSIbhG1Hmk7kUdVyVfW9PyZpo4i4BSAinpO0I3A6sEEbju9Umlby6GquPKxTfk3W7L+l\ndoekq9qUphN5VLVcVX3v+1AzATYiFgD7SDq1Dcd3Kk0reXS1Yb+2lZmZdd6wWJ7EzMyqxZWHmZkV\n5srDzMwKc+VhZmaF/X+1WrRKse1/DAAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11afa4358>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4HEW9xvHvSyIhAUI2liBoEOG6gCCGReAKgktQwF0B\nWfUSQQUBfWRxAb0KuF5RXIiCgCyCggiKCrJeVMAISEDgKsgmW8IWdkzO7/7RdUgzzJzTPZme02fm\n/eSp5/RUd3XVzDnpmqrqqlZEYGZmVsYyI10AMzMbfVx5mJlZaa48zMysNFceZmZWmisPMzMrzZWH\nmZmV5sqjRiTdKGnrNtOGpJd3uEg9R9Jhkn5UwXk/KOmCTp+3ZBl+IOlzI1kG6x+uPGokIl4dEZfC\ncxeCx3PhGUmPjXARW5I0I1VgYyvM4whJp5Q4fmtJd+fjIuLIiPivTpctIk6NiLfk8q60Mpe0p6Qr\nGsqwT0T8d1V55vLeQ9JfJC2UdLekr+Z/75I+Lmlu+ps9sery2Mhw5VFT6UKwwmAATgd+NtLlqooy\n/nsEqqyAO2QCcAAwDdgU2Bb4VG7/PcCXgBO6XzTrmohwqEkAbgfe1CR+eeAxYKsh0gbw8rT9duBa\nYCFwF3BE7rhfA/s1pL0eeFfa3hz4M/Bo+rl5q/IBRwCnpO07UxkeT+H1Bd7vpcCXgT8ATwEvB1YH\nzgUeAv4B7J2OnQU8C/w7nf+vKX4v4Kb0+dwGfCT3mT0FDOTKtHq+zOm4HYEbgUdSeV7Z8H4/lT6f\nR4EzgOVavJc9gSvS9uXps3gi5fuBFL89cF3K64/AaxryOjjl9QwwFjgEuDW9t7/lfkevBJ4GFqfz\nP5LiTwS+lDvn3ukzfCh9pqs3/L3sA/w9lee7gNr8uz0IOK9J/JeAE0f6/5VDNcHf9EaH9wDzyS5K\nRTwB7A5MIqtI9pX0zrTvJGDXwQMlbQC8GPi1pClklcu3ganAN1P81AJ5viH9nBRZa+lPBcu6GzAb\nWBG4A/gpcDfZhf69wJGStomI3wJHAmek82+Q0j9AdlGeSFaR/I+kjSLiCWA74J5Y0oK7J5+xpHXJ\nWnQHACsD5wPnSVo2d9j7ySqutYDXkFUSQ4qIwc9ig5TvGZJeS/ZN/CNkn+1xwLmSxuWS7kz2+5oU\nEYvIKo7/BFYCvgCcIml6RNxEduH/Uzr/pMYySNoGOCqVf3rus83bHtg4va/3A29NaV8i6RFJLxnu\nvSZvIKuArY+48hgd9gBOjohCC5FFxKURMS8iBiLierIL5FZp97nAupLWSa93I7sgP0t24fp7RPwk\nIhZFxOnAzcAOHX03z3diRNyYLparAVsAB0fE0xFxHfAjsoqwqYj4dUTcGpnLgAvILrhFfAD4dURc\nGBH/Br4OjCdrfQ36dkTcExEPAecBG5Z+h5nZwHERcVVELI6Ik8haGJs15HVXRDyV3tvPUt4DEXEG\nWSthk4L5fRA4ISKuiYhngEOB10uakTvm6Ih4JCLuBC4ZfG8RcWdETErxQ5L0IWAm2WdnfcSVR82l\nb39bAyeXSLOppEskzZf0KNm31GkAEfE0WffLrmmMYWfgJynp6mTfUPPuIGuZVOWu3PbqwEMRkb8x\nYMj8JW0n6UpJD0l6BHgb6b0W8Lz3GxEDqTz5/O7LbT8JrFDw3I1eCnwyfaN/JJV1zVSGQfnPAkm7\nS7oud/x6tP/eHgcepIPvLbVmjwK2i4gFZdLa6OfKo/52A/4QEbeVSHMaWQtjzYhYCfgBoNz+k8i+\nmW4LPJnrYrqH7CKX9xLgX2n7CbLB0kGr5bbbXZ45n+4eYIqkFVvk/7w8UpfPWWTfeldN3Tfns+S9\nDlem571fSSK7oP+rZYr23QV8OX2jHwwTUutu0HPllfRS4IfAx4Gp6b3dQPvvbXmy7rKOvDdJs1L5\ndoiIeZ04p40urjzqb3eygdAyViT7Bv+0pE2AXfI7U2UxAHyDJa0OyC6860raRdJYSR8AXgX8Ku2/\nDthJ0oskzSQbkxg0P53zZYMRudt3ZxQpdETcRTaQfJSk5SS9BvgwMHh77v3AjNxdWcsC41LeiyRt\nB7wld8r7gamSVmqR5ZnA2yVtK+lFwCfJupL+WKS8w7if3GdBdqHdJ7UKJWl5SW9vqCjzlierIOYD\nSNqLrOWRP/8aDeMzeacDe0naMFWyRwJXRcTt7b+lTBpPORV4T0Rc3WT/WEnLAWOAMel3Wfc7yKwk\nVx41Jun1wBqUv0X3o8AX07yQz5NdJBudDKzPkgszEfEg2SDqJ8m6OD4NbJ/rkvgcsDbwMNkA7mm5\ntE+S7pxK3SybkX2Lv4Ny33Z3BmaQfXP+BXB4RPw+7Rv8HB6UdE3q3to/vb+HySrJc3NlupnsInpb\nKlO+i4iIuIXs5oHvAAvIxnZ2SOM/S+sI4KSU7/sjYi7Z3U/HprL+gyEG3yPib2SV+5/IKor1ye5K\nG3Qx2SD1fZJe0GWUPrPPkbXM7iX7ve1UpOBpwPzxIQbMP0c2iH9+bh7Sb3L7P0t2p9shZJ/vUynO\neogKjsFaj5G0OzA7IrasMI/PAvMj4riq8jCzkeHKow9JmkD2zfV7EVF4IN7MbJC7rfqMpLeS9aPf\nT67bycysDLc8zMysNLc8zMystFrfPrfR9C1LNYsmj5kw/EEvSLNcueOft5pEMVPa+JhXHhhT6vip\ni0tnwZTFA+XTUO5GpEnjnymdx4orPV3q+AlTy98ctewq5b83jVm13PzAZaa1ukO4NU2dXO74KUXn\nDOZMXrl0Ek1etdzxk6aXzmOZyasNf1CD8asXXUwgM3Fc+WvEpHHl54XetuBaDX9UMf9ecFvh6+CL\npr2sY/kOxy0PMzMrrdYtDzOzvjfQRrdCF7jyMDOrsyjfvdwNrjzMzOpsoJ6VR1fHPCRtKem73czT\nzGw0i8WLCoduqrzlkR6CswvwPuCfwNlV52lm1jP6qdsqPaFt5xQWkD0/QhHxxiryMzPrWTUdMK+q\n2+pmYBuyFVm3jIjvkD1veViSZkuaK2nugifvGz6BmVkvi4HioYuqqjzeTbYM9CWSfihpW57/MKKW\nImJORMyMiJnTJpSfNGRm1lMGBoqHLqqk8oiIcyJiJ+AVZM9GPgBYRdL3Jb1l6NRmZjYoYqBw6KZK\n77aKiCci4rSI2IHsoUbXAgdXmaeZWU+pacuja/M8IuJhYE4KZmZWRD/dbWVmZh1S07utXHmYmdVZ\nlyf/FeXKw8ysztxtZWZmpdV0bStXHmZmNRbhMQ8zMyvL3VZmZlaau63MzKw0tzxA0jTgwYgo/EB3\nM7O+VtN5HpUtTyJpM0mXSjpb0msl3QDcANwvadYQ6byqrpnZoJquqltly+NY4DBgJeBiYLuIuFLS\nK4DTgd82SxQRzy1hstH0Ld1CMbP+1oeTBMdGxAUAkr4YEVcCRMTNUqHV2c3MrA8HzPPv+KmGfW5R\nmJkV0YeVxwaSFpI9BGp82ia9Xq7CfM3MekbfTRKMiDFVndvMrG90sOUhaU3gZGBVsh6gORFxjKQp\nwBnADOB24P3pMRotVfowKDMzW0qdvdtqEfDJiHgVsBnwMUmvAg4BLoqIdYCL0ushufIwM6uzDj5J\nMCLujYhr0vZjwE3Ai4F3ACelw04C3jncuVx5mJnVWYmWR36eXAqzW51W0gzgtcBVwKoRcW/adR9Z\nt9aQvDyJmVmdlRjzyM+TG4qkFYCzgAMiYmF++kREhKRh74h15WFmVmcdniQo6UVkFcepEXF2ir5f\n0vSIuFfSdOCB4c7jbiszszrr4JiHsibG8cBNEfHN3K5zgT3S9h7AL4c7V2UtD0kvJ+tH+0ND/BbA\nfRFxa1V5m5n1jM6uWbUFsBswT9J1Ke4w4GjgTEkfBu4A3j/ciarstvoWcGiT+IVp3w4V5m1m1hs6\nOM8jIq4gm6jdzLZlzlVlt9WqETGvMTLFzWiVyKvqmpnl1HRV3Sorj0lD7BvfakdEzImImRExc9qE\n1SoolpnZKNLBMY9OqrLymCtp78ZISf8F/KXCfM3MekdNWx5VjnkcAPxC0gdZUlnMBJYF3lVhvmZm\nvaPfVtWNiPuBzSW9EVgvRf86Ii6uKk8zs57Tb5XHoIi4BLik6nzMzHrS4j5bkt3MzDqgX1seZma2\nFLo8EF6UKw8zszpzy8PMzEqLYRe4HRGuPMzM6swtDzMzK82Vh5mZldbPA+aSVgaIiPndyM/MrFfE\nQD3HPCpb20qZIyQtAG4B/k/SfEmfrypPM7Oes3hR8dBFVS6MeCDZg0c2jogpETEZ2BTYQtKBrRJ5\nSXYzs5yBKB66qMrKYzdg54j452BERNwG7Ars3iqRl2Q3M8up6ZLsVY55vCgiFjRGRsT89AB2MzMb\nTh/ebfVsm/vMzGxQH04S3EDSwibxAparMF8zs97Rby2PiBhT1bnNzPpGTW/V9SRBM7M66+dJgmZm\n1ia3PMzMrKxY5CcJmplZWe62MjOz0txtZWZmpfXbrbpmZtYBNW15VLmq7qdz2+9r2HdkVfmamfWU\nGCgeuqjKhRF3ym0f2rBvVqtEXlXXzCynD1fVVYvtZq+f41V1zcyWiIGBwqGbqqw8osV2s9dmZtZM\nB1sekk6Q9ICkGxri95N0s6QbJX21SLG6sTCigPG5RRK9MKKZWVGLOzpJ8ETgWODkwQhJbwTeAWwQ\nEc9IWqXIibwwoplZnXVwLCMiLpc0oyF6X+DoiHgmHfNAkXNV2W1lZmZLKQaicGjTusB/SrpK0mWS\nNi6SyPM8zMzqrESlIGk2MDsXNSci5gyTbCwwBdgM2Bg4U9LLIoZ+CpUrDzOzOitxF1WqKIarLBrd\nDZydKourJQ0A04D5QyVyt5WZWZ1VP8/jHOCNAJLWBZYFFgyXyC0PM7M66+CAuaTTga2BaZLuBg4H\nTgBOSLfvPgvsMVyXFbjyMDOrtQLX8TLn2rnFrl3LnsuVh5lZndV0YURXHmZmNRaL6rkke5Wr6r6k\nqnObmfWNPlwY8ZzBDUlnVZiPmVnvGigRuqhbq+q+rHAiL8luZvacLswwb8tIrarbOpGXZDczW6Km\n3VYjtapuRMTECvM2M+sN9Rwv96q6ZmZ11u3uqKJ8q66ZWZ31W8vDzMyWnlseZtZx8dACNGXaSBfD\nKhSLRroEzbnyMBvFXHH0AXdbmZlZWeHKw8zMSnPlYWZmZbnlYWZmpbnyMDOz0upaeVS5JPs7JH0s\n9/oqSbel8N6q8jUz6ymh4qGLClcekq6Q9GVJsyStWCDJp4Fzc6/HARuTPT933yHy8aq6ZmZJDBQP\n3VSm5bEbcAvwHuCP6QL/P0Mcv2xE3JV7fUVEPBgRdwLLt0rkVXXNzJaIARUO3VR4zCMi/inpaeDZ\nFN4IvHKIJJMb0n8893LlMoU0M+tXA4u7WykUVabb6laypwOuChwPrBcRs4ZIcpWkvZuc5yPA1WUL\nambWj+rabVXmbqtvA1sCOwOvBS6TdHlE3Nri+AOBcyTtAlyT4l5HNvbxzjbLa2bWV7rdHVVUmW6r\nY4BjJK0A7AUcAawBNH1uR0Q8AGwuaRvg1Sn61xFx8VKV2Mysj0Q9F9UtXnlI+gZZy2MF4E/A54H/\nHS5dqixcYZiZtWHUtzzIKoyvRsT9VRXGzMyeb9RXHhHxc0k7SnpDirosIs6rqFxmZkZvdFsdBWwC\nnJqi9pf0+og4rJKSmZnZ6G95AG8HNozIbgiTdBJwLeDKw8ysItHlZUeKKrsw4iTgobS9UofLYmZm\nDRbXdJJgmcrjKOBaSZcAAt4AHFJJqczMDBjlLQ9JAq4ANiNb3BDg4IjwyoVmZhUa1WMeERGSzo+I\n9Xn+SrktSfoO0PI+gYjYv1gRzcz6VyfvtpJ0ArA98EBErJfivgbsQLZm4a3AXhHxyHDnKrOq7jWS\nNh7+sOfMBf6Swo657cHQlJdkNzNbosOr6p4INK5JeCHZWoWvAf4POLTIicqMeWwKfFDSHcATZOMe\nkTJ8gYg4aXBb0gH510OJiDnAHICNpm9Z0zuczcy6Y6CDYx4RcbmkGQ1xF+ReXgkUelhfmcrjrUPt\nlDQ5Ih5usduVgJlZG8oMmEuaDczORc1JX8iL+hBwRpEDy8wwv2OYQy4CNip6PjMzG16ZMY98z01Z\nkj4DLGLJRPAhlZ3nMWTeDQV5jCUtjgmSFuaOi4iY2MG8zcx6Uie7rVqRtCfZQPq2EcWqq05WHs/L\nMCKKPOfczMyGMFDxrbqSZgGfBraKiCeLputk5WFmZh3WyZaHpNOBrYFpku4GDie7u2occGE2pY8r\nI2Kf4c5VWbeVmZktvU7OMI+InZtEH9/OuQrN85A0RtLNwxy2bTsFMDOz1gZChUM3Fao8ImIxcIuk\nlwxxzEOt9pmZWXuiROimMt1Wk4EbJV1NNkkQgIjYseOlMjMzoDt3W7WjTOXxucpKYWZmTY3qVXUB\nIuIySS8F1omI30uaAIyprmhmZjYw0gVoofDCiJL2Bn4OHJeiXgycU0WhzMwsE6hw6KYy3VYfI3uG\n+VUAEfF3Sau0OrhhhvnzdjHEDPP82ixrTlybaRNWK1FEM7Pesmi0d1sBz0TEs2kSCZLGMvTzOtqa\nYe5Vdc3Mluh2i6KoMs/zuEzSYcB4SW8GfgacV02xzMwMsjGPoqGbylQehwDzgXnAR4DzI+IzlZTK\nzMyA3hjz2C8ijgF+OBgh6RMpzszMKjDq77YC9mgSt2eHymFmZk3Utdtq2JaHpJ2BXYC1JJ2b27Ui\n4CVJzMwqVNcB8yLdVn8E7gWmAd/IxT8GXF9FoczMLFPx4zzaNmzlkR4/e4ekyyPisvw+SV8BDq6q\ncGZm/W6gpi2PMmMeb24St12nCmJmZi+0uETopiJjHvsCHwXWlpTvploR+ENVBTMzMxhQPVseRcY8\nTgN+AxxFNtdj0GN+hoeZWbXquszGsN1WEfFoRNyeHl+4JrBNGgdZRtJazdJIekzSwhZhvqQrJfnJ\ng2Zmwxi1t+oOknQ4MBP4D+DHwLLAKcAWjccOta6VpDHAesCp6aeZmbVQ17utygyYvwvYkfQUwYi4\nh2zco5SIWBwRfwW+02y/pNmS5kqau+DJ+8qe3syspwygwqGbylQez0bEc4/KlbT80mQcEce1iJ8T\nETMjYqaXYzezflfXZ5iXqTzOlHQcMCk9GOr35Na5MjOzzhtQ8dBNZR5D+/W0FPtCsnGPz0fEhZWV\nzMzMarswYplVdUmVhSsMM7MuWVzTAfMikwTbepysmZktvVHb8mj3cbJmZrb0Rm3lYWZmIydGa7eV\nmZmNHLc8zMysNFceZmZW2qhdGNHMzEZOpycJSjpQ0o2SbpB0uqTl2imXKw8zsxrr5Kq6kl4M7A/M\njIj1gDHATu2Uq7LKQ9KaQ+zbvqp8zcx6SQVPEhwLjJc0FpgA3NNOuapseVwoaUZjpKQPAcdUmK+Z\nWc8o022VX5U8hdn5c0XEv4CvA3cC9wKPRsQF7ZSrysrjIOACSesMRkg6FDgQ2KpVIi/Jbma2RJlu\nq/yq5CnMyZ9L0mTgHcBawOrA8pJ2badclVUeEXE+sC/wG0nrSfoWsAPwhoi4e4h0XpLdzCzp8JLs\nbwL+GRHzI+LfwNnA5u2Uq9IB84i4CNgLuBR4GdkjbB+uMk8zs14yQBQOBdwJbCZpgiQB2wI3tVOu\nyuZ55BZUFDCOrJAPpAJ7QUUzswI6OUkwIq6S9HPgGmARcC0wZ+hUzVVWeXhBRTOzpdfpSYIRcThw\n+NKexzPMzcxqrK7Lk3iSYEkPxzMjXQRr8OSDy450EUZMPLRgpItgFRv1j6G1zGSNG+kiWIMJU58d\n6SKMGE2ZNtJFsIotrunqVq48zMxqrK7dVq48zMxqrOAtuF3nysPMrMbqWXW48jAzq7W6dluNyN1W\nkg4YiXzNzEabDs8w75iRulX3oBHK18xsVOnw2lYdM1KVR8s7kr2qrpnZEp18GFQnjVTl0bKS9Kq6\nZmZLRIl/3dSNhRFfsAsYX1W+Zma9ZFFN77fywohmZjVWz6rDt+qamdWaJwmamVlpdZ3n4crDzKzG\nuj0QXpQrDzOzGnPLw8zMSnPLw8zMSnPLw8zMShsItzzMzKwkP0nQzMxK85iHmZmV1ndjHpLOHWp/\nROxYVd5mZr2iH2eYvx64CzgduIohlmHPkzQbmA2w5sS18cq6ZtbP6tptVeWS7KsBhwHrAccAbwYW\nRMRlEXFZq0Rekt3MbIm+e55HRCyOiN9GxB7AZsA/gEslfbyqPM3Mek1EFA7dVOmAuaRxwNuBnYEZ\nwLeBX1SZp5lZL+m7MQ9JJ5N1WZ0PfCEibqgqLzOzXtV3d1sBuwJPAJ8A9peeGy8XEBExscK8zcx6\nwuKaVh9VPklwpJ6PbmbWM7o9llGUL/BmZjVWxd1WksZIulbSr9otl2eYm5nVWEXzPD4B3AS0PXzg\nloeZWY0NEIVDEZLWILsL9kdLUy5XHmZmNVZmnoek2ZLm5sLsJqf8FvBplvJGLndbmZnVWJl5HhEx\nB5jTar+k7YEHIuIvkrZemnK58jAzq7EOj3lsAewo6W3AcsBESadExK5lT1TlJMHPD7E7IuK/q8rb\nzKxXdPJJghFxKHAoQGp5fKqdigOqHfN4okkI4MPAwa0S5fvsFjx5X4XFMzOrvygRuqnKSYLfGNyW\ntCLZrWEfAn4KfGOIdM/12W00fct6zo4xM+uSRRXNMI+IS4FL201f9cKIU4CDgA8CJwEbRcTDVeZp\nZtZL6jrDvMoxj68B7yZrRawfEY9XlZeZWa+q66q6VY55fBJYHfgscI+khSk8JmlhhfmamfWMKPGv\nm7wwoplZjfVdt5WZmS29unZbufIwM6sxtzzMzKw0tzzMzKy0bg+EF+XKw8ysxhZHnz2G1szMll4n\n17bqpMorD0nLAS9PL/8REU9XnaeZWa/ou24rSWOBI8nWs7oDELCmpB8Dn4mIf1eVt5lZr6hry6PK\niXxfA6YAa0XE6yJiI2BtYBLw9VaJvKqumdkSdZ1hXmXlsT2wd0Q8NhgREQuBfYG3tUoUEXMiYmZE\nzJw2YbUKi2dmVn8DEYVDN1U55hHRZHZLRCyWVM92mJlZzdR1zKPKlsffJO3eGClpV+DmCvM1M+sZ\nEQOFQzdV2fL4GHC2pA8Bf0lxM4HxwLsqzNfMrGf03QzziPgXsKmkbYBXp+jzI+KiqvI0M+s1fTtJ\nMCIuBi6uOh8zs17khRHNzKy0us7zcOVhZlZjdb3bypWHmVmNudvKzMxK67u7rczMbOm55WFmZqV5\nwNzMzErru5ZHeo7HPmTP8pgHHB8Ri6rKz8ysF9V1kmCVa1udRLYcyTxgO+AbRRJ5SXYzsyX6cVXd\nV0XE+gCSjgeuLpIoIuYAcwA2mr5lPdtrZmZd0o/zPJ57UmBELJJUYVZmZr2pHwfMN5C0MG0LGJ9e\ni+xZHxMrzNvMrCfUdcC8sjGPiBgTERNTWDEixua2XXGYmRXQ6cfQSpol6RZJ/5B0SLvl8q26ZmY1\n1smWh6QxwHeBNwN3A3+WdG5E/K3suaq828rMzJZSRBQOBWwC/CMibouIZ4GfAu+ovGB1CcDsOqbp\nlTxcrvrl4XLVL49201QZgNnA3FyY3bD/vcCPcq93A45tK6+RfrNtfkBz65imV/JwueqXh8tVvzza\nTTOSoZOVh7utzMz6x7+ANXOv10hxpbnyMDPrH38G1pG0lqRlgZ2Ac9s50Wi922pOTdP0Sh7tpOnn\ncvXze28nTa/k0W6aERPZhO2PA78DxgAnRMSN7ZxLqd/LzMysMHdbmZlZaa48zMysNFceZmZWWs9W\nHpJeIWlbSSs0xM9qcfwmkjZO26+SdJCkt5XM8+SSx2+Z8nlLi/2bSpqYtsdL+oKk8yR9RdJKLdLs\nL2nNZvtaHL+spN0lvSm93kXSsZI+JulFQ6R7maRPSTpG0jcl7TNYVjPrfaN+wFzSXhHx44a4/YGP\nATcBGwKfiIhfpn3XRMRGDccfTvbAqrHAhcCmwCVk67/8LiK+3CTfxtvbBLwRuBggInZskubqiNgk\nbe+dyvgL4C3AeRFxdMPxNwIbpDsk5gBPAj8Htk3x726Sx6PAE8CtwOnAzyJifuNxueNPTe97AvAI\nsAJwdspDEbFHkzT7A9sDlwNvA65Nad8FfDQiLm2Vn1mvkLRKRDww0uUYMSM947EDMybvbBI3D1gh\nbc8gm6b/ifT62hbHjyG7gC4EJqb48cD1LfK9BjgF2BrYKv28N21v1SLNtbntPwMrp+3lgXlNjr8p\nn1/Dvuta5UHWonwLcDwwH/gtsAewYpPjr08/xwL3A2PSaw3x3ufljpsAXJq2X9Ls8+2HAKzShTym\njvT7bKPMKwFHAzcDDwEPkn2pOxqYVPJcv2kRPxE4CvgJsEvDvu+1SLMa8H2yRQKnAkekv+szgelN\njp/SEKYCtwOTgSkj/TmPRBgV3VaSrm8R5gGrNkmyTEQ8DhARt5Nd2LeT9E2yi2KjRRGxOCKeBG6N\niIUp7VNAqwcIzwT+AnwGeDSyb9tPRcRlEXFZizTLSJosaSrZxXd+yucJoNnz3W+QtFfa/qukmenz\nWJfcw7YaREQMRMQFEfFhYHXge8As4LYWZVoWWJGsIhjsDhsHtOy2YskcoXFkrRUi4s5WaSStJOlo\nSTdLekjSg5JuSnGThsinKUm/aRI3UdJRkn4iaZeGfd9rcZ7VJH1f0nclTZV0hKR5ks6UNL1FmikN\nYSpwdfrdTmly/Kzc9kqSjk9/v6dJavb3S/pcpqXtmZJuA66SdIekrZocf42kz0pau9n5WuQxU9Il\nkk6RtKakCyU9KunPkl7bIs0Kkr4o6cZ07HxJV0ras0U2ZwIPA1tHxJSImErWQn847Ws8/0YtwuvI\nehGa+THZ/+uzgJ0knSVpXNq3WYs0JwJ/A+4i62V4iqwV/b/AD5ocv4Ds//tgmAu8mOxL5NwWefS2\nka69igSyb8QbAi9tCDOAe5ocfzGwYUPcWOBkYHGT468CJqTtZXLxK9Hwjb9J2jWAnwHH0qQV1HDs\n7WQX8H+mn9NT/Ao0aUmk/E8k64K6iqzCuA24jKzbqlkeLb/5D77HhrgD0znvAPYHLgJ+SPYt7PAW\n5/kEcH1sxyxiAAADzUlEQVQ67mZgrxS/MnB5izS/Aw4GVsvFrZbiLmiRZqMW4XXAvU2OP4vsG+07\nyWbNngWMS/ua/h7JWmX7AYek93Qw2fIN+wG/bJFmIP0O8+Hfg7/XJsdfk9v+EfCl9Pd7IHBOizzm\n5bYvATZO2+vSZD2llPfXgTvJHvl8ILD6MH+PV5N11+5MdhF9b4rfFvhTizS/BPZMf/cHAZ8D1gFO\nAo5scvwtQ+T/gn3AYrL/v5c0CU+1OM91Da8/A/yBrHXQ6vee7wW4c6jzpbhPpr+V9fOf+VCfb6+H\nES9AoUJm3S9btth3WpO4NfIXqYZ9WzSJG9fi2Gn5P5Zhyvj2Zv95CqadAKw1xP6JwAbpornqMOda\nt438Vx+80ACTyBZP22SYNK9Ox72iYB6lLiIpvtSFpBsXkRRf6kLC8yuPxjK2yuMmYGzavrJhX7Mu\nznwe/0nW2rwvfVZNV34d5r03/RIC/LXh9Z/Tz2WAm5scfwHw6fzfLVlvwcHA75scfwOwTou87xri\ns1qmIW5P4EbgjuHeB/Cl4T7fFD/4RfGbZC31F3xR6Kcw4gVw6I9Q9iKS9pe6kHTrIpL2Fb6QkD10\n56BU6fyTdKNK2tdqXGm/9JltQ9YffwzZeNoXgJ80Of4FlSPZON4s4Mct8vgT2djY+8hanu9M8VvR\nYrVY4I+kL3LAjmQ3lAzua9aSmAx8hayF+jDZuMdNKe4FYwVkX0j+o0Xe72wR/1XgTU3iZwF/b5Hm\ni6Rx0Yb4lwM/H+ZveUfgSuC+Tv4fGW1hxAvg0B+h4SLyUMNFZHKLNKUuJN2+iKTjhr2QAIc3hMEb\nJVYDTh4i3dbAGWQ3QcwDzid7XsPYJsf+tI3fyQZk3Ym/AV6RKqhHyCrbzVukeQ1Zd9fDwBWkli5Z\nl+X+LdK8AnhT4+cMzBri+G2LHj9Mmu3aSDNsuchupllvuHL1chjxAjg4kMZMqkxTZR4NF5LalKub\nebRKQzaOdgtwDtmY3zty+5q1lkodn+L3qzpNO+Xq9TDiBXBwYJgbDTqRpht51LVcI/neae+2+cLH\ndytNO3n0ehitS7LbKCPp+la7aH67dek03cijruWq63un4bZ5SVsDP5f0UprfNl/2+G6laSePnubK\nw7plVeCtZH3leSIbhO1Emm7kUddy1fW93y9pw4i4DiAiHpe0PXACsH4Hju9Wmnby6GmuPKxbfkXW\n7L+ucYekSzuUpht51LVcdX3vu9MwATYiFgG7SzquA8d3K007efS0Ub+2lZmZdd+oWJ7EzMzqxZWH\nmZmV5srDzMxKc+VhZmal/T8LHYLYoWCG7QAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x120cd37b8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4HEW9//H3hwSyACGbssgSEbioIIthEfSCgBpkdQdk\n1UvEBRT0YXED/anggj9xJwoCoggKIiooKJsbIAISELgCsihbgEDCJibne//oOqQzzJzTPZme02fm\n88pTT3qqu7pq5pzTNVXVVa2IwMzMrIzlRroAZmY2+rjyMDOz0lx5mJlZaa48zMysNFceZmZWmisP\nMzMrzZVHjUi6WdL2baYNSet1uEg9R9JHJX23gvO+U9LFnT5vyTJ8W9InRrIM1j/keR71JOnbwL65\nqOWBZyNi5RbHB7B+RNzejfI1yX8G8A9g+YhYVFEexwHrRcS+wx2bjt8eODMi1qyiPMPkXenPQ9KB\nwP9ExKurOP8weR8AHAasDywAfgh8NCIWSRoHfBPYCZgK3AEcExEXdbucVi23PGoqIg6JiJUGA3AW\n8OORLldVlPHvIyBp7EiXYRgTgQ8B04GtgB2Bj6R9Y4F7ge2AVYCPA+ekLxfWSyLCoSYBuAvYqUn8\nisBCYLsh0gbZt3KAXYDryb4V3gsclzvul8ChDWlvBN6UtrcB/gw8nv7fplX5gOPIvtkD3JPK8EQK\nryrwfi8HPgv8AXgaWA9YA7gAeBS4HTg4HTsLeBb4Tzr/X1P8QcAt6fO5E3hP7jN7GhjIlWmNfJnT\ncbsDNwOPpfK8tOH9fiR9Po8DZwPjW7yXA4Hfp+0r02fxZMr3HSl+V+CGlNcfgVc05HVUyuvfZBfh\no8m+uS8E/pb7Gb0UeAZYnM7/WIo/DfhM7pwHp8/w0fSZrtHw+3II8PdUnm+QeiLa+L09Avj5EPtv\nBN4y0n9fDp0NI14Ah9wPo3XlsX+6MLb842bpymN7YGOyluUrgAeBPdO+twNX59JtAjwCrEDWzTAf\n2C9dvPZOr6c1Kx9LVx4zUhnGlni/l5NVOi9P+S2fLrzfBMYDmwLzgB0a88udYxfgJYDIvu0+BWye\n+xz+2XB8vswbkF3gX5fyPjJdbFfIvd9ryCqdqWSV1CEt3suBpMqj8eeRXm8GPET2TX0McEA6/7hc\nXjcAawETUtzbUt7LAe9IZV29WX4p7jRS5QHsADwMbA6MA74GXNlQvl8Ak4G10+c8K+1bm6xCWbvg\nz/F84IQW+1Ylq+g2HOm/L4fOBncTjA4HAGdE+mscTkRcHhFzI2IgIm4k6/LaLu2+ANhA0vrp9X7A\n2RHxLNmF+O8R8f2IWBQRZwG3Art19N0s7bSIuDmycZLVgG2BoyLimYi4AfguWeXZVET8MiLuiMwV\nwMXAawrm/Q7glxFxSUT8B/gSMIGs9TXoqxFxX0Q8CvycrEJrx2zg5Ii4OiIWR8TpZC2MrRvyujci\nnk7v7ccp74GIOJuslbBlwfzeCZwaEddFxL+BY4BXNXQfnRARj0XEPcBlg+8tIu6JiMkpfkiS3gXM\nJPvsGvctD/wAOD0ibi1YbhslXHnUnKS1yb5Bn1EizVaSLpM0T9LjZN0T0wEi4hmy7pd90xjD3sD3\nU9I1gLsbTnc38KJlehNDuze3vQbwaEQsLJq/pJ0lXSXpUUmPAW8kvdcClnq/ETGQypPP74Hc9lPA\nSgXP3Wgd4MOSHhsMZK2MNXLH5D8LJO0v6Ybc8RvR/nt7gqyF2bH3JmlP4Hhg54h4uGHfcmS/V88C\nHyhzXhsdXHnU337AHyLizhJpfkjWwlgrIlYBvk3WrTPodLJvpjsCT0XEn1L8fWQXuby1gX+l7SfJ\nBksHrZbbbve2vXy6+4CpkvJ3lOXzXyqPdGfPuWTfeleNiMnAhSx5r8OVaan3K0lkF/R/tUzRvnuB\nz6Zv9INhYmrdDXquvJLWAb5DduGdlt7bTbT/3lYEptGh9yZpVirfbhExt2GfgFPIuqzeklp11mNc\nedTf/mR92WWsTPYN/hlJWwL75HemymIAOJElrQ7ILrwbSNpH0lhJ7wBeRtY3Dlmf/F6Slpc0E3hr\nLu28dM51ByMkzUjzT2YUKXRE3Es2kHy8pPGSXgG8GzgzHfIgMCN3V9YKZP3584BFknYGXp875YPA\nNEmrtMjyHGAXSTumLpYPk3Ul/bFIeYfxILnPguxCe0hqFUrSipJ2aago81YkqyDmAUg6iKzlkT//\nmpJWaJH+LOAgSZumSvZzZGNdd7X/ljKSdiDrjnpLRFzT5JBvkQ3q7zbYBWe9x5VHjUl6FbAm5W/R\nfR/waUkLgU+SXSQbnUE2qD54YSYiHiG7I+jDZF0cRwK75rokPkE2OD0f+BRZC2cw7VOkO6dSN8vW\nZN/i76bct929yQbf7wN+ChwbEb9J+wY/h0ckXZe6tw5L728+WSV5Qa5Mt5JdRO9MZcp3ERERt5HN\npfka2eDybmQXvGdLlLeV44DTU75vj4hrye5++noq6+1kg95NRcTfyCr3P5FVFBuT3ZU26FKyu8Qe\nkPRwk/S/Ift5nQvcT/Zz26tIwSWtLemJ1GXazCfIbsO9MB33hKSLUtp1gPeQjZ88kNv/ziJ52+jh\nSYJ9StL+wOyocJKZpI8D8yLi5KryMLOR4cqjD0maSPbN9ZsRUXgg3sxskLut+oykN5D1oz9IrtvJ\nzKwMtzzMzKw0tzzMzKy0Wi/Atu70zUo1iyYvv2LpPKaMmTj8QUsdP758HhpXOs3Ukj+aFwyMKZ3H\ntMWlkzB18UC54yl/49LkCf8udfzKqzxTOo+J08qXa4UXlvuuNWbV8vMJl5ve6q7i5jRtSuk8NLXo\nPMOcKS8ol8eUVUtnocmrl06z3JTVhj8oZ8IaRRcfWGLSuHLXCIBHF/5dwx9VzH8evrPwdXD56et2\nLN/huOVhZmal1brlYWbW9wba6CLoAlceZmZ1FuW6irvFlYeZWZ0N1LPy6OqYh6RXS/pGN/M0MxvN\nYvGiwqGbKm95SNqMbM2ht5E94/q8qvM0M+sZ/dRtJWkDsgXu9iZbcO5ssgmJr60iPzOzntVnA+a3\nAr8jW5H1dgBJhxdJKGk22VPXmLbimkwa38Y96WZmvaKmLY+qxjzeTLYM9GWSviNpR5Z+GFFLETEn\nImZGxExXHGbW9wYGiocuqqTyiIjzI2IvYEOyZyN/CHihpG9Jev3Qqc3MbFDEQOHQTZXebRURT0bE\nDyNiN7KHGl0PHFVlnmZmPaWmLY+uzfOIiPnAnBTMzKyImo55eJKgmVmd9dndVmZm1gldnvxXlCsP\nM7M6c7eVmZmVVtO1rVx5mJnVWITHPMzMrCx3W5mZWWnutjIzs9Lc8gBJ04FHIqLwA93NzPpaTed5\nVLY8iaStJV0u6TxJm0m6CbgJeFDSrCHSzZZ0raRrFzzzcFXFMzMbHWKgeOiiKlseXwc+CqwCXArs\nHBFXSdoQOAv4VbNEEfHcEibrTt/MLRQz6299OElwbERcDCDp0xFxFUBE3CoVWp3dzMz6cMA8/46f\nbtjnFoWZWRF9WHlsImkB2UOgJqRt0uvxFeZrZtYz+m6SYESMqercZmZ9o4MtD0lrAWcAq5L1AM2J\niJMkTQXOBmYAdwFvT4/RaKnSh0GZmdky6uzdVouAD0fEy4CtgfdLehlwNPDbiFgf+G16PSRXHmZm\nddbBJwlGxP0RcV3aXgjcArwI2AM4PR12OrDncOdy5WFmVmclWh75eXIpzG51WkkzgM2Aq4FVI+L+\ntOsBsm6tIXl5EjOzOisx5pGfJzcUSSsB5wIfiogF+ekTERGShr0j1pWHmVmddXiSoKTlySqOH0TE\neSn6QUmrR8T9klYHHhruPO62MjOrsw6OeShrYpwC3BIRX87tugA4IG0fAPxsuHNV1vKQtB5ZP9of\nGuK3BR6IiDuqytvMrGd0ds2qbYH9gLmSbkhxHwVOAM6R9G7gbuDtw52oym6rrwDHNIlfkPbtVmHe\nZma9oYPzPCLi92QTtZvZscy5quy2WjUi5jZGprgZrRJ5VV0zs5yarqpbZeUxeYh9E1rtiIg5ETEz\nImZOGj+9gmKZmY0iHRzz6KQqK49rJR3cGCnpf4C/VJivmVnvqGnLo8oxjw8BP5X0TpZUFjOBFYA3\nVZivmVnv6LdVdSPiQWAbSa8FNkrRv4yIS6vK08ys5/Rb5TEoIi4DLqs6HzOznrS4z5ZkNzOzDujX\nloeZmS2DLg+EF+XKw8ysztzyMDOz0mLYBW5HhCsPM7M6c8vDzMxKc+VhZmal9fOAuaQXAETEvG7k\nZ2bWK2KgnmMela1tpcxxkh4GbgP+V9I8SZ+sKk8zs56zeFHx0EVVLox4ONmDR7aIiKkRMQXYCthW\n0uGtEnlJdjOznIEoHrqoyspjP2DviPjHYERE3AnsC+zfKpGXZDczy6npkuxVjnksHxHPazpExLz0\nAHYzMxtOH95t9Wyb+8zMbFAfThLcRNKCJvECxleYr5lZ7+i3lkdEjKnq3GZmfaOmt+p6kqCZWZ31\n8yRBMzNrk1seZmZWVizykwTNzKwsd1uZmVlp7rYyM7PS+u1WXTMz64CatjyqXFX3yNz22xr2fa6q\nfM3MekoMFA9dVOXCiHvlto9p2DerVSKvqmtmltOHq+qqxXaz18/xqrpmZkvEwEDh0E1VVh7RYrvZ\nazMza6aDLQ9Jp0p6SNJNDfGHSrpV0s2SvlCkWN1YGFHAhNwiiV4Y0cysqMUdnSR4GvB14IzBCEmv\nBfYANomIf0t6YZETeWFEM7M66+BYRkRcKWlGQ/R7gRMi4t/pmIeKnKvKbiszM1tGMRCFQ5s2AF4j\n6WpJV0jaokgiz/MwM6uzEpWCpNnA7FzUnIiYM0yyscBUYGtgC+AcSetGDP0UKlceZmZ1VuIuqlRR\nDFdZNPoncF6qLK6RNABMB+YNlcjdVmZmdVb9PI/zgdcCSNoAWAEYdpKdWx5mZnXWwQFzSWcB2wPT\nJf0TOBY4FTg13b77LHDAcF1W4MrDzKzWClzHy5xr7xa79i17LlceZmZ1VtOFEV15mJnVWCyq55Ls\nVa6qu3ZV5zYz6xt9uDDi+YMbks6tMB8zs941UCJ0UbdW1V23cCIvyW5m9pwuzDBvy0itqts6kZdk\nNzNboqbdViO1qm5ExKQK8zYz6w31HC/3qrpmZnXW7e6oonyrrplZnfVby8PMzJadWx5m1nHxyHw0\nbcpIF8MqFItGugTNufIwG8VccfQBd1uZmVlZ4crDzMxKc+VhZmZlueVhZmalufIwM7PS6lp5VLkk\n+x6S3p97fbWkO1N4a1X5mpn1lFDx0EWFKw9Jv5f0WUmzJK1cIMmRwAW51+OALcien/veIfLxqrpm\nZkkMFA/dVKblsR9wG/AW4I/pAv//hzh+hYi4N/f69xHxSETcA6zYKpFX1TUzWyIGVDh0U+Exj4j4\nh6RngGdTeC3w0iGSLDV7KSI+kHv5gjKFNDPrVwOLu1spFFWm2+oOsqcDrgqcAmwUEbOGSHK1pIOb\nnOc9wDVlC2pm1o/q2m1V5m6rrwKvBvYGNgOukHRlRNzR4vjDgfMl7QNcl+JeSTb2sWeb5TUz6yvd\n7o4qqky31UnASZJWAg4CjgPWBJo+tyMiHgK2kbQD8PIU/cuIuHSZSmxm1keinovqFq88JJ1I1vJY\nCfgT8Engd8OlS5WFKwwzszaM+pYHWYXxhYh4sKrCmJnZ0kZ95RERP5G0u6T/TlFXRMTPKyqXmZnR\nG91WxwNbAj9IUYdJelVEfLSSkpmZ2ehveQC7AJtGZDeESToduB5w5WFmVpHo8rIjRZVdGHEy8Gja\nXqXDZTEzswaLazpJsEzlcTxwvaTLAAH/DRxdSanMzAwY5S0PSQJ+D2xNtrghwFER8UBVBTMzs1E+\n5hERIenCiNiYpVfKbUnS14CW9wlExGHFimhm1r86ebeVpFOBXYGHImKjFPdFYDeyNQvvAA6KiMeG\nO1eZVXWvk7TF8Ic951rgLynsntseDE15SXYzsyU6vKruaUDjmoSXkK1V+Argf4FjipyozJjHVsA7\nJd0NPEk27hEpw+eJiNMHtyV9KP96KBExB5gDsO70zWp6h7OZWXcMdHDMIyKulDSjIe7i3MurgEIP\n6ytTebxhqJ2SpkTE/Ba7XQmYmbWhzIC5pNnA7FzUnPSFvKh3AWcXObDMDPO7hznkt8DmRc9nZmbD\nKzPmke+5KUvSx4BFLJkIPqSy8zyGzLuhIAtZ0uKYKGlB7riIiEkdzNvMrCd1stuqFUkHkg2k7xhR\nrLrqZOWxVIYRUeQ552ZmNoSBim/VlTQLOBLYLiKeKpquk5WHmZl1WCdbHpLOArYHpkv6J3As2d1V\n44BLsil9XBURhwx3rsq6rczMbNl1coZ5ROzdJPqUds5VaJ6HpDGSbh3msB3bKYCZmbU2ECocuqlQ\n5RERi4HbJK09xDGPttpnZmbtiRKhm8p0W00BbpZ0DdkkQQAiYveOl8rMzIDu3G3VjjKVxycqK4WZ\nmTU1qlfVBYiIKyStA6wfEb+RNBEYU13RzMxsYKQL0ELhhRElHQz8BDg5Rb0IOL+KQpmZWSZQ4dBN\nZbqt3k/2DPOrASLi75Je2OrghhnmS+1iiBnm+bVZpq24JpPGTy9RRDOz3rJotHdbAf+OiGfTJBIk\njWXo53W0NcPcq+qamS3R7RZFUWWe53GFpI8CEyS9Dvgx8PNqimVmZpCNeRQN3VSm8jgamAfMBd4D\nXBgRH6ukVGZmBvTGmMehEXES8J3BCEkfTHFmZlaBUX+3FXBAk7gDO1QOMzNroq7dVsO2PCTtDewD\nvFjSBbldKwNeksTMrEJ1HTAv0m31R+B+YDpwYi5+IXBjFYUyM7NMxY/zaNuwlUd6/Ozdkq6MiCvy\n+yR9HjiqqsKZmfW7gZq2PMqMebyuSdzOnSqImZk93+ISoZuKjHm8F3gf8BJJ+W6qlYE/VFUwMzOD\nAdWz5VFkzOOHwEXA8WRzPQYt9DM8zMyqVddlNobttoqIxyPirvT4wrWAHdI4yHKSXtwsjaSFkha0\nCPMkXSXJTx40MxvGqL1Vd5CkY4GZwH8B3wNWAM4Etm08dqh1rSSNATYCfpD+NzOzFup6t1WZAfM3\nAbuTniIYEfeRjXuUEhGLI+KvwNea7Zc0W9K1kq5d8MzDZU9vZtZTBlDh0E1lKo9nI+K5R+VKWnFZ\nMo6Ik1vEz4mImREx08uxm1m/q+szzMtUHudIOhmYnB4M9Rty61yZmVnnDah46KYyj6H9UlqKfQHZ\nuMcnI+KSykpmZma1XRixzKq6pMrCFYaZWZcsrumAeZFJgm09TtbMzJbdqG15tPs4WTMzW3ajtvIw\nM7ORE6O128rMzEaOWx5mZlaaKw8zMytt1C6MaGZmI6fTkwQlHS7pZkk3STpL0vh2yuXKw8ysxjq5\nqq6kFwGHATMjYiNgDLBXO+WqrPKQtNYQ+3atKl8zs15SwZMExwITJI0FJgL3tVOuKlsel0ia0Rgp\n6V3ASRXma2bWM8p0W+VXJU9hdv5cEfEv4EvAPcD9wOMRcXE75aqy8jgCuFjS+oMRko4BDge2a5XI\nS7KbmS1Rptsqvyp5CnPy55I0BdgDeDGwBrCipH3bKVdllUdEXAi8F7hI0kaSvgLsBvx3RPxziHRe\nkt3MLOnwkuw7Af+IiHkR8R/gPGCbdspV6YB5RPwWOAi4HFiX7BG286vM08yslwwQhUMB9wBbS5oo\nScCOwC3tlKuyeR65BRUFjCMr5EOpwF5Q0cysgE5OEoyIqyX9BLgOWARcD8wZOlVzlVUeXlDRzGzZ\ndXqSYEQcCxy7rOfxDHMzsxqr6/IkniRY0vzFz4x0EazBwsfbmiDbE+IRDyH2ulH/GFrLTBnTvxeq\nulp5lf6t0DVtykgXwSq2uKarW7nyMDOrsbp2W7nyMDOrsYK34HadKw8zsxqrZ9XhysPMrNbq2m01\nIndbSfrQSORrZjbadHiGeceM1K26R4xQvmZmo0qH17bqmJGqPFrekexVdc3Mlujkw6A6aaQqj5aV\npFfVNTNbIkr866ZuLIz4vF3AhKryNTPrJYtqer+VF0Y0M6uxelYdvlXXzKzWPEnQzMxKq+s8D1ce\nZmY11u2B8KJceZiZ1ZhbHmZmVppbHmZmVppbHmZmVtpAuOVhZmYl+UmCZmZWmsc8zMystL4b85B0\nwVD7I2L3qvI2M+sV/TjD/FXAvcBZwNUMsQx7nqTZwGyAaSuuiVfWNbN+1o/dVqsBrwP2BvYBfgmc\nFRE3D5UoIuYAcwDWnb5ZPT81M7MuqWu3VWXP84iIxRHxq4g4ANgauB24XNIHqsrTzKzXRETh0E2V\nDphLGgfsQtb6mAF8FfhplXmamfWSvhvzkHQGsBFwIfCpiLipqrzMzHpVXbutqmx57As8CXwQOEx6\nbrxcQETEpArzNjPrCYtrWn1U+STBkXo+uplZz+j2WEZRvsCbmdXYQIlQlKQxkq6X9It2y+UZ5mZm\nNVbRPI8PArcAbQ8fuOVhZlZjA0ThUISkNcnugv3uspTLlYeZWY2Vmechabaka3NhdpNTfgU4kmW8\nkcvdVmZmNVZmnkd+hY5mJO0KPBQRf5G0/bKUy5WHmVmNdXjMY1tgd0lvBMYDkySdGRH7lj1RlZME\nPznE7oiI/1dV3mZmvaKTTxKMiGOAYwBSy+Mj7VQcUO2Yx5NNQgDvBo5qlSjfZ7fgmYcrLJ6ZWf1F\nidBNVU4SPHFwW9LKZLeGvQv4EXDiEOm8qq6ZWbKoohnmEXE5cHm76ateGHEqcATwTuB0YPOImF9l\nnmZmvaSuM8yrHPP4IvBmslbExhHxRFV5mZn1qrquqlvlmMeHgTWAjwP3SVqQwkJJCyrM18ysZ0SJ\nf93khRHNzGqs77qtzMxs2dW128qVh5lZjbnlYWZmpbnlYWZmpXV7ILwoVx5mZjW2OPrsMbRmZrbs\nOrm2VSdVXnlIGg+sl17eHhHPVJ2nmVmv6LtuK0ljgc+RrWd1NyBgLUnfAz4WEf+pKm8zs15R15ZH\nlRP5vghMBV4cEa+MiM2BlwCTgS+1SuRVdc3MlqjrDPMqK49dgYMjYuFgREQsAN4LvLFVooiYExEz\nI2LmpPHTKyyemVn9DUQUDt1U5ZhHRJPZLRGxWFI922FmZjVT1zGPKlsef5O0f2OkpH2BWyvM18ys\nZ0QMFA7dVGXL4/3AeZLeBfwlxc0EJgBvqjBfM7Oe0XczzCPiX8BWknYAXp6iL4yI31aVp5lZr+nb\nSYIRcSlwadX5mJn1Ii+MaGZmpdV1nocrDzOzGqvr3VauPMzMaszdVmZmVlrf3W1lZmbLzi0PMzMr\nzQPmZmZWWt+1PNJzPA4he5bHXOCUiFhUVX5mZr2orpMEq1zb6nSy5UjmAjsDJxZJ5CXZzcyW6MdV\ndV8WERsDSDoFuKZIooiYA8wBWHf6ZvVsr5mZdUk/zvN47kmBEbFIUoVZmZn1pn4cMN9E0oK0LWBC\nei2yZ31MqjBvM7OeUNcB88rGPCJiTERMSmHliBib23bFYWZWQKcfQytplqTbJN0u6eh2y+Vbdc3M\naqyTLQ9JY4BvAK8D/gn8WdIFEfG3sueq8m4rMzNbRhFROBSwJXB7RNwZEc8CPwL2qLxgdQnA7Dqm\n6ZU8XK765eFy1S+PdtNUGYDZwLW5MLth/1uB7+Ze7wd8va28RvrNtvkBXVvHNL2Sh8tVvzxcrvrl\n0W6akQydrDzcbWVm1j/+BayVe71miivNlYeZWf/4M7C+pBdLWgHYC7ignRON1rut5tQ0Ta/k0U6a\nfi5XP7/3dtL0Sh7tphkxkU3Y/gDwa2AMcGpE3NzOuZT6vczMzApzt5WZmZXmysPMzEpz5WFmZqX1\nbOUhaUNJO0paqSF+Vovjt5S0Rdp+maQjJL2xZJ5nlDz+1Smf17fYv5WkSWl7gqRPSfq5pM9LWqVF\nmsMkrdVsX4vjV5C0v6Sd0ut9JH1d0vslLT9EunUlfUTSSZK+LOmQwbKaWe8b9QPmkg6KiO81xB0G\nvB+4BdgU+GBE/Cztuy4iNm84/liyB1aNBS4BtgIuI1v/5dcR8dkm+Tbe3ibgtcClABGxe5M010TE\nlmn74FTGnwKvB34eESc0HH8zsEm6Q2IO8BTwE2DHFP/mJnk8DjwJ3AGcBfw4IuY1Hpc7/gfpfU8E\nHgNWAs5LeSgiDmiS5jBgV+BK4I3A9Sntm4D3RcTlrfIz6xWSXhgRD410OUbMSM947MCMyXuaxM0F\nVkrbM8im6X8wvb6+xfFjyC6gC4BJKX4CcGOLfK8DzgS2B7ZL/9+ftrdrkeb63PafgRek7RWBuU2O\nvyWfX8O+G1rlQdaifD1wCjAP+BVwALByk+NvTP+PBR4ExqTXGuK9z80dNxG4PG2v3ezz7YcAvLAL\neUwb6ffZRplXAU4AbgUeBR4h+1J3AjC55LkuahE/CTge+D6wT8O+b7ZIsxrwLbJFAqcBx6Xf63OA\n1ZscP7UhTAPuAqYAU0f6cx6JMCq6rSTd2CLMBVZtkmS5iHgCICLuIruw7yzpy2QXxUaLImJxRDwF\n3BERC1Lap4FWDxCeCfwF+BjweGTftp+OiCsi4ooWaZaTNEXSNLKL77yUz5NAs+e73yTpoLT9V0kz\n0+exAbmHbTWIiBiIiIsj4t3AGsA3gVnAnS3KtAKwMllFMNgdNg5o2W3FkjlC48haK0TEPa3SSFpF\n0gmSbpX0qKRHJN2S4iYPkU9Tki5qEjdJ0vGSvi9pn4Z932xxntUkfUvSNyRNk3ScpLmSzpG0eos0\nUxvCNOCa9LOd2uT4WbntVSSdkn5/fyip2e8v6XOZnrZnSroTuFrS3ZK2a3L8dZI+Luklzc7XIo+Z\nki6TdKaktSRdIulxSX+WtFmLNCtJ+rSkm9Ox8yRdJenAFtmcA8wHto+IqRExjayFPj/tazz/5i3C\nK8l6EZr5Htnf9bnAXpLOlTQu7du6RZrTgL8B95L1MjxN1or+HfDtJsc/TPb3PhiuBV5E9iXy2hZ5\n9LaRrr2KBLJvxJsC6zSEGcB9TY6/FNi0IW4scAawuMnxVwMT0/ZyufhVaPjG3yTtmsCPga/TpBXU\ncOxdZBcXdIy4AAAEB0lEQVTwf6T/V0/xK9GkJZHyP42sC+pqsgrjTuAKsm6rZnm0/OY/+B4b4g5P\n57wbOAz4LfAdsm9hx7Y4zweBG9NxtwIHpfgXAFe2SPNr4ChgtVzcainu4hZpNm8RXgnc3+T4c8m+\n0e5JNmv2XGBc2tf050jWKjsUODq9p6PIlm84FPhZizQD6WeYD/8Z/Lk2Of663PZ3gc+k39/DgfNb\n5DE3t30ZsEXa3oAm6ymlvL8E3EP2yOfDgTWG+X28hqy7dm+yi+hbU/yOwJ9apPkZcGD6vT8C+ASw\nPnA68Lkmx982RP7P2wcsJvv7vaxJeLrFeW5oeP0x4A9krYNWP/d8L8A9Q50vxX04/a5snP/Mh/p8\nez2MeAEKFTLrfnl1i30/bBK3Zv4i1bBv2yZx41ocOz3/yzJMGXdp9sdTMO1E4MVD7J8EbJIumqsO\nc64N2sh/jcELDTCZbPG0LYdJ8/J03IYF8yh1EUnxpS4k3biIpPhSFxKWrjway9gqj1uAsWn7qoZ9\nzbo483m8hqy1+UD6rJqu/DrMe2/6JQT4a8PrP6f/lwNubXL8xcCR+d9bst6Co4DfNDn+JmD9Fnnf\nO8RntVxD3IHAzcDdw70P4DPDfb4pfvCL4pfJWurP+6LQT2HEC+DQH6HsRSTtL3Uh6dZFJO0rfCEh\ne+jOEanS+QfpRpW0r9W40qHpM9uBrD/+JLLxtE8B329y/PMqR7JxvFnA91rk8SeysbG3kbU890zx\n29FitVjgj6QvcsDuZDeUDO5r1pKYAnyerIU6n2zc45YU97yxArIvJP/VIu89W8R/AdipSfws4O8t\n0nyaNC7aEL8e8JNhfpd3B64CHujk38hoCyNeAIf+CA0XkUcbLiJTWqQpdSHp9kUkHTfshQQ4tiEM\n3iixGnDGEOm2B84muwliLnAh2fMaxjY59kdt/Ew2IetOvAjYMFVQj5FVttu0SPMKsu6u+cDvSS1d\nsi7Lw1qk2RDYqfFzBmYNcfyORY8fJs3ObaQZtlxkN9NsNFy5ejmMeAEcHEhjJlWmqTKPhgtJbcrV\nzTxapSEbR7sNOJ9szG+P3L5mraVSx6f4Q6tO0065ej2MeAEcHBjmRoNOpOlGHnUt10i+d9q7bb7w\n8d1K004evR5G65LsNspIurHVLprfbl06TTfyqGu56vreabhtXtL2wE8krUPz2+bLHt+tNO3k0dNc\neVi3rAq8gayvPE9kg7CdSNONPOparrq+9wclbRoRNwBExBOSdgVOBTbuwPHdStNOHj3NlYd1yy/I\nmv03NO6QdHmH0nQjj7qWq67vfX8aJsBGxCJgf0knd+D4bqVpJ4+eNurXtjIzs+4bFcuTmJlZvbjy\nMDOz0lx5mJlZaa48zMystP8D0oiXiviPcg4AAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11e9f4cc0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEYCAYAAACk+XocAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcHEX9//HXmyQsCQRycQoYkSAqCGI4FP1yeQQ59esB\nyKlfIqic+gDxAv2poKI/UUSJgoAIgoCIAgpyigoYAQkIfAXkvsKVcEOyn+8fXUuaYWZ3ejI92zvz\nfuZRj8xUd3VVz+52TVV1VSsiMDMzK2KJ4S6AmZmNPK48zMysMFceZmZWmCsPMzMrzJWHmZkV5srD\nzMwKc+VRIZJulrR5i2lD0pptLlLXkfQFST8r4bgfk3RRu49bsAw/kfTl4SyD9Q55nkc1SfoJsGsu\nagzwYkSMb7B/ANMi4vZOlK9O/lOB/wBjImJBSXkcAawZEbsOtW/af3Pg1IhYtYzyDJF3qT8PSXsC\n/xMR7yzj+EPkvQewPzANmA+cBnxh4Ocu6VTg3cA44CHg2xHR9grbhpdbHhUVEftExDIDATgd+PVw\nl6ssyvj3EZA0erjLMIRxwIHAFGBjYCvgc7ntRwFrRMSywPbA1yW9reOltHJFhENFAnAX8O468UsD\nTwGbDZI2yL6VA2wDXE/2rfBe4IjcfucD+9WkvRH4QHr9DuDvwLz0/zsalQ84guybPcA9qQxPp/D2\nJs73cuAbwF+A54A1gVWA84DHgduBvdO+M4AXgZfS8f+Z4vcCbkmfz53AJ3Of2XNAf65Mq+TLnPbb\nHrgZeDKV54015/u59PnMA84AlmpwLnsCV6XXV6bP4pmU70dT/LbADSmvvwJvqcnr0JTXC8Bo4PPA\nHenc/pX7Gb0ReB5YmI7/ZIo/Cfh67ph7p8/w8fSZrlLz+7IP8O9Unh+ReiJa+L09GPhdg21vAB4E\nPjLcf18O7Q3DXgCH3A+jceWxe7owNvzj5pWVx+bAumQty7cADwM7pm0fAa7JpVsPeAxYEpgEPAHs\nli5eO6f3k+uVj1dWHlNTGUYXON/LySqdN6f8xqQL73HAUsD6wFxgy9r8csfYBng9IGAz4Flgg9zn\ncF/N/vkyr0V2gX9PyvuQdLFdMne+15JVOpPIKql9GpzLnqTKo/bnkd6/FXiE7Jv6KGCPdPy+XF43\nAKsBY1Pch1PeSwAfTWVduV5+Ke4kUuUBbAk8CmwA9AE/BK6sKd/vgQnA6ulznpG2rU5Woaze5M/x\nXOComrjj0s8igOuAZYb778uhvcHdBCPDHsApkf4qhxIRl0fEnIjoj4gbybq8NkubzwPWkjQtvd8N\nOCMiXiS7EP87In4REQsi4nTgVmC7tp7NK50UETdH1l++ErApcGhEPB8RNwA/I6s864qI8yPijshc\nAVwEvKvJvD8KnB8RF0fES8DRwFiy1teAH0TEAxHxOPA7sgqtFTOB4yPimohYGBEnk7UwNqnJ696I\neC6d269T3v0RcQZZK2GjJvP7GHBiRFwXES8AhwFvT2NTA46KiCcj4h7gsoFzi4h7ImJCih+UpI8D\n08k+u5dFxKeA8WQ/i3PSuVoXceVRcZJWJ/sGfUqBNBtLukzSXEnzyLonpgBExPNk3S+7pjGGnYFf\npKSrAHfXHO5u4DWLdRKDuzf3ehXg8Yh4qtn8JW0t6WpJj0t6Eng/6Vyb8IrzjYj+VJ58fg/lXj8L\nLNPksWu9FvispCcHAlkrY5XcPvnPAkm7S7oht/86tH5uT5O1MNt2bpJ2BI4Eto6IR2u3p0ryKmBV\nYN8ix7bqc+VRfbsBf4mIOwukOY2shbFaRCwH/ISsW2fAyWTfTLcCno2Iv6X4B8gucnmrA/en18+Q\nDZYOWCn3utXb9vLpHgAmScrfUZbP/xV5SOoDzib71rtiREwALmDRuQ5VplecrySRXdDvb5iidfcC\n30jf6AfCuNS6G/ByeSW9Fvgp8BmybsMJwE20fm5LA5Np07lJmpHKt11EzBli99FkXYvWRVx5VN/u\nZH3ZRYwn+wb/vKSNgF3yG1Nl0Q98l0WtDsguvGtJ2kXSaEkfBd5E1jcOWZ/8TpLGSJoOfCiXdm46\n5hoDEZKmpvknU5spdETcSzaQfKSkpSS9BfgEcGra5WFgau6urCXJ+vPnAgskbQ28N3fIh4HJkpZr\nkOWZwDaStpI0BvgsWffKX5sp7xAeJvdZkF1o90mtQklaWtI2NRVl3tJkFcRcAEl7kbU88sdfVdKS\nDdKfDuwlaf1UyX6TbKzrrtZPKSNpS+CXwH9HxLU121aQtJOkZSSNkvQ+stbtJYubr1WLK48Kk/R2\nsiZ/0Vt0PwV8TdJTwFfILpK1TiEbVB+4MBMRj5HdEfRZsi6OQ4Btc10SXyb7BvkE8FWyFs5A2mdJ\nd06lbpZNyL7F302xb7s7kw2+PwD8Bjg8Iv6Utg18Do9Jui51b+2fzu8JskryvFyZbiW7iN6ZypTv\nIiIibiObS/NDssHl7ci+Sb9YoLyNHAGcnPL9SETMJrv76dhU1tvJBr3rioh/kVXufyOrKNYluytt\nwKVkd4k9JKlel9GfyH5eZ5Pd7fR6YKdmCi5pdUlPpy7Ter4MLAdckPZ7WtKFA1mTdVHdl87zaODA\niDiv/qFspPIkwR4laXdgZpQ4yUzSl4C5EXF8WXmY2fBw5dGDJI0j++Z6XEQ0PRBvZjbA3VY9JvVB\nzyXrCjltiN3NzOpyy8PMzApzy8PMzAqr9AJsk8ZPK9QsmtBXfP7WhDFLF9p/4qhxQ+/0qjRLFU+j\nvkL7T2rhR7l8/6jCaSYvLLb/pIX9hfOYRLGbnSaMLT55efxyzxdOM25ysXItuULx72ajViz2O7zE\nlEZ3ITemyROLp5nU7NzEZOLyxfOYuGLxNBNWLrT/EhNXGnqnGmNXaXbBgkUWvHi/ht6rOS89emfT\n18ExU9ZoW75DccvDzMwKq3TLw8ys5/UXbO53iCsPM7Mqi+Jdv53gysPMrMr6q1l5dHTMQ9I7Jf2o\nk3mamY1ksXBB06GTSm95SHor2ZpDHyZ7xvU5ZedpZtY1eqnbStJaZAvc7Uy24NwZZBMStygjPzOz\nrtVjA+a3An8mW5H1dgBJBzWTUNJMsqeuMa5vefrGFL+P3cysa1S05VHWmMcHyZaBvkzSTyVtxSsf\nRtRQRMyKiOkRMd0Vh5n1vP7+5kMHlVJ5RMS5EbETsDbZs5EPBFaQ9GNJ7x08tZmZDYjobzp0Uql3\nW0XEMxFxWkRsR/ZQo+uBQ8vM08ysq1S05dGxeR4R8QQwKwUzM2tGRcc8PEnQzKzKeuxuKzMza4cO\nT/5rlisPM7Mqc7eVmZkVVtG1rVx5mJlVWITHPMzMrCh3W5mZWWHutjIzs8Lc8gBJU4DHIqLpB7qb\nmfW0is7zKG15EkmbSLpc0jmS3irpJuAm4GFJMwZJN1PSbEmzX3hpXlnFMzMbGaK/+dBBZbY8jgW+\nACwHXApsHRFXS1obOB34Q71EEfHyEiaTxk9zC8XMelsPThIcHREXAUj6WkRcDRARt0pNrc5uZmY9\nOGCeP+Pnara5RWFm1owerDzWkzSf7CFQY9Nr0vulSszXzKxr9NwkwYgYVdaxzcx6RhtbHpJWA04B\nViTrAZoVEcdImgScAUwF7gI+kh6j0VCpD4MyM7PF1N67rRYAn42INwGbAJ+W9Cbg88AlETENuCS9\nH5QrDzOzKmvjkwQj4sGIuC69fgq4BXgNsANwctrtZGDHoY7lysPMrMoKtDzy8+RSmNnosJKmAm8F\nrgFWjIgH06aHyLq1BuXlSczMqqzAmEd+ntxgJC0DnA0cGBHz89MnIiIkDXlHrCsPM7Mqa/MkQUlj\nyCqOX0bEOSn6YUkrR8SDklYGHhnqOO62MjOrsjaOeShrYpwA3BIR38ttOg/YI73eA/jtUMcqreUh\naU2yfrS/1MRvCjwUEXeUlbeZWddo75pVmwK7AXMk3ZDivgAcBZwp6RPA3cBHhjpQmd1W3wcOqxM/\nP23brsS8zcy6QxvneUTEVWQTtevZqsixyuy2WjEi5tRGpripjRJ5VV0zs5weXFV3wiDbxjba4FV1\nzcxyKrq2VZktj9mS9q6NlPQ/wD9KzNfMrHv0YMvjQOA3kj7GospiOrAk8IES8zUz6x4VbXmUuTDi\nw8A7JG0BrJOiz4+IS8vK08ys6/Ra5TEgIi4DLis7HzOzrrSwx5ZkNzOzNujVloeZmS2GDg+EN8uV\nh5lZlbnlYWZmhUU1p7u58jAzqzK3PMzMrDBXHmZmVlgvD5hLWh4gIuZ2Ij8zs24R/dUc8yhtbStl\njpD0KHAb8L+S5kr6Sll5mpl1nYULmg8dVObCiAeRPXhkw4iYFBETgY2BTSUd1CiRl2Q3M8vpj+ZD\nB5VZeewG7BwR/xmIiIg7gV2B3RsliohZETE9Iqb3jVmuxOKZmY0AbXwMbTuVOeYxJiIerY2MiLnp\nAexmZjaUHrzb6sUWt5mZ2YAenCS4nqT5deIFLFVivmZm3aPXWh4RMaqsY5uZ9YyK3qrrSYJmZlXW\ny5MEzcysRW55mJlZUbHATxI0M7Oi3G1lZmaFudvKzMwK67Vbdc3MrA0q2vIoc1XdQ3KvP1yz7Ztl\n5Wtm1lWiv/nQQWUujLhT7vVhNdtmNErkVXXNzHIquqpumd1WavC63vuXRcQsYBbApPHTqtleMzPr\nkKjomEeZLY9o8LreezMzq6eNLQ9JJ0p6RNJNNfH7SbpV0s2Svt1MsTqxMKKAsblFEr0woplZsxa2\ndZLgScCxwCkDEZK2AHYA1ouIFySt0MyBvDCimVmVtXEsIyKulDS1Jnpf4KiIeCHt80gzxyqz28rM\nzBZT9EfToUVrAe+SdI2kKyRt2Ewiz/MwM6uyApWCpJnAzFzUrHQT0mBGA5OATYANgTMlrREx+FOo\nXHmYmVVZgbut8nerFnAfcE6qLK6V1A9MAeYOlsjdVmZmVVb+PI9zgS0AJK0FLAk8OlQitzzMzKqs\njQPmkk4HNgemSLoPOBw4ETgx3b77IrDHUF1W4MrDzKzSmriOFznWzg027Vr0WK48zMyqrKILI7ry\nMDOrsFjQY8uTSFq9rGObmfWMii6MWObdVucOvJB0don5mJl1r/4CoYM6taruGk0nyk1yGde3PH1j\nlmt3uczMRozFmDlequFaVbdxoohZETE9Iqa74jCznlfRbqvhWlU3ImLZEvM2M+sO1Rwv96q6ZmZV\nVtVuK9+qa2ZWZb3W8jAzs8XnloeZtV3/o/NYYopvLOlmsWC4S1CfKw+zEcwVRw9wt5WZmRUVrjzM\nzKwwVx5mZlaUWx5mZlaYKw8zMyusqpVHmUuy7yDp07n310i6M4UPlZWvmVlXCTUfOqjpykPSVZK+\nIWmGpPFNJDkEOC/3vg/YkOz5ufsOks9MSbMlzX7hpXnNFs/MrCtFf/Ohk4q0PHYDbgP+G/hrusD/\n/0H2XzIi7s29vyoiHouIe4ClGyXyqrpmZotEv5oOndT0mEdE/EfS88CLKWwBvHGQJBNr0n8m93b5\nIoU0M+tV/Qs7Wyk0q0i31R1kTwdcETgBWCciZgyS5BpJe9c5zieBa4sW1MysF1W126rI3VY/AN4J\n7Ay8FbhC0pURcUeD/Q8CzpW0C3Bdinsb2djHji2W18ysp3S6O6pZRbqtjgGOkbQMsBdwBLAqUPe5\nHRHxCPAOSVsCb07R50fEpYtVYjOzHhLVXFS3+cpD0nfJWh7LAH8DvgL8eah0qbJwhWFm1oIR3/Ig\nqzC+HREPl1UYMzN7pRFfeUTEWZK2l/RfKeqKiPhdSeUyMzO6o9vqSGAj4Jcpan9Jb4+IL5RSMjMz\nG/ktD2AbYP2I7IYwSScD1wOuPMzMShIdXnakWUUXRpwAPJ5ee/q3mVnJFlZ0kmCRyuNI4HpJlwEC\n/gv4fCmlMjMzYIS3PCQJuArYhGxxQ4BDI+KhsgpmZmYjfMwjIkLSBRGxLq9cKbchST8EGt4nEBH7\nN1dEM7Pe1c67rSSdCGwLPBIR66S47wDbka1ZeAewV0Q8OdSxiqyqe52kDYfe7WWzgX+ksH3u9UCo\ny0uym5kt0uZVdU8CatckvJhsrcK3AP8LHNbMgYqMeWwMfEzS3cAzZOMekTJ8lYg4eeC1pAPz7wcT\nEbOAWQCTxk+r6B3OZmad0d/GMY+IuFLS1Jq4i3JvrwaaelhfkcrjfYNtlDQxIp5osNmVgJlZC4oM\nmEuaCczMRc1KX8ib9XHgjGZ2LDLD/O4hdrkE2KDZ45mZ2dCKjHnke26KkvRFYAGLJoIPqug8j0Hz\nrinIUyxqcYyTND+3X0TEsm3M28ysK7Wz26oRSXuSDaRvFdFcddXOyuMVGUZEM885NzOzQfSXfKuu\npBnAIcBmEfFss+naWXmYmVmbtbPlIel0YHNgiqT7gMPJ7q7qAy7OpvRxdUTsM9SxSuu2MjOzxdfO\nGeYRsXOd6BNaOVZT8zwkjZJ06xC7bdVKAczMrLH+UNOhk5qqPCJiIXCbpNUH2efxRtvMzKw1USB0\nUpFuq4nAzZKuJZskCEBEbN/2UpmZGdCZu61aUaTy+HJppTAzs7pG9Kq6ABFxhaTXAtMi4k+SxgGj\nyiuamZn1D3cBGmh6YURJewNnAcenqNcA55ZRKDMzywRqOnRSkW6rT5M9w/wagIj4t6QVGu1cM8P8\nFZsYZIZ5fm2WcX3L0zfGDyw0s961YKR3WwEvRMSLaRIJkkYz+PM6Wpph7lV1zcwW6XSLollFnudx\nhaQvAGMlvQf4NfC7coplZmaQjXk0GzqpSOXxeWAuMAf4JHBBRHyxlFKZmRnQHWMe+0XEMcBPByIk\nHZDizMysBCP+bitgjzpxe7apHGZmVkdVu62GbHlI2hnYBXidpPNym8YDXpLEzKxEVR0wb6bb6q/A\ng8AU4Lu5+KeAG8solJmZZUp+nEfLhqw80uNn75Z0ZURckd8m6VvAoWUVzsys1/VXtOVRZMzjPXXi\ntm5XQczM7NUWFgid1MyYx77Ap4DXS8p3U40H/lJWwczMDPpVzZZHM2MepwEXAkeSzfUY8JSf4WFm\nVq6qLrMxZLdVRMyLiLvS4wtXA7ZM4yBLSHpdvTSSnpI0v0GYK+lqSX7yoJnZEEbsrboDJB0OTAfe\nAPwcWBI4Fdi0dt/B1rWSNApYB/hl+t/MzBqo6t1WRQbMPwBsT3qKYEQ8QDbuUUhELIyIfwI/rLdd\n0kxJsyXNfuGleUUPb2bWVfpR06GTilQeL0bEy4/KlbT04mQcEcc3iJ8VEdMjYrqXYzezXlfVZ5gX\nqTzOlHQ8MCE9GOpP5Na5MjOz9utX86GTijyG9ui0FPt8snGPr0TExaWVzMzMKrswYpFVdUmVhSsM\nM7MOWVjRAfNmJgm29DhZMzNbfCO25dHq42TNzGzxjdjKw8zMhk+M1G4rMzMbPm55mJlZYa48zMys\nsBG7MKKZmQ2fdk8SlHSQpJsl3STpdElLtVIuVx5mZhXWzlV1Jb0G2B+YHhHrAKOAnVopV2mVh6TV\nBtm2bVn5mpl1kxKeJDgaGCtpNDAOeKCVcpXZ8rhY0tTaSEkfB44pMV8zs65RpNsqvyp5CjPzx4qI\n+4GjgXuAB4F5EXFRK+Uqs/I4GLhI0rSBCEmHAQcBmzVK5CXZzcwWKdJtlV+VPIVZ+WNJmgjsALwO\nWAVYWtKurZSrtMojIi4A9gUulLSOpO8D2wH/FRH3DZLOS7KbmSVtXpL93cB/ImJuRLwEnAO8o5Vy\nlTpgHhGXAHsBlwNrkD3C9oky8zQz6yb9RNOhCfcAm0gaJ0nAVsAtrZSrtHkeuQUVBfSRFfKRVGAv\nqGhm1oR2ThKMiGsknQVcBywArgdmDZ6qvtIqDy+oaGa2+No9STAiDgcOX9zjeIa5mVmFVXV5Ek8S\nLOiJhc8OdxGsxpPP9Q13EYZN/6O+I7HbjfjH0Fpm4qhxw10EqzFh7AvDXYRhs8QU35HY7RZWdHUr\nVx5mZhVW1W4rVx5mZhXW5C24HefKw8yswqpZdbjyMDOrtKp2Ww3L3VaSDhyOfM3MRpo2zzBvm+G6\nVffgYcrXzGxEafPaVm0zXJVHwzuSvaqumdki7XwYVDsNV+XRsJL0qrpmZotEgX+d1ImFEV+1CRhb\nVr5mZt1kQUXvt/LCiGZmFVbNqsO36pqZVZonCZqZWWFVnefhysPMrMI6PRDeLFceZmYV5paHmZkV\n5paHmZkV5paHmZkV1h9ueZiZWUF+kqCZmRXmMQ8zMyus58Y8JJ032PaI2L6svM3MukUvzjB/O3Av\ncDpwDYMsw54naSYwE2Bc3/J4ZV0z62W92G21EvAeYGdgF+B84PSIuHmwRBExC5gFMGn8tGp+amZm\nHVLVbqvSnucREQsj4g8RsQewCXA7cLmkz5SVp5lZt4mIpkMnlTpgLqkP2Ias9TEV+AHwmzLzNDPr\nJj035iHpFGAd4ALgqxFxU1l5mZl1q6p2W5XZ8tgVeAY4ANhfenm8XEBExLIl5m1m1hUWVrT6KPNJ\ngsP1fHQzs67R6bGMZvkCb2ZWYf0FQrMkjZJ0vaTft1ouzzA3M6uwkuZ5HADcArQ8fOCWh5lZhfUT\nTYdmSFqV7C7Yny1OuVx5mJlVWJF5HpJmSpqdCzPrHPL7wCEs5o1c7rYyM6uwIvM88it01CNpW+CR\niPiHpM0Xp1yuPMzMKqzNYx6bAttLej+wFLCspFMjYteiBypzkuBXBtkcEfH/ysrbzKxbtPNJghFx\nGHAYQGp5fK6VigPKHfN4pk4I4BPAoY0S5fvsXnhpXonFMzOrvigQOqnMSYLfHXgtaTzZrWEfB34F\nfHeQdF5V18wsWVDSDPOIuBy4vNX0ZS+MOAk4GPgYcDKwQUQ8UWaeZmbdpKozzMsc8/gO8EGyVsS6\nEfF0WXmZmXWrqq6qW+aYx2eBVYAvAQ9Imp/CU5Lml5ivmVnXiAL/OskLI5qZVVjPdVuZmdniq2q3\nlSsPM7MKc8vDzMwKc8vDzMwK6/RAeLNceZiZVdjC6LHH0JqZ2eJr59pW7VR65SFpKWDN9Pb2iHi+\n7DzNzLpFz3VbSRoNfJNsPau7AQGrSfo58MWIeKmsvM3MukVVWx5lTuT7DjAJeF1EvC0iNgBeD0wA\njm6UyKvqmpkt0nMzzIFtgbUid5NyRMyXtC9wK9kqu6/iVXXNzBapasujzMojos7slohYKKman4aZ\nWcVUdcyjzG6rf0navTZS0q5kLQ8zMxtCRH/ToZPKbHl8GjhH0seBf6S46cBY4AMl5mtm1jV6boZ5\nRNwPbCxpS+DNKfqCiLikrDzNzLpNz04SjIhLgUvLzsfMrBt5YUQzMyusF++2MjOzxVTVu61ceZiZ\nVZi7rczMrLCeu9vKzMwWn1seZmZWmAfMzcyssJ5reaTneOxD9iyPOcAJEbGgrPzMzLpRL04SPBl4\nCfgzsDXwJhqspJsnaSYwE2Bc3/L0jVmuxCKamVVbL3ZbvSki1gWQdAJwbTOJvCS7mdkivTjP4+Un\nBUbEAkklZmVm1p16seWxnqT56bWAsem9yJ71sWyJeZuZdYWqDpiX9jyPiBgVEcumMD4iRudeu+Iw\nM2tCux9DK2mGpNsk3S7p862Wy7fqmplVWDtbHpJGAT8C3gPcB/xd0nkR8a+ixyrzSYJmZraYIqLp\n0ISNgNsj4s6IeBH4FbBD6QWrSgBmVjFNt+ThclUvD5erenm0mqbMQDbNYXYuzKzZ/iHgZ7n3uwHH\ntpTXcJ9six/Q7Cqm6ZY8XK7q5eFyVS+PVtMMZ2hn5eFuKzOz3nE/sFru/aoprjBXHmZmvePvwDRJ\nr5O0JLATcF4rBxqpd1vNqmiabsmjlTS9XK5ePvdW0nRLHq2mGTaRTdj+DPBHYBRwYkTc3MqxlPq9\nzMzMmuZuKzMzK8yVh5mZFebKw8zMCuvaykPS2pK2krRMTfyMBvtvJGnD9PpNkg6W9P6CeZ5ScP93\npnze22D7xpKWTa/HSvqqpN9J+pakug86kbS/pNXqbWuw/5KSdpf07vR+F0nHSvq0pDGDpFtD0uck\nHSPpe5L2GSirmXW/ET9gLmmviPh5Tdz+wKeBW4D1gQMi4rdp23URsUHN/oeTPbBqNHAxsDFwGdn6\nL3+MiG/Uybf29jYBWwCXAkTE9nXSXBsRG6XXe6cy/gZ4L/C7iDiqZv+bgfXSHRKzgGeBs4CtUvwH\n6+QxD3gGuAM4Hfh1RMyt3S+3/y/TeY8DngSWAc5JeSgi9qiTZn9gW+BK4P3A9SntB4BPRcTljfIz\n6xaSVoiIR4a7HMNmuGc8tmHG5D114uYAy6TXU8mm6R+Q3l/fYP9RZBfQ+cCyKX4scGODfK8DTgU2\nBzZL/z+YXm/WIM31udd/B5ZPr5cG5tTZ/5Z8fjXbbmiUB1mL8r3ACcBc4A/AHsD4OvvfmP4fDTwM\njErvNci5z8ntNw64PL1evd7n2wsBWKEDeUwe7vNsoczLAUcBtwKPA4+Rfak7CphQ8FgXNohfFjgS\n+AWwS8224xqkWQn4MdkigZOBI9Lv9ZnAynX2n1QTJgN3AROBScP9OQ9HGBHdVpJubBDmACvWSbJE\nRDwNEBF3kV3Yt5b0PbKLYq0FEbEwIp4F7oiI+Sntc0CjBwhPB/4BfBGYF9m37eci4oqIuKJBmiUk\nTZQ0meziOzfl8wxQ7/nuN0naK73+p6Tp6fNYi9zDtmpERPRHxEUR8QlgFeA4YAZwZ4MyLQmMJ6sI\nBrrD+oCG3VYsmiPUR9ZaISLuaZRG0nKSjpJ0q6THJT0m6ZYUN2GQfOqSdGGduGUlHSnpF5J2qdl2\nXIPjrCTpx5J+JGmypCMkzZF0pqSVG6SZVBMmA9emn+2kOvvPyL1eTtIJ6ff3NEn1fn9Jn8uU9Hq6\npDuBayTdLWmzOvtfJ+lLkl5f73gN8pgu6TJJp0paTdLFkuZJ+ruktzZIs4ykr0m6Oe07V9LVkvZs\nkM2ZwBPA5hExKSImk7XQn0jbao+/QYPwNrJehHp+TvZ3fTawk6SzJfWlbZs0SHMS8C/gXrJehufI\nWtF/Bn5SZ/9Hyf7eB8Js4DVkXyJnN8ijuw137dVMIPtGvD7w2powFXigzv6XAuvXxI0GTgEW1tn/\nGmBcer2pETjsAAAEHklEQVRELn45ar7x10m7KvBr4FjqtIJq9r2L7AL+n/T/yil+Geq0JFL+J5F1\nQV1DVmHcCVxB1m1VL4+G3/wHzrEm7qB0zLuB/YFLgJ+SfQs7vMFxDgBuTPvdCuyV4pcHrmyQ5o/A\nocBKubiVUtxFDdJs0CC8DXiwzv5nk32j3ZFs1uzZQF/aVvfnSNYq2w/4fDqnQ8mWb9gP+G2DNP3p\nZ5gPLw38XOvsf13u9c+Ar6ff34OAcxvkMSf3+jJgw/R6Leqsp5TyPhq4h+yRzwcBqwzx+3gtWXft\nzmQX0Q+l+K2AvzVI81tgz/R7fzDwZWAacDLwzTr73zZI/q/aBiwk+/u9rE54rsFxbqh5/0XgL2St\ng0Y/93wvwD2DHS/FfTb9rqyb/8wH+3y7PQx7AZoqZNb98s4G206rE7dq/iJVs23TOnF9Dfadkv9l\nGaKM29T742ky7TjgdYNsXxZYL100VxziWGu1kP8qAxcaYALZ4mkbDZHmzWm/tZvMo9BFJMUXupB0\n4iKS4gtdSHhl5VFbxkZ53AKMTq+vrtlWr4szn8e7yFqbD6XPqu7Kr0Oce90vIcA/a97/Pf2/BHBr\nnf0vAg7J/96S9RYcCvypzv43AdMa5H3vIJ/VEjVxewI3A3cPdR7A14f6fFP8wBfF75G11F/1RaGX\nwrAXwKE3QtGLSNpe6ELSqYtI2tb0hYTsoTsHp0rnP6QbVdK2RuNK+6XPbEuy/vhjyMbTvgr8os7+\nr6ocycbxZgA/b5DH38jGxj5M1vLcMcVvRoPVYoG/kr7IAduT3VAysK1eS2Ii8C2yFuoTZOMet6S4\nV40VkH0heUODvHdsEP9t4N114mcA/26Q5mukcdGa+DWBs4b4Xd4euBp4qJ1/IyMtDHsBHHoj1FxE\nHq+5iExskKbQhaTTF5G035AXEuDwmjBwo8RKwCmDpNscOIPsJog5wAVkz2sYXWffX7XwM1mPrDvx\nQmDtVEE9SVbZvqNBmreQdXc9AVxFaumSdVnu3yDN2sC7az9nYMYg+2/V7P5DpNm6hTRDlovsZpp1\nhipXN4dhL4CDA2nMpMw0ZeZRcyGpTLk6mUejNGTjaLcB55KN+e2Q21avtVRo/xS/X9lpWilXt4dh\nL4CDA0PcaNCONJ3Io6rlGs5zp7Xb5pvev1NpWsmj28NIXZLdRhhJNzbaRP3brQun6UQeVS1XVc+d\nmtvmJW0OnCXptdS/bb7o/p1K00oeXc2Vh3XKisD7yPrK80Q2CNuONJ3Io6rlquq5Pyxp/Yi4ASAi\nnpa0LXAisG4b9u9Umlby6GquPKxTfk/W7L+hdoOky9uUphN5VLVcVT333amZABsRC4DdJR3fhv07\nlaaVPLraiF/byszMOm9ELE9iZmbV4srDzMwKc+VhZmaFufIwM7PC/g+mlvViZOQJ6AAAAABJRU5E\nrkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11f43b550>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"cumulative_overlapping_indices = 0\n", | |
"\n", | |
"dfs = []\n", | |
"\n", | |
"i5_tidy = tidifier(i5)\n", | |
"\n", | |
"n_iterations = len(i7.columns)\n", | |
"\n", | |
"# original_index_pairs = set(zip(i5.values.flat, i7.values.flat))\n", | |
"\n", | |
"def rotate_columns(indices_2d, i, direction='forward'):\n", | |
" if direction == 'forward':\n", | |
" rotated = pd.concat([indices_2d.iloc[:, -i:], indices_2d.iloc[:, :-i]], axis=1)\n", | |
" elif direction == 'backward':\n", | |
" rotated = pd.concat([indices_2d.iloc[:, i:], indices_2d.iloc[:, :i]], axis=1)\n", | |
" return rotated\n", | |
"\n", | |
"\n", | |
"for i in range(n_iterations):\n", | |
" if i == 0:\n", | |
" continue\n", | |
"# i7_rotated = pd.concat([i7.iloc[:, i:], i7.iloc[:, :i]], axis=1)\n", | |
"# i7_rotated = pd.concat([i7.iloc[:, -i:], i7.iloc[:, :-i]], axis=1)\n", | |
" i7_rotated = rotate_columns(i7, i, 'forward')\n", | |
" print(i7_rotated.shape)\n", | |
" i7_rotated.columns = np.arange(1, len(i7_rotated.columns)+1)\n", | |
" i7.columns.name = 'number_col'\n", | |
" i7.index.name = 'letter_row'\n", | |
"# i7_rotated.to_csv(csv)\n", | |
" \n", | |
" rotated_heatmap = i7_rotated.applymap(lambda x: i7_index_to_value[x])\n", | |
" fig, ax = plt.subplots()\n", | |
" sns.heatmap(rotated_heatmap)\n", | |
" ax.set(title=f'i7 layout, rotation iteration: {i}')\n", | |
" png = os.path.join(figure_folder, f'XT-C-{str(i).zfill(2)}.png')\n", | |
" fig.tight_layout()\n", | |
" fig.savefig(png)\n", | |
" \n", | |
" new_index_pairs = set(zip(i7_rotated.values.flat, i5.values.flat))\n", | |
" n_overlapping_indices = len(new_index_pairs & original_index_pairs)\n", | |
" print(n_overlapping_indices)\n", | |
" \n", | |
" cumulative_overlapping_indices += n_overlapping_indices\n", | |
" \n", | |
" i7_tidy = tidifier(i7_rotated, index_id='I7_Index_ID')\n", | |
" df = pd.concat([i7_tidy, i5_tidy], axis=1)\n", | |
" df['index'] = df['I7_Index_ID'].map(lambda x: i7_to_seq[x])\n", | |
" df['index2'] = df['I5_Index_ID'].map(lambda x: i5_to_seq[x])\n", | |
" df['Sample_ID'] = None\n", | |
" df['Sample_Name'] = None\n", | |
" df['well_id'] = [''.join(map(str, x)) for x in df.index.values]\n", | |
" \n", | |
" csv = os.path.join(data_folder, f'XT-C-{str(i).zfill(2)}.csv')\n", | |
" df.to_csv(csv, index=False)\n", | |
"\n", | |
" df['iteration'] = i\n", | |
"# print(df.head())\n", | |
" dfs.append(df)\n", | |
" \n", | |
"print(f'cumulative_overlapping_indices: {cumulative_overlapping_indices}')\n", | |
"samplesheets = pd.concat(dfs)\n", | |
"print(samplesheets.shape)\n", | |
"samplesheets.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 34, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(8832, 8)\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>letter_row</th>\n", | |
" <th>number_col</th>\n", | |
" <th>i7_index_id</th>\n", | |
" <th>i5_index_id</th>\n", | |
" <th>iteration</th>\n", | |
" <th>well_id</th>\n", | |
" <th>i7_index</th>\n", | |
" <th>i5_index</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>A</td>\n", | |
" <td>1</td>\n", | |
" <td>NEXT-i7-IDT-1</td>\n", | |
" <td>NEXT-i5-IDT-97</td>\n", | |
" <td>1</td>\n", | |
" <td>A1</td>\n", | |
" <td>CTGATCGT</td>\n", | |
" <td>TGATAGGC</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>A</td>\n", | |
" <td>2</td>\n", | |
" <td>NEXT-i7-IDT-97</td>\n", | |
" <td>NEXT-i5-IDT-9</td>\n", | |
" <td>1</td>\n", | |
" <td>A2</td>\n", | |
" <td>GCCTATCA</td>\n", | |
" <td>ATTAGCCG</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>A</td>\n", | |
" <td>3</td>\n", | |
" <td>NEXT-i7-IDT-9</td>\n", | |
" <td>NEXT-i5-IDT-105</td>\n", | |
" <td>1</td>\n", | |
" <td>A3</td>\n", | |
" <td>CGGCTAAT</td>\n", | |
" <td>CCAAGTAG</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>A</td>\n", | |
" <td>4</td>\n", | |
" <td>NEXT-i7-IDT-105</td>\n", | |
" <td>NEXT-i5-IDT-17</td>\n", | |
" <td>1</td>\n", | |
" <td>A4</td>\n", | |
" <td>CTACTTGG</td>\n", | |
" <td>AGATCGTC</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>A</td>\n", | |
" <td>5</td>\n", | |
" <td>NEXT-i7-IDT-17</td>\n", | |
" <td>NEXT-i5-IDT-113</td>\n", | |
" <td>1</td>\n", | |
" <td>A5</td>\n", | |
" <td>GACGATCT</td>\n", | |
" <td>GTCAGTCA</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" letter_row number_col i7_index_id i5_index_id iteration well_id \\\n", | |
"0 A 1 NEXT-i7-IDT-1 NEXT-i5-IDT-97 1 A1 \n", | |
"1 A 2 NEXT-i7-IDT-97 NEXT-i5-IDT-9 1 A2 \n", | |
"2 A 3 NEXT-i7-IDT-9 NEXT-i5-IDT-105 1 A3 \n", | |
"3 A 4 NEXT-i7-IDT-105 NEXT-i5-IDT-17 1 A4 \n", | |
"4 A 5 NEXT-i7-IDT-17 NEXT-i5-IDT-113 1 A5 \n", | |
"\n", | |
" i7_index i5_index \n", | |
"0 CTGATCGT TGATAGGC \n", | |
"1 GCCTATCA ATTAGCCG \n", | |
"2 CGGCTAAT CCAAGTAG \n", | |
"3 CTACTTGG AGATCGTC \n", | |
"4 GACGATCT GTCAGTCA " | |
] | |
}, | |
"execution_count": 34, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"backwards_rotated = pd.read_csv('data/013_backwards_rotate_indices/backwards_rotated_samplesheets_for_real_this_time.csv')\n", | |
"print(backwards_rotated.shape)\n", | |
"backwards_rotated.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 36, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"backwards_rotated_indices = set(zip(backwards_rotated['i7_index_id'], backwards_rotated['i5_index_id']))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 37, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"8832" | |
] | |
}, | |
"execution_count": 37, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"samplesheets_indices = set(zip(samplesheets['I7_Index_ID'], samplesheets['I5_Index_ID']))\n", | |
"len(backwards_rotated_indices & samplesheets_indices)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 38, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Sample_ID</th>\n", | |
" <th>Sample_Name</th>\n", | |
" <th>I7_Index_ID</th>\n", | |
" <th>index</th>\n", | |
" <th>I5_Index_ID</th>\n", | |
" <th>index2</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>K12-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K12-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-1</td>\n", | |
" <td>CTGATCGT</td>\n", | |
" <td>NEXT-i5-IDT-17</td>\n", | |
" <td>AGATCGTC</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>K13-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K13-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-193</td>\n", | |
" <td>CTTCGTTC</td>\n", | |
" <td>NEXT-i5-IDT-209</td>\n", | |
" <td>AACACTGG</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>K14-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K14-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-2</td>\n", | |
" <td>ACTCTCGA</td>\n", | |
" <td>NEXT-i5-IDT-18</td>\n", | |
" <td>GCTCAGTT</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>K15-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K15-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-194</td>\n", | |
" <td>GTCTAGGT</td>\n", | |
" <td>NEXT-i5-IDT-210</td>\n", | |
" <td>TTGGTGCA</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>K16-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K16-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-3</td>\n", | |
" <td>TGAGCTAG</td>\n", | |
" <td>NEXT-i5-IDT-19</td>\n", | |
" <td>GTCCTAAG</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Sample_ID Sample_Name I7_Index_ID \\\n", | |
"0 K12-MAA000917-3_11_M-1-1 K12-MAA000917-3_11_M-1-1 NEXT-i7-IDT-1 \n", | |
"1 K13-MAA000917-3_11_M-1-1 K13-MAA000917-3_11_M-1-1 NEXT-i7-IDT-193 \n", | |
"2 K14-MAA000917-3_11_M-1-1 K14-MAA000917-3_11_M-1-1 NEXT-i7-IDT-2 \n", | |
"3 K15-MAA000917-3_11_M-1-1 K15-MAA000917-3_11_M-1-1 NEXT-i7-IDT-194 \n", | |
"4 K16-MAA000917-3_11_M-1-1 K16-MAA000917-3_11_M-1-1 NEXT-i7-IDT-3 \n", | |
"\n", | |
" index I5_Index_ID index2 \n", | |
"0 CTGATCGT NEXT-i5-IDT-17 AGATCGTC \n", | |
"1 CTTCGTTC NEXT-i5-IDT-209 AACACTGG \n", | |
"2 ACTCTCGA NEXT-i5-IDT-18 GCTCAGTT \n", | |
"3 GTCTAGGT NEXT-i5-IDT-210 TTGGTGCA \n", | |
"4 TGAGCTAG NEXT-i5-IDT-19 GTCCTAAG " | |
] | |
}, | |
"execution_count": 38, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"novaseq7.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 39, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"['I7_Index_ID', 'index', 'I5_Index_ID', 'index2', 'well_id', 'iteration']" | |
] | |
}, | |
"execution_count": 39, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"index_cols = 'I7_Index_ID\tindex\tI5_Index_ID\tindex2'.split() + ['well_id', 'iteration']\n", | |
"index_cols" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 44, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>I7_Index_ID</th>\n", | |
" <th>I5_Index_ID</th>\n", | |
" <th>index</th>\n", | |
" <th>index2</th>\n", | |
" <th>Sample_ID</th>\n", | |
" <th>Sample_Name</th>\n", | |
" <th>well_id</th>\n", | |
" <th>iteration</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>NEXT-i7-IDT-185</td>\n", | |
" <td>NEXT-i5-IDT-1</td>\n", | |
" <td>GCCACTTA</td>\n", | |
" <td>ACGATCAG</td>\n", | |
" <td>None</td>\n", | |
" <td>None</td>\n", | |
" <td>A1</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>NEXT-i7-IDT-1</td>\n", | |
" <td>NEXT-i5-IDT-97</td>\n", | |
" <td>CTGATCGT</td>\n", | |
" <td>TGATAGGC</td>\n", | |
" <td>None</td>\n", | |
" <td>None</td>\n", | |
" <td>A2</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>NEXT-i7-IDT-97</td>\n", | |
" <td>NEXT-i5-IDT-9</td>\n", | |
" <td>GCCTATCA</td>\n", | |
" <td>ATTAGCCG</td>\n", | |
" <td>None</td>\n", | |
" <td>None</td>\n", | |
" <td>A3</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>NEXT-i7-IDT-9</td>\n", | |
" <td>NEXT-i5-IDT-105</td>\n", | |
" <td>CGGCTAAT</td>\n", | |
" <td>CCAAGTAG</td>\n", | |
" <td>None</td>\n", | |
" <td>None</td>\n", | |
" <td>A4</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>NEXT-i7-IDT-105</td>\n", | |
" <td>NEXT-i5-IDT-17</td>\n", | |
" <td>CTACTTGG</td>\n", | |
" <td>AGATCGTC</td>\n", | |
" <td>None</td>\n", | |
" <td>None</td>\n", | |
" <td>A5</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" I7_Index_ID I5_Index_ID index index2 Sample_ID Sample_Name \\\n", | |
"0 NEXT-i7-IDT-185 NEXT-i5-IDT-1 GCCACTTA ACGATCAG None None \n", | |
"1 NEXT-i7-IDT-1 NEXT-i5-IDT-97 CTGATCGT TGATAGGC None None \n", | |
"2 NEXT-i7-IDT-97 NEXT-i5-IDT-9 GCCTATCA ATTAGCCG None None \n", | |
"3 NEXT-i7-IDT-9 NEXT-i5-IDT-105 CGGCTAAT CCAAGTAG None None \n", | |
"4 NEXT-i7-IDT-105 NEXT-i5-IDT-17 CTACTTGG AGATCGTC None None \n", | |
"\n", | |
" well_id iteration \n", | |
"0 A1 1 \n", | |
"1 A2 1 \n", | |
"2 A3 1 \n", | |
"3 A4 1 \n", | |
"4 A5 1 " | |
] | |
}, | |
"execution_count": 44, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"samplesheets.index = np.arange(len(samplesheets))\n", | |
"samplesheets.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 45, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"XT-C-01.csv XT-C-05.csv XT-C-09.csv XT-C-13.csv XT-C-17.csv XT-C-21.csv\r\n", | |
"XT-C-02.csv XT-C-06.csv XT-C-10.csv XT-C-14.csv XT-C-18.csv XT-C-22.csv\r\n", | |
"XT-C-03.csv XT-C-07.csv XT-C-11.csv XT-C-15.csv XT-C-19.csv XT-C-23.csv\r\n", | |
"XT-C-04.csv XT-C-08.csv XT-C-12.csv XT-C-16.csv XT-C-20.csv\r\n" | |
] | |
} | |
], | |
"source": [ | |
"ls $data_folder" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 46, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Sample_ID</th>\n", | |
" <th>Sample_Name</th>\n", | |
" <th>I7_Index_ID</th>\n", | |
" <th>index</th>\n", | |
" <th>I5_Index_ID</th>\n", | |
" <th>index2</th>\n", | |
" <th>well_id</th>\n", | |
" <th>iteration</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>K12-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K12-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-185</td>\n", | |
" <td>GCCACTTA</td>\n", | |
" <td>NEXT-i5-IDT-1</td>\n", | |
" <td>ACGATCAG</td>\n", | |
" <td>A1</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>K13-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K13-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-1</td>\n", | |
" <td>CTGATCGT</td>\n", | |
" <td>NEXT-i5-IDT-97</td>\n", | |
" <td>TGATAGGC</td>\n", | |
" <td>A2</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>K14-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K14-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-97</td>\n", | |
" <td>GCCTATCA</td>\n", | |
" <td>NEXT-i5-IDT-9</td>\n", | |
" <td>ATTAGCCG</td>\n", | |
" <td>A3</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>K15-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K15-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-9</td>\n", | |
" <td>CGGCTAAT</td>\n", | |
" <td>NEXT-i5-IDT-105</td>\n", | |
" <td>CCAAGTAG</td>\n", | |
" <td>A4</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>K16-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K16-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-105</td>\n", | |
" <td>CTACTTGG</td>\n", | |
" <td>NEXT-i5-IDT-17</td>\n", | |
" <td>AGATCGTC</td>\n", | |
" <td>A5</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Sample_ID Sample_Name I7_Index_ID \\\n", | |
"0 K12-MAA000917-3_11_M-1-1 K12-MAA000917-3_11_M-1-1 NEXT-i7-IDT-185 \n", | |
"1 K13-MAA000917-3_11_M-1-1 K13-MAA000917-3_11_M-1-1 NEXT-i7-IDT-1 \n", | |
"2 K14-MAA000917-3_11_M-1-1 K14-MAA000917-3_11_M-1-1 NEXT-i7-IDT-97 \n", | |
"3 K15-MAA000917-3_11_M-1-1 K15-MAA000917-3_11_M-1-1 NEXT-i7-IDT-9 \n", | |
"4 K16-MAA000917-3_11_M-1-1 K16-MAA000917-3_11_M-1-1 NEXT-i7-IDT-105 \n", | |
"\n", | |
" index I5_Index_ID index2 well_id iteration \n", | |
"0 GCCACTTA NEXT-i5-IDT-1 ACGATCAG A1 1 \n", | |
"1 CTGATCGT NEXT-i5-IDT-97 TGATAGGC A2 1 \n", | |
"2 GCCTATCA NEXT-i5-IDT-9 ATTAGCCG A3 1 \n", | |
"3 CGGCTAAT NEXT-i5-IDT-105 CCAAGTAG A4 1 \n", | |
"4 CTACTTGG NEXT-i5-IDT-17 AGATCGTC A5 1 " | |
] | |
}, | |
"execution_count": 46, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"correct_nova7 = pd.read_csv('data/014_backwards_rotate_indices_for_updated_samplesheets/170928_A00111_Nova7.csv', \n", | |
" index_col=0)\n", | |
"correct_nova7.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 47, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"\n", | |
"\n", | |
"--- Before, using old indices: ---\n", | |
" Sample_ID Sample_Name I7_Index_ID index \\\n", | |
"0 A1-D041912-3_8_M-1-1 A1-D041912-3_8_M-1-1 NEXT-i7-IDT-1 CTGATCGT \n", | |
"1 A2-D041912-3_8_M-1-1 A2-D041912-3_8_M-1-1 NEXT-i7-IDT-193 CTTCGTTC \n", | |
"2 A3-D041912-3_8_M-1-1 A3-D041912-3_8_M-1-1 NEXT-i7-IDT-2 ACTCTCGA \n", | |
"3 A4-D041912-3_8_M-1-1 A4-D041912-3_8_M-1-1 NEXT-i7-IDT-194 GTCTAGGT \n", | |
"4 A5-D041912-3_8_M-1-1 A5-D041912-3_8_M-1-1 NEXT-i7-IDT-3 TGAGCTAG \n", | |
"\n", | |
" I5_Index_ID index2 \n", | |
"0 NEXT-i5-IDT-185 TAAGTGGC \n", | |
"1 NEXT-i5-IDT-377 GAGGCATT \n", | |
"2 NEXT-i5-IDT-186 AGTCAGGT \n", | |
"3 NEXT-i5-IDT-378 ACACCTCA \n", | |
"4 NEXT-i5-IDT-187 GCCTTAAC \n", | |
"--- After changing indices: ---\n", | |
" Sample_ID Sample_Name I7_Index_ID index \\\n", | |
"0 A1-D041912-3_8_M-1-1 A1-D041912-3_8_M-1-1 NEXT-i7-IDT-185 GCCACTTA \n", | |
"1 A2-D041912-3_8_M-1-1 A2-D041912-3_8_M-1-1 NEXT-i7-IDT-1 CTGATCGT \n", | |
"2 A3-D041912-3_8_M-1-1 A3-D041912-3_8_M-1-1 NEXT-i7-IDT-97 GCCTATCA \n", | |
"3 A4-D041912-3_8_M-1-1 A4-D041912-3_8_M-1-1 NEXT-i7-IDT-9 CGGCTAAT \n", | |
"4 A5-D041912-3_8_M-1-1 A5-D041912-3_8_M-1-1 NEXT-i7-IDT-105 CTACTTGG \n", | |
"\n", | |
" I5_Index_ID index2 well_id iteration \n", | |
"0 NEXT-i5-IDT-1 ACGATCAG A1 1 \n", | |
"1 NEXT-i5-IDT-97 TGATAGGC A2 1 \n", | |
"2 NEXT-i5-IDT-9 ATTAGCCG A3 1 \n", | |
"3 NEXT-i5-IDT-105 CCAAGTAG A4 1 \n", | |
"4 NEXT-i5-IDT-17 AGATCGTC A5 1 \n", | |
"\n", | |
"\n", | |
"--- Before, using old indices: ---\n", | |
" Sample_ID Sample_Name I7_Index_ID \\\n", | |
"0 M2-MAA000377-3_9_M-1-1 M2-MAA000377-3_9_M-1-1 NEXT-i7-IDT-1 \n", | |
"1 M10-MAA000377-3_9_M-1-1 M10-MAA000377-3_9_M-1-1 NEXT-i7-IDT-193 \n", | |
"2 M15-MAA000377-3_9_M-1-1 M15-MAA000377-3_9_M-1-1 NEXT-i7-IDT-2 \n", | |
"3 M16-MAA000377-3_9_M-1-1 M16-MAA000377-3_9_M-1-1 NEXT-i7-IDT-194 \n", | |
"4 N4-MAA000377-3_9_M-1-1 N4-MAA000377-3_9_M-1-1 NEXT-i7-IDT-3 \n", | |
"\n", | |
" index I5_Index_ID index2 \n", | |
"0 CTGATCGT NEXT-i5-IDT-185 TAAGTGGC \n", | |
"1 CTTCGTTC NEXT-i5-IDT-377 GAGGCATT \n", | |
"2 ACTCTCGA NEXT-i5-IDT-186 AGTCAGGT \n", | |
"3 GTCTAGGT NEXT-i5-IDT-378 ACACCTCA \n", | |
"4 TGAGCTAG NEXT-i5-IDT-187 GCCTTAAC \n", | |
"--- After changing indices: ---\n", | |
" Sample_ID Sample_Name I7_Index_ID \\\n", | |
"0 M2-MAA000377-3_9_M-1-1 M2-MAA000377-3_9_M-1-1 NEXT-i7-IDT-185 \n", | |
"1 M10-MAA000377-3_9_M-1-1 M10-MAA000377-3_9_M-1-1 NEXT-i7-IDT-1 \n", | |
"2 M15-MAA000377-3_9_M-1-1 M15-MAA000377-3_9_M-1-1 NEXT-i7-IDT-97 \n", | |
"3 M16-MAA000377-3_9_M-1-1 M16-MAA000377-3_9_M-1-1 NEXT-i7-IDT-9 \n", | |
"4 N4-MAA000377-3_9_M-1-1 N4-MAA000377-3_9_M-1-1 NEXT-i7-IDT-105 \n", | |
"\n", | |
" index I5_Index_ID index2 well_id iteration \n", | |
"0 GCCACTTA NEXT-i5-IDT-1 ACGATCAG A1 1 \n", | |
"1 CTGATCGT NEXT-i5-IDT-97 TGATAGGC A2 1 \n", | |
"2 GCCTATCA NEXT-i5-IDT-9 ATTAGCCG A3 1 \n", | |
"3 CGGCTAAT NEXT-i5-IDT-105 CCAAGTAG A4 1 \n", | |
"4 CTACTTGG NEXT-i5-IDT-17 AGATCGTC A5 1 \n", | |
"\n", | |
"\n", | |
"--- Before, using old indices: ---\n", | |
" Sample_ID Sample_Name I7_Index_ID index \\\n", | |
"0 A1-B000127-3_38_F-1-1 A1-B000127-3_38_F-1-1 NEXT-i7-IDT-1 CTGATCGT \n", | |
"1 A2-B000127-3_38_F-1-1 A2-B000127-3_38_F-1-1 NEXT-i7-IDT-193 CTTCGTTC \n", | |
"2 A3-B000127-3_38_F-1-1 A3-B000127-3_38_F-1-1 NEXT-i7-IDT-2 ACTCTCGA \n", | |
"3 A4-B000127-3_38_F-1-1 A4-B000127-3_38_F-1-1 NEXT-i7-IDT-194 GTCTAGGT \n", | |
"4 A5-B000127-3_38_F-1-1 A5-B000127-3_38_F-1-1 NEXT-i7-IDT-3 TGAGCTAG \n", | |
"\n", | |
" I5_Index_ID index2 \n", | |
"0 NEXT-i5-IDT-185 TAAGTGGC \n", | |
"1 NEXT-i5-IDT-377 GAGGCATT \n", | |
"2 NEXT-i5-IDT-186 AGTCAGGT \n", | |
"3 NEXT-i5-IDT-378 ACACCTCA \n", | |
"4 NEXT-i5-IDT-187 GCCTTAAC \n", | |
"--- After changing indices: ---\n", | |
" Sample_ID Sample_Name I7_Index_ID index \\\n", | |
"0 A1-B000127-3_38_F-1-1 A1-B000127-3_38_F-1-1 NEXT-i7-IDT-185 GCCACTTA \n", | |
"1 A2-B000127-3_38_F-1-1 A2-B000127-3_38_F-1-1 NEXT-i7-IDT-1 CTGATCGT \n", | |
"2 A3-B000127-3_38_F-1-1 A3-B000127-3_38_F-1-1 NEXT-i7-IDT-97 GCCTATCA \n", | |
"3 A4-B000127-3_38_F-1-1 A4-B000127-3_38_F-1-1 NEXT-i7-IDT-9 CGGCTAAT \n", | |
"4 A5-B000127-3_38_F-1-1 A5-B000127-3_38_F-1-1 NEXT-i7-IDT-105 CTACTTGG \n", | |
"\n", | |
" I5_Index_ID index2 well_id iteration \n", | |
"0 NEXT-i5-IDT-1 ACGATCAG A1 1 \n", | |
"1 NEXT-i5-IDT-97 TGATAGGC A2 1 \n", | |
"2 NEXT-i5-IDT-9 ATTAGCCG A3 1 \n", | |
"3 NEXT-i5-IDT-105 CCAAGTAG A4 1 \n", | |
"4 NEXT-i5-IDT-17 AGATCGTC A5 1 \n", | |
"\n", | |
"\n", | |
"--- Before, using old indices: ---\n", | |
" Sample_ID Sample_Name I7_Index_ID index \\\n", | |
"0 L8-B002775-3_39_F-1-1 L8-B002775-3_39_F-1-1 NEXT-i7-IDT-1 CTGATCGT \n", | |
"1 L10-B002775-3_39_F-1-1 L10-B002775-3_39_F-1-1 NEXT-i7-IDT-193 CTTCGTTC \n", | |
"2 L13-B002775-3_39_F-1-1 L13-B002775-3_39_F-1-1 NEXT-i7-IDT-2 ACTCTCGA \n", | |
"3 L17-B002775-3_39_F-1-1 L17-B002775-3_39_F-1-1 NEXT-i7-IDT-194 GTCTAGGT \n", | |
"4 L20-B002775-3_39_F-1-1 L20-B002775-3_39_F-1-1 NEXT-i7-IDT-3 TGAGCTAG \n", | |
"\n", | |
" I5_Index_ID index2 \n", | |
"0 NEXT-i5-IDT-185 TAAGTGGC \n", | |
"1 NEXT-i5-IDT-377 GAGGCATT \n", | |
"2 NEXT-i5-IDT-186 AGTCAGGT \n", | |
"3 NEXT-i5-IDT-378 ACACCTCA \n", | |
"4 NEXT-i5-IDT-187 GCCTTAAC \n", | |
"--- After changing indices: ---\n", | |
" Sample_ID Sample_Name I7_Index_ID index \\\n", | |
"0 L8-B002775-3_39_F-1-1 L8-B002775-3_39_F-1-1 NEXT-i7-IDT-185 GCCACTTA \n", | |
"1 L10-B002775-3_39_F-1-1 L10-B002775-3_39_F-1-1 NEXT-i7-IDT-1 CTGATCGT \n", | |
"2 L13-B002775-3_39_F-1-1 L13-B002775-3_39_F-1-1 NEXT-i7-IDT-97 GCCTATCA \n", | |
"3 L17-B002775-3_39_F-1-1 L17-B002775-3_39_F-1-1 NEXT-i7-IDT-9 CGGCTAAT \n", | |
"4 L20-B002775-3_39_F-1-1 L20-B002775-3_39_F-1-1 NEXT-i7-IDT-105 CTACTTGG \n", | |
"\n", | |
" I5_Index_ID index2 well_id iteration \n", | |
"0 NEXT-i5-IDT-1 ACGATCAG A1 1 \n", | |
"1 NEXT-i5-IDT-97 TGATAGGC A2 1 \n", | |
"2 NEXT-i5-IDT-9 ATTAGCCG A3 1 \n", | |
"3 NEXT-i5-IDT-105 CCAAGTAG A4 1 \n", | |
"4 NEXT-i5-IDT-17 AGATCGTC A5 1 \n", | |
"\n", | |
"\n", | |
"--- Before, using old indices: ---\n", | |
" Sample_ID Sample_Name I7_Index_ID \\\n", | |
"0 J14-MAA001867-3_39_F-1-1 J14-MAA001867-3_39_F-1-1 NEXT-i7-IDT-1 \n", | |
"1 J16-MAA001867-3_39_F-1-1 J16-MAA001867-3_39_F-1-1 NEXT-i7-IDT-193 \n", | |
"2 J17-MAA001867-3_39_F-1-1 J17-MAA001867-3_39_F-1-1 NEXT-i7-IDT-2 \n", | |
"3 J18-MAA001867-3_39_F-1-1 J18-MAA001867-3_39_F-1-1 NEXT-i7-IDT-194 \n", | |
"4 J19-MAA001867-3_39_F-1-1 J19-MAA001867-3_39_F-1-1 NEXT-i7-IDT-3 \n", | |
"\n", | |
" index I5_Index_ID index2 \n", | |
"0 CTGATCGT NEXT-i5-IDT-17 AGATCGTC \n", | |
"1 CTTCGTTC NEXT-i5-IDT-209 AACACTGG \n", | |
"2 ACTCTCGA NEXT-i5-IDT-18 GCTCAGTT \n", | |
"3 GTCTAGGT NEXT-i5-IDT-210 TTGGTGCA \n", | |
"4 TGAGCTAG NEXT-i5-IDT-19 GTCCTAAG \n", | |
"--- After changing indices: ---\n", | |
" Sample_ID Sample_Name I7_Index_ID \\\n", | |
"0 J14-MAA001867-3_39_F-1-1 J14-MAA001867-3_39_F-1-1 NEXT-i7-IDT-185 \n", | |
"1 J16-MAA001867-3_39_F-1-1 J16-MAA001867-3_39_F-1-1 NEXT-i7-IDT-1 \n", | |
"2 J17-MAA001867-3_39_F-1-1 J17-MAA001867-3_39_F-1-1 NEXT-i7-IDT-97 \n", | |
"3 J18-MAA001867-3_39_F-1-1 J18-MAA001867-3_39_F-1-1 NEXT-i7-IDT-9 \n", | |
"4 J19-MAA001867-3_39_F-1-1 J19-MAA001867-3_39_F-1-1 NEXT-i7-IDT-105 \n", | |
"\n", | |
" index I5_Index_ID index2 well_id iteration \n", | |
"0 GCCACTTA NEXT-i5-IDT-1 ACGATCAG A1 1 \n", | |
"1 CTGATCGT NEXT-i5-IDT-97 TGATAGGC A2 1 \n", | |
"2 GCCTATCA NEXT-i5-IDT-9 ATTAGCCG A3 1 \n", | |
"3 CGGCTAAT NEXT-i5-IDT-105 CCAAGTAG A4 1 \n", | |
"4 CTACTTGG NEXT-i5-IDT-17 AGATCGTC A5 1 \n", | |
"\n", | |
"\n", | |
"--- Before, using old indices: ---\n", | |
" Sample_ID Sample_Name I7_Index_ID \\\n", | |
"0 K14-MAA000924-3_8_M-1-1 K14-MAA000924-3_8_M-1-1 NEXT-i7-IDT-1 \n", | |
"1 K15-MAA000924-3_8_M-1-1 K15-MAA000924-3_8_M-1-1 NEXT-i7-IDT-193 \n", | |
"2 K16-MAA000924-3_8_M-1-1 K16-MAA000924-3_8_M-1-1 NEXT-i7-IDT-2 \n", | |
"3 K17-MAA000924-3_8_M-1-1 K17-MAA000924-3_8_M-1-1 NEXT-i7-IDT-194 \n", | |
"4 K18-MAA000924-3_8_M-1-1 K18-MAA000924-3_8_M-1-1 NEXT-i7-IDT-3 \n", | |
"\n", | |
" index I5_Index_ID index2 \n", | |
"0 CTGATCGT NEXT-i5-IDT-17 AGATCGTC \n", | |
"1 CTTCGTTC NEXT-i5-IDT-209 AACACTGG \n", | |
"2 ACTCTCGA NEXT-i5-IDT-18 GCTCAGTT \n", | |
"3 GTCTAGGT NEXT-i5-IDT-210 TTGGTGCA \n", | |
"4 TGAGCTAG NEXT-i5-IDT-19 GTCCTAAG \n", | |
"--- After changing indices: ---\n", | |
" Sample_ID Sample_Name I7_Index_ID \\\n", | |
"0 K14-MAA000924-3_8_M-1-1 K14-MAA000924-3_8_M-1-1 NEXT-i7-IDT-185 \n", | |
"1 K15-MAA000924-3_8_M-1-1 K15-MAA000924-3_8_M-1-1 NEXT-i7-IDT-1 \n", | |
"2 K16-MAA000924-3_8_M-1-1 K16-MAA000924-3_8_M-1-1 NEXT-i7-IDT-97 \n", | |
"3 K17-MAA000924-3_8_M-1-1 K17-MAA000924-3_8_M-1-1 NEXT-i7-IDT-9 \n", | |
"4 K18-MAA000924-3_8_M-1-1 K18-MAA000924-3_8_M-1-1 NEXT-i7-IDT-105 \n", | |
"\n", | |
" index I5_Index_ID index2 well_id iteration \n", | |
"0 GCCACTTA NEXT-i5-IDT-1 ACGATCAG A1 1 \n", | |
"1 CTGATCGT NEXT-i5-IDT-97 TGATAGGC A2 1 \n", | |
"2 GCCTATCA NEXT-i5-IDT-9 ATTAGCCG A3 1 \n", | |
"3 CGGCTAAT NEXT-i5-IDT-105 CCAAGTAG A4 1 \n", | |
"4 CTACTTGG NEXT-i5-IDT-17 AGATCGTC A5 1 \n", | |
"\n", | |
"\n", | |
"--- Before, using old indices: ---\n", | |
" Sample_ID Sample_Name I7_Index_ID \\\n", | |
"0 K12-MAA000917-3_11_M-1-1 K12-MAA000917-3_11_M-1-1 NEXT-i7-IDT-1 \n", | |
"1 K13-MAA000917-3_11_M-1-1 K13-MAA000917-3_11_M-1-1 NEXT-i7-IDT-193 \n", | |
"2 K14-MAA000917-3_11_M-1-1 K14-MAA000917-3_11_M-1-1 NEXT-i7-IDT-2 \n", | |
"3 K15-MAA000917-3_11_M-1-1 K15-MAA000917-3_11_M-1-1 NEXT-i7-IDT-194 \n", | |
"4 K16-MAA000917-3_11_M-1-1 K16-MAA000917-3_11_M-1-1 NEXT-i7-IDT-3 \n", | |
"\n", | |
" index I5_Index_ID index2 \n", | |
"0 CTGATCGT NEXT-i5-IDT-17 AGATCGTC \n", | |
"1 CTTCGTTC NEXT-i5-IDT-209 AACACTGG \n", | |
"2 ACTCTCGA NEXT-i5-IDT-18 GCTCAGTT \n", | |
"3 GTCTAGGT NEXT-i5-IDT-210 TTGGTGCA \n", | |
"4 TGAGCTAG NEXT-i5-IDT-19 GTCCTAAG \n", | |
"--- After changing indices: ---\n", | |
" Sample_ID Sample_Name I7_Index_ID \\\n", | |
"0 K12-MAA000917-3_11_M-1-1 K12-MAA000917-3_11_M-1-1 NEXT-i7-IDT-185 \n", | |
"1 K13-MAA000917-3_11_M-1-1 K13-MAA000917-3_11_M-1-1 NEXT-i7-IDT-1 \n", | |
"2 K14-MAA000917-3_11_M-1-1 K14-MAA000917-3_11_M-1-1 NEXT-i7-IDT-97 \n", | |
"3 K15-MAA000917-3_11_M-1-1 K15-MAA000917-3_11_M-1-1 NEXT-i7-IDT-9 \n", | |
"4 K16-MAA000917-3_11_M-1-1 K16-MAA000917-3_11_M-1-1 NEXT-i7-IDT-105 \n", | |
"\n", | |
" index I5_Index_ID index2 well_id iteration \n", | |
"0 GCCACTTA NEXT-i5-IDT-1 ACGATCAG A1 1 \n", | |
"1 CTGATCGT NEXT-i5-IDT-97 TGATAGGC A2 1 \n", | |
"2 GCCTATCA NEXT-i5-IDT-9 ATTAGCCG A3 1 \n", | |
"3 CGGCTAAT NEXT-i5-IDT-105 CCAAGTAG A4 1 \n", | |
"4 CTACTTGG NEXT-i5-IDT-17 AGATCGTC A5 1 \n" | |
] | |
} | |
], | |
"source": [ | |
"sample_cols = ['Sample_ID', 'Sample_Name']\n", | |
"\n", | |
"for basename, novaseq in novaseqs.items():\n", | |
" print('\\n\\n--- Before, using old indices: ---')\n", | |
" print(novaseq.head())\n", | |
" new_novaseq = pd.concat([novaseq[sample_cols], samplesheets[index_cols]], axis=1)\n", | |
" \n", | |
" csv = os.path.join(data_folder, basename)\n", | |
" new_novaseq.to_csv(csv, index=False)\n", | |
" print('--- After changing indices: ---')\n", | |
" print(new_novaseq.head())" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 48, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Sample_ID</th>\n", | |
" <th>Sample_Name</th>\n", | |
" <th>I7_Index_ID</th>\n", | |
" <th>index</th>\n", | |
" <th>I5_Index_ID</th>\n", | |
" <th>index2</th>\n", | |
" <th>well_id</th>\n", | |
" <th>iteration</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>K12-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K12-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-185</td>\n", | |
" <td>GCCACTTA</td>\n", | |
" <td>NEXT-i5-IDT-1</td>\n", | |
" <td>ACGATCAG</td>\n", | |
" <td>A1</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>K13-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K13-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-1</td>\n", | |
" <td>CTGATCGT</td>\n", | |
" <td>NEXT-i5-IDT-97</td>\n", | |
" <td>TGATAGGC</td>\n", | |
" <td>A2</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>K14-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K14-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-97</td>\n", | |
" <td>GCCTATCA</td>\n", | |
" <td>NEXT-i5-IDT-9</td>\n", | |
" <td>ATTAGCCG</td>\n", | |
" <td>A3</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>K15-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K15-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-9</td>\n", | |
" <td>CGGCTAAT</td>\n", | |
" <td>NEXT-i5-IDT-105</td>\n", | |
" <td>CCAAGTAG</td>\n", | |
" <td>A4</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>K16-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K16-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-105</td>\n", | |
" <td>CTACTTGG</td>\n", | |
" <td>NEXT-i5-IDT-17</td>\n", | |
" <td>AGATCGTC</td>\n", | |
" <td>A5</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Sample_ID Sample_Name I7_Index_ID \\\n", | |
"0 K12-MAA000917-3_11_M-1-1 K12-MAA000917-3_11_M-1-1 NEXT-i7-IDT-185 \n", | |
"1 K13-MAA000917-3_11_M-1-1 K13-MAA000917-3_11_M-1-1 NEXT-i7-IDT-1 \n", | |
"2 K14-MAA000917-3_11_M-1-1 K14-MAA000917-3_11_M-1-1 NEXT-i7-IDT-97 \n", | |
"3 K15-MAA000917-3_11_M-1-1 K15-MAA000917-3_11_M-1-1 NEXT-i7-IDT-9 \n", | |
"4 K16-MAA000917-3_11_M-1-1 K16-MAA000917-3_11_M-1-1 NEXT-i7-IDT-105 \n", | |
"\n", | |
" index I5_Index_ID index2 well_id iteration \n", | |
"0 GCCACTTA NEXT-i5-IDT-1 ACGATCAG A1 1 \n", | |
"1 CTGATCGT NEXT-i5-IDT-97 TGATAGGC A2 1 \n", | |
"2 GCCTATCA NEXT-i5-IDT-9 ATTAGCCG A3 1 \n", | |
"3 CGGCTAAT NEXT-i5-IDT-105 CCAAGTAG A4 1 \n", | |
"4 CTACTTGG NEXT-i5-IDT-17 AGATCGTC A5 1 " | |
] | |
}, | |
"execution_count": 48, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"new_novaseq.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 49, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Sample_ID</th>\n", | |
" <th>Sample_Name</th>\n", | |
" <th>I7_Index_ID</th>\n", | |
" <th>index</th>\n", | |
" <th>I5_Index_ID</th>\n", | |
" <th>index2</th>\n", | |
" <th>well_id</th>\n", | |
" <th>iteration</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>K12-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K12-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-185</td>\n", | |
" <td>GCCACTTA</td>\n", | |
" <td>NEXT-i5-IDT-1</td>\n", | |
" <td>ACGATCAG</td>\n", | |
" <td>A1</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>K13-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K13-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-1</td>\n", | |
" <td>CTGATCGT</td>\n", | |
" <td>NEXT-i5-IDT-97</td>\n", | |
" <td>TGATAGGC</td>\n", | |
" <td>A2</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>K14-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K14-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-97</td>\n", | |
" <td>GCCTATCA</td>\n", | |
" <td>NEXT-i5-IDT-9</td>\n", | |
" <td>ATTAGCCG</td>\n", | |
" <td>A3</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>K15-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K15-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-9</td>\n", | |
" <td>CGGCTAAT</td>\n", | |
" <td>NEXT-i5-IDT-105</td>\n", | |
" <td>CCAAGTAG</td>\n", | |
" <td>A4</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>K16-MAA000917-3_11_M-1-1</td>\n", | |
" <td>K16-MAA000917-3_11_M-1-1</td>\n", | |
" <td>NEXT-i7-IDT-105</td>\n", | |
" <td>CTACTTGG</td>\n", | |
" <td>NEXT-i5-IDT-17</td>\n", | |
" <td>AGATCGTC</td>\n", | |
" <td>A5</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Sample_ID Sample_Name I7_Index_ID \\\n", | |
"0 K12-MAA000917-3_11_M-1-1 K12-MAA000917-3_11_M-1-1 NEXT-i7-IDT-185 \n", | |
"1 K13-MAA000917-3_11_M-1-1 K13-MAA000917-3_11_M-1-1 NEXT-i7-IDT-1 \n", | |
"2 K14-MAA000917-3_11_M-1-1 K14-MAA000917-3_11_M-1-1 NEXT-i7-IDT-97 \n", | |
"3 K15-MAA000917-3_11_M-1-1 K15-MAA000917-3_11_M-1-1 NEXT-i7-IDT-9 \n", | |
"4 K16-MAA000917-3_11_M-1-1 K16-MAA000917-3_11_M-1-1 NEXT-i7-IDT-105 \n", | |
"\n", | |
" index I5_Index_ID index2 well_id iteration \n", | |
"0 GCCACTTA NEXT-i5-IDT-1 ACGATCAG A1 1 \n", | |
"1 CTGATCGT NEXT-i5-IDT-97 TGATAGGC A2 1 \n", | |
"2 GCCTATCA NEXT-i5-IDT-9 ATTAGCCG A3 1 \n", | |
"3 CGGCTAAT NEXT-i5-IDT-105 CCAAGTAG A4 1 \n", | |
"4 CTACTTGG NEXT-i5-IDT-17 AGATCGTC A5 1 " | |
] | |
}, | |
"execution_count": 49, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"correct_nova7.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 50, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Sample_ID False\n", | |
"Sample_Name False\n", | |
"I7_Index_ID False\n", | |
"index False\n", | |
"I5_Index_ID False\n", | |
"index2 False\n", | |
"well_id False\n", | |
"iteration False\n", | |
"dtype: bool" | |
] | |
}, | |
"execution_count": 50, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"(new_novaseq != correct_nova7).any()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 51, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(8832, 8)" | |
] | |
}, | |
"execution_count": 51, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"new_novaseq.shape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 52, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(8832, 8)" | |
] | |
}, | |
"execution_count": 52, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"samplesheets.shape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 53, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th>I7_Index_ID</th>\n", | |
" <th>I5_Index_ID</th>\n", | |
" <th>index</th>\n", | |
" <th>index2</th>\n", | |
" <th>Sample_ID</th>\n", | |
" <th>Sample_Name</th>\n", | |
" <th>well_id</th>\n", | |
" <th>iteration</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>letter_row</th>\n", | |
" <th>number_col</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th rowspan=\"5\" valign=\"top\">A</th>\n", | |
" <th>1</th>\n", | |
" <td>NEXT-i7-IDT-97</td>\n", | |
" <td>NEXT-i5-IDT-1</td>\n", | |
" <td>GCCTATCA</td>\n", | |
" <td>ACGATCAG</td>\n", | |
" <td>None</td>\n", | |
" <td>None</td>\n", | |
" <td>A1</td>\n", | |
" <td>23</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>NEXT-i7-IDT-9</td>\n", | |
" <td>NEXT-i5-IDT-97</td>\n", | |
" <td>CGGCTAAT</td>\n", | |
" <td>TGATAGGC</td>\n", | |
" <td>None</td>\n", | |
" <td>None</td>\n", | |
" <td>A2</td>\n", | |
" <td>23</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>NEXT-i7-IDT-105</td>\n", | |
" <td>NEXT-i5-IDT-9</td>\n", | |
" <td>CTACTTGG</td>\n", | |
" <td>ATTAGCCG</td>\n", | |
" <td>None</td>\n", | |
" <td>None</td>\n", | |
" <td>A3</td>\n", | |
" <td>23</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>NEXT-i7-IDT-17</td>\n", | |
" <td>NEXT-i5-IDT-105</td>\n", | |
" <td>GACGATCT</td>\n", | |
" <td>CCAAGTAG</td>\n", | |
" <td>None</td>\n", | |
" <td>None</td>\n", | |
" <td>A4</td>\n", | |
" <td>23</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>NEXT-i7-IDT-113</td>\n", | |
" <td>NEXT-i5-IDT-17</td>\n", | |
" <td>TGACTGAC</td>\n", | |
" <td>AGATCGTC</td>\n", | |
" <td>None</td>\n", | |
" <td>None</td>\n", | |
" <td>A5</td>\n", | |
" <td>23</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" I7_Index_ID I5_Index_ID index index2 \\\n", | |
"letter_row number_col \n", | |
"A 1 NEXT-i7-IDT-97 NEXT-i5-IDT-1 GCCTATCA ACGATCAG \n", | |
" 2 NEXT-i7-IDT-9 NEXT-i5-IDT-97 CGGCTAAT TGATAGGC \n", | |
" 3 NEXT-i7-IDT-105 NEXT-i5-IDT-9 CTACTTGG ATTAGCCG \n", | |
" 4 NEXT-i7-IDT-17 NEXT-i5-IDT-105 GACGATCT CCAAGTAG \n", | |
" 5 NEXT-i7-IDT-113 NEXT-i5-IDT-17 TGACTGAC AGATCGTC \n", | |
"\n", | |
" Sample_ID Sample_Name well_id iteration \n", | |
"letter_row number_col \n", | |
"A 1 None None A1 23 \n", | |
" 2 None None A2 23 \n", | |
" 3 None None A3 23 \n", | |
" 4 None None A4 23 \n", | |
" 5 None None A5 23 " | |
] | |
}, | |
"execution_count": 53, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# samplesheets.to_csv(os.path.join(data_folder, 'backwards_rotated_samplesheets.csv'))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"i5_to_seq" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (maca-dash)", | |
"language": "python", | |
"name": "myenv" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment