Created
December 6, 2017 20:30
-
-
Save olgabot/f41ad9591479cf59304b458c3aa4490b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"mkdir: ../metadata/summary: File exists\r\n" | |
] | |
} | |
], | |
"source": [ | |
"import pandas as pd\n", | |
"import os\n", | |
"\n", | |
"metadata_folder = os.path.join('..', 'metadata' )\n", | |
"\n", | |
"annotation_folder = os.path.join(metadata_folder, 'manual_annotations')\n", | |
"# annotation_folder\n", | |
"\n", | |
"summary_folder = os.path.join(metadata_folder, 'summary')\n", | |
"! mkdir $summary_folder\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import matplotlib.pyplot as plt\n", | |
"import matplotlib\n", | |
"import seaborn as sns\n", | |
"import numpy as np\n", | |
"import glob\n", | |
"import os \n", | |
"\n", | |
"import hermione as hm\n", | |
"\n", | |
"# Editable text and proper LaTeX fonts in illustrator\n", | |
"matplotlib.rcParams['ps.useafm'] = True\n", | |
"matplotlib.rcParams['pdf.use14corefonts'] = True\n", | |
"\n", | |
"# Editable fonts. 42 is the magic number\n", | |
"matplotlib.rcParams['pdf.fonttype'] = 42\n", | |
"\n", | |
"# Use \"Computer Modern\" (LaTeX font) for math numbers\n", | |
"matplotlib.rcParams['mathtext.fontset'] = 'cm'\n", | |
"%matplotlib inline\n", | |
"\n", | |
"sns.set(style='whitegrid', context='paper')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"# packages in environment at /Users/olgabot/anaconda3/envs/maca:\n", | |
"#\n", | |
"appnope 0.1.0 py36_0 \n", | |
"beautifulsoup4 4.6.0 <pip>\n", | |
"bkcharts 0.2 py36_0 \n", | |
"bokeh 0.12.6 py36_0 \n", | |
"certifi 2017.4.17 <pip>\n", | |
"chardet 3.0.4 <pip>\n", | |
"click 6.7 <pip>\n", | |
"curl 7.49.0 1 \n", | |
"cycler 0.10.0 py36_0 \n", | |
"dash 0.17.7 <pip>\n", | |
"dash-core-components 0.5.1 <pip>\n", | |
"dash-html-components 0.6.2 <pip>\n", | |
"dash-renderer 0.7.3 <pip>\n", | |
"dash.ly 0.17.3 <pip>\n", | |
"decorator 4.0.11 py36_0 \n", | |
"fastcluster 1.1.23 np113py36_0 conda-forge\n", | |
"Flask 0.12.2 <pip>\n", | |
"Flask-Compress 1.4.0 <pip>\n", | |
"Flask-SeaSurf 0.2.2 <pip>\n", | |
"freetype 2.8 h12048fb_1 \n", | |
"hdf4 4.2.12 1 \n", | |
"hdf5 1.8.17 2 \n", | |
"html5lib 0.999999999 <pip>\n", | |
"icu 54.1 0 \n", | |
"idna 2.5 <pip>\n", | |
"ipykernel 4.6.1 py36_0 \n", | |
"ipython 6.1.0 py36_0 \n", | |
"ipython_genutils 0.2.0 py36_0 \n", | |
"itsdangerous 0.24 <pip>\n", | |
"jedi 0.10.2 py36_2 \n", | |
"Jinja2 2.9.6 <pip>\n", | |
"jinja2 2.9.6 py36_0 \n", | |
"jpeg 9b hc9e287d_1 \n", | |
"jsonschema 2.6.0 <pip>\n", | |
"jupyter_client 5.0.1 py36_0 \n", | |
"jupyter_core 4.3.0 py36_0 \n", | |
"libcxx 4.0.1 h579ed51_0 \n", | |
"libcxxabi 4.0.1 hebd6815_0 \n", | |
"libnetcdf 4.4.1 1 \n", | |
"libpng 1.6.32 hd1e8b91_4 \n", | |
"lxml 3.8.0 <pip>\n", | |
"markupsafe 0.23 py36_2 \n", | |
"MarkupSafe 1.0 <pip>\n", | |
"matplotlib 2.1.0 py36h5068139_0 \n", | |
"mkl 2017.0.1 0 \n", | |
"nbformat 4.3.0 <pip>\n", | |
"netcdf4 1.2.4 np113py36_1 \n", | |
"numpy 1.13.0 py36_0 \n", | |
"openssl 1.0.2l 0 \n", | |
"pandas 0.20.2 np113py36_0 \n", | |
"path.py 10.3.1 py36_0 \n", | |
"pexpect 4.2.1 py36_0 \n", | |
"pickleshare 0.7.4 py36_0 \n", | |
"pip 9.0.1 py36_1 \n", | |
"plotly 2.0.11 <pip>\n", | |
"prompt_toolkit 1.0.14 py36_0 \n", | |
"ptyprocess 0.5.1 py36_0 \n", | |
"pygments 2.2.0 py36_0 \n", | |
"pyparsing 2.1.4 py36_0 \n", | |
"pyqt 5.6.0 py36_2 \n", | |
"python 3.6.1 2 \n", | |
"python-dateutil 2.6.0 py36_0 \n", | |
"pytz 2017.2 py36_0 \n", | |
"pyyaml 3.12 py36_0 \n", | |
"pyzmq 16.0.2 py36_0 \n", | |
"qt 5.6.2 2 \n", | |
"readline 6.2 2 \n", | |
"requests 2.18.1 <pip>\n", | |
"requests 2.14.2 py36_0 \n", | |
"scikit-learn 0.18.1 np113py36_1 \n", | |
"scipy 0.19.0 np113py36_0 \n", | |
"seaborn 0.7.1 py36_0 \n", | |
"setuptools 27.2.0 py36_0 \n", | |
"simplegeneric 0.8.1 py36_1 \n", | |
"sip 4.18 py36_0 \n", | |
"six 1.10.0 py36_0 \n", | |
"sqlite 3.13.0 0 \n", | |
"tk 8.5.18 0 \n", | |
"tornado 4.5.1 py36_0 \n", | |
"traitlets 4.3.2 py36_0 \n", | |
"ujson 1.35 py36_0 \n", | |
"urllib3 1.21.1 <pip>\n", | |
"wcwidth 0.1.7 py36_0 \n", | |
"webencodings 0.5.1 <pip>\n", | |
"Werkzeug 0.12.2 <pip>\n", | |
"wheel 0.29.0 py36_0 \n", | |
"xarray 0.9.6 py36_0 \n", | |
"xlrd 1.0.0 py36_0 \n", | |
"xz 5.2.2 1 \n", | |
"yaml 0.1.6 0 \n", | |
"zlib 1.2.11 hf3cbc9b_2 \n" | |
] | |
} | |
], | |
"source": [ | |
"! conda list -n maca" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(42192, 5)\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>annotation</th>\n", | |
" <th>plate.barcode</th>\n", | |
" <th>subannotation</th>\n", | |
" <th>tissue</th>\n", | |
" <th>annotation_subannotation</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>A21.MAA000594.3_8_M.1.1</th>\n", | |
" <td>fibroblasts</td>\n", | |
" <td>MAA000594</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Aorta</td>\n", | |
" <td>fibroblasts</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>F8.MAA000594.3_8_M.1.1</th>\n", | |
" <td>unknown</td>\n", | |
" <td>MAA000594</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Aorta</td>\n", | |
" <td>unknown</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>H11.MAA000594.3_8_M.1.1</th>\n", | |
" <td>unknown</td>\n", | |
" <td>MAA000594</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Aorta</td>\n", | |
" <td>unknown</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>A22.MAA000594.3_8_M.1.1</th>\n", | |
" <td>unknown</td>\n", | |
" <td>MAA000594</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Aorta</td>\n", | |
" <td>unknown</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>H12.MAA000594.3_8_M.1.1</th>\n", | |
" <td>adipocytes</td>\n", | |
" <td>MAA000594</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Aorta</td>\n", | |
" <td>adipocytes</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" annotation plate.barcode subannotation tissue \\\n", | |
"A21.MAA000594.3_8_M.1.1 fibroblasts MAA000594 NaN Aorta \n", | |
"F8.MAA000594.3_8_M.1.1 unknown MAA000594 NaN Aorta \n", | |
"H11.MAA000594.3_8_M.1.1 unknown MAA000594 NaN Aorta \n", | |
"A22.MAA000594.3_8_M.1.1 unknown MAA000594 NaN Aorta \n", | |
"H12.MAA000594.3_8_M.1.1 adipocytes MAA000594 NaN Aorta \n", | |
"\n", | |
" annotation_subannotation \n", | |
"A21.MAA000594.3_8_M.1.1 fibroblasts \n", | |
"F8.MAA000594.3_8_M.1.1 unknown \n", | |
"H11.MAA000594.3_8_M.1.1 unknown \n", | |
"A22.MAA000594.3_8_M.1.1 unknown \n", | |
"H12.MAA000594.3_8_M.1.1 adipocytes " | |
] | |
}, | |
"execution_count": 16, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"csv = os.path.join(metadata_folder, 'maca_3month_annotations_plates.csv')\n", | |
"\n", | |
"cell_annotations = pd.read_csv(csv, index_col=0)\n", | |
"print(cell_annotations.shape)\n", | |
"cell_annotations.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"folder = os.path.join(metadata_folder, 'number_of_cells_reads_genes/')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Aorta_cell_numbers.csv Liver_nreads_ngenes.csv\r\n", | |
"Aorta_nreads_ngenes.csv Lung_cell_numbers.csv\r\n", | |
"Bladder_cell_numbers.csv Lung_nreads_ngenes.csv\r\n", | |
"Bladder_nreads_ngenes.csv Mammary_Gland_cell_numbers.csv\r\n", | |
"Brain_FACS_microglia_cell_numbers.csv Mammary_Gland_nreads_ngenes.csv\r\n", | |
"Brain_FACS_microglia_nreads_ngenes.csv Mammary_cell_numbers.csv\r\n", | |
"Brain_FACS_neurons_cell_numbers.csv Mammary_nreads_ngenes.csv\r\n", | |
"Brain_FACS_neurons_nreads_ngenes.csv Marrow_cell_numbers.csv\r\n", | |
"Brain_Microglia_cell_numbers.csv Marrow_nreads_ngenes.csv\r\n", | |
"Brain_Microglia_nreads_ngenes.csv Muscle_cell_numbers.csv\r\n", | |
"Brain_Neurons_cell_numbers.csv Muscle_nreads_ngenes.csv\r\n", | |
"Brain_Neurons_nreads_ngenes.csv Pancreas_cell_numbers.csv\r\n", | |
"Colon_cell_numbers.csv Pancreas_nreads_ngenes.csv\r\n", | |
"Colon_nreads_ngenes.csv Skin_cell_numbers.csv\r\n", | |
"Diaphragm_cell_numbers.csv Skin_nreads_ngenes.csv\r\n", | |
"Diaphragm_nreads_ngenes.csv Spleen_cell_numbers.csv\r\n", | |
"Fat_cell_numbers.csv Spleen_nreads_ngenes.csv\r\n", | |
"Fat_nreads_ngenes.csv Thymus_cell_numbers.csv\r\n", | |
"Heart_cell_numbers.csv Thymus_nreads_ngenes.csv\r\n", | |
"Heart_nreads_ngenes.csv Tongue_cell_numbers.csv\r\n", | |
"Kidney_cell_numbers.csv Tongue_nreads_ngenes.csv\r\n", | |
"Kidney_nreads_ngenes.csv Trachea_cell_numbers.csv\r\n", | |
"Liver_cell_numbers.csv Trachea_nreads_ngenes.csv\r\n" | |
] | |
} | |
], | |
"source": [ | |
"ls $folder" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(53095, 4)\n", | |
"23\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>nGene</th>\n", | |
" <th>nReads</th>\n", | |
" <th>orig.ident</th>\n", | |
" <th>tissue</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>A21.MAA000594.3_8_M.1.1</th>\n", | |
" <td>3850</td>\n", | |
" <td>1848089</td>\n", | |
" <td>Heart</td>\n", | |
" <td>Aorta</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>F8.MAA000594.3_8_M.1.1</th>\n", | |
" <td>788</td>\n", | |
" <td>55689</td>\n", | |
" <td>Heart</td>\n", | |
" <td>Aorta</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>H11.MAA000594.3_8_M.1.1</th>\n", | |
" <td>554</td>\n", | |
" <td>318135</td>\n", | |
" <td>Heart</td>\n", | |
" <td>Aorta</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>A22.MAA000594.3_8_M.1.1</th>\n", | |
" <td>1279</td>\n", | |
" <td>270173</td>\n", | |
" <td>Heart</td>\n", | |
" <td>Aorta</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>H12.MAA000594.3_8_M.1.1</th>\n", | |
" <td>946</td>\n", | |
" <td>278892</td>\n", | |
" <td>Heart</td>\n", | |
" <td>Aorta</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" nGene nReads orig.ident tissue\n", | |
"A21.MAA000594.3_8_M.1.1 3850 1848089 Heart Aorta\n", | |
"F8.MAA000594.3_8_M.1.1 788 55689 Heart Aorta\n", | |
"H11.MAA000594.3_8_M.1.1 554 318135 Heart Aorta\n", | |
"A22.MAA000594.3_8_M.1.1 1279 270173 Heart Aorta\n", | |
"H12.MAA000594.3_8_M.1.1 946 278892 Heart Aorta" | |
] | |
}, | |
"execution_count": 13, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"\n", | |
"\n", | |
"globber = f'{folder}/*_nreads_ngenes.csv'\n", | |
"\n", | |
"dfs = []\n", | |
"\n", | |
"for filename in glob.iglob(globber):\n", | |
" df = pd.read_csv(filename, index_col=0)\n", | |
" df['tissue'] = os.path.basename(filename).split('_nreads_ngenes.csv')[0]\n", | |
" dfs.append(df)\n", | |
"nreads_ngenes = pd.concat(dfs)\n", | |
"\n", | |
"print(nreads_ngenes.shape)\n", | |
"print(len(nreads_ngenes.groupby('tissue')))\n", | |
"nreads_ngenes.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 36, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 37, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"nreads_ngenes['log10 nReads'] = np.log10(nreads_ngenes['nReads'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 38, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Aorta #1f77b4\n", | |
"Bladder #aec7e8\n", | |
"Brain_Microglia #ff7f0e\n", | |
"Brain_Neurons #ffbb78\n", | |
"Colon #2ca02c\n", | |
"Diaphragm #98df8a\n", | |
"Fat #d62728\n", | |
"Heart #ff9896\n", | |
"Kidney #9467bd\n", | |
"Liver #c5b0d5\n", | |
"Lung #8c564b\n", | |
"Mammary #c49c94\n", | |
"Marrow #e377c2\n", | |
"Muscle #f7b6d2\n", | |
"Pancreas #7f7f7f\n", | |
"Skin #c7c7c7\n", | |
"Spleen #bcbd22\n", | |
"Thymus #dbdb8d\n", | |
"Tongue #17becf\n", | |
"Trachea #9edae5\n", | |
"Name: color, dtype: object" | |
] | |
}, | |
"execution_count": 38, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"colors = pd.read_csv(os.path.join(metadata_folder, 'tissue_colors.csv'), index_col=0, squeeze=True)\n", | |
"colors" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 39, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# Replace underscores with spaces for LaTeX happiness\n", | |
"nreads_ngenes['tissue'] = nreads_ngenes['tissue'].str.replace('_', ' ')\n", | |
"colors.index = colors.index.str.replace('_', ' ')\n", | |
"cell_annotations['tissue'] = cell_annotations['tissue'].str.replace('_', ' ')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 40, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"['Aorta',\n", | |
" 'Bladder',\n", | |
" 'Brain Microglia',\n", | |
" 'Brain Neurons',\n", | |
" 'Colon',\n", | |
" 'Diaphragm',\n", | |
" 'Fat',\n", | |
" 'Heart',\n", | |
" 'Kidney',\n", | |
" 'Liver',\n", | |
" 'Lung',\n", | |
" 'Mammary',\n", | |
" 'Marrow',\n", | |
" 'Muscle',\n", | |
" 'Pancreas',\n", | |
" 'Skin',\n", | |
" 'Spleen',\n", | |
" 'Thymus',\n", | |
" 'Tongue',\n", | |
" 'Trachea']" | |
] | |
}, | |
"execution_count": 40, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"tissues = sorted(cell_annotations['tissue'].unique())\n", | |
"tissues" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 41, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"kwargs = dict(data=nreads_ngenes, row='tissue', facet_kws=dict(sharex=True),\n", | |
" row_order=tissues, palette=colors, xlabel_suffix='')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 42, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/Users/olgabot/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/font_manager.py:1316: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to Helvetica\n", | |
" (prop.get_family(), self.defaultFamily[fontext]))\n", | |
"/Users/olgabot/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/font_manager.py:1326: UserWarning: findfont: Could not match :family=Helvetica:style=normal:variant=normal:weight=normal:stretch=normal:size=9.600000000000001. Returning /Users/olgabot/anaconda3/envs/tensorflow-env/lib/python3.5/site-packages/matplotlib/mpl-data/fonts/afm/cmex10.afm\n", | |
" UserWarning)\n" | |
] | |
}, | |
{ | |
"ename": "KeyError", | |
"evalue": "'question'", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/afm.py\u001b[0m in \u001b[0;36mget_str_bbox_and_descent\u001b[0;34m(self, s)\u001b[0m\n\u001b[1;32m 402\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 403\u001b[0;31m \u001b[0mwx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbbox\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_metrics_by_name\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 404\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mKeyError\u001b[0m: 'l'", | |
"\nDuring handling of the above exception, another exception occurred:\n", | |
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m<ipython-input-42-fe1e4731833a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;31m# ax.vlines(x, 0, 100, clip_on=False, color='white', zorder=100)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0mg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msavefig\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'{figure1_folder}/horizonplot_genes_per_cell.pdf'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36msavefig\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 33\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetdefault\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"bbox_inches\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"tight\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 35\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msavefig\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 36\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 37\u001b[0m def add_legend(self, legend_data=None, title=None, label_order=None,\n", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/figure.py\u001b[0m in \u001b[0;36msavefig\u001b[0;34m(self, fname, **kwargs)\u001b[0m\n\u001b[1;32m 1812\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_frameon\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mframeon\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1813\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1814\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1815\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1816\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mframeon\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/backend_bases.py\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(self, filename, dpi, facecolor, edgecolor, orientation, format, **kwargs)\u001b[0m\n\u001b[1;32m 2206\u001b[0m \u001b[0morientation\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0morientation\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2207\u001b[0m \u001b[0mdryrun\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2208\u001b[0;31m **kwargs)\n\u001b[0m\u001b[1;32m 2209\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cachedRenderer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2210\u001b[0m \u001b[0mbbox_inches\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_tightbbox\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/backends/backend_pdf.py\u001b[0m in \u001b[0;36mprint_pdf\u001b[0;34m(self, filename, **kwargs)\u001b[0m\n\u001b[1;32m 2590\u001b[0m \u001b[0mRendererPdf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mimage_dpi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2591\u001b[0m bbox_inches_restore=_bbox_inches_restore)\n\u001b[0;32m-> 2592\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2593\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfinalize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2594\u001b[0m \u001b[0mfile\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfinalize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/figure.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 1293\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1294\u001b[0m mimage._draw_list_compositing_images(\n\u001b[0;32m-> 1295\u001b[0;31m renderer, self, artists, self.suppressComposite)\n\u001b[0m\u001b[1;32m 1296\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1297\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'figure'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 138\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 139\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer, inframe)\u001b[0m\n\u001b[1;32m 2397\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstop_rasterizing\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2398\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2399\u001b[0;31m \u001b[0mmimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_draw_list_compositing_images\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2400\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2401\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'axes'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 138\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 139\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/text.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 753\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 754\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0m_wrap_text\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mtextobj\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 755\u001b[0;31m \u001b[0mbbox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minfo\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdescent\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtextobj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_layout\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 756\u001b[0m \u001b[0mtrans\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtextobj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 757\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/text.py\u001b[0m in \u001b[0;36m_get_layout\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 352\u001b[0m tmp, lp_h, lp_bl = renderer.get_text_width_height_descent('lp',\n\u001b[1;32m 353\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_fontproperties\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 354\u001b[0;31m ismath=False)\n\u001b[0m\u001b[1;32m 355\u001b[0m \u001b[0moffsety\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mlp_h\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mlp_bl\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_linespacing\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 356\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/backends/backend_pdf.py\u001b[0m in \u001b[0;36mget_text_width_height_descent\u001b[0;34m(self, s, prop, ismath)\u001b[0m\n\u001b[1;32m 2164\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mrcParams\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'pdf.use14corefonts'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2165\u001b[0m \u001b[0mfont\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_font_afm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprop\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2166\u001b[0;31m \u001b[0ml\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mw\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfont\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_str_bbox_and_descent\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2167\u001b[0m \u001b[0mscale\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mprop\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_size_in_points\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2168\u001b[0m \u001b[0mw\u001b[0m \u001b[0;34m*=\u001b[0m \u001b[0mscale\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0;36m1000\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m~/anaconda3/envs/maca/lib/python3.6/site-packages/matplotlib/afm.py\u001b[0m in \u001b[0;36mget_str_bbox_and_descent\u001b[0;34m(self, s)\u001b[0m\n\u001b[1;32m 404\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 405\u001b[0m \u001b[0mname\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'question'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 406\u001b[0;31m \u001b[0mwx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbbox\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_metrics_by_name\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 407\u001b[0m \u001b[0ml\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mw\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mh\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbbox\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 408\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0ml\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0mleft\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mKeyError\u001b[0m: 'question'" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAVcAAAK8CAYAAABbWvzEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd8HMdh9//P9usFHSBAgL2LTY0q\nlGhVy6p2LKtaluU4jx3XyPm5Rs7jkuSxrUixY8eK5JZYsnqXSEmUWEyx9w4SAAmA6OUKcP129/fH\nkSApsYtHEOC8+TqAuJ3dmTvgvjc3O7sr2bZtIwiCIJxW8mA3QBAEYTgS4SoIgpAHIlwFQRDyQISr\nIAhCHohwFQRByAMRroIgCHkgwlUQBCEPRLgKgiDkgQhXQRCEPBDhKgiCkAciXAVBEPJAhKsgCEIe\niHAVBEHIAxGugiAIeSDCVRAEIQ9EuAqCIOSBCFdBEIQ8EOEqCIKQByJcBUEQ8kCEqyAIQh6IcBUE\nQcgDEa6CIAh5IMJVEAQhD0S4CoIg5IEIV0EQhDwQ4SoIgpAHIlwFQRDyQISrIAhCHohwFQRByAMR\nroIgCHkgwlUQBCEPRLgKgiDkgTrYDRDOvETaZN3ebjbU7qW9q4dYfz+WZaJpGm6Pl+qKUmaPH8nU\nygCqIt5/BeFUSLZt24PdiOHMsmze3baPxWu20N8XxXA4GVszkk9dOplCj3HG2tGfyvL6mnqWr9tI\npreFQilG1DaI2g4StoaJhI6FU8oQkBIYUpZuvPhKR3Lp+edx/fQanLpyxtorCEOdCNc82tEa5t//\n9BLFqRY6LQ9R24FDylAq9ZNAo2D0eXztk3Mp8jryUr9t26xv7OH5d1cRbtpFQIrRbAZpNAO0WV6y\nHD0sHWSoUKKMVMJUyFF6bTe+EWO49pJZXDGpAk30aAXhmES45smK2laeeuop4rbGivRI4ugDyyRs\nRsphZmktJCWdmZdcyeevmn7aPoLHUlleWFHL+ytXE0y2ErKc7DKLaTQDWKcwzK5gUqVEGKP0Uib3\n0Sn5Kakay7wLz+OyCWU4NNGjFYQPGrbh+vO3dvLrRfX8+q5ZfOK88pNat6knztbWCDdMO7n1DrV4\nWzMPP7+ULQk/IB2xjITFJKWL6VobPUYF99x6HXMnVZxSfbZts6ahi1eWrqNnby1BKUa9WcjObDFR\n+/T1jHWyVCshapQQpXI/3bYHNVDKqOpqZkyoYUZ10Rkd7hCEE5VIm3z1L+uJJrKU+Awevn06hqqw\nYGs7jy2tJ2va3HFhFXdfVD2wzpOrGlnfGObh26efdH3DMlwty+bS//ceiYzJtBF+/veBi05q/Tv+\newWjiz38y23TPlI7bv7PZWzeFzluOSdpztdaqFCi9PtHcds1l3PlpIrj9mRTWZPVdV0sXreNpobd\nFJnd9FoudptFNJpBzDxPBlExqZCjlCt9FMv9BKUkfbZOTPbg8BVQUlzMmJpKZowuZ1ypVwwlCIPq\nj+/vIZ4x+fKVY/mPhbsp9OjcPKOCOx5byXP/Zw6qIvGbRfV885rxAHT3p7j11+9z0ajCUwrXYTlb\nYMnuLnpiaX55x0y+9OQ6mnvjVBW4iKWyfPfFLbyzvYNCj84/XjeBW2aM4MFnN7GtNUJXX4q/nzeW\nlQ29rGzopdhjMHd8MQ8+u5GWcIJRRW5+c/dsxpZ4Tmt7E+j8NTOKYDbOeaF2Fj3/R56RAvhLKqmu\nLKesMIiha6QzGTpDUdo6u+jp6sLq76ZQihGyXLRaAZabU4jZ+vErPE2yKDRZQZqsIAAyFgEpSYEc\nJ9gbIRVqp79uNVuwCNluJE8hlZVVXDh1HJeML8NtDMs/P+EMe25tM4tqO+lPmXRGk/zk1qn8/K3a\nw8p867oJfO7SUZiWjW3btEUSjCv1sL4xRE2Ri2+/sJnOaIpvXTdhYJ1/m7+T+y8dxfbW6Cm1a1j+\ndT+/dh/XTCrluimljCxw8ezaZh68dgK/fG83G5pDzP/65axtDPHgs5uYXhkAoD2a5KUvX0qhR2f+\n1jZGF3n4+3ljWVTbyf2XjuJjE0u47TfLeXt7O2NLxual3SHbxZL0aAwyjFTClLftI92+i31SFhkL\nC5mkrdJvG4QsJ51WKZ2Wh/RZ8mu0kOm1XfSaLjAP3u8kTZEcpzjSD33rSdQu42XbBb5SJowfz3UX\nTGR8qRdJOvLwiSAcj2nZ/M/nL+SVjS28uKGFZ/5uzhHLKbLETb9aRiSR4atXjWP1nh4274vwxtcu\nJ5E2ufuJlSz8hytY2dCL16EyudwnwvWAcDzNOzs6sCybCf+0gKxp8dzafXzj6vFsb41yYU0hNUVu\nqgpc/OPzm9jelnviJpZ5GVXkBkCWJBRFQldlHJrCG5vbWLqrC4BUxsr7Y0ihsdssZrdZnPe6zoQE\nOs2WTrOVeyNTMCmV+6kMR9HXLuL36xbSqxQwomYM886fypxxpeiqGEIQTtyEMh8AFQEnkXiGzzy2\n4rDl37puAhfUFADw2lcvY31TiH94ZiP/54oxTK8M4Hdq+J0aAZdOd3+aX723m8func3WllMLVhiG\n4frShha8hjrwzhVJpPmb365gcW0nE8u8LNjWzt7uGGsbQyiSxORyH+/u6ERXD+7xVmSJ/mSWvmSG\n/zd/J9NG+Hng8lHc9fhKht0A9SAwUWi1/LRafqAKr5SkSg6j7N7C2/Urecr24S6uZMbUiVw9YzQV\nAedgN1k4yx36mcehKUfsuf7X4noqAg5umTECr6FiA1NH+PnR69uJpbKYtk0onmZfKE5Pf5ov/Gkt\n0WSWrr4U/7uykXsvrv7QNo9l2IXrc2v3MW9iyWHjojOrAvxldTOPfGY6bZEkH/+Pv1Lo0Xn49unU\n7O+tHuryccX88t3djC3x8MlZI3jknV2saOih2OtgXyh+Jh/OOaHPdrDdLGO7WYZOlgolSlVnG9sX\n72TjIoV+vZDSEVXMnDyOi8dXUO53iCEE4aR9anZu/8pTq5pQZImf3jqVYq/Bl68cwx3/vRKA71w/\nkZkjg7z1zbkArKjv4fl1+046WGGYzhY4W5zobAHhaGwKpAQVSpQyuY8SuZ+UrRKVPTh9hRQVFzOi\ntIiq0iLKC7wE3bmPdm5dRZZF+AqDa9j1XIXhRMrtIMu62EoZYBOQkhTJMQp6IyRC7YR3p9grpbGR\nSNoqKVQytoIlK9iyhqRoKJqOpuvohgOX04nH7cLncRP0eyj0eyj0uvA7NbwODa9DxVBl0TMWPjIR\nrsIQIhG2nYRN52GzEcBGw8QhZdEx0SUTDRNNMtGw0KUMupTAQS+6lEUni0MyMaQsBllsII1K2lZI\no2DaMpakYEsySFLudnh1B74c1rYDZSVJRpIVJFlBURQUVUVRNTTt4E3XNXRNw9A1NFVF11Q0VUFV\nc71u5UC9to1p25imhWVZmJaFZdlY+z9wSkBp0McNs2rEG8JZRoRrHl1YU0CJVxytdLbJ2DZx0yZj\nWmSyFpaZxTLTkM2AlUGyTCTbBNtCsm344MiZNPDlELlyEjaSbYFpI2UtZDuDTArFtpAxP/DdQpEs\nVHLryftvkmQftnUbsG0p952D3w9YjpPLJn0Jv0vLx9MlnCIx5noKrn1kCbs6+ge7GYJwzhtf6uHt\nb14x2M04IhGugiAIeSBmaguCIOSBCFdBEIQ8EOEqCIKQByJcBUEQ8kCEqyAIQh6IcBUEQcgDEa6C\nIAh5IMJVEAQhD0S4CoIg5IEIV0EQhDwQ4SoIgpAHIlwFQRDyQJxyUBi2UhmLzt4Ye5tb6OruIRIJ\nk0omMbMZZEXBMBz4AwFKS0oYXVNJScCFqohzogqnhzgrljBsZE2LfZ1RdtTW09TUSLirhVQiisNT\ngMMdQHf6UHQHsqJiWybZdJJMoo9EXzfJWBiXr5iSimrGjB7FuNFVFPocKOJyMcIpEuEqDGkZ02LX\n3i42bd5Ka3M9iWg3rkAZnsIReILlOH1FSLJy3O2Y2QyxUBv9Pc3097aSjkdxeAvxBYvxB4IUFAQp\nKiygorSYIr+BqogRNeHYRLgKQ1J/IsuyNVvYtmkdib5u/CWj8JWOwlMwAln56KNd2UyKZLSbRF8P\n6USUdDxCKh4lk4rh9BRSVjmKWTOnM3FUqejdCkckwlUYUtJZiyWrtrF+5WIkWaaoZjr+0tHIJ9A7\nPR3MbIZEpJNwRz2R9gYCpdXMm3clk0eVimtYCYcR4SoMGbubunnzzTeJR3sonzAHX8ngXpTPzKTo\n2ruJnubtjJ5yAbdcNxe3Q+wjFnJEuApnvXTW4s331rBt3RIKKidRMmb2GeupnohULEzz1kUoisrN\nt9zK2KqiwW6ScBYQ4Sqc1fZ1RHn51dfpj3RRNe0qXP7iwW7SEdm2RUf9Onr37eDiK25g3kWTkcVY\n7DltyIRrVyTNsh2hgZ91VWLCCA9+l8qyHSE+PqsIh3783swrqzqYMcpHdYlz4L5k2mT++m4umxSk\n2K/npf3CycmaNotXb2f10gX4iqspn3AxsnL2Xzq6r7uZ5i2LGDFmKp+68Wq84nLXZ536tjjprMWk\nKg8Au9titPSksG2bmhIno0pdhGMZNu7pA6DErzO5ysPWxj5C/RkAEmmLAq/G+WP9R61nyA0QXTuj\nEF2VqW+Ps7Wpj4vHBwa7ScJp1tge5o35bxPubKJyypV4i6oGu0knzFtUxbg5n6Jp87s89sTvue6G\nm5k6pkzs7DoLWLbNxoYo3dEMVUUOABIpk5aeFFdMCWLbsHBzD1VFTmpbYkyp8lDs11m6rZe+RJap\n1V4g98b/1+29TB3pOWZ9Qy5cFVlCU2UMTUaRJORDphv29KVZVx8lnjLxOBQuGh/A41BYVx+lLZSi\nxK9zoJueNS1W747Q05eh9JDeaixpsrY+QjSWpcivM3uMj0gsy7IdIYp8GlnTZt60wjP7oM8RXeEE\nC5esoGH7WvxlYxh/6WdQ1KH3SUJzuBl9wY10N27hlWf/h80TZ3PDNZcT9BqD3bRhqbEzQXs4Rda0\nSWYsZozysr2p/7Ayk6o8BD0a5UGDQq9OPGUCYOgycyYEkCQJ27bBBkmCoFsjbVpYlo1l2Rw6wlPX\nFmNksfO4n5SHXLgu3NwDQCab68JLHHzUqYzFmDIXZQGDJdt6ae1N4XEo7OtJMndyAcmMSWtvCoA9\nHQlC/RmunFpAZzhNy/77tzb1oSkS18woZG19lN2tcUr2h29loYOyoHiBnE6mZbO3LcTylWtp3r0Z\nh6+IUeffiNM7tN/AJEmmuGY6vuJqWne+z2OP/Zapsy9j3pzpYkZBHtg2XDopSHN3gqauJJdPKThi\nufICB42diYGfZUnC0HLBuqEhSnWJE0WWcBoyGxqibFNkCrzawO/Mtm3aQinmHmX7hxpyv+XLJgXR\nVZn+ZJblO8MDwQe5Xm1LT5LOcC4oLcsmljRx6goFXg3bPvhwY0kTn0vF61SRJYnNjbnxlb5ElnjK\n5N3NPZhW7p3sQB2lAQPnCYzrCseWyVo0d0bYsn0Xe3bvpK+3FX9JDTWzPo7TN7z2tBvuADWzbqCv\nu5ntG1eyfcNKJs+4kLkXTcfnHnq98rOV35V7bTt1hUw2xV+39R62fFKVhyLfkZ9v07JZvTuMz6ky\nYYQbgK2N/Vw5tQC3obBxTx/7upNUFjnojKQp9OondODIkAtXTZHQVQmHpiCRm6ZzwLamfgJulbHl\n7oGdXx6nQiJt0tOXJpk+WNbjVNnXmyQaz9IRSR2836Hi0BQmV7nZ15Mi4D74FA2Hnb/xTByH6kCW\n8n/4Zta0SGYs+uJpOrt62dfSRnt7Gz2dLaT6Q7gLKvCXjqJy2seG5Mf/EyVJEr7ikXiLqoh27WXH\n5rVsWfc+4ybPZu4l51MSdB5/I8IJU2TpqD3XI1lVG6Y0aDCmzDVwn6ZKaIqMJEkYmkzGzGVHRzhN\nke/EdlIOuXB9e2NuWECWPtyTrCp2sLM5Rnc0g0OTiaVMJla6GVnkYPnOMKUBHUPLhUpNiZPuaJol\n23oZuX9wG2BatYd19VGW7QjhdqhUlzhIZ4bEhIpj6kn08O+v/zt99X1ktAyTZk3iq1d+9aR3tJiW\nTV88Q084RmdPD5FIH/39fSQTSZLJJJlMikw6RTaTJptOkk3HyaYSaA43Dm8hTl8x5eMvxuUvOS2H\nqQ4lkiTlDtMtriEWaqNpz0Ye37yCEWOmMueiCxhbVSQOpT3D2kMpuvvSmJZNa08SgAvG+TmvxsuK\n2jCyBE5dZsKI3KyA/mSWkcWOY21ywJCZiiWcuu54Nw/94SEcEQdbg1txZp1MDk/GM9vD9z7+vaMG\nbDprEe5P09jSQUtLK50dbURD3ST7e7FtG93pRXN40AwXiuZA0XQU1UBWNRTVQNUMVMOFZrhO6OQp\n56Jkf4juxi1E2uvwFo5gzPhJTJ86gfJCjzg5zBAnwnWYS5kpHvz9g6jdKktLl5JRcvP0ipJFXNx5\nMTXzJnFF5fX0xxL09fUT7YsSCYeJRsLEor2k4mF0hwentwinvxiHtxCHpwBVd4rpRaeRmU0Tbq8n\n2tFALNSOw1NAoLCUYGEhwWAQr8eDx+3C5XLgMHQ0VUGRJeT9M2ZkSUKWcr1jSeKw+4XBIcI1z7bX\ntVFbvwfLsrAsE8u0MC0L27IO3mfZWPbB+7BtDvu17H/BSEhIsrz/BZT7v7z//0jSwHqWZWOaWcxs\nllX9b1McCvBe+Xsk1eRhbRsXGUdVrAqH7COoFqPqTjTDhe70orv8ONxBDE8Biiomwp9JVjZDPNJJ\nPNpJOhYhnewjm0pgZlKY2TSWmc39/hU19zcgK0iSDJKMJMn7/0ZkJFlBVhRkWUVRNVQ1911RVBRF\n2X8EmQTY2DYDf4OHR4KELEvIsoKiKCiqgmEYXDP3IrFD7jhEuJ6ChZu66UuYg92M49rUtYDUxp0s\nL1lOr6P3wwVsuKzjctIeuGHWD5Al8dFdGFq8ToWrp5+dM0xEuA5TzdFmfv5fP6fV0UptoPao5ZxZ\nJ1e1XkXVlVV8+fIvn8EWCsLwJkbMhyHLtvjFC7/Asi1q/UcPVoCEmmBLwRbqltVR233ssoIgnDgR\nrsPQU+uewr3PzdqitXAC+zMa3Y3ElTi/evFXmNbZP9whCEOBCNdhpjPWyar3VrHTv5OYFjuxlSRY\nX7geX4ePJ9c9md8GCsI5QoTrMPPI64+gmAp1vrqTWi+hJtjp38nqRasJJUPHX0EQhGMS4TqMLG9a\njr3bZkPhBmzp5PdT1vnqcGQcPLbosTy0ThDOLSJchwnTMvnz63+m09lJr3GEaVcnwJZstgW30bGx\ng7b+ttPcQkE4t4hwHSae2fAMgZ4AmwObP9J29rn2gQ1/WPKH09QyQTg3iXAdBmKZGMsWL2O3bzcp\nNXX8FY5Fgl3+XbRtbSOSipyeBgrCOUiE6zDw2OLH8Ca87PLtOi3ba3Y348q4eHKVmDkgCKfq3Drn\n2zDU2tdK07omdgV3YcnW8Vc4AbZkU++rJ7o+inmZiSLOaCUIJ030XIe4X77xS2zbptndfFq3u8ez\nh4JoAYsaFp3W7QrCuUKE6xC2dM9SqIMNhRtO6Eisk5FW0nS4Opj//vzTu2FBOEeIcB2iktkkf3n9\nL7S72gkZ+Zn0X++thxbEtCxBOAUiXIeoX733K/wR/0eeenUs3UY3si3zwtoX8laHIAxXYofWELSu\ndR2dazrZXLB54MoCeSHBXs9e+jf3Y11hnZGLGgrCcCFeLUNMPBPnd8//jh5HD63u1rzXt9ezl4JI\nASubV+a9LkEYTkS4DiG2bfOTV36Cu8/NhoINZ6TOpJqkx+jh9RWvn5H6BGG4EOE6hDy57knsHTar\nileRlbNnrN4GbwP9e/rFEVuCcBJEuA4RKxpXsPHtjWwPbs/b7ICjaXe248q6eHbts2e0XkEYysQO\nrSGgKdLEk88+SdQRpcHbcMbrtyWbem89kbURsnOyqLL4sxGE4xE917NcPBPn3578N2zLZmPBxkFr\nR4O3gYJoAW/ufHPQ2iAIQ8kxw3VN+xqm/Wka0/40jfP+dB6XP305f97+5xPeeEt/C9P+NI1NXZtO\nqPyBujZ05nbWPPT+Q0z70zS+v+z7A8vn78nPEUO/2fgbbnrpJgDuX3A/P1rxo7zUczIGdmCF3Kwo\nXnFKJ8A+XdJKmmZ3MwsWLSBrnbnxXkE43XaHdvOJFz8x8PNfdv6FO1+/k7vfvJsdPTsA6Ip38aWF\nX+K++ffxtfe+RjKbBODq567m/gX3c/+C+3lqx1PHrOeEPt+9+ck3CRgB/rzjzzy89mE+Oe6TuDTX\ncdercFew6q5VOFTHiVQDgC7rrG5bzcySmaxpX4OhGAPLVt21Cl3RT3hbp+q/rv6vs2JO51Prn4Id\nsLJ0ZX7ns56g7f7tXNt6Lc9seIa7Z9892M0RhJNm2zaPrn90oIMQSUV4YdcLPHPjM3TGO/nWkm/x\n5Cee5Bdrf8G9k+/lkopLeLX+VVpjreiyzrSiaTwy75ETquuEwtWpOvHqXoqcReiKjq7ovFz3Mg+v\nfZgSVwlV3io+N+VzfH/Z92mNtVLjq+HhKx/GUAyuf+F6/nzDn3m/5X0WNS+i2FnM+s713DT6Jr5/\n8fc/VNfUoqms6VjDLbFbaIu1Ma1o2sCyi566iJ/N/RlXjbyKf17+z7zX/B5e3ct3LvgOEwsncv0L\n13N+6fk0RhtZ8KkF/HzNz3m94XWcqpP7ptzHfVPuozvRzYOLH6QuXMfV1Vfz4u4XWfCpBYe14UsL\nv8Qo/ygemvMQP1z+Q+bvmY8syXxmwmf45uxvntAT+1Ht6tnFmnfW0BhoJGyEz0idx5NSU+z27Sa6\nKMrVE6+m1F062E0SBF6ue5ml+5YSz8TpSnTxg4t/wC/X//KwMl+d+VVmlc7i5bqXuaTiEupCuWvM\n+Q0/T9/4NIqs0BZrI+AIAFDbW8u6jnU8seUJZpXM4uYxN/Nu47u09LfwuQWfo8BRwPcu+h5FzqKj\ntuuEume3vnIrlz19GT9e8WM+PurjAzs0wqkw35j1DX5w8Q/oSfZw96S7ee3W1wglQ7zX9N6HttMQ\nbuCL532RL573RZ6ufZq+dN+Hyswunc2mzk283/I+Ewsm4tbcHyrz/K7neb/1fZ658RnumXQPazrW\nDCybWTKTpz7xFC/tfok3Gt7gD9f/gZ9c9hMeWfcIa9rX8MSWJ+hN9vLcTc8dcduHiqaj+HU/T93w\nFPdNvu+khkQ+ingmzqPPPEpSTlLnPbkLDeZbrb8WJaPw02d+SsYa/N60IABYtsVvr/ktD0x9gNfq\nX+MP1//hsNus0lmEk2Hm75nPHRPuOGxdVVb53Zbf8ZV3v8J1NdcB0BhtZHLhZH537e9oiDSwrGUZ\nBc4CPj/t8/zx+j9ybfW1/GzNz47ZphPquT5+zeMEjACNfY18aeGXmFMxBwBZkrlsxGVIkoRDcfDW\n3rdY3rocgLSZ/tB2ytxlzCiZMbAsZabw4j2szNjAWAzV4I/b/sjcyrnUh+s/tJ2GSANjA2Op9lVz\n35T7gNz4LsCcijmUucvYGdrJhIIJTCyYCECJq4Rt3dvYG93L9OLpVHgqmFc1j//d/r9Hfdy6rBNN\nR/nxyh+jyRpp68OP6XQ7MM7qCXlYWL7wtJ/t6qOyJZuVJSuZ1zqP7z37Pf7l0/+CpmiD3SzhHDcu\nOA7IZUwkFeH+BfcftvyrM7/KK/Wv8JWZXzni+YkfmPYAd026i/sX3M/Mkpn4DB+XVFyCJElcUnEJ\ntb213D3pbqYWTgXgyqor+e2m3x6zTSfUc/XoHvyGn0JHITIy0XQUAFVSkaTcq//R9Y9S46/hG7O+\ngb3/34cq2z+OeWCdI5EkiZklM9kb3cus0llHLDPKP4pdoV3siezh91t/z+cWfA7bztV3YEx2XGAc\ntb217OzdyfLW5XTGO5lSNIWR3pFs7t5MW3/bEXvXh1reupyX6l7iny7+J6YUTQEYqCcfbNvmZ2//\nDHuHzYriFWfFOOuRxNU4S0uXotQpPPinB+mMdQ52k4RznHRIL8ShOo7Yc13XsY5H1j3C/QvupzvR\nzf9d8X9pijbx4OIHATAUA03OdRRmFM9gZWvukO8t3VsY5R/Ff2/+b57amduJtbJtJZMKJx2zTSfU\nc73hxRuAXE/u8srLuXH0jby1963Dytw4+kZ+s/E3rG5bTbGzmNb+Uz/u/fzS81nSvITZJbN5rva5\nDy3/m/F/w5buLdz5xp34dB/fvuDbHwrsT0/4NA2RBu5fcD8O1cE3Z3+TC8ouoMZXw46eHXz69U9z\nSfklAMhHeY85r/g8xgXGcdebdzG7dDaQ6yFXeitP+bEdTdpM85PXfkJ2S5bVxavPmnHWo+nT+3iv\n/D3mdMzhx7/+MdMuncbts28fGLMShLPN67cdPIT7uuev44dzfgjkOmt3v3E3kiRx0+ibqPJW8a3z\nv8VDyx/iiS1PMDY4lnlV85hdOpvv/PU7LGpehEt18aNLjz2jSLLz2RU7C73Z8CZburdw35T7eGvv\nW/zH+v9g+Z3LT2pGw+mUsTK8test3njnDfwRPytKVpzypbEHg2RLjO0by/jIeJJKEjNoUlJWwsRR\nE5lVPYtR/lFnxcwLQTjTzrlw3RPZw3f/+l3qwnX4dB9fPO+L3DHxjuOveIps22ZPZA8dsQ46I52E\n+8L0x/uJxqL0hnqJdcQIxoM0e5vZ6t961g4FHI9kSxQliyhKFVGQKiCYCmJLNlEjiuyScXqdeL1e\n/F4/QV+QoCeIz+3DpbtwqA40RUOVVHRFR5O1gXExy85dF0xCQlM0DMVAl/WB5aZtDgzVSJKEIilI\nSAOfZGzbxrRNLNvCsq2B4SpZkpGRB8od+FgpSdJh6wvCqTrnwvVMe3Ltk2ydvxXd0knLadJKmoyc\nISNnSOpJ+p39JIIJnA7nsHlB27ZN2kxjJSy0mIaRNjAyBkbWQM/qGKaBbumoloqMjCmZWFjYkp37\nv3QwBA+Eno2NJVkHbxwM3UPLHFjPlmwkWzqszIGfD5RF4kP7Bg5d/8Aw3mEHb3zwV3TYIin3sw22\nbHPn39zJ5aMuP+XnURjaRLiegtteuY268Nk1RUoQzkVjA2N56ZaXBrsZRyTCVRAEIQ/EngZBEIQ8\nEOEqCIKQByJcBUEQ8kCEqyCqEh5iAAAgAElEQVQIQh6IcBUEQcgDEa6CIAh5IMJVEAQhD0S4CoIg\n5IEIV0EQhDwQ4SoIgpAHIlwFQRDyQISrIAhCHpzQlQgE4YMyVppwupfu/k4s28ahOyhyleBTA8Pm\n1ImC8FGIcBVOWNpKsaF5DVt2bKZrTw+ZsJU7f6kMdgZkp4RRpFI1ZgTnT72QMYEJ4ioEwjlLnHJQ\nOK6+TIT3Nr/NjvW1ZHpNHNUqRpWCVigjGbmz99u2jdlnk+mySDaapNtN3NUGs86fyZyxc3EozsF+\nGIJwRolwFY6qLxPhnY3z2bFyN9g27ikajhoFSTn+x34rZZPYnSW2M4vqlZly4STmTb0Gr+Y7Ay0X\nhMEnwlX4kP5MlIWbF7B9eS02Np7pGkaVckpjqbZlk9xjEtuaAVli/AVjuHrmdQSNwjy0XBDOHiJc\nhQHRTJj3Nr3N9pW12KaNZ4aGMfLUQvWDbNsm1WwS25rFStlUzxzBx86/hhGekaeh5YJw9hHhKtAe\na+G99QvZs74RZPBM0zCqT0+ofpBt22Q6LGJbs2R6TIomB7nswsuYXDIdRVJOe32CMFhEuJ6jMlaa\nzW0bWL1uFd07Q6gBGfcUDb1CPmNTqbJhi/iOLIm9WVwjdKbMnMKlE+bi0wNnpH5ByKeTCtfWRBOv\ndTwz8LNDdjIrMIdpvtkntH5fJsJTLf/NrWV3U+qoOG75J5sfw1AcfKr8s0iSxKttTxPQCphbdO2J\nNlk4hGmbNEbrWb1lJXt3NJHuMXGOUnGOV9GCgzdlykrbJOqyxHdlwYaySUVcOOMiJpechyprg9Yu\nYXjJWBne7XqNlJXCrXiYV/xxFEllW3QDtf1bUSSFSwo+RrFRRijdw5KeBUhIVDprmB24BMu2WNrz\nFpFMCF02uLLo4zgV11HrO6V5rneO+FsMxcnW6DpW9i5momcamqwfdz2P6uPzI7+OKp34C6Yn3cmO\n/s1M9k4/laae8zJWmvreWjbVbqRxdzPJ1gx6iYJjrEJgno6kDv6Ef1mXcE/WcE1SyXRZ9NaFePkP\nrzO/ZAGjJ9dw8bRLqXRXi4MThI+ktn8LpcYIZgYuYl14ObV9W6lxjWVn/xZuK7+HmNnPwq5Xua38\nHlaGluSCVi9jfucL9KQ7iWRCKJLKLeV3URfbycbIKuYUzDtqfacUrqqkYsgGTsWNIikokkpt31ZW\nhhbjUjz4tADTfRewqPtN+rNR/FoB1xTfjCqpAz3X5sQe9ibqcCse2pL7GO+ZwmWFV3+oLqfsYk3o\nr4xxTTjs/o2R1WyKrEaVVC4quJKx7omH9WyXdr9NONPLzeV38Njen1NmVNKb7uQzlV9gR98mtkbX\nAzDBM5WLglewq38bq8NLGeGopjFeR4WzmmuLb6Ep0cCynoUkzBjFRhnXFN+MS/WcytN2Rti2TU+6\nk21Nm9lVt5vuvT1kQhZ6mYJRpeCd40Q2zs6QkiQJvURBL1HwXqCRajKp29LAjsV1eGucTJo6iQvH\nz6HAKBrspgpnkdq+rTQl6klbaeJmjMsLr2Z1aNlhZS4IXsZU3yws28K2bfqzfQSdhXSm2yl3VCJL\nMl7Vh2mbpKwU4Uw3JUY5AFXOUbQmm+nLRqhy1gzctzGy6pjtOqVwfbb1DwCkrCQTPecNHIWTtBLM\nK7qBIr2EjlQb03yzGekczcttT7I3XsdY98TDthNO93BZ2dWUO/axKrSUC4KXY8jGYWUme2ewK7aN\nteHlA/f1prtYFVrCjaW3Y9oW73S9QpWj5pht9qo+PlZ0A92pDtaFl3ND6adxyA5ea3+aoJZ7scbN\nGKNc4xnpHM273a/Tm+liZ99mAloB15feRmO8noQVx8XZE662bdOb7mZ3205279lNe1MHibY0skPC\nKFdwT9PQy+Szood6MmRNwjlGxTlGxYxZJBqyrFu0gTULNhAY7WHy5ElMHz2bQr1Y9GgFLGw+UfZp\n6vp3sKt/OzeX33HEcrIk80Lr/5C2kswKzKEt2YwmHfzUrUk6GSvNoWOlmqQTN/vJWGk0KZdP+v5y\nx3JK4Xpj6e0YipNIJsT8juep3J/mEhJVzlFIkoSaUamP1tKc2AuAaWc/tB236qXMMQLTNnNlrAx8\nIFwVSWVO8EoWdr2GS3ET0AoIZXoAWNj1GgBZO0Nvpnv/Gvb+r4cPJY9wVuPV/NTFduBWvFQ6qwEo\n1EvoSrdTrJchIzPKPY5oJpzbrpVlduASVoWW8nLbUwS0Aiocgzd1yLZt4mY/bf0t1LfUsW/fPnra\nekl1ZECRMEoV9BEy7vMdKO7hc9ip4pbxTJPxTNPIhCySjQlWvrWG5anVuKscVFRXMH7UBGoKRxPU\nC0XYnoMK9neQ3KqXlJXk1banD1t+QfAyyh2VAHyq4rN0JFtZ1PUm5/nPJ2MfDMmMnUaXdSSkD9xn\noMn6QNn0/vuO5ZTCVZcNHLKDjOJCQiJlJVFQkDm4p3lVaCnFeinTfOfzevszHwo7AHn/SbmO91IY\n5R5PRV8V+5KNAAS0AgDmFMxDkRRaEk0EtAJUWaUvGyFlJulOtw+8ywAo5Kb5FOjFxMw+9iUaccgO\netKdTPBOA5uBJ/TQJ3ZvvI5yRxVzi67l7c5X2NG3iTLHiFN52k5Y1srQb/bRG++mtbuF9q42urt6\niPb0kQ5lseI2akBGK5LRR+bCVPUMnzA9Fi0oowV1vDMg22eR2mfSuLuR3csaQAK9UMVX5KGwuIjS\nolJGlFRS5C7Bq/rFVK9h7NDXrCqpR+y5boyswqP4GOuZhC7rgE2xXsb68ApM2yRuxpCQ0GWDgFZA\nV6qdIr2U5sQeLghchlNxsy+xlxrXWJrjDZQax94pf0rh+peWx4FcYFW5RjPOPZmGWO1hZca7J7M2\n/D6tySZcipv+bPRUqhpwScFVPN/6RyDX27woOJdVoSVkrQyTvDNwKi6memezpGc+L7c/RUANkrJS\nH9pOtWsMs/xzeHd/r3eidzrj3VPY1b/tiPWWOip4v+dd1oeXE9AKTnhmBIBlW/Smu9jX20R7VxuR\nvijJZJJsJott2wM3y7Iws1kyqQzpRJZs3MSM2VgpG9Urofhk1ICUC9IZBopPQpJF70z1yqiTZJiU\n69WbMZtsj0U8FCO6q4/da+vJRm1kHVSfjCNg4C/wU1RYSFlxBSOKKik0isV5D84R491TWNT9Jtv7\nNiFJEpcXXoNb9TDBM5VX2/6ChcWlBR8D4OLglSzteQvTNql01lBslFGol9CcaODltidRJJWrim88\nZn1inmuebGndwJvz3yTVlUWSQfHKKG4JWZdAlZAke6DLLskSkgqSBrJDQnZKubJOEaIflW3bWHGb\nbMTGjFpkozbZiEU2YmMlbVSfhO7X8ATdBIIBigqKKC4opshfglfz4VLcqJImhhqEkybCNU/2RRp5\ndfPzUJAdVuOfw4mVsTEPhG3UwuzLndnL7M99ahh4o3NIaA4VzaFhGDq6YWA4DByGgcPhxGE4cBpO\nHIYTh577v64aaLKGIqmokooiqQMza1RJFWF9DhDhmkfPtPye8P6db8LQYps2VsLGTNhYKbCTNlY6\nF7p2Bux07uAHO2NjZcDO2NjZ/d9NcmP4CqCApEpISu5nSZZABVmRcjdVRlZlFEUZ+K4oCoqqIMsy\nspLbjyFLErIsgyQhHXKTJRlJAkmWUWR54LuiqLl1FAVZkpAkBVmG3Mel/Tt97dwNcsNTYGMdJw4k\nJHLvC9L+N4jcz4fed2gZyLVNAhy6wYwRF5wzB4aIcD0Fz7b8gdDA7ARBEAZLUCvi9hH3D3YzjkiE\nqyAMY7ZtY5GbOG9jHbJEOuzrQM/zCDNm4ODUxoOzfuyDvd79Px/6Nbfo8HVkSdm/l/7cIMJVEAQh\nD8SeFkEQhDwQ4SoIgpAHIlwFQRDyQISrIAhCHohwFQRByAMRroIgCHkgwlUQBCEPRLgKgiDkgQhX\nQRCEPBDhKgiCkAciXAVBEPJAhKsgCEIeiHAVBEHIAxGugiAIeSDCVRAEIQ9EuAqCIOSBCFdBEIQ8\nEOEqCIKQByJcBUEQ8kCEqyAIQh4Mq3BN7tpF432fo3bWbOquuZbw888ftWzXr/6T+o/fcAZbJwjC\nYLISCZq/9GX23nMPLf/wD1jp9MAy27bZe+ddxFatBiD6zjvUXXcdjfd+lsZ7P0u6sZFsKETTF/6W\nvXffQ8s//n9YyeQx61Pz+mjOILM/RvMDX8B3ww2M+MXPic6fT9sP/gljwkSc06YOdvPyyrZtsm1t\nxHbX0d1QT6ijg2gkQjyRJJlJkzYtsthYNtj7r5gskXtnVQBVllFlGU1R0VQFXdPQNA3dMNANA8Nw\noLucGG4PhseNw+tF8/pQvB4UrxfZ60N2u5Ak6RitPDtY6TRmKIQZDmNGIiTDEdKJOJlkCsvMYlsW\nsqKgaBqaw4nh9aD7fCh+P0oggOL3IynKYD8M4RSEn38B58yZFH3xb+n69a+JvPgiwTvuyC177jlS\ndXUDZVM7dlL67e/g/di8gfs6/vXf8MydS8Fn7yX8wguEnnySwgceOGp9wyZc+5csxoxEKH7wH5B1\nneC99+K96iqUQICWB79F33vvoRYUUPyNb+C/6cbD1o1v2ED7D/+ZdHMzzvPOo/ynP0GvrGTHxEkE\nbr+d/kWLkJxOKn/5HzgmThykR3hQNhQivHo1ezdupLWllc50irDHS8LlxB2L4YrFcCaTOBIJ9FQa\nZyaDYprIloW0/0rqlixjyxKmrGAqCqaqkFJU4ppKVt1/U1SyqoKpqmRUNfdd08iquT8bNZtFS2fQ\nM2m0dAbDtjCQcKoqToeBy+nE5Xbj9gfwBIN4igoxCgrQCgqQ/X4Un++0BJWVSmGGI5ihXtLd3UQ7\nOujr7KKvt5e+vj76E3H602kSNiQ1lZRhkDIMsqqKYpoDN8mykbCxJQlLljEVZeCx6uk0eiqFI5XC\naVm4FRWvy0nA7ydYWkpRTQ2eMWPQKyuRdP0jPybhxIVffIn+JUuwYjGyXV2U/fAhuh559LAyxd/4\nOgX33oNtmrnOSHs7xpixQO711Pf2O4cFaXLnThLbttLzu9/hmTuXor/7Iqk9DQRu/zQAzhkz6Pz3\nRyg8erYOn3DNtrWh+P3I+/+wJUlCGzGCzl/8gsSmTYx++SXi6zfQ+t3v4jxv2sB6tmnS8vVv4Lnq\nY1Q98TjtD/2Qtu9+j+r//R8ArHic6r/8hcZ77iHy0ks4vvvdM/7YrFSKyMpV7H7/ffbua6ZN1+n3\neAiGQhT09DCyp5dp4TCe/n7k/eGZb6Ysk9G03E3XyGg6KUMnrRukDZ2Qw0G7YZDSdVKGQXp/oNmS\nhJFKoafTaOk0ummhYaNJEtr+HrQiKyiydFhP2LZtTMvCtCwypknWskljk5Yk0qpKWtdJORxkVRUj\nmcKRyr25OJMpHPE43mSCkkQSRzKZqz+VQstkTuj5MmU5t33DIOVwkHQ6iDud9LjdNEUixHp6iDU1\nob37Lp6+PvymSaHbQ3FJMWWjR1M4eTLGmDHIDkc+fyXnNstk5BOPE3n9DSKvvDrw+v0gSVHY86m/\nwYxGKfrSlwDo/MUvKP761wk9+eRAOfdFF+K56iq0sjL2ffVr9C97H8eEifQvXoIxZgz9i5dgJxLH\nbNKwCVe1tBQzHMZKpZANAzubJfLyyyS3b8d1/vno1dVolZW0fe97JHfsHFgv29NDtrMT3/UfRysp\nwXvNNbT/9KcDyz1XzEWvHIFeWYmVTJ2xx5NpaaHpnXfYtXkLjckEPQUFBEMhSjs6mNXeQTAUQrGs\nM9aeD1IsC2V/T+5kZBWFtK4P3A4Ec663rGApCilZwZZl7EPCVbJtJMtCMU0M08SdzaJlM6iZDHoq\njZ5OD4T26R6cUCwLZzKJM5mESOSIZWwg4XTS5/PS5/XR6/ezNxEnGgphbtyIPxIhYJoUe7yUVlRQ\nPmE8/kmT0EeOFMMMp4ExbjwAWnkZZiRC472fPWx58Te+jmv2bABGvfA8iY0baf32dyj+2leRDQfO\naVMJHVLe/8lPoni9AHjmXk6qdieFf/dF2n/0I5o+/wCuiy5CCQaP2aZhE66eK65A9vnoeuRRCh/4\nPKFnnqX7N7/Be9VVxNeuJd3YSHz9BlAUHJMmktq9GwC1sBClqIjogvnoo2roe+cdnFMPGaOV9+/z\ny/N4op1OE127jrqlS6hrbGSf242pKJR3dzG2pZVLOjrQstm8tuFMUE0TNZHAdZx3/aFGAlz7H1dp\nR+dhy1K6TiQQIOL30xEMsCuZINLTjbZkCb6+PoJAoc9HUUkpJTU1BMaMxqiuRgkEBuWxDEmHvD5l\nh4PKI/Rcux9/HK28Av+Nn0D2eMC26Vu8mOS2bTTe+1lSe/aQ3LmTyv/8FU33f57qJ/+MVlJCbMVK\ngnfeQXzVKoJ33Ilr1kx6//Qn3JdccswmDZtwVXw+Rj7xOO0//Sl1112PWlxExc9/hueKK2h/6CEa\nbr0NtaCAin/9V/Tq6oH1JEWh8tFHaP/Rj6m/9jqc06dT/i8/PUZNp4dtmiR37aJ52TIadtbSFI/R\nVViIPxyhvLOLOS0bCYTDp70XJpx5RjpNSWcnJZ0HQ9cG4i4XUb+fiN9HayxGbX8/fV2dmOvX4Y7F\n8CQSeGUZn9OJz+fDHyzAV1ZKYMQIjPJy1JISZLd7SOxIPBsEbr2V1m9/h/Azz4CiUPbPP8QYO3Zg\neet3vov/ttvQKysp++EP2ff3X0HSNNwXX4x7zhxSe/bQ+u3vIMkyxvjxlD30T8esT7LtMzRIdw6z\nTZNMczPh7dvZt307rS0ttCWSdBcE0fe/8Erb2ijp6MQ4ZHqIcG5Kaxoxj5uY20PM4ybudhN3uUg4\nnSScTpIOB0YqlRtTTqdx2zYew8DjcuPz+/AXFREoL8dTUYFWVoZaVISkaYP9sM45IlzzaMfjT7Bp\nw3oiNkR8XjKaRiAUJhgKUdTVRWF390f+eKxWV9N80QWEDYOqnl58i5dgxeOn6REIZyNLkkg5jP1h\nuz90XU4ShwRwwunEkmUciSTOZAJnNotLknEZOm6HE6fbhcvlxun14PD6cHhy0+w0txvZ6UTSDSRd\nQ9J0JE1FUnM3FBVJkUFRkOT930XP+YiGzbDA2ciMx3C2tVMSj+OLx/Ck0kiH/jE6nbnbKcpceD6v\nFRYxWteo0jXWUkDNJ29l7NsLsYfB+KxwZAqgAR6ARCJ3680ts20bbBssi6wkEdd1EoZB0tBJ6AYJ\nh0FYN3IzOw7M9tB0svun4FmyPDA1TTYtZMtCtnPfJctCtu3czsUP3UDCRiI3/izZMNrj4WO/+Plg\nPU2DTvRcT0HDTTeR2l13/IJ5lLr+Wt4pLORWv49xhgFAwrJ4vKeXiyMRvK+9MajtE4QzwRg3ltGv\nvTbYzTgiEa5DUNvixfx56VI+E/Qz8gMT1pvTGZ4PR/jK/Z9Dq6wapBYKgjCszi1wLsi0tfHismVc\n7/N+KFgBqvYPEax4443cx0NBEAaFCNehxLZZ9tKLlGgq05xHP9pnnsfNqo5OUnv3nrm2CYJwGBGu\nQ0i8didrunu4xuM5ZrlCVWW0obN24TtnqGWCIHyQCNehwrZZ8e67THE6CKjHP1zyMreble0dZFtb\nzkDjBEH4IBGuQ4TZ3saG3l4udp3Y1K1STaVcU9m08N08t0wQhCMR4TpE7Fj2V0pUlUL1xKcmX+p2\n8X5TE1ZPTx5bJgjCkYhwHQoyGTbUNzDrJA84qNZ1vLLM1nfezlPDBEE4GhGuQ0BsVy0t6QwTHMZJ\nrzvX4+Kv9fVYodDxCwuCcNqIcB0Ctq9bxzjDQDuFY7hH6zpOSWbz/Dfz0DJBEI5GhOvZLpNhW0sL\nU06h1wq5KzJc7XWzuL6BTGvraW6cIAhHI8L1LBfbvYv2TJaxxqlfl2mkrjNC11j60oswiFcvEIRz\niQjXs9yujRsZY+ioH/G0bh/3eljf28u+dxeeppYJgnAsIlzPZqZJbfM+JhinNiRwKI+icLPPx7Mr\nVxFet/Y0NE4QhGMR4XoWSzc1sSeVYtxHGBI41ASHweUeF797cz7bn3sWO9R7WrYrCMKHiZNln8Xq\nN2xghKbilE/fe+AFLhdFiso7u3bz1s5axns9TBw7ltFz5yL5/KetHkE414nzuZ6tbJuX//1hyiWJ\ni9yuPGzepts02ZVKsSWRwgZuuuB8Kq+6GsSlngXhIxPDAmcpq7OTXbE4E09xCtbxSJJEsapyqdvN\n3xUGmet28fSq1bz/+yew+/vzUqcgnEtEuJ6l9q5bS0BR8J+BXqQkSUxxOvjbwiA7urp56te/pnf1\nKkjEwTQhkxEn3haEkySGBc5Gts3rjz5K0DK51OM+o1Wbts37sTirYnHciowhSVg2eFWV80aPZtIn\nbkByndk2CcJQJML1LGR1dvDwY4/xhYICgidw7tZ8yNo2PVmTlG0hI9FrmiyPxSk2DG65917U0tJB\naZcgDBVnNlxbW+C1V/fXLIHXC3MuBV3L3X/vfeA6iZ03tTvhr0vhC1/MT3sHSd1rr7Jo8xb+tqhg\nsJtymIxt83IkSlaSuf2BB1AKCwe7SYJw4lIpWPgOZLPgcMBVV8OeBtixI7c8k85dpvyez0JDA2xc\nD5IMs2fDyOqTrm5wxlzvuAs++zkYMxYWvQuBIHz+C3CSp9QblkyT9Tt3MvMET4p9JmmSxCf9PmzL\n5NU//lHs+BKGlt27obQUbrkVgkHYtQvGjYebb8nd/AGYe2VuP8OaVXDTLfCJG2HVqtx9J2lw5rlq\nWu6d4/wLYMtmaNwLS5fkeq7RKCx6D/r7wO+Ha67L7Vh57VWYNBnq66BiRO5dB3I7Wt57N7eNMWNh\n7hW59bu7IB6HWbNzU4vWrM7tmCmvgOuuh3Qa3nkbQr0wahTs3Al33Q1r1+bakM1ALAYzZsLOHbl3\nvSvnQdXIvD41sZ07aEgkuaX47OwVKpLEpwN+/qc3zJtPPMENDzyA5PUOdrOEc1ntTmhqhHQm95q/\n/HJYvfrwMhdcCEWFuR4p5LJAOaRv2daWO+/GyJHQ05Pr8GlabpnPB+EQFBadVLMGd7aALINh5Lri\nByQSMG0afOZOSCZh756DywIBuOU2aNmXe0Ih94SMGQsXXgQ7tueCGHLBeOttMH5C7om84kq4/gbY\n1ww93bBhPSQT8KlPg/aBI6AiYbj6mlx9G9bDtdfngn7btrw+Hdg2q5csZbLDgXEaDxw43TRJ4u6g\nn85EnKf/6zdEN244pXd2QThtLDvXy5w5M9cjPdAbPXArLwdVy+XJM0/nMmTU6IPrb9ua64hBruOl\naweXaVouuE/S4B6hZdu5B+I45DLRqgL19dDcnPv50BftqNG5cdpgAUQiUFiYC+jq6v+fvfuOk+Os\n833/qdg5TE8OmhlpgqKVLFs2OINZgxcMZsHmgGFhYdl0uWfDPXcPZ8Nd9uxd7tllDWdhA+xiMBgD\nBhtn4yxLtoIlK+cwSTOSJvd07q5w/2jNWGPLY0ue1mhGv/fL7e7pqq56utX17ed56qkqOHWyOI91\nev7y8mI1f9yO7TC+l9u2iwFaVV1cXnNzsQY9bvy1oXCx1hs9/TidnvaP4EzpQwd5dXCQL5VfXH2t\nZ+NVVe4qi7I+meJfHnmUhqeeojIYJOQPUB6L0bhwIb7W1td//YUopdjpbSYQLLYyH3l48vQrroRd\nO4v3be3FAN60sdjSzeUgmYSK0zVT05wcpoVC8blzNDPhalnFN3ToYLHmqZ+xAW7eDJUVcNkKeOyR\nyeMrjx6BpuZiFX3hwuJzbzpb1On51dN72XO54od4/Y3FWnLHseIs4Ujx1yuRgI6ONyxDeYvHJVQo\n8MKTT7LE552xEQLnSlcUbgwFeU/AT0e+wFAuRzyT4dipUzy0axfNXg/XrllD/bXXSciK0jozB3S9\nWFt9owP7ixkAxR3n+XzxcV8fVFa+Pl80CqOjr08fHS0+d45mJlzvv6/4YUQixSb3mWHS3g5bXy2+\nYb+/2Pc6bnAQXtsGDQ2wcBEcOfz26zJNWNACG16CispiLTmRgFWri8v75QPQMO/0zBcoSN/IdTnw\n0EMcSSb58iyotb6RR1VPH0n2+tFkecdlRybDz15+hcZtr3HT9dcRu3yNHForZs6aK2Ddi8VWrKIU\nd15BsRV75n4DTYMrr4THHgXXKdZ2z+N7OzvGuY4P4TrXoVpTOXIYTp2CFSuLNeItm+Hzv1P81buA\n3HSK3Q89xNPHjvGpaJR6c27V8PKOy6Z0mk2pNAt8Pla0t9O8cgVGXb3UZsWcdumG6+hIcZTB8HCx\nqbD6cli6bHqWPRXLgkSC5PEeju3dx2sdHaQdm9sjYWrmcNjkHIedmSx7szlOWBY1uk5NIEBVeYzy\nigoisXIC0QhmMIji8YLXA16f1HTFrDU7wnWW63n+OXbv3k0ylydhFRixHWzXpdE0WOb1ssTrQXuX\nVxqYTXKOQ1/B4qRl0W9ZjFg2cccm5bhYrotXUfCpKgFVJWzohHw+IsEgoWCIQCiILxjE4/NheDxo\nhoGqqihvGF2hvIMuHpfXv/qu4+I6No7tYFsFrELxZlsWHq+P6MqVEvTinEi4no+f/xTkUtVCzLyy\nMvjknTNdirOScBWzi+MUR4AUCsUDPWynOKJk0tf4XL7Syut3igqqUhzep+nFmqqqFvvh53CXjSgN\nCVchhCiBi/cwICGEmMUkXIUQogQkXIUQogQkXIUQogQkXIUQogQkXIUQogQkXIUQogQkXIUQogQk\nXIUQogQkXIUQogQkXIUQogQkXIUQogQkXIUQogQkXIUQogQkXIUQogQkXIUQogQkXIUQogQu7HWk\nRUm4rksubZFLWxRyFq4LqqqgGSqmV8f0aeiGXFxPiAtJwnUWsvI2R3eeYN+uw/T2HSeZHcNSMriq\nhavYFK8hpaC4KoqroTg6qmugqyYe04vX48Pv9xMIBoiEw0TKwkQrwoSjfnwhA2/QOOcwtgo2+YxN\nLl0gl7HIpHJkklmymel+xSsAACAASURBVBxWwcKyHRQFNE3D6/PgC3gJRnz4Qx4CERPdlPAXc4tc\nQ2sWOdk5yronN9Nx/BB5PY5eCGHkw2iWH83yobg6ivN6SLmKjavap+8LOKqFoxZw1QKuVsBW8sXn\ntTyOWiiGsWOgOgYqOppioKk6mqqhKiqKouK6Dg4ujm3juDa2Y+O4Fo5iTYS7o1qAUyyPq4KroqCc\nvmygO1EuoLgu20THi98TJByKUFlVQf28GuoXVBGrDaBq0nslZp9LOlx7D47wq7u3T3ru2jvaWX5j\nw5vnPTSCbmhUzw9fqOJN6Dk0yK9/tY4TyUNolg9PpgZPthzFnb7anouLezogiwFcDEwUp1gbVorz\nKACuAqgorlKsGZ+uHU/Ukh29OH38yqpvuU4bRyvgqHkcLYetZXH0LJaWxtbTAOh2kIivgoaGBhYt\na6F5aQ0enzS4xPkb6k3y5L/t5jN/ezXHDwzz6uOdADi2y0BPgi/8wzUMHk/y8i+OoKoKi99by5L3\n1pFJ5nn2+/so5G1CMS83fmbRlC0u+ZYCn/nbq/GFipdO1oyz15J+9U/b+cDvLL2g4dp/PM7jP3uB\n4/H96IUQ4cQSdCtUknUpKCiuAbaBZvtKso43r1NDszU02wuFydNcXBw1j2UkSeUS7E1vZ2fHerSH\n/ER91bS2trLyqkVUNYVRlKlDXIhxruuy8VdHcexinbJhUYyGRTEANj50hIVX1WB6dTb8/DAf+v3l\n+EIGD/7DNuYvr2DbU100LitnxU3z2PdyH7tePM7qDzS95bokXAHdLO74ARjtT/PUv+9h5GSKYJmH\n931uCftf7gPg6f/ciz9sUr+wrKTlSQxneeJnL3Gobzua7SU8VrpQvVgpKGiOBy3nwZMrB8DFoWCO\nkcqP8Oqe9Wze/yw+p4LGumaWX76EluW1E/+O4tKx/5UTdO0ZpJC1ScXzXP+pdjY9fGzSPGtvW0Bd\na5T9r5ygcUmM4d7UpOnxgQx9h+Pc/tEW8hkL13UJlnkAqG2JcuJonJGTaZZcUwdAzYIIm351dMpy\nyTcRuP9rm4sbs6Fy8xeW0HZFFQvX1vDYt3dxaMtJbvj0Ig5sOsn7PreY2rZoycqRHsvxzIOb2XNk\nKy4OwbFWzHxpg3w2UVAx81HMfJRAYj62miPvHeZY9yEOnnwV7eEA5cFa2tpaWbKqlermsPTXXiJc\nBz78lZUcevUkBzef5GN/uvpN82STBY5sPcVv/h8r2fFMz6Rp+zb0seoDjSiKQj5rTfqRNrwahZxN\nRUOQrt1DxGoDdO0ewsrbU5ZJwhW47f9cdbpbQCGTyNOzf5i+Q6MU8jZ2wZnoKtB0FVWd/iZoYjjD\n87/awt5j23GUPP5kE2a24m37LC91muPBl67Fl67FxabgiTNWGGHjjhd4efdTmFaEWLiaxsZG2pc0\nU9dajjdgzHSxRQnE6gMABMu8ZFMWD33jtUnT1962gAMbT3DlRxa8aRt2HJfufUOsvW0BAKZXJ5+1\nJqYXsjamT+fyW5pY99ODPPKt7dQvLMMbNKcsk4Qr4I+YBCLFJsBLPz2Ipqlce2c7T/7bbsb39ikK\nZFMFrLw9LcOGXMele/8A657ZRPfgIcDFl5yHJ1spoXoeFDTMXAwzFyMAOGqeghlntBBnYOxlNh98\nBs3y4VMjlEcrqauvY357A7XNMQJRj/TbznJn/usZpsotZ6m5Pn/vfuL9GQDSY3leuO8AN356EUO9\nSUIx70Tomqd3mCZHcvhCBn1HRln1G40cPzjCsusaqG2JsPO5HuYtnrpVKeH6Bm1rqll3/0Ee+sfX\nCFd4SQxlAWi6rIKNDx0lWu1n3uLYeS3bdV0GjyfYun4v+/bvIaX2Y+TDBFLzMfJRCdVppDomnmwl\nnmwlUOyvtYwUlpHkVO4UvUNH2bgvjeqYmE6ISLCMivJK6ubV0rigmlhtGF/IkNCdQz7ztasnHt/7\n1Ve48dOLAIj3ZwiVeyfNe90d7Tz13d04tsvi99QSiHiI1QZ45p59qCrE6oNcf2f7lOu7pIdiXQi5\njEX3/n52v3aAzu4OkpwqbviZSjyZKjTHM9NFvGS5uNh6GltPYRmn7/U0jpZHszzorp+AN0w4FCEW\nKyNWHqOqtpxoZZBgmQdvQMJXvDUJ1xJJjmb5wT//gnj2FJaexiiEMXJleLLlF2yokzg/Lja2ni0G\n7+mxt7aWPT0WN4fiqqi2ieqYGJoXr+nD5/Xj9/nxB4q3YNCPP+jDH/DhC3gxPBqGqaHpKpqhnnGv\noGkqSgn68sXMkm6BEtF1Dd3xExhbgF4IoiCHd84WChq6FUC3Am+aNn6wRfGotjyOlier5klrowyq\nA8UDMMYPxlBOH46sOBQPulBfP2Jt4kAMFVwFheIRcApq8fALRUVRlGJX0cRjTteUldP/KWeUmeKO\ngYm/lTMnoJwxv6KMT1DOeMkZr31jzr/hCeUsj87OPeP/wOl63Dupzl1z01ouu2rB2894EZOa63m4\n/2ubGe5Lvf2MQoiSitUF+NRfrZ3pYpyVhKsQQpSAjLAWQogSkHAVQogSkHAVQogSkHAVQogSkHAV\nQogSkHAVQogSkHAVQogSkHAVQogSkHAVQogSkHAVQogSkHAVQogSkHAVQogSkHAVQogSkPO5ClzX\nLZ50c/wUoHJ2fSHeNQnXOcy2HRLDaXp7TjA8NEwikSCdyZDLZskX8hQKeSyrgOVYuK4DKKiKiqEb\neL1+IqEIlZUV1DXUUV1fiT8kF/IT4p2S87nOMa7j0tvVz2uvbqfreAfx1BAew4fPDOIxfZiaiaGZ\naJqBrhnoqo6qaqhKsYfIcR0su0CukCGTT5HMjpHIjKKgEAnEqKqopr6+jobGBiqqyvAGTLlEiRBn\nIeE6R7iuS+fB47z4wkv0DXVRGa6jKlpPWbAKQzPe9bKzhTTx1DDx9DBj6WGSmTiqqhH0hYmEyqgo\nr6Curo558+uJVoTQNOnOF5c2Cdc5YHQwwVOPPcvR4/tpKG+hqaodUy/tVWXHAzeVHSOZHSOZjZNI\nj5DJpwj7Y9TXNLJkyWJalzRheKT3SVx6JFxnMcd22PryLta98hxBb4SF9Svxmv4ZLZNlFxhJDTI4\ndoL+0V48ho/2BYtZe/UaKuqi0mcrLhkSrrPUyOAYjz30JMf7O1ncsJqqaP1MF+lNXNdlOHGK40PH\nGEkO0FzXxrXXX0PDgmoJWTHnzclwjQ+m2PtyF2t+ox3Tq5NN53ntmSNcdm0zodj51exS8SyFnEW0\nKjjNpT03ju2w7ZU9vPjys4R8URY1rCp5F8B0SOeSdPUf4uRoN001rdxw43XUS8iKGZAay3Jwy3FW\nv78VgP2bu7HyNoqi4A2YtK6qY7Q/Sde+fhQFqprKqGkuIzma4cDmHrwBE4DGxVWEy986T6Qz7B06\nsKWH6qayGQ3X/r5hnnrsaXoHuljUsIrqaMOMleVc+T1BFs9bzfzqRXT0H+De+++hua6N62+8jrrm\nSglZcUG4rkv3vn5c5/U6ZT5jseKGBZPm69rfz8IrGzC9BjueP0plQ4RUPEd9WwW1C2LvaF2XVLi6\nwL5N3YwNpglGvbRdXo/HZ3Bkex+DvXEURaGmuYympdXs2dCJbTtkk3k8foNcukD3/n5Mr05VY/SC\nljs1lmHdM6+w6+A2ykM1XL3oA7Oitno2XtPP4obVNFctpOPUAX5433/SWNPCe665mua2elQZZSDO\nUX/3KCOnEtiWQz5rsWB5Ld37+yfNM17L7O8eJVoVJD2WA8DK2xRyFvs2duE4Lk1LqgmV+QhGfVh5\nG8N8PSLTY1lSY1kGe+MEy3w0L5265TWnw3XH80eLRx2d7vnoOTBAIWex+n0tdO3vp2vfKRYsr0U3\nNZZfN5+hvgTHDw/StLQaAMdyWHHDAnRTY8cLx6huilLZELkgZXddl5H+OJtf3saeQzsxdQ8rmq8m\nEii/IOsvNZ8ZYMm8y1lQvZiu/kPc/4sfURGp4bKly1lx+TICEe9MF1HMIq4LS65uYuB4nIHjcZZd\n0/ymeQp5i8HeMZZc3UjfkSEAHMehtqWcugUxcpkC+zd1s/KmFrwBk32vdKFqKlWNUTRdJRDxUjkv\nQiDi5diuk5zqGqWmuewtyzSnw3XJexoxPDr5TIHd6ztxXZdMMs+OF4/h2C6GR0NRFayCzdGdJ1BV\nZVJzIVjmm+hfUSgeFlrKAfOFvM1w/yiH9h/hyJEjnBjqJuyPsbhhNWXBudl09pp+FjaspKV2KX3D\nXWza+jIvbXqehqpmFi9ezKJlbfjDcmSYmJo/XGzJeXwGVt5mz4bOSdMbF1fR3z1K46LJ25Fu6tQ0\nl6Goxf5WTVex8jYnjg6x6n2taIbGgc09JIbTxGpD6IYGQKwmyMjJ5JRlmtPhanoNTK/OmfvsfAGT\nBStqGe1Popsa8f4U/V2jrLxxAQM9ceKD6Yn5JzVRFbALNrbloOnn33R1nWLAjwzG6T81wPDQMCMj\nw4zERxhLjZLOJwn7yqiM1LF24c34Znho1YWiawaNla00VraSzMQ5OdrDCxue5Zl1T1ATa6CtrZ1F\ny9qJVYbliDAxJVVTzlpzPbK9j2wqD0A+Z3F0Rx/ldWFOHBtm8VWN5DMFbNtF1VU0XUXVVVRVwTA1\nrILD/k3dzL+shmDUx+hAikB06tbVnA7XN2pcVEXv4UH2bezC9Bq0rKjFF/LgD3vY9VIH4fIAALl0\n4U2vLasOcqJjGF/Ic059rq7rkhhJc3DfUTqOHaN/6BSJ9AiOY+PzBPGZQfyeIFF/JQ2xVkK+CKqq\nTdt7no2CvgitvgittctIZRMMxHvZun0zL77yNLFwNU3zmmlrb2Pe/Fo8fkNqteIdGR8dALDt6cO0\nrKwDYORUkl0vdaAo0LqyFk1TaVhYyd4NnSiqQiDiJVoVwPBodOw6iaIqxRyYN3UOzMmhWBeDQt7i\ntY272btvLyeHevCafmKhaqKBCsK+KB7DJ6FwjvJWjsGxkwwlTjKcOIWqasRClVRX1lBTW0NNbTVl\n5RG8ARPd1OTzFTNKwrVEDu7q4MlfP0ZVtIHqSAM+T2CmizSnuK5LKpcgnhoqnusgGyeZHcN1Xbym\nH6/px+fx4fcFCAQCBINBgsEg4XCIcFmYYNCP6TUwPDqqpkgQi2kn4Voiruuyc90x0vHcTBflklKw\n8mQLabL5DDkrQ76QI29lyFlZ8oUcuUKWvJXFdR1M3YuhezB1E9PwYBomhmGi6VrxbGGaWtyJ+Ybg\nPdsmU5yvOL+qqmiaiqZpaJqGrulouo6uaxiGjq4b6LqObhSf03QdTdfQVAVVK96jqqinT7CrKMrE\nuXaBiTOYoRSnGR4df2h2Ds2byy6pPtcLSVEUKhsi5GJv7r8VM8N1XRzbxbEd8vkC6UyKbDZLLpch\nl89RsApYVgHbssk6OVzXwXVdilH6+tnEz1bHdSmecNx1XRzXwXUdHNfBcRwcx8Z27Nf/dscf2xPz\nuq5bfE1xIRPLm1j2FKKBCv7gK1+eNCZTzDypuZ6H7c8fJZOQGqkQM80X8rDqppaZLsZZSbgKIUQJ\nyLGGQghRAhKuQghRAhKuQghRAhKuQghRAjJ2Y4bl0in6jhzieMcxRoeHKOQLhKNRFq1YRf3CxTK4\nXYhZSkYLzJDOPbt46qFfMJDK4ni8KIUCqpUvjnHUDRzdJOLk+din76JpybKZLq4Q4hxJuM6AZ+//\nEa/s2Y+WTaGP9KOlkyhv+GdwDJN8VQO2N8D1l6/gutvvkFqsELOIhOsF9vIjD/Lcq6/hOdGFnhh5\n2/kLkXLy1fNYVlfFx778RyiqdJMLMRvIlnoB9Xd38vzGzZj9ve8oWAGM+BCe40fZ09fPvf/4/1LI\ny5FhQswGEq4XiOu6PPiD76NYBfTRgXN6rZ5O4O06SFc8zXf+5q8Y6u0pUSmFENNFwvUC6di1nf6C\ng+dk91lP/PF2tFwGX8c+kvkC//rtf+bp+34otVghLmLS53qB/NvX/oqheBzv8aPvajkuYEUryFc1\n4Mlnuea97+GqD30YTTemp6BCiGkh4XoBDHR38q///l28x4+gZdPTskxXVSmU15Avq8JXyPKeq67m\nyls+hOn1TcvyhRDvjoTrBfDAd77FgZ7j+Dv2T/uyXVUjX15DoawSPZ+lOhpm3rwmGuY3U9fSRrS6\nVoZwCTEDJFxLrJDP8Q9/8VXU0SGM+GDJ1uMqCnYwih2KYnt8OKYXxbHwWnlWrVjBDbd/AsMz9dUq\nhRDTR8K1xF577tc8um4DgUM7UVzngq3XBVzTgxUqoxCrxmvl+K1Pf4YFl628YGUQ4lImowVKbPPL\nGzASoxc0WKF4KRI1n8McOon/6G6sbJYf//RnPPez+856DSghxPSScC2h+EA/A9lzH9c63RTHwXOi\nE7O/lw179vPD//V35NLTs2NNCHF2Eq4ltPnpJ0FRUNPJmS4KAMbYML6ug3THU/zvr/01nbt3zXSR\nhJizpM+1RFzX5Rtf/W8UxuKYg30zXZxJXFUlV9OE7Q/RVhnj1rs+R7i8cqaLJcScMmvDtWfvLn7+\nta/ye//+IwLRMl780X+y/clHuP6u3+Gl++7hv/74oUnzb/7VA+x69km+9O3vX5Dyde7eyQ9//gv8\nx/YWTyV4EbICIfLVjQA0xqJccc21tK66XMbKijkpm0zy/T/+MuUN8wBY9Ru/SftV1wBw8sghNvzs\nR/zW//hbMskEj3zj7yZed/LoYT76Z39J0/Jz2xk8J06WvfXRB3nt8Yf54B/9CQuvvpbLbvzATBeJ\nEz1dmMmRizZYAfRUAu3YXuxghOOFHJ1PPo36q4eJegza2tpYe/MtlNXUznQxhZgW/Z3HWHLtjdzw\n2S9Oen7Hrx9n5zNP4A2FAPAFQ9zx118HoGPHNvaue+6cgxXmQLjuW/8CL913D9d9+vMsvuYG9rz4\nLM/+x3f4rz9+iOP79/DUv34TO58n1tA48Zrv/dEXaFi8jN4De7EKBT74B39C0/KVvPrIL9nyyC8x\nTA/Xfebz1La28x9f+RKf+Iv/SeOyFfzi7/6SYFmMW/7gj9+2XFd/6CN0vLyOE6V889NAAfRkHD0Z\nx1VUbH+QRCDMlv0H2bL/EI3RILd99gsSsuKitefFZ+l47VXy2QypkWHe9zt/wIaf3TtpnvfecRcD\nXcfoO3yAn/71/020ppabPv9lTK+PQCzGh//kv/PM97496TWu47Dh/nu5/b//P+dVrlkfri/ddw8e\nn5++g/vhw5OnPfef/0pt60Ku/8wXeOxb/2vStMTQIJ/8q7/nkX/6e3Y8/RiBaJSX7ruHT/zl32Fb\nFo/+09/zu//yAxoWL+XgxvVUNi+gZ+8uPv7Vv33HZZtt515VXAc9NYaeGsPsP47jD9FjN/Cdb97N\ndWuv4NrbPj7r3pO4NDiOw8e/+jX2v7yOfeufn6h5nimXSvLeT3yGpuUr2fLwL9j80M+59lOfo+2K\nq4n3n3rT/F27ttOweCmBaNl5lWnWh+s1d9xFtKaOx775dQ5veWXStNGTJ1jz4dsJxsppXLacveue\nm5jWuGwF4coqyhvmkY6PTpzG79Fv/n8AFHJZBns6WXbDzaz78fepXtBGoCzGvKWXXbg3N4MUQEsn\n8HXuxyqr5IXXdrJ3107u+NLvE6urn+niCTFJRWMzAKHyCrLJJD/7mz+fNP29d9zFvKXL0U0TgJbL\n17Lux/855TL3vPgsaz/2yfMu06wP12U33kwgWsaOXy/j+e//G1fc9lsT08rqGzj22qs0XraCrl07\nJr1uvAY2ftx9WW0xMG787BfRDIPuPTuJ1c+jen4rz33/33jlgftYdsPNl9xx+gpgjAygJccYqpvP\nd/75f7O0qYH33f5JIlXVM108IQA4c7M0PJ6z1lyf+Od/pPXKq2lf+166du+gen7LlMs8ceQQlU3z\nz7tMc6aNd+Nv/y6p0VHW/+SHE8+9/3d+n/6Oo/zkL/6McGXVlK+val7Atf/lt3npvnt4+t//GY8/\ngD8cwfB6ab/qvaRGhlly3U2lfhsXLbWQw9t1AGOwj71dx/nWN+/mn//6qzzxw+9zdPs20mPxmS6i\nEFN67x13sf2pR/nZ3/w5vQf3ccVHPv6W86bH4nj8/ne1vlk7FOtCyaaS/Ppfv0lqdIT/8j+/cU6v\nvf8v/y/6Dk3/mbBmmgs4viBWuAzbH8LxeFHzOXTbwu81CQWChMIhIpEo4WiUUDRKIBTG9HhQNR1F\nVVE1Dd00Mb0+fKEwqqbN9NsSYlrN+m6BUvvhn/0huC63fuW/zXRRLhoKoGWSaJnikWeuouCcPhNX\n2vSQSiToGxjE1Q1cTcfVNFA1cF3ALd67xR1oODaKZWEoLj6PSTgQJBKNEikrIxyJ4A8G0Q0TRVFw\nHBvbsgAwTA+NS5bhDQRn7oMQYgpScy2huVpzPR8uFDvGFAUo3ruKiqupuJqBa5jFm+nB0c3Xg1lV\nQVFfX8r411VRWVQe4Y6v/MnMvCEh3oaE63n4wZ/+AUPHu2e6GEJc8sobGvntb/zLTBfjrCRchRCi\nBObMaAEhhLiYSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJ\nSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJyNVf\n5yjbKpBPp8mnU6QTCZKJMbLpDLlsFtuxcBwXTVXRDYNAMEgoEiUUi+ELR9FNc6aLL8SsJ+E6S1n5\nPJn4CCP9/Qz29zMyPMTY2BhjySTpbI5swSLnOORtB1VRMFQFXVXQFAUFUBQF13VxXCg4DnnHRQF8\nukbE76W6ooLmBQtoXriYQKwcRVFm+i0LMavM6QsUxk/0sueJX3HFp34b0x8A4NSh/Rx9ZR3v+e3f\nm+HSvTOOY5MaGuJkdxe9Pd30DwwwMjZGKpcnbTkTgejTVbyailfT8GjqxM3UVLR3EIyu61JwXNKW\nTbJgES/YjGbz2K5LZcBPy4Jmlq1eQ0VDI4oqvUli9unc8gqJgVMA5FNJQlU1tN9wMwCJgVN0b9vM\n0ls+AsDYyT46tryMoqhUty+meuGSc17fJVdzrWpdSMX81pkuxluyLYvh3h6O7t9HV3c3AyOjxHMF\nNFUhZGgEDZ1yQ2OeP4hf1zCmKegURcHUFExNJeoxaDj9fMayGczm2XPgEK/s2kdlwMfi9jZWXHU1\noYoqqdGKWaP5yvcAxS6zPY//auLvE/t2c/LAHnSPd2LeY5s2sPjmD2F4fex+7EFijfMxfL5zWt8l\nF679Rw5y9JV1rL79U2x74Mcs+9DHiNTWse/px9FMgwVXX8fhF58lfqqPYHkl7de/H9d12fbzHxGu\nqSMzNsqaOz6LqmrTVqbMWJyOfbs5sG8/vf0DxPMFgoZeDLmAhyVlQTzazNQWfbrGvKCPeUEfedvh\nVCbHtj172bBjFw2xKCtXrmTh6jWYPv+MlE+IU4f2M9LThV0okM+kaHnP9XRt3TRpnqbL1xKuqQOg\nb/dOqtoWTrRmTX+AhTfdwtGXXwSKXW64Lp5AEIBQdS1j/Scob1pwTuW65MJ1nDccIVo/j/4jB/BH\nyxg93s3SD36E4zu3kU8nWf3xT9O9bROdWzfSdPlVAISra2m//v3TEqzp0RH2v7aVAwcO0Ds8igNU\neE3mBb0s94TQL8Kmt6mpE0GbKlicSGd5/IV1PLNuPS31tay+8krq2hah6Zfs10rMENd1WXrLhxk4\neoj+Iwe57NaPveV8Q93HWP6bH594rrx5AdnE2MTfdiGPdsZOXc0wsAuFcy7TJb0V1CxayuH1z+OL\nRPGEQoRr6ujd9Rrp+Cg7HvopjmNjel9vCkTr5+EJhs57fZmxOAe3b2PPnj30jsRRFYUqn8ll5WFC\nhjarmtgBQ6c1otMS9jOcK3Civ597H3iQqNegpamJy1atomZBmwStuCACsRgAnkAQK5dl9+MPTZo+\nXnMd7e0mUl2Hqr11BUkzTOxCfuJvu1A4rxE0l8Q3P5dMYFvFXx4rl514PtY4H1XXOb5jKw0r16Ao\nCt5IGb5Ukpb33sDI8W6MM/phpvoHeSvZxBiHd+1gz+7d9AwNA1Dt87CyIkxAn12BejaKolDuNSn3\nmtiOy0A2x7HOLrYePELEYzCvppqFCxfRuHAh/mhs1r/fi4XrujhWAduycCwLx7ZxHad4c503za8o\nKopavKmahqrrqJqOputzZAfl698rTTdYdOstZ51r5Hg3kZr6KZc0HqS5VBLD62PsVB8Ny1edc4ku\niXDd9egvJx6f2WmtqCrVbYvp3b2dqrZFAMxbeTnZsVH2PvUIpj9Ay3tvOK915jNpHv7RD+kcGMJx\nXap9Hi6LhQgZ+pwNGE1VqPF7qfF7sRyX4VyegYEBDvT04j7zLDGfl+qKcuoaGmhobKKspgZvMDxH\nNu53z8rnyaeSZBJjDA8OMhYfJREfI5lMkMlkyORy5PJ5CpZNwbaxXXBcF9t1cVwXF3BcKD6aTEFB\nVYoRpCoKqqKgKaApCrqmYeoaHsPE5/Pi9/kJhYJEolGi5RWUVVTgDUcwvL5Z/93NxuMT2/pUFlx9\nHQeeewrXcahuXzzRP3su5vRQrJmUS6d47Ec/wOcUCM/hQH0nXNclYzuM5gqMFSzGchYpy0JXVfy6\nRtDrIRgIEAoGCQQCBEIh/H4/Pn8Ar9+Px+tFNwxUTUfRNFRNK9bAVA1FU1FUDfV0rexiZRfy5FIp\nsskEo4ODDA8PMjoySmJsjEQySSqbJVOwydk2BcfF1FQ8qopHVzFVFUNVME7f66qCrihop8cta8p4\ncBbvi49e557+/3jwOi4TgWw5xXAuOOO34pjnvG2TtR1ytoPtung1Db+hEfL7iYbDlJeXU1ldQ2Vt\nHYGyMgyf/5L+jp+NhGsJdWx5mb7dO2a6GBcl13XJ2g5pyyZj2eRsh6zjUrBt8raL5bpYTnHDtt3i\ncdrq6RBRFQVFkI+bmgAAIABJREFUAZXX78efV1Xl9L2Krmpomoqu6xi6jn76ZhoGhmFgmiaGx4Np\nmpiGiekp/m0YBoZpoukGuq4Xg/t0cLiAY9s4jkMhn6eQz5HP5chmsmQyKbKZLOl0mkwmTSaTJZ3J\nksnnyZ1+jwXHwVSLY5C9bxibXPxbw1SViyqoLMclaxf/ndKWc/q+eMvbDl5dI2DoxeCNhImWlVFe\nUUF5ZRXBshhmIIBuei6q93QhXBLdAuLioyjK6YMf3r4f23VdHIpNYMd9/X68FnbmdPd0rczFPd1s\ntrHzFvkcZE43oW0XHGf88emb455uYnP6tcVljdc8xmPhzL/HA3289jheo9S1Yg3TVFUCqkKZ3yzW\nQk8f1KHOspDRVYWgqhM03hwXtutOhG3GynHq1Ck6e/vI2jZZy0FTldMHtGh4TQOfx4PX68Xv8+Hx\nevF5vXi8XoKhMC0rV8+pHaBz551chAJl5cSa5s90McQUig03F7eY0rinb+OPx6ed2bxTlNM7iIoP\nUBRlYmfRpVY7OxvXdXFtG8sqkM3myORypHN5soUCuYJFcmyMkZERCo5DwXawneKne1d1NRXzmma4\n9NNHugXOw/Zf3k96dHimiyHEJc8fjbHq45+a6WKclYSrEEKUwMW7e1UIIWYxCVchhCgBCVchhCgB\nCVchhCgBCVchhCgBCVchhCgBCVchhCgBCVchhCgBCVchhCgBCVchhCgBOXHLHOYWHOxUATdn4dou\niq6i+nTUgIGiyglGhCglCdc5wrUd4vv7ObbjEH0n+xhJxUk4abLkKSg2Di4aKqarE8BLzBOmtrKG\nBYtbqVzViBYwZvotCDGnyIlbZjnXcuh4eg8vv/oKPe4glU6YSidM1A0Qcr34XBPD1VFRsHHIKgVS\nSpZRNU2/GueEOkrQ9bIoNp/V115B2cp6qdUKMQ0kXGex7IkEv/7hwxzIdrPcaqLdqsXDudVAHRxO\nqqMc0k/Qow7Rotdy9dXvoeG6NhTj3V9CXIhLlYTrLDV2eICf3nc/mqNyXX4xPs790r9vlCHPPuM4\nB7ReapUYV624gpb3X4YWfPfLFuJSI+E6C40dHuDHP/4x5U6IqwvtqExvM76AxUGtj736cXyYrKhb\nxGXXryHUXiFdBkK8QxKus0ymN86Pv3cvYdvLewoL33Cdz+nl4HJcHeKA3sspNU6TWsWStkUsfM9l\neBsjckkTIaYg4TqLWGM5fvbNe7GsAjfml017jXUqaXIc0/o5pp9iTMnQpFbR3txK2xVLCLVVoOgy\nZFqIM0m4zhJuwebJux+gI9XHrbnV6MzczqakkqVLHaBLG2RQHaPajdJc0UDb4nZqVzZjVPhnrGxC\nXCwkXGcB13HZ/N2n2XBiOx/JrcGPZ6aLNCGPRa86zHFtiF51GAWFBqOS+fVNtFy2kLIl1ah+GUMr\nLj1zNlyzR0cZ/N5uav/HWrTQ7N7bvffnm3hs3/PckltJuRua6eK8JReXUSVNrzpMrzbMKXWUkOuj\nzltJY10DzYsXEFtUixa+eH4cxKUn8XIvTtoicnPxMt6ZPYMkXjqOa7sErqwhuLaWfF+S0UeOAqAF\nDGJ3LgJNYeSXh7EGM6g+nbJPtE958I0coXWRO/bkLh7b9zzX55dc1MEKoKBQ5gYoswMss+fh4DCg\nJjhpj7Dr6D6e7diI73GTerOClsYFtF25hGCbjEAQF4Zru4w8dJhcRxz/yioAnKzF2HPdVP7eChRN\nYeyFHgDiT3RQ9tFWjJoA8V93knrtFKrfQDFUqn5/BemdAyRe6CH6mwvecn2XVLjGn+kis2uAmj9d\nQ3pnP8P3H6Th69fS/++70Pw6hcEMTiJP5DcXEFhdTWbPICMPH0X1augxL07eoerLyy9YeTue3MUv\nNj/OVYV2GpzyC7be6aKiUu1EqHYirKA4+mBYSdJnD/Pq4R08dXQ985RKlrYsYvH1K/HNi8x0kcUs\nlNp6iuzBYZycjTOWJ/rRFuK/7po0T+Q3mjDrg/iWlONpjmCNZAHId42hV/gY+eUh7LE8kd9oBiB2\nx8KJFq9ruyiaQr5rDG9bGQDehWUkXuyZslyXVLhOpTCQpuJzSxl9vIPk+l78K6sY/uVhAlfUELyq\nlsHv70G9QN0Lru2w52cbeeLQOq4qtNFiV1+Q9ZaaikKFG6LCCrGcJjLk6dT62XzoNZ498gptngZW\nrFxB03sXoYVnd1eOuLBcx6XyC8tI7+gnvb3/LStBviXlpLaemvjbTlvkjyeo/spq3LzNwH/spvpP\nLp8I1szBYXLHRol8oImRXx1B8RZ3JCumhpO3pyzTpReu4z3MzuSnPU0R9HIfRm0AayCNkyrgZix8\ni8rQY17MxhDWSK7kxcudTPLsvY+xJ32MG/NLqXNiJV/nTPFhsthuYLHdwKiS4oh9kgc3PYG56Wna\nwo0sXbGM+ita0CLSRyumZtQEANCiHpy0Rf+/75o0PfIbTXia39wyUn06ZkMI1aeDT0f1GzjJAlrI\nJLX1JMlNJ6j43NLiGeW8Om6uGKhu3kb1Th2fcz5crZHsxAeiGCp2qoCdKpDrGps84xuGaap+A8Wr\nkzk4ghb1kusaK+mOmNyJBLue3MLLXa8RdL18NH8lgYtoVECpRd0AawotXM4CTqqjdIz287MND2Ou\n12n21bFw4UIWXLUIoyYgBy+IKSmG+o6778z6IPHHjuHkbHBdnHQBNWBM1IArv3QZqqcYk2ZjiOzh\nEXxLyskeHMZsnHofyJwP14F/2Tnx2H95NVrY5NTd2/AumrpGqGgKZR9vZfSRo2QPDKMFTaZzm3Yt\nh0z3KF07jnDo0GEOZ3oIuB6utFqZ55SX9Miri5mCQq1TRq1TxtWFdgaVBF3OAL/e8SK5nc/QqFXR\n1tRCy6pFhNsrUT1ychlx/rSQSeiGeQx8t1jTjdwyH0VVGH3sGFrYZPAH+wAIXF6Nf3UV2YMj9P/r\nThRNIfapRVMue84OxZoOIw8fwagJ4FsUY+gnB9BjXmJ3LDzn5biWQ/5Ekv4jffR1Hudk/ylOpQcZ\nVBKEXB/znHLmW1UX/WiAmTampOlWh+jRBhlQxyhzA9R4K6gqr6S8qpxIRYxQeRgz5EX1G6h+HcWj\nSU1XzAgJ1ykkN59g7LlunHQBozpA7I6FGFXv/OijI0/sZO+u3ZzKDDOkJDBcjQo3RLkTosIJU+WE\nz/kUgaLIwqZfHWNAjTOspkgoGVJKliwFVFQ8ro4XEx8mQcNHyBciEo4QK48Rq60gUlOGEfOhhkwZ\nCiZKQsK1hDb+y68Z7DtFhROmwglNy2kBxdRcXArY5JQCWQpklDxpJUdSyZJUs4wpGRJKhgI2AddD\nwPXg07x4dQ8ew0TX9GLYui6O4+K4No7j4uKioKCqCpqqo+sauqajaTq6pqKoKqqqnu46Unh9z+kb\nKCpLb1pNsLHsAn4qYiZIuJ6Hk3dvwzqVnuliCHHJ06v91Pzx5TNdjLOScBVCiBKQ88QJIUQJSLgK\nIUQJSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJSLgKIUQJ\nSLgKIUQJSLgKIUQJzPnLvIiZl81mOXLkCPv27WNoaIhUKgWArutEIhFqampob2+noaEBj+fSuW6Y\nmNvklIOiJCzLYseOHWzZsoWBgQHGv2aKonDmV+7MvxVFIRAIUFdXR3t7O62trUQiEblMi5iVJFzF\ntHEch+7ubtavX09HRweO47wpTN+JM1+j6zpVVVW0trayYsUKysvLS1F0IaadhKt4VxKJBAcPHmTv\n3r309PRgWdZ5BepUzlyez+djyZIlXHvttUSj0WlbhxDTTcJVvGOu63Ly5El2795NR0cHg4ODFAoF\n4M3N/VJTFIXq6mpuueUWmpubL9h6hXinJFzFlFzXpaenhw0bNnDs2DEsywIufJiezXgZKisruf32\n26mtrZ3R8ghxJglXcVb5fJ7NmzezadOmib37F6vxHV6tra3cfvvt+Hy+GS6REBKu4g2Gh4d59tln\nOXDgwHnvkJpJmqZx8803s3btWhllIGbUjIfr9u3befjhh4nFYnzlK1/Bsiy+/vWvY1kWn/vc55g/\nf/5MFu+SYNs2e/bsYf369QwODs50caZFWVkZn/zkJ6WrQEzIZrM8+OCD5HI5XNflIx/5CBUVFWzZ\nsoUdO3agqiq33nortbW1DAwM8MgjjwDFFtH1118/sZxkMsm3v/1t/vzP/3zK9V0UBxEoisLo6Cjx\neJzR0dGZLs4l4+TJk6xfv56DBw9O7OWfK0ZHR/nud79La2srH/7whwmHwzNdJDHDtmzZQktLC2vX\nruXo0aO8+OKL3HrrrWzbto0vf/nLjI2N8cADD/ClL32JZ555hltuuYW6ujruu+8+Tp48SU1NDQDP\nPPMMtm2/7fouinBVVZXq6mo6OzsZHR2lvr6erq4uhoeHeeqppxgYGCAcDvOxj32McDjMt771LVau\nXMmBAwdoamqirKyMHTt20NzczCc+8Qleeukl9u/fj9/v59SpU1x99dUcOnSI4eFhbr75ZlatWsXW\nrVt5/vnnyeVyNDc3c+edd7JhwwZ27dqF4zjU1tZy4MABPvvZz7JgwQLuvfdeQqEQH/vYx2b643pX\nkskkmzZtYseOHSSTyUnTZlPz/+2Mv5fDhw9z991309rayvvf/36qq6tnuGRium3fvp3Dhw+Ty+VI\nJpPceuutPPfcc5Pmuemmm7jyyivRNA0ottY0TcPn8/G7v/u7qKpKPB7H7/cDMDAwQH19PVCsuXZ2\ndlJTU8OxY8fw+/0T803loghXgKamJjo7OxkZGaGpqYmuri4SiQTLli1j+fLl/OQnP2HXrl1cc801\nABNhe//993PNNddw++2385Of/IT+/n4AhoaG+OhHP8rGjRtZt24dX/jCF9i0aRObNm1i1apV5HI5\nPvKRj2CaJvfeey8nT54EIB6P88UvfpFIJEImk2Hv3r3U1NTQ2dnJXXfdNWOfz7uRyWTYtm0br732\nGiMjI7iuO6dqqW/HdV0OHz7M4cOHCYfDrFixgjVr1hCJRGa6aGKaOI7DXXfdxe7du9m5cyef//zn\n33LekZERnnnmGe644w6g2E+/YcMG1q9fzwc/+EFgckXDNE0SiQSWZbF+/XruvPNO9u3b97ZluqjC\n9cknnySVSnHttdcCxTd16NAhOjs7yefzE8OAoPhrEgqFAGhvb594PD5PJBKhrq6OWCxGJBKhvr6e\nWCxGX18fUOyK2LBhw5teFw6HqaurA2DVqlU8/fTT1NXVEQqFZtV4ylwux44dO9i6dSuDg4MTgTr+\npZlLtdRzkUgkWL9+PevXr8fr9TJv3jwWL15MW1vbxHdBzD7jLZJwOEwmk+Gee+6ZNP2mm26iqamJ\nvr4+HnzwQW677TYqKiompl9zzTVceeWV/OAHP6CxsXFS5SOfz+P1etmwYQNr1qx5x+e/uGjCtbGx\nkXg8jtfrpaqqCoCXXnqJ+vp6PvShD/HTn/500vxnvvmz1cKmmp7JZHj66ae57bbb8Hq97N+/f2La\neLMBYMmSJTzxxBO88MILrFq16qKv7VmWxf79+9m0aRN9fX0SqGdx5mcwfkKZw4cPA8Uf84qKCpqa\nmmhvb6e+vh7TNGeqqOI8GYZx1prrwMAADz30EHfeeedEsA4NDfHcc8/xyU9+El3XJ7b/iooKent7\nqaur48iRI9x000089dRTdHR0sGXLFpLJJPfffz+f+tSn3rIcF024+v1+qqqqJh3SeOutt/L4449z\nzz33EI1Gp21nl9frZcmSJTz++OPU1tbi9/vPumzTNFmyZAk7duxgxYoV07Lu6ZZOp9m3bx87d+6k\nt7f3TcOnJFCndubnk8/nOXHiBH19fWzcuBFFUfB6vVRXVzN//nza2tqorq6e9AMsZo8XXniBQqHA\no48+CkBNTQ0f/OAHqaio4Hvf+x6KorBixQpisRgf+MAHePTRR7Esi5aWFurq6vjCF74wsay77757\nymCFi2Ao1sUsk8nw8MMPk0wm+eIXvzhj5XBdl1wuRyKRYHBwkJ6eHnp7e+nv7yeTyQAXxxFTc9Ub\nz9zl9/spLy+npqaGuro6ysvLCYfD+P1+DMOY4dKKi4WE6xS+8Y1vAPDxj3/8Xfe35nI5jh49Sjqd\nJpPJkMvlJm75fH7iVigUJu4ty8KyLGzbflNwSpjOrLf6/BVFQdM0dF3HMAw8Hg9er3diD7Pf7ycY\nDBIIBPD7/Xg8HgzDQNf1iWbp+E1VVRRFmXQbX8eZ9+LiJOF6gTzwwAPs3bv3rNPeasMZv6mqOrHB\njW+00jSdeY7jYNv2pB9Bx3FwHAfXdXEcByi2PMZvM2E6QvjMsi9fvpzbb7/9XS9zrpNwPQ/f+c53\nGBgYmOliCHHJq6ys5A//8A9nuhhnJeEqhBAlIBcoFEKIEpBwFUKIEpBwFUKIEpBwFUKIEpBwFUKI\nEpBwFUKIEpBwFUKIEpBwFUKIEpBwFUKIEpBwFUKIEpBwFUKIEpBwFUKIEpBwFUKIEpBwFUKIErho\nrqEl3j3Lsujr66O3t5eRkREcx8Hj8VBRUUFjYyNlZWWoqvyeCnEhyPlc54Dh4WE2btzI4cOHSaVS\nhMNhfD4fqqpiWRapVIpUKkU0GqW1tZVVq1ZRVVUllwkRooQkXGexbDbLCy+8wM6dOwmHwzQ2NhKL\nxc5aO7Usi8HBQU6cOMHw8DANDQ2sXbuWtrY2uWSMECUg4ToLua7LoUOHeOqpp3Bdl8WLFxOJRN7x\n67PZLD09PRw/fpxoNMqaNWtYvnw5Ho+nhKUW4tIi4TrLFAoFnn32WbZv305LSwuNjY3n3by3bZve\n3l66urowDIOlS5dy5ZVXEg6HpctAiHdJwnUWGR0d5Ze//CUjIyOsXLmSYDA4Lct1XZeBgQG6urpI\nJpM0NjaycuVK2traME1zWtYhxKVmVoVrf38/x44dw+v1snLlShzHYevWrTiOc85N49nmyJEjPPLI\nIwSDQZYsWYKul2agRyqVore3lxMnTqDrOg0NDbS1tdHa2kowGJTRBmLWS6fTHDp0iJUrVwLQ29vL\n8PAwiqLQ1NREKBRiZGSEnp4eNE2jsrKSqqoqjhw5Qi6XA4pda1VVVcybN+8t1zMrh2LlcrmJ2yz6\nbTgvjuOwceNGXnrpJebPn09TU1NJm+yBQID29nba2tqIx+OcOnWKF154gSeffJJoNEpVVRU1NTXU\n1tZSVVWF1+vFMAzpRhCzguu6dHd34zgOUOwaGxgYYMWKFeRyOY4cOcLSpUvp7Oxk6dKlGIbBgQMH\nJkbaAOTzeQ4ePEhdXd2U65p14aooCn6/n7GxMXK5HMFgkEQiQS6XY9euXWQyGUzTpKWlBdM02bFj\nB6FQiGw2S0NDAz09PZimicfjYf78+Rw9epREIoHH46G5uRnDMNi1axerV69mZGSEjo4OVq5cSSKR\noLu7m9WrV1+wIEmn0zz22GMcO3aMFStWEIvFLsh6ofg5R6NRotEoCxcuJJfLMTo6SjweZ+fOnbzy\nyivk83m8Xu/EzePxYBgGmqahqiqu6+I4DrZtY1nWpHvHcXBdF9d1URQFVVXRNA1d1zEMA4/Hg8/n\nw+fzEQgECIVCRKNRwuGwBLqYpL+/n9HRUWzbplAoMH/+fLq7uyfNM2/ePMLhMAMDA0SjUdLpNACa\npmGa5sT3VFEULMtC1/WJLjG/308ymZzY/np6emhoaHjbUTazLlwBwuHwRLiGw2ESiQT5fJ7y8nIq\nKio4ePAgg4ODE78soVCI1tZW4vE4lmXR0tJCIBCgs7MTy7JYsWIFAwMDHDp0iFWrVuHxeIjH48Tj\ncQDGxsaIx+OUlZVdsA26s7OTxx577P9n777D47oOO+9/b5neZ4BBB0gAJAD2LoqSLFnVkmVZtrx2\nbKf4dbLp2U3stePNOmt7EydOdXpiO47kKpmyqmU1ShQlSmLvBAk2EETvM5hebnn/GAAULZKiKAwx\nIM/neYYzHNy590z7zbnnnHsuhmGwfv167Hb7FdnuhdhsNioqKqioqJi+T9M0MpkMmUyGXC5HPp9H\n13Vyudz0HoUsy0iShM1mmw5dRVGQJOmc19I0TXRdnw7gXC5HMpkkl8tNXzKZDIZhYLfbcTgcuN1u\nAoEAoVCIiooKwuEwLperaE0mQumaGjUzOjrKyMgIixcvftsy+XyesbExWltb6e/vBwp7hqqqcuDA\nAXRdZ8GCBaiqiq7rZDIZrFYrsVgMl8sFFD7z6XSaQCDwjmWak59Cj8czHYxTAaooCpFIhFgsNl0z\nmuL3+88ZZuT3+5EkiVQqRSgUmj6Kqbe3l0wmQzAYJBqNEovFKC8vJxaLEY1GWbBgQdGfWzabZcuW\nLezdu5f6+nrmz59fsu2cqqridrtnrGPtUkwFejqdJpVKMT4+Tk9Pz3QQT9Vyp0K3rKyMsrIyvF4v\nVqsVVVVFjfcq5HQ6AbBarWiaRnt7+zl/r6urY2RkhNra2nPe/2g0imEYrFy5Ek3TOHLkCEuXLqWx\nsZFTp05hsVhwOp3TP9hjY2OEQqFLKtOcDFev10sul0NRlOkXtbe3F7fbzfz58zl27Ng5y7/1xXxr\njcnpdBKNRgmHw4yOjqIoCna7nUAgwNGjR1FVlcrKSg4fPowsy3i93qI9J8MwOHr0KK+88gq5XI5V\nq1Zd1R10l+tigT51NFoikSCZTDIyMkIqlSKdTiNJ0nTTxVTN9xcvU8Hsdrunmx5UVS3ZHzfh/GRZ\nPm/NtbOzk0wmAxRqsZ2dnZSVlU3vXSmKMt1UNTExQVtbGwAdHR3Tn7doNEptbe0llWNOhquqqjgc\njnN2lefPn8/p06dpb2/HZrNN9+pdzLx58zh16hT79+/HbrezcOFCVFXF4/Ggqiper3f6V8vn8xXl\nS6brOh0dHWzbto2RkREaGxupq6sTX+jLMPU+/eKPkmma5PN5MpkM2Wx2upkhHo8zPj5OPp+fvkw1\nb0y1xU21z0+F79TF4/Hg8/mmDzUWQVz6pkYHAOzdu5fGxkYAIpEIhw8fxjRNqqurURQFi8UyXamq\nqqqarrlmMplLPthmTg3FuloYhsHo6CgHDx6ko6ODeDxOfX099fX1WCyW2S7eNc80zel231wuNz0y\nZer2L16fL4idTiculwu3243X68Xr9eL3+3E4HFitVnHI8TVAhGuRmaZJNpslFovR09NDd3c3/f39\nRCIRAoEA1dXVhMNh8WWbo94axL8YvG8N5qn7LBbLdLOE0+nE7Xbj8XimA9jr9eJ2u6drwqI2PHeJ\ncC2yRx55hO7u7ulhY36/f7qzRdRSry2GYUyPephqonjr9VQY67qOxWKZDtip2xf6/9QQtqnbU6My\npi5TQ92mrpubm3E4HLP9clz1RLhehgMHDpBOp2e7GIJwzXM4HCxfvny2i3FeIlwF4So11fM9dXuK\naIK6MkS4CoIgFIFoKRcEQSgCEa6CIAhFIMJVEAShCES4CoIgFMGcPPxVeDvTNJiYOEwyNYCq2gkG\nVmKxFG8uBEEQLk6MFpjjdD3DwYP/ybbtB4mMl2EYMiDhdEZpmCdx042foKLihtkupiBcc0S4zmHx\n+Ckee+yv6O8PUlt3mLKyLmy2NIYhE4uVMzjQwsREBcuW5bn99i9gt1fOdpEF4ZohwnWOGhvbyw9/\n+F0kKU9Ly1ZUS+68y8XjIU6dXI/FonHPPe+nqeljYj5TQbgCRLjOQdHoUb7//X/GYkmwYOGbSNLF\n30LTlOjtWUJfXxtLlqa5844v4nBc/Pw/giC8NyJc5xhNi/PQQ58nndFpa3v1HYP1rZJJPyeOb0CW\n4cYbm1i58r+jqq4illYQrl0iXOcQ0zT5+bOf40i7xPIVz6Kq+ctYBwwNNdN9ZgU+3wQbNixn6dLP\noChiliRBmEkiXOeQEyceZePGvSxd9iIuV/Q9rUvXFQYGWunrXUQgOM4tt9xEa8unkCQxqYcgzAQR\nrnNEJjvCd779f3F7BqmvPzhj69V1lb6+RfT3tVLfMM7dH/h1ysrWzdj6BeFaJcJ1jnj++T/m0OEM\nK1b8HFme+bcsm3XQdXoNsViY5cslbrrpt3G758/4dgThWiHCdQ4YHt7Od7/7OK2tr+H1jRR1WxMT\nYbpOr0bXLbS0Kqxf/zHKy64Tw7cE4V0S4VriTFPnBz/4XRLJDC0tr1+hbUI0WkV/fxvxWBk1tePc\ndOOdNDbeL9pkBeESiXAtce1HHuLJJ46xavXPsFqv/KllMhk3/f1tDA81Ut8wxr0f/H0CgaVXvByC\nMNeIcC1h+fwE3/rWH+PxDFBbd3hWy5LNOug8tY5Uys/ttzeycuXvIkliUjVBuBDx7ShhW1//e5Ip\nF9U1R2a7KNhsadoWvUpd/UGee66Pxx77A9KZgdkuliCULFFzLVHj4/v49nd+RHPzdgKB0gqxdNrN\n8WM3oaoGd9yxntbWXxa1WEH4BXMyXPsHfsrRo3+Mw9HAhus3Yxg5Xn1tJYaRYdXKHxEIrL/sdafT\nvby57WbWrP4pPt/KGSz1pTOMPD/80e8Tj+VpbXt1VsrwTgxDor9vEb29i6muHuPGG2+lsfF+FMU+\n20UThIvq6XmIfH6Cxsb/CcDprn9lZOQFFMXNguYv4fUuIxLdxcmTfwlATc2nqK76GCdOfoNYrDDG\nPJsZwOdbyeLFf3/B7czZybIlSSGT6SOTGSCd6QXm3G/EBe3a9U/09gRYuepns12UC5Jlk9q6dsrD\nnfT1LWHjxoN4vVtoaSlj1aoPEQqtE8O3hJJiGBodx75MNLqDyor7AYgnOhgdfZk1qx9D15McOPib\nrFm9kZMn/5KlS/4Vmy3M9h33EC6/iwXNXwJA19Ps2ftJmif/fyFzOlzdrlYi0R1k0j14vcuJRnfS\nefqfyB37U65fv4nBoZ/R3v6H3HbrKU53/Svd3f+FaeYIl99NW9s30LQYR45+kUhkGzZbBW2t38Bm\nOzvnaTr7PEBIAAAgAElEQVTdS/uRz5FIdBAIXM+itr8p+uz+Q0PbePXVfhqb9mG1Zoq6rZlgs6Vp\nbNxFQ8M+RkfrOXoUdu16isqq77J2zRoWLfoUquqe7WIKV7H+gZ8yNroFTU+Qy43QsvBrnOo8t0bZ\n1Pg5PJ4llJfdjt+/hky6D4BU8hQB/3XIsgVZ9mOaGvl8jNWrNiLLKrncGACyfHaPrLv7u1RVfRSb\nLXzRcs3ZcAXw+9cSiWwnk+7B719LNLrzgst2d3+HmppPU15+Z+GN0GJ0df0b6XQ36697gb6+h4lG\nd1JRcd/0Y06e/Aaq6ub69S9z5Mjn6e7+Nk1N/6tozyed7uenP/0+Pl+M8vIzRdtOMSiKRkVFJxUV\nnWQyLoaGmnnmmU5effULrF3bxOrVv4HF4p/tYgpXKROdlSseYnDwaQYHn2T1qh+fd7ny8tvpH/jp\n9P/d7ha6e/4LXc+Qy42STJ7EMNJYLF7Gx9/gyJEvEArdPD2+2zQNRkY3sWb1xncs0xwP13UcP/41\ncvlxGub9DvCvk3+ZbCIwjellW1u+zpnub9PT8xCBwPUYpkYydRKvdzl2ezVNTZ8HCrXVKYnkCTKZ\nXnbsvBtdT2Nydn0zLZMZ5pFHvkouZ2Fhy4V/JOYCuz1JQ8MB6uoOMTTUxJYtLrbv+D+sWFHJurW/\nitPZMNtFFK4yblcLAHZ7NXltgj17P3XO35saP4ffv+Ztj3O5mqmqeoB9+38Nt3shHs8SVNUHQDB4\nAzfc8AbHjn+FgcHHqa76GOPjW/H71yHLtncs0xwP1zVksgOoqhe3ayEAZaGb6TrzLfL5CNGJPUCh\njWR0bDMN9b+J09XE7t0fY2x0Cy5nM6Njr5BO99HT+yC53ChNjWdrpi7nfGy2cpoaP8/Q8LN43IuK\n8jxisRM8+ujfEp2wsWTJJmS5eCF+JcmyQVXVCSoqTjIyMp9du1R27Pgn6uoytLYuprnpZtzuFmR5\nTn8MhZJwtn1fke0XrLn+omxuFEPPsGb1T8hkB+no+BMUxc6evZ9i2dL/wGLxoiqu6fra2NhrBALX\nXdK65/Sn2mLx43ItwOGoY+rFtVrLsdkq2L7jA4RC7wdAURy4XS0cO/41dD1FIHAd4fBdmOZtJFOn\n2L7jLuz2Ktpa//Kc9S9Y8CccOfJF9u77ZZzOeVRXfWxGy28YOQ4ffoiXXjqEajFYsmTTZc3RWupk\n2aSiopNwuJNEvIyRkfls2nSK557txeMZJxCQKSsPEA5XU1nRhM/fhMNeJ0YeCEVntYRIJI+xa/dH\nkWU7rS3/D4C6ul9j/4HPIEtWnK4mKisLHWCpdBdVVQ9c0rrn5FCsucw0TeLxIxw58jwHDhxjbCxI\nXd0hqqo7uNY613M5B/F4GclEgFTKTyrtJZP2oCgadnsChyOH06XgdjvweNx43D48niBuTwi3uwyb\n1Y+q+lBVD6rqEvMeCCVFhGuRmKZBdGIvE9Fexsb7GBsbYmwswthYjoloEKs1Tbiik4qKE1gucHLB\na5FpQj7vIJN2k8m6yWWdZLMucjkH+bydfN5OLm9H1ywoah5VyU1e51FVHYvVxGaVsdkt2G0WHA4H\nDocDu92F0+nB4fTicgawO3xYJkNZlu3IsgVJUicvymRQy2I4mXDZRLgWSUfHD3n00Q5k2cBmS2K3\nJ3E447jdE/h8EzidmqhpvUuFj6qBaZqYpoGmqeTzCpqmousq+bwFTVPRNAv5vBVNm7pY0DQLunb2\nPsOQJ0NZQ5Y1JMmYvJhvuTZBMpElps9VJklM72FM35bO3pakyQaqt4ayaWIWrqYvTN0+z/N0OEw+\n/em/wGYtK+bLKRSZCNfLsH3HB0gmT8x2MQThmudyLWD9dc/PdjHOS4SrIAhCEYjZNgRBEIpAhKsg\nCEIRiHAVBEEoAhGugiAIRSDCVRAEoQhEuAqCIBSBCFdBEIQiEOEqCIJQBCJcBUEQikCEqyAIQhGI\ncBUEQSgCEa6CIAhFIMJVEAShCES4CoIgFIEIV0EQhCIQ4SoIglAEIlwFQRCKQISrIAhCEYhwFQRB\nKAJ1tgsgCFdK4XRx+uS1CUhIkow4hbZQDCUVrqlUD/39j07+T0JRnJSXvx+3e+GslksoLl1Pk8mM\nEokMEokME4vFSKWSZDJZcrk8mmZgGAYAkiQhyxKyLCPLEoqiIMuT57fGxDBMdN1A1zU0zUDTdPJ5\nA00z0PXC3ydXNX0qbFWVUFUZq1XBZrNgt9twOh04nU5cLjcejxePJ4jLFcBicaMoLmS5pL46wrsQ\nje5F1zOEQhsm/7+feLwdkAmHb8NmC5PNjjAyshkARXFQUXEPExMHSCZPAWAYaWTZRm3tL11wOyX5\nCWlo+CyybGNk5GVGRl4R4XoV0bQE0egZenpOMjAwwMhIlEgkTyJhYLVKuFwSTqeM3S5htUqoKths\nEvJkA5ZpFi6GwXRQatrZ9cty4WKxSCjK2eBUVQVFAVmWpkO1sB4TXQdNM8nnIZfLkc1mGR6eIJs1\nyWSmLgaaBna7hMMh4XKpuN02PB4Pfr+PUChMWVkVbnclquoVNeESZJoGw8ObyGR6cbvbAND1DLHY\nIerqPo2mJRgcfIa6uk8xOvoq5eW3YbOVMTb2OvH4EQKB1QQCqzFNk76+Rykvf/9Ft1eS4SpJFhTF\ngaI4AImJiYOMj7+BYeRwOGqprPwwkchOkslTqKqbdLoPr7eN8vLbyOcnGBp6nmx2CKs1SEXFPWQy\nA4yOvoqqurFY/ASD6xkaeh5Ni+FyLSAcvh3DyDEw8DTZ7CCybKe8/P24XE0MDj5LKnUaWbYQCKzH\n71852y/PnGGaOun0IP39J+ju7qK/f4jh4SzptEkwqBAMylRVKbS12fF6ZVS1tANJ0wpBm0oZpNMm\nqVSOaHSUvr5h4vFjJBIGdruE368SDnuprq5m3rwWAoHGyc+yUAyxWDvJZCemmUPTkpSX38bY2Bvn\nLBMK3YDNFsbtbsbhqCWfnwBAUezU1X0aSZLRtPj0+1RRcTeq6gIKoVxoPipIJI5it1dgs5VftFwl\nGa7d3d/DNHUkSaK8/DY0LUk4fCeSZKG//6fkcsMA5PPjlJffhsPRx9jYVoLBGxkdfQ1Jkmlo+P+I\nRHaSTvchSTKGkSEUuhubLczAwJPY7ZUEgx+hv/9xYrF27PaqyeC+h+HhTcRih7BY/CSTJ6isvBeQ\n0bTY7L4wJcwwNHK5MUZHz9DX10V//yDDwzHGxnTsdonycpWyMpmWFgc+nzy5Kz+3qKqE2y3hdp+/\nH9gwTJJJk0hEZ3w8zu7dR3jhhUN4PDI1NR6am5tobl6J01kjarYzzqS6+gHi8Q7i8aPU1n78vEu5\nXE3EYu3n3CdJMpHITiKRXZSVFWqjU8GaTJ4mne6ZbkIAmJg4TGXlB9+xRCUZrjU1H0NRXCiKHUlS\niER2E4nsRFHcABiGDoCqenA4qjHNwn6haRa+4B5PC6rqobz8NoDJF1PC6ZyHJEnkcmPkcuMkEicx\nzTyZzABOZwPZ7BBDQy+g6ylk2Y7VWk4gsJ7R0a0YRgaPpw3TNK/JL4ZpamhaCk2Lk0iMMz4+QiQy\nSiQSIRKJEY1miUZ1FEUiGFQIhWRaW62EQjJ2+7UxKEWWJTweCY9Hpr6+cJ9hmIyNGQwMpNm6dT/P\nPruXmho7LS3zaGtbh8fTcE6tSLg8VmsZUMgEw8jQ27vxnL+HQjfgcNRc8PGBwDp8vpX09W3E4ajG\nYvETix1mYuIAVVX3I0mFqMzlxlEU+3T4XkxJhquiuKYLr+sZxsZeIxy+E1m2k0yeoNDTC4VOjLde\ng9UaJJXqwetdwujoVlTVjdUaQpLO9ghbLAGs1iB+/ypisXZcrkai0X1oWpyqqvsZHt6EaerkcqPk\n8+NUVd1HNjvM8PAL+P2rsVh8V+7FmEGmaWKaeQwji2Hk0PUsuVyKVCpOOh0nnU6RTidJpdKk02nS\n6QypVJZMJkc6rZPJmKTTJooCTqeM2124+P0SDQ1WfL5rJ0gvlSxLlJcrlJcrLFtmI5Uy6O3V2Lfv\nBC+/3EFNjY2Wlvm0ta3F650ngnYGSJJ6wZrrL8rlIoyPv0Fl5b1IkookKQDTNeCamv+GLFunl0+l\nunA4ai9p3SUZrm8lyzbc7oWMjLyMzVaBLDsuunteVvY+hoZe4MyZB7FagwSD68lkBs5ZJhy+k+Hh\nF+nr24jNVkEweB2SZCGROEZPzw+x2crRtDhWawBJUujtfQRJkmcsWE3TQNfTkyGXRddz5PNZdF1D\n13UMQ8MwdAzDmLzok/frk73gU9faOdf5/NlrTdPI5Qq383l98mKQz5vk8ya5HOTzhR8pq7XQeWSx\nFDqPrFYZm03CZgO/X8JuV7DbVRwOGYdDKvm20VLmdMosXGhl4UIrmYxBd7fGgQMn2Ly5g6oqK01N\ntbS0LKOsbKFop70CrNYAFkuAnp4fI0kSHs8iLBY/vb2PoKpu+vufBMDrXYzXu5h8PoLD0XBJ65bM\nwqA/YYaZpkk+H2Fioo+hoV5GR0eIRCaIx5OkUhrptEkuVwg6XS/0cCtKoRf7rT3asjw1ZEia7gkv\nLDv1f2m6F1xRmO4hP9tTXri2WAo96GcvhVBVFBGUpSCbNent1ejr0xgc1HC7Zaqr3dTWVlNf30wo\n1IDVGhQ12zlEhGuRnD79Jo8++hL5vInPJ+P1Kng8Ei6XjNMpYbdL2GzS9JCha7EdVzi/qXbaoSGN\n0VGD0VEdSQK/XyEQcBAI+AgEAgQCIfz+cpxOP6rqQlGck7u24rNUCkS4Fkk+n+D48R9gtabEh114\nT0yz0NYdiRjEYgbxuEEiYZBMFoaFmSbTP9Y229TBECpWq4rVasFisaCq6uRFQZYVFEWZ3BuSkaSz\nozcKn9XCntNUX0bhb/L0HpQkSTidXhoa1k23UQpvJ8L1MnR3f49cbmy2iyEI1zyrNUR9/a/NdjHO\nS4SrIAgXdDYezOmLaU7VYEWt9WJEuAqCIBSB6HoUBEEoAhGugiAIRSDCVRAEoQhEuAqCIBSBCFdB\nEIQiEOEqCIJQBCJcBUEQikCEqyAIQhGIcBUEQSiCkp/PVShtMU3naCzJidFxdNPAY3ewOhyk3m4V\nE9YI1zRx+Kvwrpimyb6JJM8fOcbpUyexjgwSTMbIqFYMWcaWz5FVLUTKq1i0bDm/uqyVsM36zisW\nhKuMCFfhkgxkcnxvfzvHDx8iPNRH3O6gO1hJr7+MEY8fTZncCTJNfOkkTaP9tA6eIWO1E1yxmt9c\nv5p6h212n4QgXEEiXIWL6s9k+YetO0gf2ItqaHRUNnCivIaE3fmOj5VMk8aRflb1HEcyTZRFS/no\n2jXcWO4XTQbCVU+Eq3Beumnyrwc66HjlJRRdY+e8Ns4EK+ByQtE0qYsMs7T/NBWxcYbCNdQvbOGu\nxa2sC/lQRNAKVyERrsLbnE6m+frPnqess4Md89roqGzAnKEAdGXSNI320zTaTyAZYyhUQbh5Ifeu\nXMqGkKjRClcPEa7COR4/3cuLTz+FYcLLLatI2ot3BlJHLsu8sQGaR/opS0QZqm7gpuuv51ML52GT\nxShBYW4T4SoAkDMM/vyN3WRe38yRqvnsqV84Y7XVS+HOpFg80EXbwBmGyyq5+eZb+PTCeaiyqMkK\nc5MIV4G+dJavPPUswdPHeLllNX2B8lkri1XLs6zvFEv7Ohmqmc8n77yNO6rDs1YeQbhcIlyvcZv7\nR3jk8ceR8zk2ta0haSteM8C74chlWNfVwbyxQeJty/ift99Ci+edRygIQqkQ4XqNMkyTb+49Qv9L\nz9IVqmTb/MUYJdjOGUxMcGPnYZy5DI7V6/nDDWupsIuDEoTSd02Eq26a/Nmpfp4cipLUdTYE3PxD\naz1trx/mPxY1cH9FYHrZvzk9wFPDUV6/rm0WS1xcMU3nfz+3Gc+h3WxtWsapcM1sF+niTJP68SGu\nP32EvGqhYu16fmftcnHkl/CuxDWd3z1yhoSuY5rwd611NDnt/Ef3ME+PRNFNk1+pLuOXq0MMZfP8\nUUc3Sd0gYFH490XzsMkSf9jRTVc6h0uR+fdFDfgtF55B4JoI1yeHIvzPjm42rWnBJks8sP8k94cD\n/Ev38NvCNWcYaCY4ldKrxc2Ew9E4f//Yk3jHhnlh0VoiLu9sF+mSSaZJ83Ava7qPkbXYCK5YzW9c\nt4p5TvtsF02YA/6haxCPqvDrteW8Oh7n4YEx/m9TNb/R3sUzqxagmSa37DzGprUL+cKxXj5RGeTm\noIeNg+Os9Dg5nc7y0liMv26pY+PgOMeTGb7cVH3B7V0TE7e4VYWsYfJXpwf4YLmfTWtaCFhU/qV7\nGICvnOzj8aEIT69cwE+Hxqdrrmu2tXO9382OaJKsYfDPbQ28L+iZ5WdzViqv8drho8QTSdYvXUSd\n/+JB+YPjXex45il0m4PHVr6PvGq5QiWdGaYkcaKijpPhWppG+li5Zwff3L0Nc+ESPnb9Wm4qD4hx\nstegRwbGeGksRlI3GMrm+cbCWv7y9MA5y3xpfhWfrS3HMvn5yJsmFlkibLXww2WNyJKEZBb2chUk\nDsfTNNgT/OOZIa7zufh4ZZAFLju3Bgvfsb5MjuBFaq1wjYTr7SEvf9JYxXd7R/j5yAQOWeI7S+YD\n8IP+MfbGUvx89QLmO99+7Ht/Js9jK5v5jcOnebBvtGTC1TBNfvziZoY62lGcLjrbD/Ibv/arhBxv\nr8XFNZ2vvvIG6q43OVHXzIGapss70qpEmJLEyXAtJ8trqImOsrSnk2cP7+WhqjqWrVjBA20LqBPz\nGFxTDBMeXt7EE0MRfjoU4YmVCy647Jl0lv93sp8HlxaG+gVlFd00+fyxbn65OoRdkelMZ1jmqeSL\n8yv57+1dbB6LcWvIiypLfPbQaXZMJHl0RdNFy3RNhOvBeIoVHif7NyzmUCLNF4/18nenBwHYG0uS\nN01yxvlbR24KuKmzW1nosjOa065ksS9qy5ETDBzeT+Vd96M4nIxufYkfP/1zfu/jH0V+S3BuHhjh\nR8/8HN/4KM8vXseQNziLpZ5hkkRfoJy+QDnuTIrWoW56XnyOv3/peRJVdTTMb2R14zxWhHxUWi2i\nVnsVa3UXKhXVNguRvM5H9p045+9fml/FdX43B+Ipfv/IGb7ZWk/TZHNSWjf4rfYuWl12/qChAgCf\nqnJz0IskSdwS9NKeSHNrqFBr/a+l8zmTzvLLBzvZepG+mWsiXN+MJPi7rkEeXt5Erd2KW5FxTLap\nfrmpmkPxNH96oo+frX77r93Uce+l9LXM6ga7tm7Bv2IdqssNQHD9+xj42Ub29wyyqr6KU4k0//zq\nG1gP7iYequKF1becnbnqKpSwO9nd0Mru+hbKE1HmjQ2h7tpO5pUXeNFmJ+70IHm9uHwBwmVlNFVV\nsiwcZIHTIQ5UuAq89R10KBJPLHn7d/lEMsP/ONrNg0vn0/yWdvrPHj7N7SEvv157dnz3Op+LrZE4\nd5X52BtLcmfIx2OD4wzmNH6vPoxLUZDeIRWu3m/bW/x6bTmn0ll+9VAnSd1gpcfJny2oYdNYjJBF\n5UuNVVy//SiPD0Vmu6iXZFfnGfKxCVzzmqfvU2x23Ava2LL1NX7oD2G0HyBrsbB50XUMewMXWdtV\nRpIY8QQY8QTYRSuyYeBLJ/CnE/jSSfyDg6RPnySWirMPGHf7IFhGWWUlC2trWVoVptXlwKUqs/1M\nhBn216cHSesGXzjWA8ASt4Obg162RxNkDINnRqIAfGvRPL7SXM0fdXTzj2eGaHXZuavMS8ow+B9H\nu7l/7wlM4K9bai+6vWtitMDVxDBN/ulHPwGXB9+Slef8Tc9mGPjZRlLzFrLJ5qbXXz6n21aLyjRx\n5jKUJyYoT0QpT0wQSkxgz+cYd3nIuLzY/QH8oRB14XIWVIRZ4HVRa7eKWbyESyLCdRaZpknONEnq\nBglNJ6kbxPIakUyWsWSSSCJBNJ4knkySSibJplN4rTa8J49Q/aGPo5xnUpXxPdtImyb/Utl8ni0K\n78Sq5Qkk4wRScfzTNd4E3nSKtNVGzOFCd3mwebw4PW7cLhduhwOH1YpFVZEA3TAwDJOcrmMaBiYm\nkiRhVVUcNhseuw2/00nAbsOrKnhUGZei4JRl0URxFbkmmgVKzUNHTrB182YUXUPVdVRdw6LrWHQN\nq57HkGSyqoWMxTp5sZG22khZbKyVJOwV1ecNVgBv61JSzz1Oa/UCOi7QSSdcWE61MOQLMuQ7t+NP\nMg3cmTT+dBJvJok7mcI9PoZNy2PTcqi6jmwaSGZhNIMpSRiTF5AKk4WbBurk+2zT8piT28spKnlF\nRVMUdFnGlBVMWQJJBqTJBsXCOqduS1N/lySQ5cLdsjzZaSedfdilkCR4Sx1LsVj5wr130egWhxu/\nF6Lmehlu3tnBsWTmim/XLkn81pFteNuW46xtuOByI29sJuH28e1Q3RUsnSBceS0uO6+ua53tYpyX\nqLlehtl6M3ef6eO57RM4qi7ekO5bvILs5mfZdcct1PlKY1yuIFxrrs5jPK9Se/btw9nQhKRcvCfb\n6g9iD1ex6Y1tV6hkgiD8IhGuc8RYOsvIiQ7cTS2XtLx3yUr6Du2nKzJR5JIJgnA+IlzniO3tR1Hs\nTqyB0CUtb/UHcVTX8fyW1xDN6oJw5YlwnQM0w+TowQO4LrHWOsW3dDUjHe0cHhguUskEQbgQEa5z\nwMHeftJDA7jmXXyiiF+kuty4m1t5efMraGJYliBcUSJcS5xpmry5YyeuphZky7ufHNq7aAXxvm62\nn+qa+cIJgnBBIlxLXFckRuTkMTwLF1/W42WrFd/iFbz5ymayujHDpRME4UJEuJa4zdu2Y6+qnZ79\n6nK4m9vIx2O8fKB9BksmCMLFiHAtYf2xJP2HD+BdvOI9rUdSFHzL13Dg9deI5/IzVDpBEC5GhGsJ\ne3nnLmyhcqz+9z7BtbO+ESR4YefeGSiZIAjvRIRriYpkcnQf2IenbfmMrE+SJPwr1nFsx5uMpa78\nvAiCcK0R4VqiXjtwCNlqw1ZeMWPrtFfWoLo9PLdtx4ytUxCE8xPhWoKyukHH3j14WpfO+HmffMvX\n0rVnJ32x5IyuVxCEc4lwLUG7O8+Qj8dw1s+f8XXbQuXYyip4/rXXxWGxglBEIlxLjGma7NmzG3dz\nC5JcnLfHt3wN/Yf3c2x4rCjrFwRBhGvJ6YrEmDh9CldT8eaMtXj9uBoX8vymTWiGOLBAEIpBhGuJ\neX3PXuwV1ahOV1G341uykkR/Hy8eOFLU7QjCtUqEawmJ5/J0Hz6Ie+Giom9LtlgJrn8fezc9x+F+\nMWuWIMw0Ea4l5M0jx5EkCVu46opsz1FVi3vhYp5+9Ce0i4AVhBklwrVEaIbJob27cS9cNOPDry7G\nu2g5zoYmnvjR93nh4BF0MTWhIMyIOXuCQsM02T0a43Q8Td40qXTYuKnCj005/+/Fgyf6ubkyQKPn\n/Keknm37zvSSHh4ksP6WK7pdSZLwLV6B1R9g1/M/p/PUKT59z114be9+ekNBmAuORBNkdYOVIS8A\nZxJpDkUSGCYs9Dlp9bkYy+TZNhIFoNppY1XIS0bXeW0wimaYuCwKN4T9qPKFK0JztubalcjQMZHk\nrtoQH64vJ5LNcyiSmO1iXRbDNHlz2zbcCxYhWyyzUgZHTQOVd3+UicEBvvWDHzEUT81KOQShWAzT\n5PWhKEeiZw+gyekG+8fj3FUT4oO1ZaQ1HYCDkTirQ17urStnMJVjIqdxcDxBrcvGPXVlVDlsHJ24\n+IE4c7bmapEldBP2jsVpcNm5r74cmyLz4Il+Gj0O+lNZnKrC+ysDeK1nn2ZWN3htMMJgOkfIbuF9\nFQHcFoUdIxOcjKWwKzIbwn6qnDYePT1EhcPKUDqHbpq8rzJAtdM248/lcP8wsTOdVN378Rlf97uh\n2B2Eb72HsW1b+N7DD/OZT3+KsKs0a/qCMOVELEVvMkPeMElpOteHfewdi5+zzKqQh5DNSr3LToXD\nSiKvATCcyeG1qLwxFCWlGawqK5yKPmSzkDUMDNNEN01kCaI5jYU+JwBhh4U9o3EIXLhcc7bmWuey\nszrkYTid47WhKD85PURPsjAhiWma3FdfjgzsGYud87iD43FSms4D88J4VIU9YzF6khmOTSS5p7aM\nJQE3W4ei00cvJTWdu2tDuFSFo9GZP2RUM0xe3rwZd3Mrit0+4+t/tyRZJnT9LUgWK99/+BHG09nZ\nLpIgvCPDhDtrQiwLujkVS3N3bdk5lwqHDVWWqHef+x3L6gajmTzXh/3cXBXgzaEJTNPEpSq8ORTl\n8TPD+KwqHotK0GahJ1n4PvQks2jvcITjnA3X0UyOMruVT8yv4EN1ZQSsKvsnf61qXHZcqkKV00Ys\nr5/zuEhOYyKv8eSZEboSGUYyOaLZPIYJz/WOsXs0RlLTSWqFwfXVThtui4rPqqIX4XDRN46fItHf\n857nbJ1JkiwT2vB+DBMefOQnDMTFPARCaQvaCnunLlUhaxg81zt6zmXoApUEqyJTZrdgU2RcqoJN\nkcjoBrtGY9xbV84DDWEUSaIznmZZwE0km+eFvjFM08T+DkdQztlmgcF0jv3jce6sDuG2KFhkqdC4\nnIXuRIZqp42hdBaf5dyn6LOqJDWdDWEffaksNlnGbVGQJYmbKv2kNJ1ITsM+2TE21VxdjP77oUSK\nN198Hv/ytZd1fqxikmSZsptuY2z7azz00EOsu/V2NrQ041CV2S6aIFyUKkncXVt2ScuW2SzszObJ\nGwamCVndxKbIWBUZqyIhSRIOVSanGwyks7T4XFQ4rLRHEu/YRDhnw3WR38VETuOl/nE006DMbmVd\nmY+e5DAmJk+eGcZjUVk92YYyZXnQTSyn8WLfOA5V5oawn0qHlRafk62DUZBgecB90V7AmZDWNB55\n+hlUjw9X48KibutySYpKaMP7SZ46xrbnnmHHJgvucCWhigoaGxpoq6vBb5udDjhBmAkOVWFZ0MNz\nvasLL3cAACAASURBVIV5NlaXeZAlifXlPl7qH0dGwqkqLKvwkNR0XhuMIEkQsFq4Puy76Lol8yqb\nGqnUh1wBjGey/ODxp0iODlNx+70lV2s9H9MwyEXGyI0OkYuMkRnqB9PE39DEwtYWljc3Uu6wIV/B\nMbqCUMpEuF4hhmnSH0uy4/ARju3ahuryELrh1jkRrOdjmib5iQjpntOkes+gJeI4wpWUVddSXVVF\nZbgMj6PQs5rT8mRzeQzDRFUVXA47XkehXdyuyFf0oAlBuFKuunAtRZsOHmHfju1kRoawBsvwti7F\nXl13WaFiGCYHD3cz0dkJgLuujqXL5mO1zG5bqJ5OkRkeIDcyRC46hhaPYeRyIIEkK0iKCpKEaeiY\n+RxIMqrLhery4PB4cLo9OBxObDYbFqsFi6piUS3YbFacdhtOuwOX3YbFoqJIMpIEpgkGJppuYOg6\nmmFgGCaarpOfDPS8lkfXDRRFxmqxYLNasaiF1rCpZQ3TQJZkLKqK3WbFpqoosowsgYQ08w3u5tSV\niUmhp9swDHTTxDAMqtwOLEWablK4ckS4XgFvHu/k+MAQ4do6Ah73Ze86a7rBd3+8iYrYCU7rhQF2\nDUqUMcnHqttuZXVL9UwW+7IZpkneMDEmP1qSJE0PSzEBzTDIZrOk4nGSsSjpeJxcKomWyaDncpi6\nhqHrhWtNw8jlMPM5jHyusJLpcDVhaspEebIGLMlIsoykFAJdUhSmknhqfaauT5er8DgZ0zQwJ7eJ\nYRTul+XCY4uXroVymcY5z2P9hx/grmXFn7xHKC4RrpfhiTPDRHPaFd/uay/vJTx4kGezLcTNwng9\nFZ2Vaj/zlAjxputYt75F7GYL1wy/VeUjDeHZLsZ5zdnRArNpNt7Mw70RDg8cZmt+3nSwAmgo7NLq\nGDbcXN+5jS7J5KufvhW5yKMdBEG4ONGwM0d867FNxEwb/cb5h3+cMQJszjWRO7WdP3noBQwxu5Ug\nzCoRrnPA8cEY9vFT7M3XXHS5YcPDS9kF0L2HL39/kwhYQZhFIlzngIdf2kUalTHznU/9Mmq6eDnb\njNG1i7/Y+Jo4w6sgzBIRriUuk9fpP9nOMe3S23lHTDev5hpJdLzOt17YV8TSCYJwISJcS9ymgz2U\nEZseenWpBgwvO/N1nNz2Ai/s7ypO4QRBuCARriVuy8599BteNN79QQKdeojTRpCnnnyCzuH4Oz9A\nEIQZI8K1hKVyGqnBLjq14GWvY2++Bt0w+cZ/PUZW09/5AYIgzAgRriXsxQPdBKQkvRcYfnUpTCRe\nzTUSyPTz149uncHSCYJwMSJcS9jruw/Qb3jR3+PblMHC67l5xDq28XrHwAyVThCEixHhWqIyeZ34\n4Bm63mVH1oX0GT76DS/fe/RpUrNw6K4gXGtEuJaoLe19lElxevXLbxL4RTvzdfi1cf7m0ddmbJ2C\nIJyfCNcS9crO/Qxe5iiBC8mj8Ga+gfjxHew4OTxj6xUE4e1EuJagrKYT7T/9rse2Xoo+w8ew6eY/\nNz4tRg8IQhGJcC1Brxzuo4wY3bq/KOvfkasjmBvmH5/aXpT1C4IgwrUkvbRtDwMz3CTwVlksbM/V\nMXjwdfZ2jRRlG4JwrRPhWmIm0nnSg52c1EJF3c4ZI8iY6eTff/Qk6ZxoHhCEmSbCtcQ8se0YHinz\nng4cuFTbcvX4c6N87Yebir4tQbjWiHAtIaZpsm3nLk7rQYwr8NbkUNmSa4TuPXzvlcNF354gXEtE\nuJaQ7SeHCWb6OfIuphd8r0ZMN/vz1RzY8nM2H+65YtsVhKudCNcSsvHFNxgxXOecI+tK6NDD9Bg+\nnnj0J7ze0X9Fty0IV6uSP0HhJ761jR2nx8+5r8bvYCSR5fif3z1LpZp5B3vGUIaPcVCbPyvb35Wv\nZb2lh0cf/hHj936U+9Y2zUo5BKHYHnzjNNFUnj+6YyEA/7m1k2cODmCYJp9cV88n19VzuG+CLz95\nGEmCm5rL+NydLaRzOn/w8F5iaY2w18bffXw5NvXCI3pKvub6vc+uo/1rd3Fjcxn3r6im/Wt38du3\nXH1f/P98YjMTpp1hwzNLJZDYnq+jS/ez9ZmN/M1jb6CLc3AJVxFNN/jiTw/w0Jtd0/cNTKR55uAA\nj//OBn762xv49mudpHIa/7blJH/8gVae+N0b2NY5RudIgp/s6mZVQ4CNv309C8IeHt3de9HtlXzN\n1W4p/DLIsoQiy7hsKnZVBhM+95P9bDoyxIdWVPN/7mlj7ddf4qsfWszH19bxvx8/SOdIkj+8fSGf\n/M52Prmunp8f7OeDy6rI5A1eOjrEfcur+fpHlvL5jQcYSWT5/mfX8W9bTvKj7d288aVb+fKTh3hy\nXz+SBL+yvoEvfqC1KM/xuX1dOMeP83p+YVHWf+kkDmjVjBtObji0hd8/3cWXPvNhGsrcs1wuQbiw\nR3f38MqxYRJZneFYhj+/fwl/88Kxc5b5X3e1sLTGxx2LKlk7L0hvJA1AudvGg59ZiyxLSKaJbpjI\nksTSGj8T6Rx53SCnm6iyzGdumI9umJimycBEmgUVF/9elHy4XkhON7h3eRUrGwL86ZOH+dwdC7l7\nSRXPHBrggdW1vNg+xB/ffTYMl9b4WFTt5U+fPMyf3b+E1Q0BvvzkYb541/kDcyKd54fbu/nqhxax\noMLDvu4Ied3AosxsZT+WyfPEz54lqocYN50zuu7L1WP4+Vm2jfeZp/nrf/k2626+k1+9ZTGSJM12\n0QThvHTD5PufXcdT+/t4fF8fP/mt68+73B2LKnh099mOW1WRCbis6IbJlx47xC+tq8NuUaj22/nS\n44fw2jtY0xCgPlT4biqyxIf++XUm0nn+4LYFFy1TyTcLXIhFkbi1tYLF1V6gMEXff1tTy5snR3mx\nfZBUTueepVXTy9/WFqa5vPBLc+eiCpomb2f1wgD6qbOkTp2O2uew8LX7FvPjnd385vd3c2I4gabP\n7G6yaZp85b+exa3H2JuvntF1v1dJ08Zz2Ra6NB8drz7F733zEY4PRGe7WIJwXi2VhRyo9juYSOX5\nxLe2nXPZ1TV+wcdm8jq/9YPdVHht/O4tzQB8/edHeer3buDVL9yCzSLz9IGzHb0/+4Mb+YdfWsHn\nfrL/omWaszXXX6xFmSZcNz9Itd/BV55u567FFbht6luW57y3ARxWmYGJDPFMnn3dhQAZmEiz+0yE\nr963GIBPfWcHn1hbx4amshl7Dn/7xDbsw4d5PrewaIe6vjcS7Vol3bqfDdFu/uM/voWldgm/dOd6\nVtQHRU1WKBlv/STaLcoFa67n81s/2MOtrWF+bcO86fu8DgseuwVJkihz24il8/z7llNU++18eEUN\nHpvKO1W15my4no8kSTywqpZvvnScj66qveTH/dLaerYcG+ED/7CVNfMKM1FVeu2EPTZ++wd70A2T\nj6ysYU3D5Z/L6q1M0+Rvn9jO6MFXeCM3j0iJNAdcSNy080JuATVyjKU9x9j44H7+TfLj9IdwezzY\nbTYURUGWJGRZRlUUnA475UEfjVUhFlR4zvmhE4RS8UrHMDtOj5HJ6zx7qHCWjn/+1Eq+dt9ifv17\nu7DIMhU+O7/3/mZimTyf33iAH+/oRpElvn7/kouuWzKn9oevAomsxt++cIznDg/w5pduQ5FLr2Y1\nEs/w5997FufoUV7PzaPHKM7MV8XkkrJUy3GCcgqnlEfBQMZEwkQCZAyskoFj8m9R007W4sUbKCMc\nLqeyLIDP7caiymi6QSqTJZ3Jksnl0TQdwzDObkwCq8WCz+2kpjxIU4WXGr8DuQTfW0F4q6sqXD/2\n729yaiTBn92/hHuXlVYb5pS/eGQL/Ud380auoeRrrDPBgkZAThOU0gTlND4pjVPKY5U0ZMAAdGQ0\nU0ZDxpiK6MlPpSQVwtqGjl3KkzYtxHCiugMEQiHKg0H8HjdOhxWrxYLVouC02/A5bQScVoJuKx6b\nKpowhCvuqgrXuSCeyXPDX20mlhbnsXq3JEw8UpaAlCYop/DLGVxSDhsaqlSoPcsYqBgYSGRRyZgW\nsqgYsgqSCrI8GbRvbYSfvDYB0yh0bppGoSGfwm0Jc/L/k4vKKr/9Kx9ndeOVO1RZmFtEuF6GO7/5\nKseHErNdDEG45i2scPPiH90828U4LxGugiAIRTBnx7kKgiCUMhGugiAIRSDCVRAEoQhEuAqCIBSB\nCFdBEIQiEOEqCIJQBCJcBUEQikDMpiFcVdI5nUgsg6qq2G0KHrsiDn0VZoUIV2HOy+YN9rR3sn/f\nXiZG+8mn45imiWp1EKyaz5Kly1i/vBmLKnbUhCtHHKElzFmGYbLrcBdbt2wil44Tql+Cp6wOu7sw\nbWQuHWdisJOxnnbc/jC33nY7i5sqRU1WuCJEuApz0lgszeNPv8hwzzEqmtcSrGlFks9fMzV0jZGu\nA4yeOUTbyhv54G3rsVtLcXJy4WoiwlWYcw6e6Of5Z57AYvdQu/h9qFbHJT0uEx/nzMFNuLwhHrj/\nPqrLZ+tMu8K1QISrMGeYpsnm7UfYvuXnhBtXEapf8q538Q1do7/jTRLjvdx8x32sX9YoJt4WikKE\nqzAnaLrB48+/wYmD26hfdjvuUM17Wl908CT9R9+gav5iPnz3rYR8l1b7FYRLJcJVKHmprMbDjz/H\ncO9J5q+6B5trZk6Nk88m6TvyOpn4GEvW3MitG1bisosBNMLMEOEqlLTRaIqHNz5OJp1g3soPXHL7\n6rsRH+tl8Ph2AJau3sDN1y3FKU6oKLxHIlyFknWiZ5QnH9uI1emjdvEtyErxAs80TWLDXQyd3IWi\nWrjhljtYt7SxJE9yKcwNIlyFkmOaJq/vPcHWTU8TrFtEuHHVFRubapoG433HGDqxi/LaBTxw312i\nPVa4LCJchZKS0wyefOENjh98k9rFt+ALz5uVcmi5DH1HXiObjHDrXfexZnGDOPhAeFdEuAolYzSa\nYuPjPyM2PkTDijunj7SaLaZpEuk/xsCx7Sxcdj333XmDOPhAuGRzJly3to8zGs+fc1+Zx8JNi4Oz\nVCJhppimyb6OXjY99xQ2l5/axbegqJbZLta0TCJC98GXsNqd3HHnPSxuqhC12Dns1ECKnGbQVucG\noHMwRfdIGiSJFfM9+F0WIok8B07HkGSJSr+NlhrX9ONjKY3tx6PcuaLsotuZM+GqGyamabL9+AR2\ni8yK+R4kSRIdDnNcKqPxzEtvcvzgNioXrCNY21aSwWUaOiNdBxnpOkC4roUbNlxPy7xyVEVMBjNX\nGKbJ/s4Yo7E8dWV22urc5DSD149EeP/SIOmcwc4TE9yyJMgrh8ZY2ejF77Kw++QETZVOAm4Lpmmy\n7ViUeErjrlXlF93enBlvUghRicK/oCoypmly4HSM7tEMqizRXO1kQZWLoz0JBiJZ7FaZsXie+jI7\ny+d7iac1dp2YIJ3TqfDb6BnN8JH1FWxtH8ftUFnZ6GVfZ4xEWuOmxUGO9yc50Z9EkSWW1HuoLbPP\n8qtw9TBMk4PH+nh503PoukbTuvuwu0t3L0SSFcKNKwlUL2D0zCGeeORB7J4gtQ3NtLQsZEFDJW7H\nnPk6XVXODKcZjGbRdJNM3mDFfA9HuhPnLNNW5ybgtlAVsBHyWElldQCsqswtS4NIkkQqq2NVCz/s\nOc3A7yrsPQXdFsbiOQJuC2dGMlT4bcRT2juWa05/Gk4PpekZzXDTogC5vMGbHVH8zsILEk9rLJ8f\nYCyep707waI6N4e7E6iKxK3LQhzqil903bGURnt3ghvbAhimyY7jE4T9Vqxi2rr3xDRNTvdHeGnz\nqwz3HCfcuJKyhqVI0tx4XS12N1Ut11PRvJbEWC/Dw110Ht3L87JMuLaZpUuXsry1AZtlbjyfq4Vp\nwg1tAXpG03SPZC7YXFgVtHNmOH3OfbIkcbwvyfH+JMvmFeabsFsUxhN5Ai6VoYkcQbeFbN6gbyzD\nhlY/J/uT71imOR2uEykNn1Od/oWxW2WiyUK7rMOmEPJYMYzCsrphkkhr1JbZcVgVKvw2+sazb1vn\nVBtJLF34Zdp5Ijr9+FhKo8xrLe6TukoZpsnJ7jG2vrGNga52/JXNtNzwCVTb3BzmJCsq3vA8vOF5\nmKZJJj7GxNApXnr2cV7b7KZt2Wpuum4ZXqf4vFwJPmchyhxWhbyWZWv7+Dl/b6tzX/S7u7DGRWOl\nk61Hxgl5LKxs9HLwTBxFBpdNxapKtHfHaat1X3Kz1ZwOV69TpW8sQzSZJ5c3yOQMAm4LIxM5zvf0\n3XaF0Ykc6bDOYPRssCpKYZcgpxlEE3ksioTHXugVXtrgQZYlRiZyeMRu37uWzGjsa+/kwP69RAZP\n469qZsH1H8PquHpmpJIkCYe3DIe3jIqmtcSGu2g/sItDe96gZek6bt6wkqBHNCldKYosXXJHdyKj\ncaQ7wbqFfhS5UIsFGIxmWdvsw6pK7DwxQWOlgxMDKZKZwh5vJm+wrzPGykbvBdc9p9NifthBPK2x\n9UgERZZY3FD4dRqZyJ13+cUNHnYdn+CVQ+ME3Wd7o5sqnew5FeO19nHcdpW8ZuBzWVj8/7d35/FR\nlHkexz9VfXcn6dwX4VJREATEEQQZLkGYYdAFd1kcRR3C6DjjvFxfOmOiohPBXXHFHUHBQXyh4DFe\n6IDjgSAuygDreAUlqJCYkDRJOuTqTid9Ve0fFQIRxgGkkw783q9X6KT76aqnHqq/9dRTR7cPJUQ1\nnf6ZDtnVOw66ruNvi/B16QG+2L2bA+Vfo+saqb0Gct6Pf47ZenqHjKKquLPPIimrP/76Kkq//pSS\nz/5Gv/MuZMyoi+ibnRSXB+zOVAl2MwkOM+9/UY8C9E6347KbSbBH2FbSgKoq9Em3k2A3dzo74J1P\nvN8brNCDzhY4FfZVBwiGNfpnOfjGE8BT38a0f3LET3w/o7cfYv+BWioqKjlQtZ9GbyUA7sz+uLPP\nwpl8Zt/9P9BYQ13FF/i85bgz+3D2gIEMPf9cstNccrbBaeyMCteDvhCfljbT0hbFblUZ0jeRXqmn\nd0/qZOi6TlTTCYY1WkNRfC2tNDX5aGr24/P58bf48Pt8tPiaaAs0E2xpwmJ34nRn4kzOJiEtD5vT\nfUYH6rFEQq001ZTSVF1KoKkGe2IayWnZpGdkkpGeRnpaCinuJJx2MzaLisWkSBv2YGdUuHanYFgj\nGNbQdR0d4+im8aij68b3QUWjUTRdR2s/p/dYjM+aAuhG2ahGVNMIhyOEIxEi4QjhcJhwxPg7HI4Q\niUSIRqNEIhE0TTPmo2lo0ajxfDRCJBwmEgkTDoWIhINEQm1EQq1EQq0oiorZ5sRic2K2Oozf7S6s\njkSsDjd2VzJqHJ303xNo0TAtjTW0Nntp89UTCjQRavURCQcxW+yYbQ7MVgc2uxO7w4nT5cLlcuF0\nOHG6nDhsNqxWC2azCZNqHB8w1i2NQ6uOoiioqorJZMJsMmE2qagmtVN5AE3X0DUdpf2ccZOqoqoK\nqqKgKsZ0jsx4XTfeq+nGgcpoVCfSvk7purGOqqqK2WQypqMqJLvMHeOZZwoJ1y7y2FMv0ljzLeg6\nOrrxqOuga+0rubFWKiigqKBw1EE5/ch/FOOcXxQVRVFRVBVVNaGoZhTVhGoytT+a2583oR4q017+\n8HtMmEwWTGYzZosNi9WG1WbH2v7BtlgsmNTDHzRx6mntewuRSJS21gDB1gDBNuMn1BYgFGwlHAy0\nb/Ta0KIRtGgYXdfQda39DHD4bgoaG2+jDFr741GOWNna46BjHVFUUFUU1EPbdHSMaRmhrIGuta+H\nh85CP7R+a4CCopq4/IqruWTYWTFrv3gk4XoSNn1eh6812t3VEOKMl+gwMXnY91+G2l0kXIUQIgbk\nUKUQQsSAhKsQQsSAhKsQQsSAhKsQQsSAhKsQQsSAhKsQQsSAhKsQQsSAhKsQQsSAhKsQQsSAhKsQ\nQsSAhKsQQsSAhKsQQsRAj/6aF9GDaFFoqkRr2E+Lt4LmOg9NDXU0NzfT3NJKS1CnTVPQdbCqOkl2\nhez0VPoPHkHi0Blg//6v1BAi3shdsURsRIK07dlE6Wdb2e+ppbZVpV5348OFnSBJ+HArfpLwkaT7\ncBHAThAFnRBWmkjEo2RTpvcmW6lj5FkpDJx+M0pq/+5eMiGOi4SrOKV0Xw1lbz/OR3v2UxrNoY9y\ngD56Jdl4SaOBJHyYOf574UYwsYez2c6P0BQTUwen0u+KArA6Y7gUQvxwEq7i1AgF2P/mI7z7eSWt\nupVRfMIF7MFG+JRMXgd2cy4bGcfZ1jqm/ls+tgHjTsm0hYgFCVfxgwW+eJN3//Ii+8KZTOJDhlKC\nSmxWqyBWNirjKdX7MGuYm95X3AUm+f4uEX8kXMVJ03017HpxERsrHQxWvmaSvg0boS6Z91ecxQam\nMDKplrHX34eaJmOxIr5IuIoTFwlSu+UJ3t7+BQHNygw20YvqLq9GMwmsU36KoijMnDqRpFFXd3kd\nhPhHJFzF8Qv6qPtwLR/u2Mk34WzGsZOL+SxmQwDHQ0PhQ0aykwu5vFcLQ+fci5KY2W31EeKQ+A/X\n1dOh/MPOz/UdC7/468lN7w9uuOopuOBff3jdzgRalPC+rXy17Q0+q2iiWkvlRxRzCR9j76IhgONx\ngExeZypJahs/GX8xqT+eD6qpu6sl4klbE7x8A4TbwJlq5IDFbrwWboXHR8H1GyClL3i/gr/eDpEg\nZJwHVyzr/LXlxyH+LyK49hXjBPQXrwFXJvzsf+RDE2uRIKFv3mfvR5soqfDyTSSHXkoDw/QvmcM3\nJ3QqVVfJoZYbeY7t2kWs2pLOhTvnMfan/45j8E9O+EMhTlPFL0HeSJhYCJsXwucvwI9+Yby29WFo\nbThc9q+3w0//GzIHwfbl0FIHCRknNLv4D1eLw3hUTKCawZYAnz4HG++BpFxI6QeX3gqv3QSN+yHt\nHJi9BjLOhXfuhs+eM947sRAunm9Mq2Q9vF0ACVlw9Z8hIRP+cgt89Rak9oeZT0DWYNjyn7DjCYiG\n4PwrYNbKbmuGmIoE0Ty78O75G2V7S9jnDVGhZ9FbOchAfS/TeBuX3trdtfynTGiM5SOGsZv3W8fw\n2Cv/y8iNLzPqJz/HPnCyhOzp6tPn4Jt3IOgHfw1MX2KE55Em3QPZF8Du9cbfIT+YrMbv3q+h4VvI\nHtr+WgBaG+Gjp6B2NwyeecLBCj0hXP+R1noj7LKHQuVHMOpmOPdyWDUF9rwB9efD/62E/I1GF3/v\nZhhxg/FeixPy34WV4+GLV8HqgrKtcPM2+GQNvHEb/OIto8f88xfh4F5YfwtMWQiJWd262D9INIxe\nW4Kv/HO8+/dRV+elrqmF2qCFaj2DBAL0VbxcqH/LVZRj1+Nnt/9EJNLCDP1dxvARW32jWfriZi5O\nfJ5Rk2fivOBnoMotNU47WhTmroNdr8Dnfz72sOGBYtizAfZuMja0k+4xnn93gRHI624y/m5tgNov\n4crHIPN8eGYG9PsxZA48oSr13HBVVDinvTdiscOXr8G+zcZrkSB490BiDuReaPwMm3P4vWdfZvRQ\nXZkQaYPGCgjUwcoJoEWM8RcU0MKw6T6wJ7dPt62rl/KHCQUIl21j/66/UV5RQaUPPHomJqJkcJB0\npYE0vZ5B1JGDFwdtdOOxqVMujUZm6m9RTzIf+i9m2WvbGfrWq4weO47kUdccHm8TPV/WYOMxqZcR\njqund3590j2w/TGYtACGzobPX4SNC6D3KOg7Btx5h8s6UsCRCrnDjb/7XWqE7RkTrqrl8G7epj9A\nznAY/RtjK4NuDEI3e6DyY6Pnue2PRm8VOu8e6jqkDwBnOlz1JHg+haDPaMxtj8Lc16Hua2O3I96T\nJxIkWvkxnuKtlJXuo7TJCNNs6uhLNaOoIpcaEggY5eN8cU6VVBq5Qn+XCWxnZ3AEKzd9Q98tN3PR\nub04a/zVqNmDu7uK4gc74jNtcR675/rp2sMdpcQs4wDX3k3QXAVfb4TqXfDKPLjhDUjKgeovjNCu\n+sQYGjhBPTdcjzR0Drz/X/DtB5CQbfREJ7SPsT470xhbmVBgjNcey0U3gOcz+PM1YE2AqYuMsdu+\nY+GFOdD3UiPMGyuMMd54EAqgH9yLv2IXB8pKqPIcYL9PoUrPJJUm+im1XKqX05dKrKfoEtSeLgk/\nU/StjGc7xdFBvFfiYH3J0wy0exnQvzd9hozG1m8kuNK7u6oiFiYUGsN72/5o7PlesRRSzzr8+urp\n8C/LjeM8M5bCG/9h7MkOuNwYrz1B8X8qVk8XCYHPg+6rIdxcR7CliXAwQCQcIhoJE42EiEYiRCNh\nIpEw0XCEaDRCNKoRjUbQNJ2oFiUS1QiFI7SFIvhDOk1ROwdJQUUjGy+5VNMbD73x4CDY3UvdY9SR\nQgkD2Ec/PGSRQhOZZh9pCRZS3UmkpGeSkt0HV/YA445czlQ5MCaOi4RrjPi/fJfNf3mW+rCNJj0R\nP05UdGwEsRDBRBQTWvtjFDNRTEr7Y/vzKhoqGiY0zESw6CEctOEiQDLNpNKIi/g/it9TRFGpJZ1a\n0jhIKvVKMg26mwbcRDCTTBMpqh+3TcftcpCU4CIhyY0zKQVHYgo2ZxIWRwKq1Wnc70A1H/4xmcFk\nM3pFFieYbRLSp7nTY1ggDpldyfTVPQzVD5BME4m0/PPzQ2Uz161MaORQSw61xhNH/H8EsdJAEo2a\nm8bWJJra3Bw4mIBfbyRALa3YCWIljKV9g2hsJBX0jg2kiSgWIlgIY1XC2BQNq0nHagKr2USyy8bF\nNzxgHFARPZ70XE/G45eAt6S7ayGEyBgEv9nR3bU4JglXIYSIATmbWgghYkDCVQghYkDCVQghYkDC\nVQghYkDCVQghYkDCVQghYkDCVQghYkCu0OrhPvnkE9asWYPT6SQ3N5dAIEAoFMLv93P//fdTWlrK\nypUrsdvtTJw4kSlTpvDQQw91KmO1Wrut/rfffjuTJk3iwIEDVFVV4fP5uOuuuwiHwzz44IO45/YM\nuQAABpVJREFU3W4GDBjANddcw6pVqzqVSU1N7dK6VlZWsnz5ctLS0nC5XDQ3N8d9W1dXV/Poo4/i\ndrvRdZ2MjIy4b+fy8nJuvfVWXn/99aPqcjz1PVaZ7iDh2sM1NzezaNEiEhISmDdvHnl5edx///28\n+uqrvPPOO3zwwQfceeedZGVlMW/ePAYOHNjxQT9UZsaMGd1S99WrV+NyuQD4+9//zhNPPMGOHTt4\n6aWXCAaDzJ07lxEjRvDLX/6SK6+88qgyv/rVr7q8vtnZ2Xg8Hvr06YPH44n7ti4tLWXnzp0MGTKE\n888/P+7b2ev18vLLL+NwOAgGgydV3++WmT17NhaLpcuW4RAZFujhJkyYgMvlYsWKFYwYMYKsLOOb\nErKzs6mtraW+vr7jOUVR8Hq9R5XpDu+99x6JiYkMHz4cTdM6ekeH6lRXV0dOTg4ASUlJNDc3H1Wm\nq5WXlzN58mQWLlzI+vXre0RbZ2dn88wzz/Doo4+yc+dOUlJSOtUn3to5IyODO+64A6fTSWNj40mt\nF98t4/P5unQZDpFw7eH8fj933303w4cP56qrrqKmpgYwdgczMzPJysrq+IDouk5OTs5RZbrD+vXr\nKS4u5rXXXuOll16ivr6+U51ycnKorq4GoKmpiczMTBobG7u13hkZGSQkJHT0gnpCWz/33HP4fD4U\nRSExMZGqqqpO9YnHdj4kLS3tqLocT32/WyYpKalb6i/3FujhCgsLKS8vJzc3F5PJRFZWFoFAAL/f\nz8KFCykvL2fFihVYLBamTp3KxIkTeeSRRzqV6Y5dpkPWrVuHzWajrq6OsrIympubKSoqoq2tjQcf\nfBCXy8WQIUOYPXs2zzzzTKcyiYmJXVrXffv2sXTpUtLS0hg+fDh79+6N+7b+8ssvWbZsGTk5OfTq\n1QuLxRL37QyQn5/PU089dVRdjqe+xyrTHSRchRAiBmRYQAghYkDCVQghYkDCVQghYkDCVQghYkAu\nIhBxo7i4mCVLlhAOh1EUhXnz5nHZZZd1d7VO2rp16wgEAjQ0NDBkyBAmTpzY3VUSXUjCVcSFpqYm\nioqKWL58OVlZWfj9fm666SYuueSSjqu4hOhJJFxFXNiyZQtTpkzpuKIpISGBZ599FkVRqKuro7Cw\nkLa2NgYNGsRdd91FQUEBNpuNvXv3kpeXx+LFiykrK+O+++4jHA4zefJk8vPzWbx4McXFxei6zuLF\ni+ndu3fHPK+99lrS09OpqKhg7ty5zJw5k82bN/Pkk08CcOuttzJ69GimTZtGWloa+fn5TJo0CYCq\nqiruvPNOWltbGT16NHfccUfHVVB2u50HHnig6xtRxBUJVxEXampq6NevHwBbt27lySefpLm5mYKC\nArZs2cL111/P2LFjWbRoER9//DEAI0eOpKioiDlz5uD1elmyZAlFRUX079+f3/72t3g8HrZt28ba\ntWvxeDxHXQbp9Xp56KGHSE9PZ86cOVx55ZUsX76cF154gWg0yvz58xk9ejQNDQ1s2LCh0wUAq1ev\n5te//jVjxozhscceY8+ePVRUVPD888+ze/duHn/8cUaMGNFl7Sfij4SriAsZGRl4vV4Axo0bx7hx\n41i2bBltbW2Ulpaya9cu/vSnP9HS0sKwYcMAOOeccwDIzMwkGAxSXl7OvffeCxg3tDnUuywoKEDT\nNG677bZO88zMzCQ3N7dj/vX19VRWVpKfnw9AfX09oVCI3Nzco66sKi8vZ9CgQQDccsstvPnmmxQX\nFzN37lwA3G53LJpJ9CBytoCIC5MmTWLDhg0d1+YHg0FKSkpQFIU+ffpQUFDA2rVrue666xg4cCBg\n3BzlSHl5eTz88MOsXbuWWbNmkZuby44dO1ixYgXz589nzZo1ncp7vV68Xi/BYBCv10tKSgr9+/fn\n6aefZtWqVUyfPh2r1XrUfA7Na8+ePQAsWLCAvLw8xowZw9q1a1m4cCHjx4+PRTOJHkR6riIuJCcn\nc++991JYWEg4HCYUCjF27FguvfRSBg0axN13343f7yctLY1p06Ydcxq33XYbv/vd72htbeW8885j\n7ty5aJrGrFmzcDgc/P73v+9U3mKxUFRUhMfjYf78+ZhMJq677jquvfZaAoEAV1999T+s74033khh\nYSFLly5l1KhRDB06lLfffrvjvQsWLKCsrOyUtpHoWeTeAuKMNWvWLNatW9fd1RCnKRkWEEKIGJCe\nqxBCxID0XIUQIgYkXIUQIgYkXIUQIgYkXIUQIgYkXIUQIgb+H9On+TuDUJu4AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11f5fea58>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"g = hm.horizonplot(x='nGene', **kwargs)\n", | |
"g.set_xlabels('Genes per cell')\n", | |
"for ax in g.axes.flatten():\n", | |
"# ax.grid(axis='x', zorder=100, color='white', clip_on=False)\n", | |
"\n", | |
" if not ax.is_last_row():\n", | |
" plt.setp(ax.get_xticklabels(), visible=False)\n", | |
" x = ax.get_xticks()\n", | |
" else:\n", | |
" pass\n", | |
"# ax.vlines(x, 0, 100, clip_on=False, color='white', zorder=100)\n", | |
" \n", | |
"g.savefig(f'{figure1_folder}/horizonplot_genes_per_cell.pdf')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAKxCAYAAAB6yeaSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd8XNWd///XvXd6kUa9WxaWe+/d\n2MEG00sgoYaQZLNLNoUs2Q0hWcg3bXdTNmV3kxDILwklhNAxYMDghi33btmyLcnqXZrR9HLL7w8Z\ngcHYslEZyefJwzysmXvv+dyx5j3nnnvuHckwDANBEAQhaclDXYAgCIJwdiKoBUEQkpwIakEQhCQn\ngloQBCHJiaAWBEFIciKoBUEQkpwIakEQhCQngloQBCHJiaAWBEFIciKoBUEQkpwIakEQhCQngloQ\nBCHJiaAWBEFIciKoBUEQkpwIakEQhCQngloQBCHJiaAWBEFIciKoBUEQkpwIakEQhCQngloQBCHJ\niaAWBEFIciKoBUEQkpwIakEQhCQngloQBCHJiaAWBEFIciKoBUEQkpwIakEQhCQngloQBCHJiaAW\nBEFIciKoBUEQkpwIakEQhCRnGuoCBOHj6LpBWyCGLxInltDxOMxkua04LOLXVri4iN94IWkYhsGR\nxm7e3HWEqupqEv5O3ESwSCoKBnFDIYyFuDWVrJx8ls+dxqWTCrCYxIGhMLJJhmEYQ12EcHFr8IZ5\nduMBjhw5REainYhhplFPpV1z4DPsRA0TGjJWScUlxcmUQ+TJAXLkAO2kMmr8VO5aNY/iTOdQ74og\nDAgR1MKQiCY0Xt97kvVluzH7apEwqNIyqNIyCBrWPm3DjEqJ4mWCqQ0FA3P+RL543aWMz0sd4OoF\nYXCJoBYGjWEY7DrZwSub99BWc5xM/NRrHo5pmbTpLkC60C2TJweYYW7CQQKlYDL33rickix3f5bf\nLwzDIKbqRBMaJkXGapIxK2LoRji7ERvUP3uzgv/bUMX/3T6Lq6flnde6dZ1hDjd1c9XU81tP+CjD\nMDjU4OPVrQc4eaKCTK0Dr+6gUsugRktDRenX9nJlP7PNjZjRcY6exlduWEZBmqNf2+grbyjOlopG\nDh47SXNLM7GQH0WNYkJDQUdHQjMkVMmEIZuRzBbMVjs2ux2nw0laago5mWmMK8phbI6bVLt5SPZD\nOF0krvG1p/fij6hkp1j5xWemYzUpvHG4hUc2V6FqBrfOK+KO+cW96zy1o5a9tT5+8ZnpF9TmiAxq\nXTdY/F/riSQ0phak8sQX55/X+rf+YRuXZLn4yY1TB6jCkU3Te3rO63YcpK6qkgytg5BhoVpLp0ZL\nJ2RYBrgCg0K5m1nmRkDCPXoKX7pmKSVZroFt1TA43hpg7Y4jHDt2DFOojRQpRofuoFN30m1YCRkW\nEoaCioyMgSLpWNCwSBpWVGySil1SsUkJ7FICpxTHgka3YSNmTSO/qJirFs9gbkkmknShRyDCJ/Hn\nrScJJzS+sryUX799ggyXhetm5HPrI9t59p8WYlIkfruhim+uGgdARzDGDf+3lfklGRcc1CNy1sem\nE+10huL85taZ3PvUHuq7whSlOwjFVL7zwiHWHWklw2XhX68Yz/UzCrj/7wcob+qmPRDjn1eUsr26\ni+3VXWS5rCwbl8X9f99Poy9CSaaT394xm9LsgX3DD0dNvggbD9Wwr/wYvpZ6sujGp9tp1j1s0yb2\nedy5f0g06B4aYqmMkn1Mqynnf/73AGp6CVcsm8/KqUVYTf3Tk4+rOjuq2ti4p5y66krS1E7ihkKb\n7qFBK6JNd2Kc7XKFPnSTTGikyxFytADyiUO8WLWTR83ZLFm8iNuWTBSzXvrJs7vr2XCsjWBMo80f\n5Uc3TOFnbx47bZlvXTGezy8uQdMNDMOguTvC2BwXe2u9jM508O3nD9Lmj/GtK8b3rvOfayu4Z3EJ\nR5r8F1zbiAzq53Y3sGpiDldMzmFUuoO/767n/svH85v1J9hX72XtN5ayu9bL/X8/wPRCDwAt/igv\nfmUxGS4Law83c0mmi39eUcqGY23cs7iET03I5sbflvHWkRZKs0uHeA+HlqrpVLT42VlRx7HKGrra\nmkhRfZgljXbdTb3m4V2tiChDfaguUaenURfzkC0HmdDZRtnLT/DKS25cuaOYNHYM8ycWU5rtxmY+\nd3DrukGLP8rh+g4OHa+jpq6OhK+VTClAl+6gXcqgzT2Hw50qWj8eqKootOku2nQXh8jDKcUYr3VQ\nsfEl/nnzZi5fdRk3Lxgretj9QNMNHv/CPF7e38gL+xp55h8XnnE5RZa49n+20B1J8LXLxrLzZCcH\nG7p57etLicQ17nhsO2//y6Vsr+7CbTMxKS9FBPUH+cJx1h1tRdcNxv/7G6iazrO7G7hv5TiONPmZ\nNzqD0ZlOitId/OtzBzjS3PPiTch1U3JqepcsSSiKhMUkYzMrvHawmc3H2wGIJfQh27ehEk1o7Khs\nZ/vh49TV1aH6O0iXgiQMhQ7DRYvmolUfg9ewc+EnBAeSRJvupi3uxoRGkdJNUXMjR1uOUbVFw2fY\nSZgcmK0OLDY7JpMJRVHQdR1VVYnHIsSjUeRECBcx7FICn2GjXXfRomXSrJcwt8DNEqWBUMcOlowu\npSycw77WyIDsTciwsjdRwOFEDlPNLex981ne2Tqab9x+NRPzPQPS5sVifG4KAPkeO93hBJ99ZNtp\nz3/rivHMHZ0OwJqvLWFvnZd/eWY//3TpGKYXeki1m0m1m/E4LHQE4/zP+hM8ctdsDjdeeEjDCAzq\nF/c14raaej8JuyNxbv79NjYea2NCrps3yluo6Qixu9aLIklMykvhnaNtWD5wKKzIEsGoSiCa4L/W\nVjC1IJUvLi3h9ke39+VIdURoD8RYs/M4+w+Vk/A2kyEF8Rp22nQXrVom7XoxEQZ6rLn/qSic1NI5\nqfW82Wwk8MgR3GoMRyyOLRDGhIGM0XOyD4mooRA1zASNbAKGFb9hw/jAB9KKIjtjunfhHDWFokmL\naa85yJyuPejZsznQNjBhDRDHxJ5EIcfVTBbo9TzyyB8omLaYr123oE9HCMJHfbCbYTMrZ+xR/25j\nFfkeG9fPKMBtNWEAUwpS+cGrRwjFeo6mvOE4Dd4wncE4X/rLbvxRlfZAjCe213LXguKPbPNcRlxQ\nP7u7gRUTsk8bR55Z5OHpnfX88rPTae6OcuWv3yXDZeEXn5nO6DNcJLF0bBa/eecEpdkubppVwC/X\nHWdbdSdZbhsN3vBg7s6gisQ11uyuZPP2vSjd9dgklQ7NQ72WTbM+pt9naCSDKGZadDMtF7h+ht3M\nxMQx0sbMJrO45+RzwYRFACyNNFFhyiCmDuxRWMCwsS5eSonixXpoE187Ws4dN13N8kkFA9ruxerT\ns3vOa/11Rx2KLPHjG6aQ5bbyleVjuPUP2wF4YPUEZo5K481vLgNgW1Unz+1puKCQhhE660PoO8Mw\n2FvTyQsbd9NZW0E6QWq1NCq1DNp012k9R+F0EvClUg1LuIUxc687bYxYVxMc2/p3vGlTebY6Pmg1\nWVCZY26kSPERy5zAV29ZSWlOyqC1LwwMEdQXqcq2AGu2HubIkXIyE614dTvHtUxqNQ/aCOw5D4TZ\nuQ5mhndQOv8mrM6PXg0ZaK+jsWILL0Sm0B4evLAGyJBCzDU3YJcSmPIncPvqxcwszhzUGoT+I4L6\nIqDrBrVdYfZWNXOgoorm+lo8iU5UZE5q6VSex2XbQg8JuHdMBLsChZOWfuxyJ7Y9T5uzlOeqE4NX\nXC+DfNnPVFMrHjlClzmbsePGsXDaOGaOzsRlHXEjnyOWCOoBVN7QxYb9lf2zsQ/9MxmAbhgYuoGu\n62i6jqpqxBMJ4ok4sWiMaCRMPBJCSoRJlSKY0OnQnTTqKTRoqXQb9v6p7SI0I9vBnMgOxi66BYv9\n4+fVdzUew9t8gj805xPXhm7GUIoUpUTpYpTiI1WK4jNsxBQnFocbm73nakirxYrF3DPjxaQoSLKE\nLMm8N6LTO7DTD9MAbVYzty6bKj4s+kgE9QW4/JebON4aHOoyhCF075godkmlaMrysy6naypHNz/J\nCfc8NjWM3BPRI8G4HBdvffPSoS7jjERQDyDDMAjHtX7b3oc7MrIkIUmgSBKyJCHL4sTfYKhr7ebx\nP/6O0gWfxuo494m65uM7MEk6/3Dn9cPiohRdN1B1AwMD/dRBgHFqYmp/pYUiS2IK4XkQxx0DSJIk\nnOLQbsTZXLYLd2ZRn0IaIKNoEie2PUerdxW56cl/z2xZlrCID/2kIm4SIAjnoaM7Qu2xfWSNntHn\ndSx2N/aUbHbsOTyAlQkjmQhqQTgPm7ftxeZKx55yflPd0gsncOLoARIDfPGLMDKJoBaEPgpGEhw/\nvIeskr73pt+Tkj2aWMhHeWXTAFQmjHQiqAWhj97deRhZMeFKP/9Ls2VZwZM/jt179yHO3wvnSwS1\nIPRBJKZyeN92skpmXPDMjYzCibTUHqGpQ0ztFM6PCGpB6IMdB06gJmKk5pRc8DasTg/ujELWb952\n7oUF4QNEUAvCOSRUnX27tpE1ejqS9MneMtmXzKbu+H6a2kWvWug7EdSCcA47D1URCXaRVjD+3Auf\ng82VhjO9gHc2l4mxaqHPRFALwlkkVJ2d27aQXTILWe6fK+lySudQe2wfFTVt/bI9YeQTQS0IZ7Hz\nYBWRQBdphRP6bZs2p4fM4qm8uXYt0X68xYAwcomgFoSPEY1r7Nj2LtmXzOy33vR7skpmEIsEWLtx\nV79uVxiZRFALwsd4p+wA8UiQtIL+602/R5YVCqcs58iezVQ2dPb79oWRRQS1IJxBS1eQAzs2UDBp\nSb/3pt/jSM0mrWACr736mhgCEc5KBLUgfIiuG7z6xgacabkXdBXi+cgpnUMk6OPNTbsHtB1heBNB\nLQgfsmnXUVprK8gbv2jA25JlhaKpKzi8exMn6joGvD1heBJBLQgfUNvsY9vGtRROuRSz1TEobTpS\ns0kvnMRrr75KJKYOSpvC8CKCWhBOCcdUXnr5ZVJzSkjJKh7UtrPHzCIWDbHm7W3iQhjhI0RQCwI9\n49LPv7qBeDRM7rgFg96+LCuMmnYZxw+WsXVvP30hsjBiiKAWBGDDjiPUHd/PqOmXD9gsj3OxudIo\nmryczete5nht+5DUICSnYfPltu3dcbYc9fb+bDFJjC9wkeowseWolytnZWKznPsN9vKOVmaUpFCc\nbe99LBrXWLu3gyUT08hKtQxI/ULy2lVew1uv/J2iaZfhzigc6nJoq96Ht+kY19/0WSZekjvU5Qgf\no6o5TFzVmVjkAuBEc4jGzhiGYTA6205JjgNfKMH+kwEAslMtTCpycbg2gDeYACAS10l3m5lTmnrW\ntobdN69ePiMDi0mmqiXM4boAC8Z5hrokYRg7VNnMujXPkTdhUVKENED2JTORZIUXn32SrstvYMH0\nMSjiy2aThm4Y7K/20+FPUJRpAyAS02jsjHHp5DQMA94+2ElRpp1jjSEmF7nISrWwubyLQERlSrEb\nAFUzePdIF1NGuc7Z5rALakWWMJtkrGYZRZKQPzB40xmIs6fKTzim4bIpzB/nwWVT2FPlp9kbIzvV\nwnuHD6qms/NEN52BBDkf6EWHohq7q7rxh1QyUy3MHpNCd0hly1EvmSlmVM1gxdSMwd1pod+pmsHb\nZQfZs+UtcsbMJi1v7FCXdJqs0dMw25xsfOMFDh4o4dJlyxhTlIXVLEYrB0ptW4QWXwxVM4gmdGaU\nuDlSd/rtaCcWuUhzmclLs5LhthCO9VyoZLXILBzvQZKknpPBBkgSpDnNxDUdXTfQdYMPft5WNocY\nlWXv00jAsAvqtw/2XG6bUHsOLyTe3/NYQmdMroNcj5VN5V00dcVw2RQaOqMsm5RONKHR1BUD4GRr\nBG8wwfIp6bT54jSeevxwXQCzIrFqRga7q/ycaAqTfSrICzNs5KZZB3mPhf6k6wbl1c28u/ldfO0N\njJq+Eld6/lCXdUae3DG4Mgppq9rDC3/7ExZ7Cln5oykpKWH6xEtIc4vfxf5mGLB4Yhr1HRHq2qMs\nnZx+xuXy0m3UtkV6f5YlCau5J6T3VfspzrajyBJ2q8y+aj/liky624zTZjrVjkGzN8ayj9n+hw27\noF4yMQ2LSSYYVSmr8PWGKPT0ths7o7T5ekJX1w1CUQ27RSHdbcYw3t/dUFQjxWHCbTchSxIHa3vG\nkQIRlXBM452DnWh6zyfje23keKzY+/DpJyQfTTc4XNnEli1b8LacJKNoMuMW3YJiTu6wM5mt5E9Y\nRN64BYS8zQQ6G9i5dT3bNq5l7NR5rFo6l1RXcu/DcJLq6MkIu0UhocZ4t7zrtOcnFrnITDnzeSxN\nN9h5wkeK3cT4AicAh2uDLJ+SjtOqsP9kgIaOKIWZNtq642S4LX0e0hp2QW1WJCwmCZtZQQLiqt77\nXHldEI/TRGmes/fEo8uuEIlrdAbiROPvL+uym2joiuIPq7R2x95/3GbCZlaYVOSkoTOGx/n+SySG\nCYcfwzCobOxi3br1dDVXkzlqCuOX3o4pyQP6wyRZxpVRgCujAJhPyNtMzYmdPHqinOuuv4lxxVlD\nXeKIo8jSx/aoz2THMR85aVbG5L5/oZTZJGFWZCRJwmqWSWg9GdTqi5OZYu7ztoddUL+1v2foQ5Y+\n2sMtyrJRUR+iw5/AZpYJxTQmFDoZlWmjrMJHjsfSO8Y3OttOhz/OpvIuRp06IQAwtdjFnio/W456\ncdpMFGfbiCeGxcQY4UNaukKs27CV2mP7SCsYz4SltyV9D7qvnGl5XDL3Otqq9/Ls039myWXXsmzO\n+Av+4l3hk2nxxugIxNF0g6bOKABzx6YybbSbbcd8yBLYLTLjC3pmdwSjKqOybGfb5GmGzfQ8QTgb\nVdMJRjW6A2FqG5qpqqyiqeYITk8uuWPnYXWO3NlBgfY66g6vZ/Ls5Vy3cp6YITICiaAWhqVYQqe5\nw095RSX1dbUEvG1Eg14MDGxOD66MIjy5Y7CnZA51qYMiEuikZu9aMvJKuOHa1eSkDc59SoTBIYJa\n+Ij3fiXe+82QJM77kNowDDTdQNUMElrP3zXdOG2biiz1/nmvE6ieWicYjuHtDtDl9eH3B4hEIsSi\nUWKxKJFIiHB3J/FIAGdaHq6MAhyp2Vhd6Sgmy0V7+K/GozRVbCXc3crYyXOYPWMquZlubGb5on1N\nRgoR1IPscGUjGzdsYuhf9Pcr6Jn3aaDrOrquoesahq73LiNJMpKsIMsysqz0vOkl6bQ3/0e2oano\nWgJNTaCrCXRdxdBUDEN/f5uKCVk2ISum3u29t46ha5gsdsw2FxabE8VsxWSxopismC12HKkZON3p\nmMwmEUIfYBgGHc11tNcfIdBej8lqx2Jzo5jMyIpyhtdqaF47SZK45srLGV0grknoCxHUF+DtAx0E\nIuIbOQRhJHHbFVZOT86hMhHUgiAISU5cjyoIgpDkRFALgiAkORHUgiAISU4EtSAIQpIbdpeQC0Iy\nUXWVd2veZf2e9fg6fahhFdki40x1Mn/6fK6dfC0WRXwZhfDJiFkfgnABdEPnuQPPsWHjBtL96XTY\nO+iydBE2hbFoFjwJD/nhfLxOL0suXcJts24T872FCyaCWhDOU3VXNf/93H+T0ppClbuKypRK4kr8\nI8uZdBNjAmMY1z2OSHGEB29+kCyHuMudcP5EUAvCeXi5/GXWv7qeuBRnT8YeIqbIOddxJVzMa5+H\nalP56p1fZWLWxEGoVBhJRFALQh8YhsGvN/6alq0tVLmrqEitOK+rr2VdZl7nPByag5tuuYlLL7l0\n4IoVRhwR1IJwDgk9wQ9e/gHqYZU9mXtodjRf2IYMmOadRk40h6tuvoqVY1f2b6HCiCWCWhDOIqpG\n+e4z38V80kxZdhleq/eTbdCAyb7JFIQLWHXTKlZPWN0/hQojmphHLQgfIxAP8G+P/xvKSYXNOZs/\neUgDSFCeVk69s551L6zjnRPvfPJtCiOeCGpBOIP2cDsP/PEBLM0WNuZtJGAJ9Ov2j3qO0uho5LXn\nXmNz9eZ+3bYw8oihD0H4kFpfLf/1+H9hDpnZkrPljFPv+sWpMevsWDafvf2zLBi1YGDaEYY9EdSC\n8AH7m/fz2FOPoes6ZVllaPIA33fcgJldM0lLpHH3XXczK3/WwLYnDEsiqAXhlHXH1/HaC6/hN/vZ\nnbEbQxqkt4YBczrn4NbcfOlzX2Ja7rTBaVcYNkRQCwLw5x1/5sjbR6hz1lHuKR/8b6gyYG7nXJya\nk3/6/D8xOXvyIBcgJDMR1MJFLaEn+M/X/5PwvjCH0g5R664dumIMmNcxD4fh4N6772VS9qShq0VI\nKiKohYtWR7iDHz7zQxwNDrZnb6fD1jHUJSEZEvM65mE37CKshV4iqIWL0paaLTz9/NNY4hbKssoI\nm8NDXVKvD4b1lz/3ZabmTB3qkoQhdtZ51LtadjH1L1OZ+pepTPvLNJb+bSlPHnmyzxtvDDYy9S9T\nOdB+oE/Lv9fWvrZ9ADy09SGm/mUq393y3d7n155c2+f2z8dv9/+Wa1+8FoB73riHH2z7wYC0Iwyt\nQDzAD9f8kFeefAW/5Gd93vqkCmkAQzLYmbmTsBTmD3/5Awea+/b+EQbXCe8Jrn7h6t6fn654mtte\nvY07Xr+Do51HgZ75+Pe+fS93r72br6//OlE1CsDKZ1dyzxv3cM8b9/DXo389Z1t9+uKA1296HY/V\nw5NHn+QXu3/BTWNvwmF2nHO9fGc+O27fgc1k60szAFhkCzubdzIzeya7WnZhVay9z+24fceg3IT9\ndyt/hyyJa4FGkqga5ek9T7N7624cEQf7MvfRam8d6rI+1nthPbdzLn98/I/ccfsdzC+aP9RlCacY\nhsGv9v4KVVcB6I518/zx53nmmmdoC7fxrU3f4qmrn+Lnu3/OXZPuYlH+Il6peoWmUBMW2cLUzKn8\ncsUv+9xen4LabrLjtrjJtGdiUSxYFAsvVb7EL3b/gmxHNkXuIj4/+fN8d8t3aQo1MTplNL9Y/gus\nipXVz6/myaueZGvjVjbUbyDLnsXetr1ce8m1fHfBdz/S1pTMKexq3cX1oetpDjUzNfP9w775f53P\nT5f9lMtGXcb3y77P+vr1uC1uHpj7ABMyJrD6+dXMyZlDrb+WNz79Bj/b9TNerX4Vu8nO3ZPv5u7J\nd9MR6eD+jfdT6atkZfFKXjjxAm98+o3Tarj37XspSS3hoYUP8XDZw6w9uRZZkvns+M/yzdnf7POL\nKwwt3dApbyvn1d2vUl9RT2o4lbaUNo7nH0eX9aEu79wk2JWxi1lds/jbU38jfEuYFWNWDHVVI9ZL\nlS+xuWEz4USY9kg731vwPX6z9zenLfO1mV9jVs4sXqp8iUX5i6j0VgKQak3lb9f8DUVWaA4147F5\nADjWdYw9rXt47NBjzMqexXVjruOd2ndoDDby+Tc+T7otnQfnP0imPfOstfUpqG94+QYA/DE/N429\nCZPcs5ov5uMnS37CxIyJHGg/wB0T72BZ4TLufP1O1tet58qSK0/bTrWvmu/O/y572/byyz2/5Ouz\nvo7b4j5tmdk5s3niyBNsbdzKhPQJOM3Oj9Tz3PHn2Nq0lWeueYaN9RvZ1bqLCRkTAJiZPZP/WPof\nvHjiRV6rfo0/rf4TXdEuvvL2V5iUMYl36t6hK9rFs9c+y5NHzz6M44/7SbWk8ter/sq62nU8dugx\nEdRDLKEnCMVDBBNBYlqMqBYlkogQiUfoCnbR2d1JS0cLnZ2dhDvCpEXSCJqDNDmbKEsfhAtY+psE\ne9P3MtU3ldeeeY2Oqzu4ZfotQ13ViKUbOr9f9Xter36dNVVr+NPqP31kGV/Ux9qTa/ndyt/xePnj\nvY+bZBN/PPRH/njojzww/wEAav21TMqYxFdnfJX7N93PlsYtpNvT+cLUL7B69GreOPkGP931U366\n7KdnratPQf3oqkfxWD3UBmq59+17WZi/EABZkllSsARJkrApNt6seZOypjIA4tpHL7vNdeYyI3tG\n73MxLYab04O61FOK1WTlz+V/ZlnhMqp8VR/ZTnV3NaWeUopTirl78t1Az3g4wML8heQ6c6nwVjA+\nfTwT0nsCPNuRTXlHOTX+GqZnTSfflc+KohU8ceSJj91vi2zBH/fzw+0/xCybiesDdCmxQFyL0xHp\noC3cRqu/ldauVtq97fj8PkL+ENFwFCNmYFJNmHUzJt2EYigohoLJMGFgEJfjxJU4IVOIkClEh72D\nPWl9u7l/UpPgUNohwkoY0xoTDR0NfH3F11FkZagrG3HGpo0FerKqO9bNPW/cc9rzX5v5NV6uepmv\nzvzqGV//L079IrdPvJ173riHmdkzSbGmsCh/EZIksSh/Ece6jnHHxDuYkjEFgOVFy/n9gd+fs64+\nBbXL4iLVmkpGIgMZGX/cj1k2Y5JMvd8D96u9v2JSxiTumngXX3zrixh8dDLJe+O+Z/vuOEmSmJk9\nk431G7kv574zBnVJaglv1rzJye6TbKjfwOaGzfxo8Y8Aesewx3rG8ubJN6noqqAr2kVbuI3JmZNp\nCjWxvXk7zcFm1tetP+t+lzWV8WLlizx/7fOsqV7DjpYdGIYhvvvuE2oLt1F2sowj1Udoa20jFohh\nipmwa3Zsmg0dnagSJWKKEFWihE1hIkqEqCNKTIkRl+Ookooma2hSz59Bu4pwCFWlVBE2hZldNpv7\nG+/nezd/j0zH2Q+ZhfMjfeBKJ5vJdsYe9UNlD1HnrwOgI9LB/9v2/7hn8j38eu+ve4d8zbIZgBlZ\nM9jetJ0Vo1ZwqOMQlxZeyh8O/oFUayp3T76b7c3bmZhx7m/86VNQX/XCVUBPD3Np4VKuueQa3qx5\n87RlrrnkGn67/7fsbN5Jlj2LpmBTXzZ9RnNy5rCpfhOzs2fz7LFnP/L8zeNu5lDHIW577TZSLCl8\ne+63PxKet4y/heruau554x5sJhvfnP1N5ubOZXTKaI52HuWWV29hUd4iAOSPmfwyLWsaYz1juf31\n25mdMxvo6bkXugsveN8uRpqusb91P+sPrKemqgZbtw2bZqPL0oXP6iNgCRByhHrCWIkOv+GJQdTs\naGZD3gYWNi7k+7/9PstXLecxHyPnAAAgAElEQVTT0z4tOg+D6NUbX+39+xXPXcHDCx8GejqQd7x2\nB5Ikce0l11LkLuJbc77FQ2UP8dihxyhNK2VF0Qpm58zmgXcfYEP9BhwmBz9YfO4ZZhfdPOrXq1/n\nUMch7p58N2/WvMmv9/6astvKzmtminB2qq5S6a1kZ9VOjlYdxdfoIz2cTsASoNneTIu9BZ/FN/iX\naY8gkiExvns8Y/1j8Wf7uf5T17OydKUI7BHqogvqk90n+c6736HSV0mKJYUvT/syt064dajLSjqq\nrhJKhAglQkTUCFE1SkyLEUlEiMajRONRIvEIwUiQQCiAP+inu7ubsD+METRIjaeiSiqdtk5a7C20\n2luJKbGh3q0Rx5FwMNE/kfxQPt4UL6UTS/nU9E8xJXMKZsU81OUJ/eSiC+rB5Iv62FS9aVDaMvTT\n/xnfO0dgYGDoBrquoxkaCTVBLBEjFosRjoaJxqJEIhGikSjxaBw9rkMCFE3BpJswG2YUveeEnWzI\nSEhokoYu6aiSiiqrxOU4CTlB2BQmZArhN/vxWXxETdFB2XcB7KqdUaFRFIYKcSVceG1eJLdEiicF\nt9uN2+nGYXNgtVgxK2YUWUGSJd7774MkeXB65YtGLyLLkTUobQ13IqgvwI0v30ilr3KoyxAEoR+V\nekp58foXh7qMMxJBPYB0Q6fGXzNo7X2kZ3TqZ1mSkSQJk2TCJJuwKBZsJhsW2SLGNC8SvcNWWhRV\nV9ENHd3QPzI760yztQbKKPeo3msyhLMTQS0IgpDkxA0tBEEQkpwIakEQhCQngloQBCHJiaAWBEFI\nciKoBUEQkpwIakEQhCQngloQBCHJiaAWBEFIciKoBUEQkpwIakEQhCQngloQBCHJiaAWBEFIcuLW\nVYLwCcT1GGEtRFgNEY6FCEVCxBJR4ok4mqahGzqKLKMoJqwWGy6bk1RnGm5zCk7FLe5eKPSJCGpB\n6IOoFqExUM/Jpkpa2lrxdnqJ+CMkghp6BPSYgSSDZAbJJCEpnH68qoOeACNuYGigOCRMHgV3upPc\n/BxKi8cxJnMcLpN7qHZRSGLiNqeCcAaaoVEfOMmBE/uoq6nH3xhECxiYUmVMaTKmVAnFLaE4JWS7\nhGyTkJS+9Y4N1UALGajdOqrXINGhE2/XkK0S7gIHo8cUM33sLIrco1EkZYD3VBgORFALwimaoVLZ\nVcGe8t3Un2gk1qpizpCx5ClY8mTM6XKfw/h8GYaB6jWIN2nEGjUSnTq2PDOjx49iwdTFFLlGi2GS\ni5gIauGiZhgGLeFGth56l+oj1URbVKx5CtZiBWuhgmwZmnDUYwbReo1ojUaiQyN1jJNFCxczq2Ce\n6GVfhERQCxeluB5nb/0Odu3eia8yiMkjYxtjwjZq6ML542hBnfBxlfBxFfdoO6svW83ErGlDXZYw\niERQCxcVX7yLjQffoWLfcRJdKvZSE/axJkwpyT9TVY8aBA8liFarjFlczA0LbsFhcg51WcIgOK+g\nborUsab1md6fbbKdWZ6FTE2Z3af1A4lu/tr4B27IvYMcW/45l3+q/hGsio1P530OSZJ4pflveMzp\nLMu8vK8lCwK6oVPlPcbm3ZtoPtyGZJFwTjRhG60M2JjzQEp06nRviWHLsHD7DXeR5yoY6pIuKgk9\nwTvta4jpMZyKixVZV6JIJsr9+zgWPIwiKSxK/xRZ1ly88U42db6BhEShfTSzPYvQDZ3NnW/SnfBi\nka0sz7wSu+I4a5sXND3vtoJ/wKrYOezfw/aujUxwTcUsW865nsuUwhdGfQOTZO5zW53xNo4GDzLJ\nPf1CShUuYt1xLzsqyzi8/zDB2ijWAoXUJRbMWfKwPjFnzpDJuNpGd1mcP/3p/+Oam69mWt6soS7r\nonEseIgcawEzPfPZ4yvjWOAwox2lVAQPcWPenYS0IG+3v8KNeXey3bupJ7Qtuaxte57OeBvdCS+K\nZOL6vNupDFWwv3sHC9NXnLXNCwpqk2TCKluxK04USUGRTBwLHGa7dyMOxUWK2cP0lLls6HidoOon\n1ZzOqqzrMEmm3h51feQkNZFKnIqL5mgD41yTWZKx8iNt2WUHu7zvMsYx/rTH93fv5ED3TkySifnp\nyyl1Tjitx7254y18iS6uy7uVR2p+Rq61kK54G58t/BJHAwc47N8LwHjXFOanXcrxYDk7fZspsBVT\nG64k317M5VnXUxepZkvn20S0EFnWXFZlXYfD5LqQl00YBP5ENwfr93K4/BAdJ3wggWOsicwb7Cj2\n4RvOHyaZJFKXWgiVq7z81KsEPx1gUcmlQ13WsHYscJi6SBVxPU5YC7E0YyU7vVtOW2Zu2hKmpMxC\nN3QMwyCoBkizZ9AWbyHPVogsybhNKWiGRkyP4Ut0kG3NA6DIXkJTtJ6A2k2RfXTvY/u7d5yztgsK\n6r83/QmAmB5lgmsastQzvhfVI6zIvIpMSzatsWampsxmlP0SXmp+ippwJaXOCadtxxfvZEnuSvJs\nDezwbmZu2lKssvW0ZSa5Z3A8VM5uX1nvY13xdnZ4N3FNzmfQDJ117S9TZBt91prdphQ+lXkVHbFW\n9vjKuCrnFmyyjTUtfyPNnAlAWAtR4hjHKPslvNPxKl2JdioCB/GY01mdcyO14SoiehgHIqiThWao\nNAbrOHzyIFUnqumuC2JoYB+l4FlmwZQxvHvPZyNJEq4pZhS7xDt/30jg2gCXT7x6xO7vYNAxuDr3\nFiqDRzkePMJ1ebeecTlZknm+6XHiepRZnoU0R+sxS++PKpglCwk9zgfHlc2ShbAWJKHHMUs9OWc5\ntdy5XFBQX5PzGayKne6El7Wtz1F46tNBQqLIXoIkSZgSJqr8x6iP1AA9b6gPc5rc5NoK0AytZxk9\nAR8KakUysTBtOW+3r8GhOPGY0/EmOgF4u30NAKqRoCvRcWoN49T/Tx96L7AX4zanUhk6ilNxU2gv\nBiDDkk17vIUsSy4yMiXOsfgTvp7t6iqzPYvY4d3MS81/xWNOJ9826kJeMqGfhLUQTYF6KutPUFdX\nS1ejj3i7hilNxlqg4FlmxZQuXVRhZR9jQrZK7Fyzh2gszLUzbu7tPAnnJ/1Up81pchPTo7zS/LfT\nnp+btoQ8WyEAn87/HK3RJja0v8601DkkjPcDN2HEscgWJKQPPWbFLFt6l42feuxcLiioLbIVm2wj\noTiQkIjpURQUZN7vvezwbibLksPUlDm82vLMR4ITQD51je253lIlznHkB4poiNYC4DGnA7AwfQWK\npNAYqcNjTsckmwio3cS0KB3xlt5PLQCFnrmn6ZYsQlqAhkgtNtlGZ7yN8e6pYND7on7wxa0JV5Jn\nK2JZ5uW81fYyRwMHyLWJkzcDwTAMVCPRe++MrkAH7b522jvb8XZ10d0ZINaVQA8ZmNJkzNkK9gkK\nqcstSTelbrBZCxU8y60cfOsowdBf+MyiOzHLfT8XJPT44HvfJJnO2KPe370Dl5JCqWsiFtkCGGRZ\nctnr24ZmaIS1EBISFtmKx5xOe6yFTEsO9ZGTzPUswa44aYjUMNpRSn24mhzruSdWXFBQP934KNAT\nfkWOSxjrnER16Nhpy4xzTmK3bytN0TocipOg6r+QpnotSr+M55r+DPT0guenLWOHdxOqnmCiewZ2\nxcEU92w2da7lpZa/4jGlEdNjH9lOsWMMs1IX8s6p3vgE93TGOSdzPFh+xnZzbPls7XyHvb4yPOb0\nPs9wGck0QyOqRYjrMeJ6jJgWJRqPEIvFiCWixBJx4ok4CTVBIpFA1VRUNYGqqu//SWioiQSJhEoi\nrqLGVdSYhh4z0KMGesRAMoPilDC5ZRS3hLlAxj7FiskjIckXdzCfiSVHIe1yGyfX1/Oo9//43Oov\n4DKnDHVZI84452Q2dLzOkcABJEliacYqnCYX411TeKX5aXR0Fqd/CoAFacvZ3PkmmqFRaB9NljWX\nDEs29ZFqXmp+CkUycVnWNedsU8yjFs4oocdpj7ZQ31ZLU3sL3q5OAv4QsWAMNdITqEbcQI/TczRi\nOvVHOXVDolM3Jur5c+qx0/4uIZkMJJOEbAbJLCFbJSQLKO/dO8MkwvhCaBED34YYilnmymtWMy1P\ndC6GOxHUArqh0xXvoKr1BDX11bQ0thJqj6D6dGSbhMnT06NVXKduQmQ7FaSWnpBF4aIaEx4ODN0g\ndEglXJEgf2Y2qxasZlRKyVCXJVwgEdQXCcMwSBg90466o16aOhtpbm2ira0dX1s38XYNSZGwZMmY\ns2TMmTKmdBnZLAJ4OEt4dUIHEsRbNVLHuBg7rpRxoyaQ7crFqbjFScdhQgT1ANrfsIutu7YOSlu9\n/4wGGIaObhgYmoGu6WgJDTWuo8f03nsn99wPueeWnZZMBUuGgsnZc8JV9I5HFsMwSHSrhGsSxBo0\nEl69Z3jJKWG2KShmBdmkIMs9Y//v/fsP9O/B/FkLmFO8YEDbGClEUF+Avzf+CW/vdEBBEEaCNHMm\nnym4Z6jLOCMR1IIgCElODFAJgiAkORHUgiAISU4EtSAIQpITQS0IgpDkRFALgiAkORHUgiAISU4E\ntSAIQpITQS0IgpDkRFALgiAkORHUgiAISU4EtSAIQpITQS0IgpDkLuiruARBOH+GphGvrcV//Dgd\nNbWE/X7i8RgWixVXmofs8eNJnTMH2eEY6lKFJCPunicIZ6F6vYSPVtB2/BjBLi/xaBRZkbHZHbiz\nMkktLMSen48pJwfZ6USSJAxNQ/P7idfV0VFxjObKEzS1tNCuqnhTU1FNJpzBINZYDJOmoSkKUZuN\nkNOJx9fNJSYTc668ksyVlyEpylC/BEISEEEtCB+gh8N0bd3KibJt1LY002K1EkhJwREOY4tEMKsq\nuiSRMJuJ2uxE7TbMiQT2cBhzIoFiGGiyTMxiIex0YlJVPF4fad4u0ju78Hi9OMJhznRLflVR6MjK\noqakhOb8PEq7ulh5+x2kL10y6K+DkFxEUAsXNUPXiVZUULNpE5UVFdRrGl6Ph4yODnJaW8lqa8Pj\n9aHo+hnX1yWJmNVKxGEnYTajywqKpmGJx3GEQlgSiQuqK2KzcXj6NJrz8lgsyyx88LsoLucn2VVh\nGBNBLVx01K4umte9zfF9+6j1emnNSMcajZLb2kpuUzNZbW2YNG2oywSgMyODHQsXkBsMct1XvoJ7\n2rShLkkYAiKohYuCHgrR8Moa9pWVUSPLhJ0OcltayGluIaelBUckMtQlfqyEycTu+fMIuVzccsUV\n5F511VCXJAwyEdTCiBZvaeXwX/7Mrto6ujypFNXVM6q2loyODuRh9KtvAEemTObkJZdww7hxjP3S\nl4a6JGEQiaAWRqREZycHHnmEba2tqIrC+KMVjKqt/dix5uGitriYAzNncHVODpPvu098Y/xFYkQF\ndfT4cVp//BOihw6hZGSQ+Y9fxnPzzWdctv1//hf/668zZu3rg1ylMJD0UIgjjz7Ku5WVRKxWphw8\nRGF9/RlnWQxXTfn57Jo/jyvcKcz4zgMirAeZHonQ+C/3owX8mLOzyfvP/0S2WAAwDIPa2+8g6777\ncM6fh3/dOtp+/nPM2TkA5P3oh8gpKTT967+hRyKY8/PJ++EPkG22s7Y5Yq5M1IIh6r/4JWwTJjDm\nzTdIv+tOmr/370QOHR7q0oRBoIfDHPv9I/zpW9/i9eZmRlWf5IrX11I0wkIaIL+piQVl23gz4Gff\nT37CCOprDQu+557HPnMmo598EsuYMXS/8ML7zz37LLHKyt6fY0cryPn2AxQ/8TjFTzyOpbiYzt8/\ngmvZMkY/9STOBfPxPvXUOdscMVcmBjdtROvuJuv+f0G2WEi76y7cl12G4vHQeP+3CKxfjyk9naz7\n7iP12mtOWze8bx8tD3+feH099mnTyPvxj7AUFnJ0wkQ8n/kMwQ0bkOx2Cn/za2wTJgzRHgpnEm9o\noPypv7Kn5iSdqamMb25m3uZ3k2bWxkDJaW1l4dYy3lq8CONHP2bW974retafkO+FFwlu2oQeCqG2\nt5P78EO0//JXpy2Tdd83SL/rTgxNwzAM1JYWrGNKgZ6LowJvrcP9qRW9y0crKoiUH6bzj3/EtWwZ\nmf/4ZWInq/F85hYA7DNm0PbfvyTji2evbcQEtdrcjJKa2nsIIkkS5oIC2n7+cyIHDnDJSy8S3ruP\npu98B/u0qb3rGZpG4zfuw3XZpyh67FFaHnqY5u88SPETjwM9PbXip5+m9s476X7xRWzf+c6Q7J/Q\nwzAMYtUnqd+wgfL9+6m2WpAMg9L6euZfBAH9QdltbSzcspV1SxZj/PBHzP7374mw/qR0jVGPPUr3\nq6/R/fIrvTnwYZKicPLTN6P5/WTeey8AbT//OVnf+MZpPWTn/Hm4LrsMc24uDV/7OsEtW7GNn0Bw\n4yasY8YQ3LgJow8zjkZMUJtyctB8PvRYDNlqxVBVul96ieiRIzjmzMFSXIy5sJDmBx8kerSidz21\nsxO1rY2U1Vdizs7GvWoVLT/+ce/zrkuXYSkswFJYiB6NDcWuXbQMw0BtayN45AiN5Udoqq2l2e+n\n1ZOKpBsUeLuYV1NLemfniBve6Kvs9nYWbdnK20sWoz38MPMeflhcdv4JWMeOA8Ccl4vW3U3tXZ87\n7fms+76BY/ZsAEqef47I/v00ffsBsr7+NWSrDfvUKXg/sHzqTTehuN0AuJYtJXasgox//DItP/gB\ndV/4Io7581HS0s5Z14gJatellyKnpND+y1+R8cUv4H3m73T89re4L7uM8O7dxGtrCe/dB4qCbeIE\nYidOAGDKyEDJzMT/xlosJaMJrFuHfcqU9zcsnxrGFz2VAWEYBprPR7yhkUDNSdprauloaaGru5su\nNUG300nE4cAdCJDW5SWzo4OJe/bgCgYv2nD+sKz2dha/+y4bli4l8u1vs+zHP0a2Woe6rOHpA+9z\n2Waj8Aw96o5HH8Wcl0/qNVcju1xgGAQ2biRaXk7tXZ8jdvIk0YoKCv/3f6i75wsUP/Uk5uxsQtu2\nk3bbrYR37CDt1ttwzJpJ11/+gnPRonOWNWKCWklJYdRjj9Ly4x9TecVqTFmZ5P/sp7guvZSWhx6i\n+oYbMaWnk/8f/4GluLh3PUlRKPzVL2n5wQ+puvwK7NOnk/eTH5+lJeF8GPE4idZWovUN+Orq6Gpu\nprurE38giD8WJQSET92QSDIMXIEg7mAQt7+bUd1+Urq7cQcCw2rO81DI7Ohk+TvreXf5pXR/85tc\n+eCDWAoLh7qsEclzww00ffsBfM88A4pC7vcfxlpa2vt80wPfIfXGG7EUFpL78MM0/PNXkcxmnAsW\n4Fy4kNjJkzR9+wEkWcY6bhy5D/37OdscUdPzhMGlx2IkmpqINTfja2jA39qG3+slEPATCEcIqioh\nk0LY6SRqs2GNxnCEQzjDEezhEI5QCEc4jCMUxvkJ7oshvC9st7Nj0UJkSeLaFSvIv/FGJHnETO66\naImgFs7IMAz0QAC1rY1IQyPehnq8LS14O7voDgboTiQImc2EHQ5iVivWWAx7OIItGsUeiWAPh3tC\nOBzuDWTRKx4cuiRxdMpkTowdy1ivl8WrV5OzapW4z/UwJoJ6gCVaWkg0NAxeg6f+OQ3DAKPn7nCG\noaNrGnoigZZIEI9ESESixEJBoqEQkWCISDhEOBIlHI8RUVUiSERsViL2nrvC2SMRHKEQznAYZyCI\nKxTEEez52RaJiBBOQmG7nSNTp1BfVESaz0eByUxWZibpOdk409OxpaRgstowWcwgycjK4J6PsU2Z\ncs4LPYQeIqgH2NNf/jIn8vIGrT3jvTfZB99shoFkGMi6jmQYKJqGomqY1QSmhIpFTWDVdKy6hk3X\nsQMOWcFpUnBaLDidThSXq+fG+OIwelgxdJ1oSws17e20AV6LlbDNSsxqQzWb0GUZXZZ7fl9ORYE0\nSJFwjdXKrAcfHJS2hjsR1Beg+tpriZ2oPPeCgiAMG9axpVyyZs1Ql3FGIqgFQRCSnDiOFQRBSHIi\nqAVBEJKcCGpBEIQkJ4JaEAQhyYmgFgRBSHIiqAWhP8XjGC3NRI8fg5i426LQP0bMTZkEYUhFoxxf\n+xqbj1bQpqoYBuSZzUwvLGTWTTchuVxDXaEwjIl51ILwCUWqqnjp+efojCdY5XYx2mLGJElUx+Ns\nDIZIs1i47vbbseQXDHWpwjAlgloQPgHvnt08tfYNxtqsrHQ5UT50nwzVMFjjD9Cpatz9+bsxi7AW\nLoAIakG4QO1bt/DE+g0scTqY5/z4O9MZhsFL/gAJSeaWf/onpFPf+CEIfSVOJgrCBWjbuoXH129g\npdt11pCGnu/vvDbFTTCRYOMTj8NF9L2OQv8QQS0I56ntVE96ldvFNHvfbtNpkiQ+40llb2cXNW+s\nHeAKhZFGBLUgnIf2sq3nHdLvcSky16W6eWnvPiJVVQNUoTASiaAWhD5qfXczj7+znpVu53mH9HvG\nWq2Ms1l5/cUXxTxroc9EUAvCuRgGTe+8wxMbN3GF28V0u/0TbW6V20VzNMqRl1/upwKFkU4EtSCc\nja5TveYVnirbyjUpbqZcYE/6g8ySxPWpKaw9dozQsYp+KFIY6URQC8LHSSQ4+PTTvHDgALd4Uplg\ns/bbpossZqbZbbz2yisY4XC/bVcYmcQ8aiH5JBIYXV0EmpsJ+7uJx+LIioLVbiM1KxtLViakpA7o\nl7Dq3d2sf+Jxyn0+bvN4yDb3/90WVMPg0c4uFhYXM+OOOwftS2WF4UcEtZAUDJ+Phl07OVFZSY3X\nR6uqYpYkXLKMRZLQDIOoYeDXNOyyTL7FQmFGOpeUlpI3ZSpSRka/BV3wSDkvrVmDpuvc4knFMYBf\n6NuaUHm8y8uXrr6KtNlzBqwdYXgb3KBuaoQ1r5xqWQK3GxYuBou55/G77gbH2S8eOM2xCnh3M3zp\nywNTrzCwdJ1QRQW7393M/vZ2TEiMt1m5xGIh32zCdoaANAyDbk2nMZGgLpGgKhYnahhMcLmYPH4c\nxfPmI2dmXlA5RjhMxWuv8XpFBbPsNpad4ZLwgVAWCnM0GuPzX/4HlMysAW9P+IRiMXh7Hagq2Gxw\n2Uo4WQ1Hj/Y8n4hDJAJ3fg6qq2H/XpBkmD0bRhVfUJNDE9S33g5WKxw8AOWH4bO3gdkMJtP59YpE\nUA9Puo7/0EG2bNjIIb+fiTYbcx02ck0mpAsIxi5V5Wg0Rnk0RlDXmZrmYdr06eTMmg1O57k3EI/T\ntmM7b5WV0Z1QuSbVTbHFcgE7dmEMw+Bvvm48dgdXfuUrPe8FIXkdPgzRCMyZCzt3gMsNkya9//zb\n62DceCgogOf+DjfdDIYBL78EN30aFOW8mxya25yazT2fRHPmwqGDUFsDmzf19Kj9ftiwHoIBSE2F\nVVdAJNwT8BMnQVUl5Bf0fIpBzwuw/p2ebYwphWWX9qzf0Q7hMMya3fPC7NoJiQTk5cMVqyEeh3Vv\ngbcLSkqgogJuvwN27+6pQU1AKAQzZkLF0Z5P0eUroGjUkLxkI4JhED5WwbtvreOA7/9n777j4zjv\nPM9/KnRGaDQySATmnESKtCTKSlaysmRZki1btpzGM7s+z+ze3ezMhruZ3Vvf7Xpsvc4ez9jjJFvB\n0iiLtiyaipQo5ghGgEQicugcqivsH01CpESJQQC7AfzerxeARnd1168bjW8/9dRTT4VZ7vPxbyrK\nCWifrGshpOtcUaRzRVGAAdNkdyrN42+8ifett5hfXs7cuXOpmTMHrbIKTgZwMkmqq4uj+/ays6WV\nvmyWywN+VpeWXJRW9KkUReHO0hJ+NjTM9KeeYskXviD91flw6CB0tIORzWXHlVfCli2nL3Ppaqgo\nz7WUIZcpp75/e3rAtqGhAYaGIFj2/gdvSQmER6D8/Lf48jsftarmWtap1PvXpVKwZEluE+H5Z6Ht\nGFRX524LBuGOu3LXHzqYa4Hbdi6gq6th49tw6aW5ZRMJuOtu8PpyQXvV1aC7YN1LMDQILS25T8V7\n7s19WJwqEoY77oQ334CdO3LrfOsNaG6WoL4QjkO6tYVN69ezdWCQRT4v364IUXwBLYuzqdR1PlNc\nxHVFATqzWQ7G4ry4aRMjGzdSpmn4lNw/VdS2Sdg2jW4Xiz0e7g+WoOcxHH2qyn3BII8ebaV43cs0\n3Xpb3mqZ0mwHbrkVWo7A4cNw+x0fXmZwMJdLnZ2gkAvvk5r35RqHkGsMuk/ZOnK5ch8CFyC/Qe04\nuSfjPWVsqq5Ba2vuRYDTJ7CZMTPXr10WgkgEystzYd/YCH29uWXME8uXl0Np8P377toJ/sD7jxkJ\nQ1V17vGamk4P65P3LS7JtcaDJy7LMKrzYxiE9+5h66ZN7BweYZ7Xw9fLywjp4/+2UxSFBrebBrcb\nKMKwHYYtk7Tj4DhQoqmUalpew/mDql06nyst5emdO/lSURE1V1+T75KmnlAo9zNQlNuKfvEDByVd\nujrXZXvpapgzNxfm723KbclnMhCPw8l9JG736cGczb6/RXee8hPUppl7UocP5VrE+imfOps3Q2UF\nLFkGL7+YC/OTWlugsSm3+TBvXu66D/2jnVhePdFay2RyL+RV1+Ra78eO5hYpKYXjXRCLwbFjH3gM\n5SMui4/kOJBMYg0P09faQvvRoxzs62Mga7LM7+Mb5SHK9LFvQZ8rt6pQoxZ+3+8Mj5tbSor57dtv\nc186Tf2NN0k3yMV06mut62duUR88kMsSyA1+MIzc5e5uqDxlZ3AwCOHw+7eHw7nrLkB+gvqJx3Iv\nSGkp3HBTrhV90ty5sG1r7kn7/bm+6pMGB2HHdpg+HebNz22enI3bDTNnwca3oKIy13qPxWDFJbnH\ne+ZpmF5/YmH5hzgj08QZGSE1OEC4v59YOEIiHiOZSpNMp0hmDOJZg7BpEbEsQrrGdLebK/x+Znrc\nBdVqnQgWer24FYUnt2zl1miUBXfdLTsYC8mqS3Pdort25nLs01fnro+Ec1voJ2karF4NL78Ejp1r\nhV9gd9/EGEd9crTI+XmVbTEAACAASURBVA7f+zgtR6CvD5Ytz7XUt2yGr34t9yk6lTkOzsgIw0cO\n03n0GMf7++hPJHPnAQSCmkaJphJQVfyqik9RCKi538t0jaCm4ZJgHhPHs1n+NRxhdlERN9zzOVz1\n9We/k5iUpm5Qh0dyo0WGh3ObMZeshEWLx+axJ5polPCRwxw9eJBjPT20pdKo5A5znuZyUaPrVLl0\n/IpyQcPnxIVL2zZ/iMU5ljG4uqmRZZ+5Hq2mRrpDppiJEdRibNg2JBKYQ0MMdLTT3dFJV38fbckk\nWQdmuN3McLuY4XYT1FQJ5QLSZWR5LR6nzzRZXFrKnBkzqZ83D09NDRQV5Xaqi0lLgnocpbu62L3h\nT4z/K5xbQW49DrbjYNs2lm1jmiaZbJZ0Nks8myVsWcQtmzJdo9blot7losHlolLXJJgngGHTZG86\nw7GMQbeZxa/kupyKXC68LhduXcel66iqmvsa3QrK/W3f/xNfnL91aXERC+6864L7ZkWOBPWFeOpJ\nGBnJdxVCiLFUVgafvz/fVZyRBLUQQhQ46dgSQogCJ0EthBAFToJaCCEKnAS1EEIUOAlqIYQocBLU\nQghR4CSohRCiwElQCyFEgZOgFkKIAidBLYQQBW6KT74sxPjJGhbD3XH6uobp6x4gHI4Qj8dJpZJk\njDSmbeI4NqqiomsuSoqD1NTUsPTSeUybHUJRZZIskSNzfQgxRjIpk0PbOzmw7wjdPV0kzTCWngRH\nQbO8qLYH1XKj2m4UW0dxNBRHwVEcHMXE0lOYrjiWnsJvV7J61Wouv3kJultmnpvqJKiF+AQsy+bQ\n1i42vb2NvnA7pp7EZZTgMkrRs8VoWT+qc36n0bLUDBlfP6nAcXxOOTfddANLrpgxTs9ATAQS1EJc\ngHQiyzuv7GHHzq2ktEHcmXI8qUpcmSDKGO36sRWTVFEXaV8vc6tXcffD1+L2SW/lVCRBLcR5SEQy\nvP7CVvYe3o6ppvAm6vAmq8+71Xw+sq4oseAhSvUaHvqLeymtGKPT0YkJQ4JaiHOQiGR47fmt7D2y\nFUvJ4o/X40lVjlnr+WxsJUssdABdcfHgww9QNzN0UdYrCoMEtRAfIzacYsPzm9l/dCe2ksUXbzgR\n0Bd/RIaDTTx4GEc3+crDD1IrYT1lSFALcQa9x8K8tm4Tx3qbcXDwxevxpPMT0KdycIgHD+HoJl/9\n+oPUNElYTwUS1EKcYBoWe989xqaNWxgy2tFMH77ENFyZUN4D+lQnw1p1wTf/7UMEqwL5LkmMMwlq\nMeUNdEbZ+Op2Dh9tJqNH8KQq8SZr0c3CDUAHm2ioGZ+rmD/79w/iK3bnuyQxjqZ0UB8/NMLzP9h5\n2nVX3jeXpddM//Cyh0fQXRrVM0ouVnliHBkpk10bW9i6eTvDRgeq5cGbrMl1bzgT4wATWzGJlO+h\n0t/A1//3z6G5ZEaIi2noeJw//NNeHvz7y+g6OMzWdW0A2JbDQGeMh//HWga74rzzry2oqsKCK2pZ\neEUdqbjBn36xn6xhURzycs2D8896UJMMygQe/PvL8BXnhld91Jv9+X/YyQ1fWyRBPYEZaZOW3d1s\n27SbroFWTC2BN11FSXJxQbeeP4rq6JQML6Jf3cUzP9vAvd/+DIpSOF00k5njOGx6vhXbyrVzp88P\nMX1+bn/BpudamPepGtxenY1PHeGz316Kr9jFs/9jOzOWVrD9lXYaFpez7Np69r/TzZ43urjkhsaP\nXZ8ENaC7Vdze3EsR7k/yyj/vY6Q3QVGZh+seWsiBd7oBePXnzfhL3EybV5bPcsU5cByHRNigp22Y\nlv1ttHe0MxTvwdITuDNleNN1uNOhiza8brxotofikYUcZAuvPRPius+tzHdJE9aBd3to3zdINm2R\niBhc9cBc3nvh6GnLrLljJnWzgxx4t4eGhSGGjydOuz0ykKL7SIS775yFkTJxHIeiMg8AtbOC9LRG\nGOlNsnBtHQA1M0t57/nWs9YmQQ088XebUVDQXCrXP7yQOZdWMW9NDS//aA+Ht/Ry9Rfnc/C9Xq57\naAG1c4L5LlecwjJtIgMp+rtGON7eS1/fACMjQ8RTEQw1ga1l0LMB9GwJ/kw9rkwpChOja+NcubLF\nFEXn8O6eVwlVlrDiqjn5LmnCcmy47TvLOby1l0Obe7nr313yoWXS8Swt2/q49d8uZ9f6ztNu27+x\nmxU3NKAoCkbaHG0AAri8GtmMRcX0Itr3DhGqDdC+dwjTsM5alwQ1cMf/tuJE14dCKmbQeWCY7sNh\nsoaFlbVHu0M0XUWVGc3ywsxaDPckOH6sn672Hgb6BwhHR0hbUUwtBYqNavnQTR+a6cNlVuA1G9BM\n34RvNZ8LT7oCW8uw7k/PUxJ6kFlLavNd0oQUmpbrAisq85JOmDz3/R2n3b7mjpkc3NTD6ttnfigL\nbNuhY/8Qa+6YCYDbq2OkzdHbs2kLt09n5U2NvPnkIV58ZCfT5pXhLTr7jmAJasBf6iZQmts8eevJ\nQ2iaypX3z+UP/7SXk3taFSU3v4NpWDKb2ThLxQ362iMcO9TJ8a5uBocHSGTfn4lON/1oJ758ZgOa\n6c/NSFdAQ+jywZuow9YyPPm7x7mfL0hYX4BT30Eut8pNZ2hRv/boASL9KQCSUYPXHzvINV+cz9Dx\nOMUh72iAn5yXJT6SwVfsorslzIobG+g6NMLiT0+ndlYpuzd0Ur/g7F2pEtQfMGdVNW8+cYjn/ucO\nSiq8xIbSADQuqWDTc60Eq/3UL5CDDD4JK2uTiGZIhDMM9UcY6BlicGCI4ZEhovEwGWJYehrN9KKb\nRejZAP5sA7oZQLVlGNpHUVDwR2eQLDnGk797nHvSn2f+pfX5LmvSefDvLhu9/OjfvMs1X5wPQKQ/\nRXG597RlP33fXF756V5sy2HB5bUESj2EagOs/+V+VBVC04q46v65Z13nlB6eJz4Zx3EwUibphEkm\nmSURSxMLJ4hHE8TjSZKJJMlkilQqRSaTIp1JYVgZLDLYahZby6A4GqrlQbO8aKYPzfSjZwNopn9K\ndFmMBweHZHE7GV8fK+ddzU33r0HV5LWcyCSoxWlsyyYezhAbTjPUH2Z4YIRoJEY8niCVTJLOpMkY\nabK2gWUb2KqJo5rYShYUB8XWUR39xMT4Oqqto9oulBNfqu1CtVyothvVck+6HXuFxPAMESs9QrFS\nw9XXfpqla2eiSWBPSBLU48i2HeLD6Yu6zvf/mg6OnWv12raDbTlYWRsjnSWZSBOLxomG40SjMWLR\nGPF4jEQ6jmGnsNVMrrVra7mzktiuE2clcaHa+ik/T4TwaDBrU76fuNDYqnFiTus+3GYJNeX11E2r\no3paBcFQCb6AO7eTXFNQFAVFhZM9teM9JLs45JXTjZ0jCepx9NzP32Bf23sXd6Wj73vnxHcnd1lx\ncBQbcHKBeiJkVceFrnjR8eLRfHj0AD53AJ8ngMfrQndro//EYmJyHIfISIyBcA/RbD9ZJYGlpXBU\nExw118XkKKd8yJ74Oc7JsHz2Wm57aO34rmSSkKC+AE/83WaGuxNnX1AIMWGE6gI88J/X5LuMM5Kg\nFkKIAid7FoQQosBJUAshRIGToBZCiAInQS2EEAVOglqIi8xxHCzTRvbji3Mlc30IMc4c26GztZd9\ne5vp6Gwnk01j2xZF/hJqqmtZtnwp9bNq5OAP8ZFkeJ4Q48RxHLqP9fPahtfp6DtKeXENlSW1eN1+\nFEUlkY4yEh9gINpNTaiea665hhnzp8nBReJDJKiFGAdGxuT1P2xke/N71ATrmVG9AI/Le+ZlzQwd\nA0foGmxl4ezl3HT7dXj9MkugeJ8EtRBjbKB7mOeeeYFoMszihtWU+M/t1G2JdJTmjm24XR7uufdu\nqqeVj3OlYqKQoBZijDiOw96th3hlwzrKi6uZO20Zmnp+swPats3h7t0MxXq545a7mbtkxjhVKyYS\nCWohxoCRMVn/0hvsPriVedNXUFvW8Iker2uwlaN9+7n1xrtYvPLsE8uLyU2CWohPaKBnmBeefYlw\nfJhlTZcR8JaMyeP2jHRw+Pgubrn+Tpaunj8mjykmJhmeJ8QFsi2bbRv38Pq76ykvrmbNnOvQtLH7\nl6ota0BVFH7/pxfw+jzSDTKFSYtaiAvQf3yYP7z8Ct2DnSyoX0lVad24ratr8Cht/Qd54PMPUj+r\nZtzWIwqXBLUQ5yGVyPDmq++w68BWKoprmVO3FJc+/kPpWnubGYz28tWHv0KwvHjc1ycKiwS1EOcg\nmzHZunEXm7e/i6IozJ22nGDg4g2fcxyHve2bUTWFh772RTw+GWc9lUhQC/ExTMNi5+Zm3tv6Dmkj\nyayaxVQHp+fl6EHLttjW8jr1NU3c/cXbUOWQ8ylDglqIMzANi11bmnlv6yYSqSgzahZQF2pCVfI7\nj1naSLL58AauXH0ta6+/NK+1iItHglqIU2QzJjve28fW7e+RSMeYUT2futAMVLVwJpocjg+wt20T\n9975BWYv+mTjtcXEMCmDOjKYoPmddlbdOBe3VyedNNixvoUlVzZRHPJf0GMmImmyGZNgVdEYVysK\nQSqRYds7u9ixdxsZI0VT9XzqypoKKqBP1d5/mJ6RDr72tYcpLZf3ZD4komkObeniks/MBuDA5g5M\nw0JRFLwBN7NX1BHuj9O+vx9FgarGMmqayoiHUxzc3Ik3kNvP0LCgipLyj88lGUd9jg5u6aS6sUyC\nehJxHIfBnjCb39nKwaPNqIpKY9U8qoPT897FcTYNlXOIJId45qnn+fLXHkB3n9+h6uKTcRyHjv39\nOPb77VwjZbLs6pmnLdd+oJ95q6fj9rrY9VorldNLSUQyTJtTQe3M0Dmvb0oFtQPsf6+D6GCSoqCX\nOSun4fG5aNnZzeDxCIqiUNNURuOiavZtbMOybNJxA4/fRSaZpeNAP26vTlVDMN9PRVwgx3YYGYxx\nYO9hDh7cT+9IF6GiKuZNW06oqGrCTDGqKAoL6y9ly5EN/P65P3Hb52+YMLUXqv6OMCN9MSzTxkib\nzFxaS8eB/tOWOdn67e8IE6wqIhnNALl9GtmMyf5N7di2Q+PCaorLfBQFfZiGhcv9ftQmo2kS0TSD\nxyMUlfloWlR91r/dpA7qXa+1ggKc6N3pPDhANmNyyXWzaD/QT/v+PmYurUV3ayz99AyGumN0HRmk\ncVE1ALZps+zqmehujV2vH6W6MUjl9NI8PiNxvkzDIjwYpe1YJ50dnfT0dTMS6yfgLaE6WM/l82/E\n4/Llu8wLoms6y2ZczrYjr1P1RiWfuuaSfJc04TkOLLyskYGuCANdERavbfrQMlnDZPB4lIWXNdDd\nMgTkJtOqnVVO3cwQmVSWA+91sPzaWXgDbva/246qqVQ1BNF0lUCpl8r6UgKlXo7u6aWvPUxN08fP\nsDipg3rh5Q24PDpGKsvet9twHIdU3GDXG0exLQeXR0NRFcysRevuHlRVOW1TpqjMN9qPpJBrxchZ\nOAqX4zgkomm62npoP9ZOT283w9FBEukYAW8xwUAFNcF6Ftavwq178l3umAh4ilncsJrX332V8soQ\ncxY35bukCc1fkntfeHwuTMNi38a2025vWFBFf0eYhvmVp7WCdbdOTVMZiprrn9Z0FdOw6GkdYsV1\ns9FcGgc3dxIbThKqLUZ35bqqQjVFjPTGz1rXpA5qt9eF26ufdm46X8DNzGW1hPvj6G6NSH+C/vYw\ny6+ZyUBnhMhgcnR5VTuln1IBK2thmTaaXtj9l1OB4zhkUlmiw3Haj3XS1dVFX38Pw/FBNEWlNFBB\nMFDO/OkNFPuC5z3d6ERSXlLDzJpFPPfSv3K/9ws0zB6/w9mnElVTztiibtnZTTphALlZE1t3dVNe\nV0LP0WEWfKoBI5XFshxUXUXTVVRdRVUVXG4NM2tz4L0OZiypoSjoIzyQIBA88wklTjWpg/qDGuZX\ncfzIIPs3teP2upi1rBZfsQd/iYc9bx2jpDwAQCaZ/dB9y6qL6Dk2jK/YI33U48wybdIJg1g4ztDg\nCLFYjEQiSSqZIJlKkUgmSKbiJNIxMtk0Rb5SSv1lVJVOZ27dcrzuCxvZM5HVV8zCtAyefuZ3PHDf\nF6lrqsp3SZPWyVEeANtfPcKs5bkPxpG+OHveOoaiwOzltWiayvR5lTRvbENRFQKlXoJVAVwejWN7\nelFUJZcn9WfPk0k5PE9MDFbWIhnPMDQQpud4L339fQwNDRJLhElkYtiOjc/lx+3y4tY9uDQPLt2N\nx+XD6/Lh9xTj8wQKfoTGxeI4Dq29zfSOdHDbTXeyYMXss99JTAgS1GLMOI6DbTlkMyZGOksyniIa\niRGLJ0jE4yQTSZKpJIlEgkQqTjKdIJWJoygKAW8Jxb5SAt5SirwlBDzFuHSPjGS4AMeHjtHSs5cV\ni9Zw9Q1XyPkXJwEJagHkhq1lMyZGxiQRywVsIh4nkUiSTmcwjAymaWKaJpZtY1tW7rJlkTWzmGYW\nI5vBMDNkzdxPRVFx655ca1h349I9uDUPHpcPj8uHz+3H5ymaNDv2CkkkMczB4ztQFJWlC1ewdMUi\nQtWlMj/IBCVBPY56Ovo52HwkPyt3Tv5wci1d28G2LSzLwsyaGGYWI5MhY2TIGGkyRhrDTJPJpnEc\nG7fuzQWr7kbXXGiqjqZqKIqGqqi5L1VFVTQ0TUdTdVyaG5fuHg1nTZ1Su0AKjuM49I500D3cRjQ5\nQrE/SElRkKJAEV6vF5fLhaZpKIqKqii5oU0X0cIl86meLifwPRcS1Bdg52utpGKZfJchhBhDvmIP\nK66dle8yzkiCWgghCpzsLhdCiAInQS2EEAVOgloIIQqcBLUQQhQ4CWohhChwEtRCCFHgJKiFEKLA\nSVALIUSBk6AWQogCJ0EthBAFToJaCCEKnAS1EEIUOAlqIYQocBLUQghR4CSohRCiwMkpOIT4hGzb\nwkimMFJJzKyBbZqouo7u9uArKcHlllONiU9GglpMOal4jOOHD9J6YD+D/f1EYlEyGYOsaWE7zsmz\nmKEooCrKiS919HyDDmBZFpbtYDkOFgpoGo6qgariAIrjgGOjmCaaY+N3uwgFgzTMmMmCS1ZS1TgD\nRZUNWnFu5AwvYtKzTJOOA/vYteld2jraiZsOtseLmkmjZjMoRgbFzKLYFtg2vB/VoKqgKDhK7uco\n20axrdx9LAvFMnOXHQfFcXAUBRQVR9dxdDe224vt9WH5AjiqhsdIMbO+nrU33kzdnHn5eFnEBCJB\nLSYdI5Wk91grrc3NtBw5zEA4QtYbQM0k0eMRtEQMNZ3ItXrzwNZdmMVlmCUhHLeHoGJzzQ03snjt\nVSiKnCVcfJgEtZhQHMchNjTIcPdxejs7GBoYIBoJE0vESSZTpIwspqphe7woWQM9FUeNR9ETERTL\nynf5H2J5vJihGrLFZZTaBp+963PMXXVpvssSBWbCBnVn8x6e+ru/4c/++TcEgmW88Zufs/MPL3LV\nl77GW4/9ku/+9rnTlt/8/NPs+dMf+MaPfpGnisWFSIRHOLpnF4cPNNPT3UM0lcJ0eXB0d667wjRQ\nzWzuctZAyRqo2QxqJoVi2/ku/5zZupts1TTMolKm+d3c8/A3CVbX5LsscQbpeJxf/OW3KJ9eD8CK\nG29l7qfWAtDbcpiNv/sNn/vbvycVj/Hi9//b6P16W49w57//TzQuXX7e65wUOxO3vfQsO9a9wM3/\n5q+Yd9mVLLnmhnyXJM6T4zikE3GGujroOHKEoy2H6ekbIK1o2C43WjqBmkqgpRK4MqlcvzITso1x\nRqpp4Ok+hu71013TyI9+8A9csXIFV939eVRNy3d54hT9bUdZeOU1XP3lr592/a4/rmP3+t/jLS4G\nwFdUzH3/5XsAHNu1neY3N1xQSMMkCOr9b7/OW4/9kk9/8assWHs1+974E3/6lx/z3d8+R9eBfbzy\nkx9iGQah6Q2j9/nZv3mY6QsWc/xgM2Y2y81//lc0Ll3O1hefYcuLz+Bye/j0g1+ldvZc/uU73+De\n//hfaVi8jH/9b/+JorIQN/35X+bxGU8MsaFB2pr30NbaSn9fL/FEkkw2i+U4o/vqTnbHOg5YgKPp\n2G5PbqREOomajOFJxlDTSaZKz62WTuJrO4AZrOStPc3s3fO33PfwN6ieMSvfpU16+974E8d2bMVI\np0iMDHPd1/6cjb979LRlrrjvSwy0H6X7yEGe/C//J8GaWq796rdwe30EQiFu+6v/wPqf/ei0+zi2\nzcYnHuXu//B/XXBtEz6o33rsl3h8froPHYDbTr9tw89/Qu3seVz14MO8/Mj/d9ptsaFBPv+f/zsv\n/sN/Z9erLxMIBnnrsV9y73/6b1imyUv/8N/55j/+iukLFnFo09tUNs2ks3kP9/zN31/EZzdxJMIj\nHNq2mf179tDd109ac+HoOmomhZZJo2RPjqz4wKiKE99dlolimahGekJ1WYwHBXCFB9DiYaK1Tfz0\npz/j0oXzuP6BB9F0V77Lm9Rs2+aev/k7DrzzJvvffm20RXyqTCLOFfc+SOPS5Wx54V/Z/NxTXPnA\nQ8y59DIi/X0fWr59z06mL1hEIFh2wXVN+KBee9+XCNbU8fIPv8eRLe+edlu4t4dVt91NUaichsVL\naX5zw+htDYuXUVJZRfn0epKRMEPHOwF46Yf/LwDZTJrBzjYWX309b/72F1TPnEOgLET9oiUX78kV\nMMs06TrQzK4tmzh69BhxO9fPqidjqIko3mQs10+c70InMNXM4u08glkSYsthnQP/+W+5+8Ev07hw\ncb5Lm7QqGpoAKC6vIB2P87v/+69Pu/2K+75E/aKl6G43ALNWruHN3/78Yx9z3xt/Ys1dn/9EdU34\noF58zfUEgmXs+uNiXvvFP3HpHZ8bva1s2nSO7thKw5JltO/Zddr9Th5scHI4VFntNACu+fLX0Vwu\nOvbtJjStnuoZs9nwi3/i3acfY/HV10/Z4VOO4zDSc5zmrZs5tL+Z/pGTQ95S6PEInkQENZWQYB5j\nCuCKDqMnoiRrGvj1Y48zpzLE7V/52idqoYkzO/Xf2+XxnLFF/fv//38ye/VlzF1zBe17d521W6qn\n5TCVjTM+UV0TPqhPuuYr3+S3f/1d3n7816PXfeZr3+YPP/oHHv+P/57p8xcRHxn6yPtXNc3kyi98\nhbce+yXZTIZl19+Mv6QUgLmfuoLmN/7Ewk9fO+7Po1A4jkOkv4+DO7ZwuHk/PQMDZFxeALREFC0e\nIZBoKcghb5ORYpl4jx/F9BfTYlv84Hv/D5csmM91996Pxx/Id3lTyhX3fYlXfvIDdr7yEv7SMm78\n1r/9yGWT0Qgev/8Tr3PCDs+7WNKJOH/8yQ9JhEf4wn/9fr7LGVfRwQEObd/Kgb17csGse0BV0ZKx\nXDgnoidGW4h8cgAzWIFROQ0tm2HBzBlcffudhE5sFYrJR4L6LP752w+B43DLd/4Ppk+ivsHcgSMD\ntOzawaHmZrp6ekipLtC0U4I5hmKkJZgLlIOCWRoiW16Do6qUaQoLFy9m2WVrKZ9eP2W76SYjCepx\n5DgO9rh2DTgn1pP75uDg2DaObWOZJqZhkE2nSMXjRIYHGezrY6C3l8HBQUZicbIuN46mn9gBmAtn\n2QE48TiA7fVjllZgFpeCouIy0pSVFFFZUUl1bS3lVTWUhEJ4A0W4vF50txtV01A1DUVVUVBAUU7p\nox2/d4GiKqiqjA0/HxLU4+j5n/2EvS2t47gG5Qy/nrhOUXFUBdQTs7o5DoppoGUNdMvEbZv4NYWA\n14Pb65PW1yRhGgaxZIKE5ZBRdUxVx3Z5cFwuQDkx8ZSFYjuAc/JTng8fOzR+saA68O3v/iWhOumq\nOVcS1BfgV//uzxnq6sh3GUKIMVQ+vYGvfP8f813GGUlQCyFEgZOZy4UQosBJUAshRIGToBZCiAIn\nQS2EEAVOgloIIQqcBLUQQhQ4CWohhChwEtRCCFHgJKiFEKLASVALIUSBk6AWQogCJ0EthBAFToJa\nCCEK3KQ5Z6IQ58JxHIxEnFQ0SiwyQiwaJRGLk0wmSCWTpNIpDCNLNpvFtm10XcflclEeKqOqpo7G\nuXMpKq+U+bvFRSXTnIpJLxWNcGTvLg7u38/ASJiEYZK2bHRVwaWquE77qaCrKpoCCgq242A6DgnT\nIpE1MW2H6uIAixYsYPnaT+MJFOX76YkpQIJaTFrJSJh3Xn2F3YdbsByHSp+HMo9OQNfw6RrqBbSK\nk6bFQCrD8UQGTVFYOmcWV9x4M74TZ6wXYjxIUItJx7Ytdr6+gTc2b0FVFGaV+Al5XGPaXeE4DoNp\ng2PRFDYOqxYtYM11N+AtKh6zdQhxkgS1mFRigwO89NSTtA+NMDdYRLXPPa79yScDuzWaRFUULlm4\ngEuvvhZ/aXDc1immHglqMSk4jkPLzq28/Mf1uFWVBWVFeLSLN6jJcRz6UwbHYkksx2FmdRVLli1j\n+uw5+IOh8/6wcBwHI5kgGR5heKCf8MgIyXgcy7YBKCkpoay8gqr6BvzBMtm5OclN6qCO9Bxn3++f\n59IHvoLbHwCg7/ABWt99k8u/8md5rk6MFTOT4fUXnmHroRZmFPupL/LmLbgcxyGaNelOZBhMGziO\nQ6nXTbHPT3FxAJ/Xh8fjRXfpaLoOjoNt22QNg2QqSTKZIpZIkEilSZkmadPGpap4NBWXpqAqCo4D\nhmWTsixUFEJ+LzMbG7jksisoq5smoT3O2ra8S2ygDwAjEae4qoa5V18PQGygj47tm1l00+0ARHu7\nObblHRRFpXruAqrnLbygdU654XlVs+dRMWN2vssQY6Sv7SgvPvss4VSaFRUllLhdea1HURRK3S5K\n3S4cxyFt2UQNk7SZYXgwTda2MW0Hx3GwT9xHBdSTI08UBZ+uEgp48enqx+70dByHlGUzkslyoKWV\nLQcOUV9WypVXXU3joiUoqhwmMR6aVl8OgGVm2bfu+dHfe/bvpffgPnSPd3TZo+9tZMH1n8Xl9bH3\n5WcJNczA5fOdo/ap6wAAIABJREFU9zqnXFD3txyi9d03ueTuB9j+9G9Z/Nm7KK2tY/+r69DcLmZe\n9mmOvPEnIn3dFJVXMveqz+A4Dtuf+g0lNXWkomFW3fdlVFXL91OZ0tLxGG+te4kdR1qp8LpZUxVE\nUwurJakoCr4TI0zG6/H9uoZf15gW8JIyLTriaR577gWmv/E6191wA9PmLpAW9jnqO3yAkc52rGwW\nI5Vg1uVX0b7tvdOWaVy5hpKaOgC69+6mas680a11tz/AvGtvovWdNwAwDQMcZ3QIZ3F1LdH+Hsob\nZ553bVMuqE/ylpQSnFZPf8tB/MEywl0dLLr5drp2b8dIxrnkni/Ssf092rZtonHlpwAoqa5l7lWf\nkZDOo1Q0wrY3X2dH834s22ZJqJigJ7+t6ELh0zXmBQM0Fftoi6V49Kl/ZV5dDdfffgclldX5Lm9C\ncByHRTfdxkDrYfpbDrHklrs+crmhjqMsvfWe0evKm2aSjkVHf7eyBprbPfq75nJhZbMXVNeUDWqA\nmvmLOPL2a/hKg3iKiympqeP4nh0kI2F2Pfcktm3h9r6/mRKcVo9Hhl9ddFY2S9eh/ezavo0jXT0o\nCjQW+ajxe6S1eAYeTWVeMMD0gIcjg0P8809/xprFi7jspptxnbJZLj4sEAoB4AkUYWbS7F333Gm3\nn2xRh493UFpdh6p9dKNNc7mxssbo71Y2i35KcJ+PKRHUmXgMy8x9kpmZ9Oj1oYYZqLpO165tTF++\nCkVR8JaW4UvEmXXF1Yx0dZz2xv64P4oYW6lohLaD+zm4v5nO3n5ihkmlz828YICyMR4TPVkFXDrL\nK0oYTBls3rePPYcO8enLPsXiy9ai6lPiX/8CvP++0nQX82+56YxLjXR1UFoz7WMf6WQoZxJxXF4f\n0b5upi9dcUFVTYm/1p6Xnhm9fGpHv6KqVM9ZwPG9O6maMx+A+uUrSUfDNL/yIm5/gFlXXH2xy52S\nrGyWgc42Du3dy7H2dvqjcWwHKnxuGoq8hLxuNAnnC1LhcxPyltGVSLPujbfYvHUray69lIVrLkN3\ne/Jd3oSUjkRGM+PjzLzs0xzc8AqObVM9d8Fof/b5mtTD80ThchyH+OAArfv30XLkCN2DQ0QNk1K3\nTsjrosLrJqBr0nIeY6Zt0xVP0xlPE3DrzGlqZNklq6iaMQNNl77+QiVBLS4KK5slNthPR2sLbceO\n0d3Xx3Aqg1tVCXndlHtclHlcBTdyY7KyTxyg05fKMJzOUuzSqAyWUltTQ3VtLdXT6wmUBvEEimSY\nXwGQoJ7iHNvGSCZIx2OEhwaJhsPEYzEy6TSmZeE4Di5dx+V24/P58AcC+ANF+IqK8Hi9KKqGoio4\nto1tWaRTSRKxGNFwmEh4hJHhEYbDEaKpFPGsiUfTCHpcBN06IY8L7zgNXRPnzrQdIkaWcCZLLGuR\nOHGgjVdT8eoaRV4PJcXFBINByisqqKyqprSiEl9JCZpbduheDBLU4yw2NMiRPbvHeS3OaZccx8ax\nwbEtbMfBsixM08QwDIxMhnQ6TTKdJpXOkDIMMpZNxrLRVAW3quLWVHRVQUUBJdf6smwH03YwHZvs\nicsA6snpQHFwnNyuGF1V8WgKHi03hjigq/h1jRK3ji6tswnBPnGwTsq0TnzljoQ8edkBfHouyP0e\nDz6vF5/Xi8fjwe1x43K50TUNVdNQVTUX5gooinrK7rrxDXiXS2f+qjW4vBN/pIsE9QXY+cwTJMPD\n+S5DCDGG/MEQK+55IN9lnJEE9UVgmea4r+O0tsmprRfZLBV55DgOOLlD5k9ckftxEdatKMqkGVIr\nQS2EEAVOOgyFEKLASVALIUSBk6AWQogCJ0EthBAFToJaCCEKnAS1EEIUOAlqIYQocBLUQghR4CSo\nhRCiwElQCyFEgZOgFkKIAjclTsUlxIVwHAdrJEOia4SBzj6G+gcJRyIkUgkypoFlW0Bu8iu3puPS\nXbh1F7quoyoquq6jazpen5fSsiCVDdWUzKlE9cuZVMT5kUmZhDjBMW3iLYO072mls7OT3tgAw06c\ntGJQ4vgpcXwU2V78ePA4OtqJDVILBxMLU7FO/LSxcbCwsRSbDFkSSpqokqLE8dHgr2X5yuVMv3yO\nhLY4JxLUYkpzLIdIcy973tnBkd5j9Clhyuwiqp1SKq0SQk4RJY4PZQwmubewGVSjtGkDtGp9lDp+\nVs1axtLPrsZV4R+DZyMmKwlqMSXZySytG/axZec22u0+ptkhZprVTLNDuC9Cj6CNzTGtn716JxYW\nK2sXs/KWy/HVl477usXEI0EtphQrkeXguu2827yFCEkWWtOZa9bhJT9dEA4O3eoIe/R2wmqSJcWz\nWH3NZZQtn4YiJ/oVJ0hQiynBydoc/eMeXt/2NlEnyXKzidlWDWoBDXwaUmI0uzppVwdpUqtZtXwl\nM69bjBaQfuypToJaTGqO4zC4rZMNr6ynw+pnebaJ+VZdQQX0B6UwOKx3c0A7TgAvq5qWsPy2y6Qf\newqToBaTVro7yttPrmdH9BBzrFqWZ5suSv/zWLGx6VAH2e1qx8Tm8sYVrPjcWvQST75LExfZpA3q\ndGuYwZ/tpfZv16AVu/NdjriIzFiGvc+/x5stWyh2vKzJziHoBPJd1gVzcDiuDrPF1YJP8XDD2uto\nuHaB9GHnWeyd49hJk9LrGwFI7Rsk9lYXjuUQWF1D0ZpajO444RdbAdACLkL3zwdNYeSZI5iDKVSf\nTtm9c8/avTVxmhdCnIWVyHL4lV28vXcTSSfD6uxs6u3yMRlal08KCtPtcuoyZRzQjvPExue5dN8h\nrvrKzehBb77Lm3Icy2HkuSNkjkXwL68CwE6bRDd0UPlny1A0hejrnQBEfn+Msjtn46oJEPljG4kd\nfah+F4pLperby0juHiD2eifBW2d+7DqnVFBH1reT2jNAzb9bRXJ3P8NPHGL6966k/5/3oPl1soMp\n7JhB6a0zCVxSTWrfICMvtKJ6NfSQF9uwqfrW0nw/DXEKx3FIHh2h+a2d7GjbS5IMS81G5lq1Bd0P\nfSFUVBZZ9Uy3y3lzZD/tj/ycuz93D8FFNfkubVJIbOsjfWgYO2NhRw2Cd84i8sf205YpvbER97Qi\nfAvL8TSVYo6kATDao+gVPkaeOYwVNSi9sQmA0H3zRrfoHctB0RSM9ijeOWUAeOeVEXuj86y1Tamg\n/jjZgSQVDy0ivO4Y8beP419exfAzRwhcWkPRp2oZ/MU+VOlCKQh2MkvkUB9Hdh2itfMY7XY/IbuI\nBdZ0ZliVky6gP6jU8XNr5hK2uFr4xVOPcueam5hx8xIUZWJvORQCx3aofHgxyV39JHf2f2TDzLew\nnMS2vtHfraSJ0RWj+juX4BgWA/+yl+q/Wjka0qlDw2SOhim9oZGR51tQvBoAilvDNqyz1jX1gvpk\nj7x9+tWexlL0ch+u2gDmQBI7kcVJmfjml6GHvLgbijFHMhe93KnOcRysoTQDB7vpOHyMrt7jdGcG\niSkpqu1S6q0KVtiXUuRMrS4AFZVPZedSofXy9JaXua5ngJVfvgbFNbk/pMabqya3L0MLerCTJv3/\nvOe020tvbMTT9OGDklSfjnt6MapPB5+O6ndhx7NoxW4S23qJv9dDxUOLUHQV1avjZHLh7BgWqvfs\nMTzpg9ocSY++KIpLxUpksRJZMu3R0xf8wPtb9btQvDqpQyNoQS+Z9iia7G0fd3baJNk+QtfBdrra\nO+ke6aPfDmMpNlV2KdV2KZfb86iwi0fn2pjKZls1lNp+NnRspf8HA1z/zTtxSb/1mFBc6jl3dbqn\nFRF5+Sh2xgLHwU5mUQOu0ZZ55TeWoHpycetuKCZ9ZATfwnLSh4ZxNxSf9fEnfVAP/OPu0cv+ldVo\nJW76frAd7/zQx95P0RTK7plN+MVW0geH0YrcyJbl2HEcByuSId4xQu/RLnq7e+kbHmAgGyasJAg6\nfirtUurtEKvsGRSP0Xwbk1GlU8LtmVVsYB+PPfIL7vr8PZQuqM53WVOKVuym+Op6Bn6aa4GX3jQD\nRVUIv3wUrcTN4K/2AxBYWY3/kirSh0bo/8luFE0h9MD8sz7+pB2eNxZGXmjBVRPANz/E0OMH0UNe\nQvfNy3dZE4ptWFjhDMneCANdfQx09zM4PMhgcoQRJ05KMQg6AUJ2EeV2MeVOMeV2ETpavkufcCxs\ntrha6FAH+cycK1jy+ctQ3fI6TgYS1B8jvrmH6IYO7GQWV3WA0H3zcFVNraPDnKyNncpiJ02shEEq\nkiQZT5BJpEmn0mQzBtlsFsMwyBoGmaxBxjBIGWmS2TRJJ01cSWNgUuL4CDoBgrafMruIMidAieNH\nlZbymOpSh9joOkiNVsbaT11B4zULUFwS2BOZBPUU41g2TsbCTpnYSZNUOEF8KEJkKEIsGiUWi5FI\nJUlmUqSsDGkMMmTJKFkMLHRU3I6OGx2Xo6Oj4kJDR0N3NFxouB0dj+PC57jx4zkxh7Nbui4uIgOT\n/XoXzXonFU4Js6ubmDFvFpUzanCV+9H8uoT3BCJBPc7Ch/pY97sXsBn/l/nDf0oH+8T1tmNjOzYm\nNqZijYavA/gcNwHHg0/xEMCDDzc+PHhVNz7ceFQ3XtWNW9HRVC2341VRQEGGhBU4I5Oh3einze5j\nQImQVAz8jgcvLlzoaIqKqpwc0Hj633K8/7ZXXrGWpusWjes6JgsJ6gvQ+4PtmH3JfJchhBhDerWf\nmr9cme8yzkiCWgghCpwMRBVCiAInQS2EEAVu0h/wIsTFEo/H2bJlC8lkbv/FvHnzmDFjBrou/2bi\nk5E+aiE+oXg8zlNPPUVnZ+eHRt6oqkpTUxOf+cxnqKury1OFYqKToBbiE+jo6OA3v/kN2Wz2rMuW\nlJRw+eWXs3LlSlwuOQ+iOHcS1EJcoIMHD/K73/0OONMY9g9TFAXHcVBVlblz53LjjTdSVlY23mWK\nSUCCWogL0NbWxq9//Wvg3EL6TBRFYc6cOdxxxx0EAhP3VGFi/ElQC3GeBgYG+MlPfoLjOBcc0qdy\nuVx8+ctfpr6+fgyqE5ORBLUQ5yGdTvPDH/6QTCYzJiEN7x+qfdttt3HJJZeMyWOKyUXGUQtxjmzb\n5le/+hXpdHrMQhoYbZm/9NJL7Nu3b8weV0weEtRCnKOXX36Z3t7ecV3HM888w9GjR8d1HWLikaAW\n4hzs2bOHHTt2jOs6TrbSH3vsMSKRyLiuS0wsEtRCnEVfXx/PP//8RZnS1XEcbNvmX/7lX85pbLaY\nGiSohfgY8Xicn//852M2wuNcOI5DLBYbHaMthAS1EB/BMAx++tOfYhjGRQvpU7W0tLB58+aLvl5R\neCSohTiDdDrNP/7jPxKNRvNaxyuvvEJfX19eaxD5J0EtxAfEYjF+/OMfEw6H810KAL/+9a+lv3qK\nk6AW4hRHjhzhkUceIRaL5bsUINdfnUwmefrpp/NdisgjOTJRCHL90S+++CLNzc3Ahc/fMZ5uvfVW\nVq1ale8yRB7IjOZiSrNtm+3bt7N+/XoMw8h3OR9r3bp11NfXU11dne9SxEWW9xb1zp07eeGFFwiF\nQnznO9/BNE2+973vYZomDz30EDNmzMhneWKSsiyL7du38+abb5JIJEanIC1kiqLg9Xr57ne/i8fj\nyXc5U1Y6nebZZ58dne/l9ttvp6Kigi1btrBr1y5UVeWWW26htraWgYEBXnzxRQBmz57NVVddNfo4\n8XicH/3oR/z1X//1WddZEC1qRVEIh8NEIpGC2YEjJqfBwUHeeustDhw4QDabHT2IpdBDGnI1plIp\nfvnLX/KNb3wDTdPyXdKUtGXLFmbNmsWaNWtobW3ljTfe4JZbbmH79u1861vfIhqN8vTTT/ONb3yD\n9evXc9NNN1FXV8djjz1Gb28vNTU1AKxfvx7Lss5pnQUR1KqqUl1dTVtbG+FwmGnTptHe3s7w8DCv\nvPIKAwMDlJSUcNddd1FSUsIjjzzC8uXLOXjwII2NjZSVlbFr1y6ampq49957R/8R/X4/fX19XHbZ\nZRw+fJjh4WGuv/56VqxYwbZt23jttdfIZDI0NTVx//33s3HjRvbs2YNt29TW1nLw4EG+/OUvM3Pm\nTB599FGKi4u566678v1yifOUTCbZvHkzO3bs+NBOwokQ0B/U29vLk08+yRe+8IWLcrTkVLFz506O\nHDlCJpMhHo9zyy23sGHDhtOWufbaa1m9evXoh6RlWWiahs/n45vf/CaqqhKJRPD7/UBuStxp06YB\nuRZ1W1sbNTU1HD16FL/fP7rc2RREUAM0NjbS1tbGyMgIjY2NtLe3E4vFWLx4MUuXLuXxxx9nz549\nrF27FmA0uJ944gnWrl3L3XffzeOPP05/fz8AQ0ND3HnnnWzatIk333yThx9+mPfee4/33nuPFStW\nkMlkuP3223G73Tz66KOjk+1EIhG+/vWvU1paSiqVorm5mZqaGtra2vjSl76Ut9dHnJ9sNsvevXvZ\nvHkz/f39OI4zqULtyJEjPPvss9x9992T6nnlm23bfOlLX2Lv3r3s3r2br371qx+57MjICOvXr+e+\n++4DQNM0Nm7cyNtvv83NN98MnN4QcLvdxGIxTNPk7bff5v7772f//v3nVFdBBfUf/vAHEokEV155\nJZB7YocPH6atrQ3DMDBNc3T52bNnU1xcDMDcuXNHL59cprS0lLq6OkKhEKWlpUybNo1QKER3dzeQ\n627ZuHHjh+5XUlIyehLSFStW8Oqrr1JXV0dxcTFNTU3j/0KIC+I4DoODg+zfv5/9+/efFs4n/1km\nYuv54+zdu5dkMskXv/hFVFVG2o6FkztqS0pKRruZTnXttdfS2NhId3c3zz77LHfccQcVFRWjt69d\nu5bVq1fzq1/9ioaGhtM+RA3DwOv1snHjRlatWnVe+xkKJqgbGhqIRCJ4vV6qqqoAeOutt5g2bRqf\n/exnefLJJ09b/tQX4Ewtio+7PZVK8eqrr3LHHXfg9Xo5cODA6G2n9vstXLiQ3//+97z++uusWLFC\nWi4FwnEcwuEwnZ2dtLa2cvz4cUZGRkb7+yZzOH9Qa2srP/7xj/nKV74y2ugQY8Plcp2xRT0wMMBz\nzz3H/fffPxrSQ0NDbNiwgc9//vPouj6aIxUVFRw/fpy6ujpaWlq49tpreeWVVzh27BhbtmwhHo/z\nxBNP8MADD3xsLQUT1H6/n6qqKoLB4Oh1t9xyC+vWreOXv/wlwWBwzHY0er1eFi5cyLp166itrcXv\n95/xsd1uNwsXLmTXrl0sW7ZsTNYtzo9hGPT09HD06FG6uroYGBggHo9j2/boMh8csTHZw/mDhoaG\neOSRR7jrrrtYtGhRvsuZ9F5//XWy2SwvvfQSADU1Ndx8881UVFTws5/9DEVRWLZsGaFQiBtuuIGX\nXnoJ0zSZNWsWdXV1PPzww6OP9YMf/OCsIQ0FMDyvkKVSKV544QXi8Thf//rX813OpOQ4DoZhkEgk\niEaj9PX10d3dTX9/P8PDw6dNiDQRhtDly8nXZvr06dxzzz1ydvNJRoL6Y3z/+98H4J577pH+6XNg\nWRbZbJZMJoNhGCSTSWKxGCMjI0QiEWKxGPF4nFQqRSqVIpvNYlnWGcNXQvnCKYpCQ0MDV199NY2N\njdJ/PQlIUI8jwzDYvXv3aZvpF8sH+2hPzqds2zaWZWFZFqZpks1myWazGIYxusP2ZICapolt26d9\nnXyMU38/9evjTKQxyxPdyQ86TdMIBoOUl5dTXFyMz+fD7XajaRqKoox+nbzPxaxvyZIl+Hy+i7bO\niUyC+gL8+Mc/ZmBgIN9lCCHGUGVlJX/xF3+R7zLOSIJ6HJ0cnZCPFvWpTm0xKYqCqqqoqjq6d1rX\ndRnRMgWYpkk6ncayrNO2hvJBURTKysrkfXeOJKiFEKLAyV4GIYQocBLUQghR4CSohRCiwElQCyFE\ngZOgFkKIAidBLYQQBU6CWgghCpwEtRBCFLiCmeZUiMnAtm2SySS9vb0MDg4SiUTIZrPYtk0gEKCi\nooLGxkZKS0vlqDxxzuTIRCE+gZMnnG1paaG1tZXu7m4ikQiqqhIIBPB6vaMTIGUyGZLJJKlUisrK\nSpYvX84ll1yCrkt7SXw8CWohLkA8Hh897Vdvby+aplFRUUEoFCIYDH7saZYymQx9fX20tbXh9/u5\n9tprWbBggbSwxUeSoBbiHNm2zbFjx9i2bRttbW24XC5qamqorq4mEAhc0ON1dXXR0tLCkiVLuPHG\nG3G73eNQuZjoJKiFOItsNsvu3bv/F3v3HR7Xdd/5/33L9I5BB0gABMDeO9Wo3i1Lli1bihzHcn7J\nJrFTbMfxz+us43X82EnW62STrIsc99ixutWbJZGSKJGi2EESJIje6/R67z37B0hYtCSSogAOynk9\nzzwggDtzv4PhfObcc869hzfffJORkREqKiqorq6etDUKk8kk+/fvJxQK8dGPfhS32z0pjyvNHjKo\nJeldpNNp3njjDfbu3Us2m6Wmpoaqqqop6VM2DIN9+/ah6zp33nkngUBg0vchzVwyqCXpdyQSCV57\n7TUOHDiAoijU1dVRVlY25UtaWZbFgQMHEELw8Y9/HK/XO6X7k2YOGdSSdFIkEuHVV1+lqakJp9PJ\nggULCIfDF3SQz7KsiZb13XffLbtBJEAGtTTHCSEYHBxkx44dNDc34/P5WLBgQUFX8TZNk7179+Lx\neLjrrrvOOINEmhtkUEtzkmEYnDhxgt27d9PR0UE4HKaurg6/31/o0oDx+nbv3k1paSl33HGHnGs9\nx8mgluYEy7JIJpN0d3dz7NgxOjo6SCaTVFZWMn/+/Gm5GnYul2PXrl3U1tZy2223oWlaoUuSCmRG\nBfXg4CCtra04nU5Wr16NZVns3r0by7JYsmSJHCmfoyzLIp1OE4vFGBkZIZFIkEwmSafTpFIp4vE4\nyWSSeDyOruuEw2FKS0spLi6e8gHC9yubzbJr1y4aGhq45ZZbZFhPI6lUimPHjrF69WoAenp6GB0d\nRVEUampq8Pl8jI2N0dXVhaZplJSUUFpaSktLC9lsFoBMJkNpaSnz5s07475m5PFUNpuduM2gzxlp\nkgghiMViNDc3c+LECYaHh4nFYgghcDqdOBwObDYbdrsdu91OIBCgvLwcn883404ocTgcbNiwgV27\ndvHQQw/xwQ9+cMY9h9lICEFnZyeWZQHj4wpDQ0OsWrWKbDZLS0sLy5Yto729nWXLlmGz2Th69CjB\nYJCGhgZg/IipubmZysrKs+5vxgW1oii43W5isRjZbBav10s8HiebzXLgwAHS6TR2u536+nrsdjv7\n9u3D5/ORyWSorq6mq6sLu92Ow+Ggrq6OEydOEI/HcTgc1NbWYrPZOHDgAGvXrmVsbIy2tjZWr15N\nPB6ns7OTtWvXylN9CySfz3P48GH2799Pd3c3LpeL4uJiamtr8fv92O32WfnaOJ1ONm7cyJ49e/jl\nL3/JRz7yETkbZAoMDg4SiUQwTZN8Pk9dXR2dnZ2nbTNv3jz8fj9DQ0MEg0FSqRQAmqZht9uxLAvT\nNFEUBcMw0HV94oPV7XaTSCQoKioCoKuri+rq6nM6SppxQQ3g9/sngtrv9xOPx8nlcoTDYYqLi2lu\nbmZ4eHjik8rn89HQ0EA0GsUwDOrr6/F4PLS3t2MYBqtWrWJoaIhjx46xZs0aHA4H0WiUaDQKQCwW\nIxqNEgqFZmUQTHexWIxdu3bR1NREJpOhqqqKLVu2TMt+5anidDrZsGED+/fv54c//CG33XYbVVVV\nhS5r1hFCsGTJEoaHhxkaGmLZsmVv2yafzzMyMsLixYvp7e0FxrvfdF1n//79mKZJY2Mjuq5jmiaZ\nTAa73U4sFpu41IBhGKTT6XOeXTQjg9rn802E7Kkw1jSNsbExYrEYpmlOHJIAb7tITjAYRFEUUqkU\n4XAYh8NBcXEx3d3dZDIZioqKiEQixGIxSkpKiMViRCIRGhsbL/hznatM06Szs5Pdu3dz4sQJ3G43\ntbW1lJaWztkPS5vNxtq1azlx4gQ///nP2bp1Kxs3bpz2/ewzyakjFbvdjmEYNDU1nfb7efPmMTQ0\nRHV19Wn/DyORCJZlsWbNGgzD4PDhw6xYsYIFCxZw4sQJbDYbbrd7YvbOyMgI4XD4nOuakUHt9/vJ\n5XJomjbxh+3u7sbr9VJXV0dzc/Np27/1D6ooysT3brebSCRCaWkpw8PDaJqG0+kkFApx5MgRdF2n\nvLycQ4cOoarqtJm6NVuZpsnAwAAHDx6kpaWFSCRCRUUF69atm7Trasx0qqrS2NhIMBjkpZde4vjx\n49x8880Fnfc9W6mq+o4t6tbWVjKZDDDeum5tbZ0YmFYUBU3TEEIghCAajbJkyRIAjh49OnG2aSQS\nobq6+pxrmZFBres6LpcLp9M58bO6ujra2tpoamrC4XBMjKqeSW1tLSdOnGDfvn04nU4WLlyIruv4\nfD50Xcfv9098CgYCAdlymWRCCJLJJK2trbS0tNDd3U0sFiMcDlNRUcHq1avlLId3UVJSwkUXXcTR\no0e59957ufjii9m0aZOcb30BnJrlAbBnzx4WLFgAwNjYGIcOHUIIQWVlJZqmYbPZJhp6FRUVE69P\nJpN5TycyzajpedLMZlnWxKBsR0cHPT09jIyMYLPZCIfDlJSUUFRUJMP5PRoaGuLIkSMEAgGuvPJK\nGhoa5mz30Gwlg1qaVEIIcrkc2WyWsbExhoeHGRwcZHh4eGIMwel0EgwGKSoqIhQKzalBwalimibt\n7e10dHRQVVXFxRdfzIIFC+RR4Cwhg1oCxgP21CDsqa+n/p3P58nn82SzWXK5HOl0mnQ6TSaTmVha\nKpVKkclkJm7ZbHaii8rj8eD1evH7/TNyLvNMks1m6ejooLu7m0AgQH19PQ0NDZSXl+NyueTRygwl\ng3oKxeNxnnjiCQzDKHQpwHjXw6lBjlMhbJomhmFM/Putt1NhraoqqqqiaRqapqHrOrquY7PZTjux\nxOFwYLegP26gAAAgAElEQVTbcTqdOJ3Oif44eRh+YQkhMAyDwcFB+vv7J+YGu93uiddI1/WJwa9C\nvT6bN2+eOPlDOjMZ1Odh//79pNPpQpchSdIkcrlcrFq1qtBlvCMZ1JIkSdOcHGmQJEma5mRQS5Ik\nTXMyqCVJkqY5GdSSJEnTnAxqSZKkaU5eGECSJlE2O8jhIw/SfPQwhmGh6SqLFy9h6ZKP4HCUFLo8\naYaS0/MkaRKYZpadu77Njlf7MAw74eJObHoWw7AzPFyDbsty2WV1rF/3GVRVto+k90YGtSS9T5HI\nER56+NsM9IdYsGAX4eJO3nqynxAwPFRLa+sG6hZEue3Wv8PpLCtcwdKMI4Nakt6Hru7neOD+X6Pb\n0jQ27sBmy73rttmsm6NHtuL357nzzi/j8Zx5QVNJOkUGtSSdp8OHf8pjjx2guKSDmpo9nMslMwxD\n58jhK3G5LO6++0t4PDVTX6g048mglqT3SAjBnj3/xrPPdjN//n7KK46/p/ubpsbhw1fi9Qo+fvfX\ncTiKp6hSabaQQS1J74EQgh2vfYNtL8Wor99JcUnn2e/0DgzDxsED11JRkeOjH/0Wuu6Z5Eql2UTO\no5akcySEyQsvfJmXXoyzaNEr5x3SALqeZ9ny39Dd7eXJp/47QpiTWKk028iglqRzYJoZHn/ic+zc\nabJs2QsEQ33v+zHt9gxLl73AoYNOduz45iRUKc1WMqgl6SxyuVHuf+AvaTpkY8XKZ/H5hyftsd3u\nKIsWvcK2bXGOHPn5pD2uNLvImfeSdAax2DF+dd+3iEScrFz1FA7H5C8YEQz1MX/+AR57LEcoVEt5\n+SWTvg9pZpODiZL0Lrq6nuHBhx5FU3MsXLQdXZ/aJdVOtGwikw1yzyc/j9e7YEr3Jc0sMqgl6XdY\nlsGuXf+bF18cprS0jZravSjK1L9NhFBoOnTV+LS9j/8DdntoyvcpzQwyqCXpLaKxozz+2D/T0RGk\nofE1wuHuC7p/w7BxYP/11NbmuP32b6Oqjgu6f2l6kkEtSUA+H2PXrn/ntdcGsNtTNDTumJL+6HOR\nyXg4sP96Vq82uf76f0RRtILUIU0fMzKoe/se4MiRv8HlquGiLS9gWTm2bV+DZWVYu+Y/CYU2n/dj\np9Pd7HhtK+vXPUAgsGYSq5amo2SyjT17fsm+fV0kUx5qa/ZSXNJ+TqeDT21dQQ4dvIaLLrKzdetX\nUQpdkPQ2XV0/Jp+PsmDBXwDQ1v7vDA09g6Z5aWz4In7/SsYib9DS8g0AqqruorLiwxxv+Sax2AEA\nspk+AoE1LFv2v8+4rxk760NRNDKZHjKZPtKZbmDGfd5I58Gy8hhGHNNMYJgpLDOFYWbI59NYpoUQ\nJqqqo9vs2HQ3qmpHUWygKFhmhmw2yuBQG/397XR29jE06EPV8lRUtLN4SQuqahX6KQLg8URYvGQb\nO3ZsRde/zsUX/3cZ1tOEZRkcbf4ykchOystuBSCeOMrw8G9Yv+5BTDPJ/gN/xPp199HS8g1WLP93\nHI5SXt95I6Ul19HY8EUATDPNm3vupOHk92cyo4Pa61nMWGQnmXQXfv8qIpFdtLb9H3LNf8uWzc/R\nP/AYTU1/yVVXnqCt/d/p7PwhQuQoLbmBJUu+iWHEOHzkC4yNvYbDUcaSxd/E4Sif2Ec63U3T4c+S\nSBwlFNrC0iX/hM3mL+Cznv2EEGQyPYyMHKC3t4Xh4X6isTjJRI5MBvJ5DcOwY5p2TFPHNHWEUFEU\n6+RtfFDOssZPEVBVE0W1UADL0hBCweFI4nLFCQT6WbxkDx7PaMFb0O8kEBhk0eKX2b79Ukzzq1x2\n2f9AUeSpD1Olt+8BRoZfwjAT5HJDLFr4VU60nt7SrV/wWXy+5ZQUX00wuJ5MugeAVPIEoeAmVNWG\nqgYRwiCfj7Fu7X2oqk4uNwKAqjonHquz8z+oqPgQDkfpWWubsUENEAxuYGzsdTLpLoLBDUQiu951\n287Oe6mq+j1KSq4dfzGMGO3t/5d0upPNm56hp+eXRCK7KCu7ZeI+LS3fRNe9bNn8Gw4f/hydnd+n\nvv7zF+KpzRlCCGKxJlpattHefpyBgRSxmJ983onbHcXliuNwJnC6kvj8aWy2LLqeQ9PyaJqBpuUn\nAvp3WZaCZWkgVAQKqmqMB/c0DOV3Ewz2s3jJNl59dSvJ5F9z3XV/j6a5Cl3WrCUwWbP6x/T3P0p/\n/yOsW/uLd9yupORqevsemPje611EZ9cPMc0MudwwyWQLlpXGZvMzOvoqhw//NeHw1onxBiEshoaf\nY/26+86prhke1Bs5duyr5PKj1NT+CfDvJ39zshtE/PYwdvGir9PR+X26un5MKLQFSxgkUy34/atw\nOiupr/8cMN6KPiWRPE4m083OXTdgmmkE0+OweKazrBz9A9s5dPAlWlsHGRkJY7NlCASGCBUNMG/+\nCC5X7H0HqqoKVHVq5z5fCIHAIMtXPMeBA1cyOvaXfOi2v8Xtri50WbOS17MIAKezkrwR5c09d532\n+/oFnyUYXP+2+3k8DVRU3M7efZ/A612Iz7ccXQ8AUFR0MRdf/CrNx75CX/9DVFZ8mNHRlwkGN57z\nrJ4ZHtTryWT70HU/Xs9CAIrDW2nv+B75/BiR6JvAeF/Q8MgL1Mz/I9yeenbv/jAjwy/hcTcwPPIi\n6XQPXd0/Ipcbpn7Bb1vMHncdDkcJ9Qs+x8Dgk/i8SwvyPGcDw4jT3fMiTYd20No2RjRSjN8/RFG4\nk3nzX8fpTBa6xGnN44mwavWTHD2ylXvv/QY33XQFDQ0fLnRZs9BvWwea6nzXFvXvyuaGscwM69f9\niky2n6NHv4SmOXlzz12sXPFdbDY/uuaZaEOOjGwnFNp0zlXN6KC22YJ4PI24XPM49Qe220twOMp4\nfef1hMNXAKBpLryeRTQf+yqmmSIU2kRp6XUIcRXJ1Ale33kdTmcFSxZ/47THb2z8EocPf4E9e+/G\n7a6lskK+Mc6FaWbJZLoZGTlCZ2cTHR2dDA4qJJMBgsEhios7WLhwG7qeL3SpM4rdnmHFymfp7lrO\nffftZvGSl7n2mj/H660vdGlznt0WJpFs5o3dH0JVnSxe9D8BmDfvE+zb/weoih23p57y8vHBx1S6\nnYqK28/58Wfk9DzpwjDNFOl0F/FEN2NjvcTjIySTcTKZNLlsjrxhYBoWhmFiGCb5vEUup5DN2shk\nPFiWjsczhj8wSCDQTyAwMG1mVcx0yWSQ1hMbyRsOVq30cNFF98jAnsVkUM9xQghy+RFisWb6+o4w\n0N/J8MgY0UiWZMpOJu3DNG3YHSnstjS6LYdNz6NqOVTVRDs1QKea6FoeXc9ht6ewO1I4HMkZNXA3\n0wgBo6PVdHetIJ93UFOTYeWqDdTVXo3TWSWn880iMqinkGXliUb3wgUchLSEhbAsQGBZJqZpkM9n\nyefTpDMJUskYiUSEWCxGLJYkHjdJJj1kMj4cziRudxS3O4LLNT7jwumMY7NlZOBOY0JAPF7M0GA9\nw8PzUTWDUDBGUZGLoqIifL4gXm8Ip9OD3e5G02xouh1VUcfD/OSLq17AqX+q6sDvXy0/TM6RDOop\ndOjQD3jooS6EuNBzXwUgUJRTNwtVNdD1PJqWx+7I4nQYuN0mXp9CIGCnKOTD6SxC0zzyzTNDCSHI\n5UYZHu5nYCBLPK6QTNrJ5ezk8w5M03ZyLrk6Mc+8UJek1/Qsn7rnGioqrijI/mcaGdTn4fWd15NM\nvrcFTSVJmt48nkY2b3q60GW8IxnUkiRJ05w8H1WSJGmak0EtSZI0zcmgliRJmuZkUEuSJE1zMqgl\nSZKmORnUkiRJ05wMakmSpGluRl89T5JmIiEE6XQfAwMn6OvrIRqNkkikyGbzGIaFEAJNU3G57IRC\nAebNm09t7VocjqJCly4ViDzhRZIuACEEyWQ3+/Zt5/jxTvr7c9jtCsGghs+n4HKp2O0KmjZ+6Q3T\nhExGEI9bDAwYWBYsXVrM5Zd/CLe7/Ow7lGYVGdSSNIWEEIyONvPyy89w9GiUUEilttZGZaWGy3Vu\nPY9CCCIRi337ciQSFtdeu46lS2+Q12SZQ2RQS9IUSSb7eemlBzl4cITqap1ly+z4fOc/LCSEoKvL\nYNeuLNddt4zVqz8kw3qOkH3UkjTJLCvHvn2P89JLh/D7Na691o3f//7H7RVFYf58Gw6HwjPPNCEE\nrF177quESDOXDGpJmkTDw0d5+ulH6e/PsH69k+rqyX+LlZXpXHqpk+eea6K8vI7KyrWTvg9pepFd\nH5I0CUwzw65dD/Hyyy3Mn29j1So7NtvUdkscOpSlt9finnv+G05neEr3JRWWDGpJep8GBg7y1FNP\nMDqaY/NmJ6WlF+ZAVQjBiy+mqagIcPPNn5b91bOYPOFFks5TPh9n27Yf8+MfP4zHI7jxRs8FC2kY\n77PetMlJU9MYnZ2vXbD9SheebFFL0nskhElb2ys8++wr5PMWGzc6CYe1gtXT1JRlcFDwyU/+Bbru\nKVgd0tSRQS1J50gIi8HBg7z44nO0t6dYvtzOwoU2VLWwXQ6mKXjqqRSbNzewefOdBa1Fmhpy1ock\nnYVpZujqepPXX3+NtrYkdXV2PvABDw7H9OgT1jSF9esdvPLKcZYv78HrrSp0SdIkm1Yt6lSqi97e\n+09+p6BpbkpKrsDrXVjQuqS5xzAS9Pcf4ejRAxw71kc8blFfb2PRIts5n1F4oW3fnqa0NMBNN/2Z\nHFi8ACKRPZhmhnD4opPf7yMebwJUSkuvwuEoJZsdYmjoBQA0zUVZ2Y1Eo/tJJk8AYFlpVNVBdfXH\nzrivadmirqm5B1V1MDT0G4aGXpRBLU0py8qRTg/Q19dKT08nPT39DAxkyGYFlZU6S5bYqKrSC97F\ncTZr1jh45plR1q3bR0XFmkKXM2uNd4E9RybTjde7BBg/6orFDjJv3u+d/JB/nHnz7mJ4eBslJVfh\ncBQzMvIK8fhhQqF1hELrEELQ03M/JSVXnHWf0zKoFcWGprnQNBegEI0eYHT0VSwrh8tVTXn5Bxkb\n20UyeQJd95JO9+D3L6Gk5Cry+SgDA0+TzQ5gtxdRVnYjmUwfw8Pb0HUvNluQoqLNDAw8jWHE8Hga\nKS29GsvK0df3KNlsP6rqpKTkCjyeevr7nySVakNVbYRCmwkG5RtgJjPNNLFYJ93drfT39zI0NMrI\nSIZo1MLtVigq0igu1mhocBIMqtM+nN/K51NpaLDx7LPPcPfdS9E0R6FLmlFisSaSyVaEyGEYSUpK\nrmJk5NXTtgmHL8bhKMXrbcDlqiafjwKgaU7mzfs9FEXFMOInswvKym6YGOAVwkJRfns0lkgcweks\nw+EoOWtt0zKoOzt/ghAmiqJQUnIVhpGktPRaFMVGb+8D5HKDAOTzo5SUXIXL1cPIyMsUFV3C8PB2\nFEWlpuaTjI3tIp3uQVFULCtDOHwDDkcpfX2P4HSWU1R0G729DxGLNeF0Vpz8ELiRwcHniMUOYrMF\nSSaPU15+M6BiGLHC/mGk98w00wwPH6Ol5TBdXT3096dJJCyCQZVQSCMUUqmrGw/lqT5B5UJYvtzO\nE08k2bPnUTZs+Eihy5mBBJWVtxOPHyUeP0J19R3vuJXHU08s1nTazxRFZWxsF2Njb1BcPN5KPhXS\nyWQb6XTXRDcJQDR6iPLym86pqmkZ1FVVH0bTPGiaE0XRGBvbzdjYLjTNC4BlmQDoug+XqxIhDACE\nMMjlRvD5FqHrPkpKrgI4+QdVcLtrURSFXG6EXG6URKIFIfJkMn243TVkswMMDDyDaaZQVSd2ewmh\n0GaGh1/GsjL4fEsQQsj+v2lMCEEuN0Jr6x6OHWumoyNCImFRVqZTWqqxebOTUEhF02bna6jrChs3\nOnnppSMsXNhOIFBb6JJmFLu9GBjPFsvK0N1932m/D4cvxuV698HaUGgjgcAaenruw+WqxGYLEosd\nIhrdT0XFrSjKeOTmcqNomvOcp1NOy6DWNM/EEzDNDCMj2yktvRZVdZJMHgdOjX8qv/MV7PYiUqku\n/P7lDA+/jK57sdvDKIo6EbA2Wwi7vYhgcC2xWBMezwIikb0YRpyKilsZHHwOIUxyuWHy+VEqKm4h\nmx1kcPAZgsF12GyBC/fHkM7KsvJEo+20tOynpaWNrq40NptCVZXOunUOSkq0GdWF8X5VVOiUl+s8\n9th9fOxjn0bX3YUuaUZSFP1dW9S/K5cbY3T0VcrLb0ZRdBRlfF79qZZ5VdVHUFX7xPapVDsuV/U5\n1zItg/qtVNWB17uQoaHf4HCUoaquM3ZBFBdfxsDAM3R0/Ai7vYiios1kMn2nbVNaei2Dg8/S03Mf\nDkcZRUWbUBQbiUQzXV0/x+EowTDi2O0hFEWju/u/UBRVhnSBWVYew0iQyYwyPNxDf38v/f0D9PfH\nGRszCYc1qqp0rr56cq5WN5Nt2ODg2WdTPPfcT7j++j+aCA5patjtIWy2EF1dv0BRFHy+pdhsQbq7\n/wtd99Lb+wgAfv8y/P5l5PNjuFw15/z402p6njS3WVaWfD5GPD7IyEg/o6PDRCIRYrEkyWSGVMok\nlRJkswKPRyEQ0CgqUiku1igp0dD1udNqPhfJpMUzz6S45JI6Nm++E1Wd9u0y6V3IoJbelRAWlpVD\niDxCWLy9y0kghEAIEyEMTDNHNpskk0mSTqfIZtPkcllyuRyGYWBZJqZpYZompmmSzxvkcjnS6Syp\nVI5UyiSRsLCs8RkMXq+Kx6Pg8ai43Qpu9/hXp1OZU10Z78fIiMn27WkaG4PceOPvY7cHC12SdB5k\nUM9RQpgYRoJcLkokMsjo6ABjY2NEozESiRSpVI5s1iKfF5imwLLgrf9TFGX8eyHAssAwxrfRNLDZ\nlJO38cEtTVPQdVBVBVVl4nZqW7tdweUaD2KvV8HhUOSA7SRKpy1eeSVDPi9Ys6aWVasuwuOpQtOc\nhS5NOkcyqKdYV9ebNDXtuQB7+u3LeOolFUJgWQLLsiZasPm8QSZjkMmYpNOCdFrgcCgnW6/jLVi3\nezw47fbxwNX18YA9Fc5v9dvQHV+YVbZ0pychBL29JkeP5hgaMgkEVPx+G263HbvdjqZpaJr6Ox+Q\nU/tarly5kcrKVVO6j9lCBvV56Oz8CbncSKHLkCRpEtntYebP/0Shy3hHMqglSZKmubk9h0mSJGkG\nkEEtSZI0zcmgliRJmubkDHhJmkSGJXi4vYddzceIDA1S29jI3auWUeOWU+Gk8ycHEyVpknSns3z1\nsacpPt5Eb7CYEbef+uFeBLDp1g/xe421hS5RmqFkUEvSJHixb4j/euABFMPg+cXrSDhPXghJCFb0\ntrGqu4U1t98hw1o6LzKoJel9+sXxdnY98iDdwVJerV+GUN4+9LO8t5VV3Se49vd+n+uqywpQpTST\nyaCWpPNkCcE3du4j8uKz7K9u4EB1/Rm339LaRGkqzt/+4SepdsnVV6RzJ2d9SNJ5GM3l+fRjzxJ/\n4Wm2Na46a0gD7KxdgmLk+cojT5KzrAtQpTRbyBa1JL1H2/pH+Nkjv8YTH+OZpRuJuH3nfF9PNs3t\ne7fhuewavnLxuimsUppNZFBL0jnKWhb/8PpeottfoKuolB0LlmFo732G6/zRAS47vp9r7v6E7K+W\nzokMakk6B4cicb796BOEe9rZ1riajnD5+3q8i04cIpxN8bVP/QHlTvvZNpfmOBnUknQGQgi+33Sc\nQ888Sdzh4qXG1WTs738gULUsbt3/Mvl5dXzn9g+gy8vDSmcgg1qS3sVgNsdXnvoNgaZ97KpdwuGK\nmvGLck8SbybF7Xu347viWr68Ze2kPa40+8iglqTfYQrBT5vbeO3557Bn0zy/eN17GjB8L+aP9LP1\n+H4uuetuPlhTNSX7kGY+GdSSdFIkb3D/8XZef2M3Jd1tHKiuZ191A5Y6tbNYN7QfZV5kiE9/6h6W\n+j1Tui9pZpJBLc1Z7eksO3oGONTRwVB3N/bhQbzZNMdLq9lfXU/S4bowhQjBDYd3obrc/NPHP0aR\n3XZh9ivNGDKopTnDsAQ7RsZ47tARelpbKRrqQ7dMBn0h+v1FE7epbkG/E5uR57Z9L5Oqqeffbv8A\nTk2eiyb9lgxqaVaL5A1+0zvAjqajRNpbKRsdZNgbpD1cTmdRKRGXd1IHCN8PTybNh/ZtJ7t6A9++\n/gq0aVKXVHgyqKVZpzWZ4fFjrTQ1H0Xr7SKYStATKqG9qIyOovJJmV43VYoSUT5w8DUyazfzv67d\nik1O25OYI0FtCsHXTvTyyECEpGlyUcjLPy+ez5JXDvHdpTXcWhaa2Paf2vr49WCEVzYtKWDF0nsh\nhOBgLMkTR47RcrSZUH8XlqLSHi6no6iMvkC4IN0Z5yuciHLToddILl/HP95wJR5dK3RJ0lvEDZM/\nPdxBwjQRAr61eB71biff7Rzk0aEIphB8vLKYuyvDDGTz/NXRTpKmRcim8Z2ltThUhb882kl7OodH\nU/nO0hqCtjOf4TongvqRgTH+4mgnz61fhENVuH1fC7eWhvi3zsG3BXXOsjAEuGUf4bQmhODNSJzH\n9h+m63gzpUO9JBwu2sMVnCiuYMztmzZdGucjmIpz06HXGSut5HO3f5Blfm+hS5JO+uf2fny6xqeq\nS9g2GueXfSP8j/pK/rCpncfXNmIIweW7mnluw0L+urmbj5YXsbXIx339o6zxuWlLZ3l+JMY/LprH\nff2jHEtm+HJ95Rn3OSeW4vLqGllL8A9tfdxUEuS59YsI2XT+rXMQgK+09PDQwBiPrmnkgYHRiRb1\n+tea2BL0sjOSJGtZ/OuSGi4rmpr5tNK5yVuCXxxv5+WdOynubiPq8tJdXMnLa7YSP3Wx/lkg4vZx\n/5qtXHlsL9+99wfUXH4Vn1mzDMcMOjKYaf6rb4TnR2IkTYuBbJ5vLqzmG219p23zxboK7qkuwXay\nEZAXApuqUGq38fOVC1AVBUWMH8VrKByKp6lxJviXjgE2BTzcUV5Eo8fJlUV+AHoyOYrO0pqGORLU\nV4f9fGlBBf/RPcQTQ1FcqsK9y+sA+FnvCHtiKZ5Y10id++19l72ZPA+uaeAPD7Xxo55hGdQFYgrB\nfx5v56Vt2ykb7GG0fD4vr76UqGv2tjRzNjtPL93IooEu3M88wZ/s28/NV13BbTWVKDP4aGE6swT8\nclU9Dw+M8cDAGA+vaXzXbTvSWf5nSy8/WlGLrioUqTqmEHyuuZO7K8M4NZXWdIaVvnK+UFfO/9fU\nzgsjMa4M+9FVhXsOtrEzmuT+1We/RO6cCOoD8RSrfW72XbSMg4k0X2ju5ltt/QDsiSXJC0HOeuce\noEtDXuY57Sz0OBnOGReybInxi/M/1tXHr1/YRllPG8MVdfxmw9VkbXPkQkaKQnP5fNrD5azvbOaN\n//wJT9Q08tErt3JNRYkM7Em22Du+CHGlw8ZY3uS2vcdP+/0X6yrYFPSyP57i04c7+Pbi+dSfXLg4\nbVr8cVM7iz1OPlMzflXEgK6ztciPoihcXuSnKZHmyvB4a/qHK+roSGe5+0ArL59lTGxOBPWOsQTf\nau/nl6vqqXba8WoqrpN90F+ur+RgPM3fHu/hsXVv//Q8NUVKvh0urJRp8XBbF795dQdl3W3ES6t5\ncf2VpO1zczXvrM3Oq/Ur2F9Vz4aOZl748X9w/4LFfOLKrVxSWlTo8maNt77PXZrCw8vfngnHkxn+\n/EgnP1pRR8NbVpe/51AbV4f9fKq6ZOJnGwMeXh6Lc11xgD2xJNeGAzzYP0p/zuDP5pfi0TSUc0iX\nORHUn6ou4UQ6y+8fbCVpWqzxuflaYxXPjcQI23S+uKCCLa8f4aGBsUKXOqcZlmD70BjP7j/IyLEj\nFEdHiZXNY9u6Ky7cWYLTXMLp5sVFawikE2xoP8qj//F9frFoBX98xaWsCvkLXd6c8I9t/aRNi79u\n7gJgudfF1iI/r0cSZCyLx4ciAHxvaS1faajkr4528i8dAyz2OLmu2E/KsvjzI53cuuc4AvjHRdVn\n3eecmPUhTV8xw+T5nkFebTpMpO0EZWNDDPqLOF5SxYmSyvO6MP9cEk5E2dx2mGA6gbViLX906RaW\n+GbPoKo0Tga1dMFkLYuuTI5DwxEOdnbS1dmJ3t9LMBWnN1hCa3E5HUXlc6f/eRJVRIbZ2HEUTzaD\nsXg5N21Yx9UVxfLsxllCBvUFkrMsejL5gu1fTHwVCMZHt00hsBif8pYXgoxpks0bZPIGGSOPYZrk\nTRNLCExLYFoWlmWd/LlF3siTyxvk8nnyRh7DMDEMA9MwME1z/Gs+h5nLQTaLPZvCl0lhM01GPH76\nAmF6gsX0BsJYqjypYzJURIZZ0dtG9dggA0WleCqrqKmsorq4iMpgAK+u41QVNEVBVcb7ZJVz6iWd\nXHZVoUqubHPOZFBfIJ97+kXUvbsKXQbKychWBChCoCJQLQtVWGhCYCoqpjp+sxQFS1ERioJAQShM\n/MxSFExVG99O1bA0bfyrqiG0t/xM07FsdoTdDi4PqseLx+/Db9PRZWtvSphCMBCNk+/twj08iC8R\nwZdJ48pnMVQNQ9XGX9OTf35RgKFyQ9W48eO/zzWVpRd83zORDOrzsHXXUZqTmUKXIUnSJFrkcbJt\n4+JCl/GOZFBLkiRNc/J8VEmSpGlOBrUkSdI0J4NakiRpmpNBLUmSNM3JoJYkSZrmZFBLkiRNczKo\nJUmSpjl5xRtpzrGEIJE3iaQzDI5FGBwZJRKJYJgGqqJQW1PD8pp5BB22QpcqSYA84UWaA0xL0Doa\npamlhe6OThJjwxixGGY2jebyYPP50T0+FE1DWCaZ/l6EsFi0+WJu2rQe9zkslSRJU0kGtTQrCSHo\nT6R5/WATLUeaSA/04iguw1lWiS0UxuYLoLk9KO+wBqEQgtzwAKNvvIrudHHDB25hhbwmhVRAMqil\nWSVtmOw+0c7evXuJtrdgCxbhqW3EPb8O9T1ePlVYFrHD+4kfa2L55Vdz84bV2OTislIByKCWZoWs\naWekvKIAACAASURBVPHCwcPsf+VljHQKb/1CPAsWonve/2LE2aEBhne8iKesnJtvuIHG4tAkVCxJ\n504GtTTjHRsc4dePPkouGiGwch3u+QvesUvj/bDyeaIHdpPsOEH1yrVcf8kWKnyeSd2HJL0bGdTS\njGUJwTP7m3jz2afx1DUSWLEWRZvaBQhykVGiB3aTGxlm3qq1XLVlE9V+GdjS1JJBLc1IOdPiVy+9\nQvvu1wlvuRxXxdkXCJ3U/Y8OET20j+zwANUr13DNRZupDrz/bhZJeicyqKUZJ5rN8fPHniTS0UbJ\n5ddh8wcLVksuMkrs4B4yQ/1UrVjN1RdtYV7AiyJXr5EmkQxqaUbpGIty3wMPYpoGxZdcjeZwFrok\n4GRgN+0j099D8cIlXLJ5E0vLS9FUGdjS+yeDWpoRLCF46fAxXnv6SZyV1YTWbpn0AcPJkI9HiTc3\nkWpvwV1eyfK167hk6SI88qQZ6X2QQS1NeyPpDA8+9wIDRw5RtP5i3PPrCl3SWVn5HMn2FuLNTai6\nzuINm7h23WoZ2NJ5mbFBbQnB7uEYbfE0eSEodzm4tCyIQ3vnVtaPjveytTzEAp/rAlcqnS9LCF45\n1sorTz+J7vYQ2ngJuttb6LLeEyEE6Z4OogfeRHM4uOSqa9jSUIsq+7BnvMORBFnTYk3YD0BHIs3B\nsQSWgIUBN4sDHkYyeV4bigBQ6XawNuwnY5ps749gWAKPTePi0iD6WbrIZuzHe3siw9Foklvml6Ap\nCk93j3BwLMH6Yn+hS5MmwWg6y/3P/obBIwcJrtmEp65xRg7QKYqCu7oWV+V8Ei1HeOHB+zi8bCUf\nvuYqQs73dqakND1YQrBjMEp/Okv9yYZfzrTYNxrnxupiVBQOjMUBODAWZ13YT4XbwZNdw0R9Bs3R\nJNUeB0uDXo5FUxyJJlkROnMDZMYGtU1VMAXsGYlT43Fyy/wSHJrKj473ssDnojeVxa1rXFEewm//\n7dPMmhbb+8foT+cIO21cVhbCa9PYORSlJZbCqalcVBqkwu3g/rYBylx2BtI5TCG4rDxEpdtRwGc9\n+wkh2NPZy7OP/RrV7qT8hg+hu2f+PGVFVfEtXIarqobRndv57r33ctn1N8rW9TRyPJaiO5khbwlS\nhsmW0gB7RuKnbbM27CPssDPf46TMZSeRNwAYzOTw23ReHYiQMizWFo9P1Qw7bGQtC0sITCFQFYjk\nDBYG3ACUumy8ORyHs5zsOv1GY87RPI+TdWEfg+kc2wci/KptgK5kBhh/s98yvwQVeHMkdtr9DozG\nSRkmt9eW4tM13hyJ0ZXM0BxNcmN1MctDXl4eiHCqRyhpmNxQHcajaxyJJC/005xTcqbF/a/s5Mlf\n/hxPbQMll183K0L6rXSPl5IrbsDbsIQXHryP7z/yOO1j0UKXJZ1kCbi2KszKIi8nYmluqC4+7Vbm\ncqCrCvO9p882ypoWw5k8W0qDbK0IsWMgihACj66xYyDCQx2DBOw6PptOkcNGVzILQFcyi3EOvc8z\ntkU9nMlR7LTz0TovI9k8rw1G2Xfy06/K48Sja1S4HfSksqfdbyxnEM0bPNIxhCkELl2lyK5jCXiq\newSBIGcJkoYFjPcreW06AbtOxrQu+POcK/riSe579HESA72UXnED9qLiQpc0ZRRFwduwGGdlNdH9\nu/nZ975L+bJVbFy7mqUVpfLCTwVU5BiPRI+ukbUsnuoePu33a8M+ylxvP6q2ayrFThsOTcUBODSF\njGnxxnCMm+eV4LNp7BiM0hpPszLk5fWhKM/0jFDhsuM8h9d7xgZ1fzrHvtE411aG8do0bKoy3iGf\nhc5Ehkq3g4F0lsDvjLIH7DpJw+Si0gA9qSwOVcVr01AVhUvLg6QMk7GcgfPkoOSpg1J5cDo1LCHY\ndqSFHc88iT0Upvz6297zVe5mKt3tJbzlcvLRMWLNh3j0pz/m6VAR5bX1LF28iKVVFXhsU3tKvPTu\ndEXhhupzazAUO2zsyubJWxZCQNYUODQVu6Zi1xQURcGlq+RMi750lkUBD2UuO01jiXPqTp2xQb00\n6CGaM3i+dxRDWBQ77WwsDtCVHEQgeKRjEJ9NZ13x6af1riryEssZPNsziktXubg0SLnLzqKAm5f7\nI6DAqpD3rKOw0vvXOhLhqRdfYvTEMULrtuCpqS90SQVhC4Qo2ngpwbVbyPT3MNzTwdO/epNn7XZC\n82pZvGQJa+rrCDpsM3JAdS5w6Rori3w81T0CwLpiH6qisLkkwPO9o6gouHWNlWU+kobJ9v4xFAVC\ndhtbSgNnffwZOz3v3chpeNObJQTNgyPs2P0mvYf2466aT2DlejSXu9ClTStCCHKjw6S7O0h3t2Hl\ncgTm19GwaBGrGhso9zjlIOQcIoNamjJCCLKmxUg6S3v/AG3tHfS1t5Ee6sc9rxbf4hXYg0WFLnNG\nyMcipLraSXd3kI9FcFdUMa+unqULG2ksDePUZRfJbDbrglp6/4QQ5K3xQVXDssgLQd60yOXz5AyD\nXD5PPm+QN357y+ZyZDJZUukU6VSKZDxBJhEjn4hjJGJoHh+OcAnOynm4KqpR7XKa4/ky0ynSfd1k\nejrJDPSiuT0Eq+Yxv6aWxpr5VIb8eHVNdpPMIjKoL4Dm/iEOt7YVbP8CQAiEGA9hISxMy8I0DAzD\nIJ/Pk8tmyWez5LMZjFwWK5dD5HNY+TzCMBCmAaqGor3lpr7lq82GarOh2h1oTheay43m9qB7/eg+\nP6ouV/SeCsKyyI0MkenvITPYS25kGNXhwB4I4fL5cLk9OJwudJuOrmmoqjoe4CdDvBBRHgoGuXzp\nwgLseeaSQX0eHu4YJJIzCl2GJEmTKGjXua1mei5iLINakiRpmpMz6yVJkqY5GdSSJEnTnAxqSZKk\naU4GtSRJ0jQng1qSJGmak0EtSZI0zcmgliRJmuZkUEuSJE1zMqglSZKmORnUkiRJ05wMakmSpGlu\nxq7wIkkXkmUJ9naO8trBE7R1dpFKxDHyWVRVQ7c7CBaFqa+p5vKVC1hQ4i10udIsIy/KJEln0BdJ\n89PndtNytIkSc5iUsDFkeYkLO1lhQ8XCqRgE1QzFyvgq9RFbmMYly7hj6ypqi2VoS++fDGpJeged\nI0m+8/BLJLsOo2FxzCymzSgixZkW3hUElAw1WoR6bQQVQa6ojluuvIirllWjynU4pfMkg1qS3mIs\nmeNfHtrOWMseTFT25SvotgK890vsC0rVJEv0QarUKEO2ci69eAt3XLwYp1xZXHqPZFBLEmCYFj/6\nzQHe3LENt0izO19NpxVkMtZAcZNjqW2QRm2YUcVHzaJV3HX1OtktIp0zGdTSnPfK0T5+8tBTFOf6\nOGCUc8QoxZqCCVE6JvXaCEv0ITQs0r5qNq1bwy0bGwl5ztSlIs11MqilOat1MM7/uf85HENH6TX9\nvJGvJsOFWNtREFZSLNSHqdHGSAgHWtE8Lt6wmpvW1eNxyMlY0ulkUEtzTstAjB889jKZrkPk0NmZ\nm8eI8BSkFgVBhRpjgTbKfC3CmPDgr27g1ss3sbmhRK4kLgEyqKU5ojeS5sUD7ex4Yw/OWBcZdPaf\n90Dh1NCwmKdFaNSGKVaTDNvKWL9uPR/bupyAS67iPpdN+6D+6PdeY2fb6Gk/qwq6GEpkOfb3NxSo\nKqmQhBDE0gajqRzRdJ5oKkM8mSGZzpLKZElns8STKRKJFNFIhHQigt+IYldMOswQx4www8LDdAno\nd+JRsizUh1moDRMTTooXLOPj121mYXmg0KVJJ/3o1TYiqTx/dc1CAH7wciuPH+jDEoI7N87nzo3z\nOdQT5cuPHEJR4NKGYj577SLSOZPP/HIPsbRBqd/Bt+5YhUM/80ygaR/UmbyJaQn++GdvUuy18/Xb\nVvDQ3h6+9vhhGdSz3Egiy96OYQ61dNE3MEg8GiGfTqKZGRzkcSgGDkxUBHlUDFQMMf41J3Sy6CSE\nnajlZMjyMCZcTOdwficqFjXaGMv0QZzkyYcbuOvGy9jUUFbo0uYsw7T40sMH2dk2yq2rq/iraxbS\nF03zJz/fw0N/chGGJbjun7fzxJ9fwufv38/HN9eypT7MR767g3+4fSXbjw2Rypv86eUN/Mvzxwl7\n7dy9ueaM+5z2oxan5pyqqoKmqngcOk5dBQGf/dU+njs8wAdWV/Lfb1zChq8/z999YBl3bJjH///Q\nAVqHkvzl1Qu5897XuXPjfJ440MtNKyvI5C2ePzLALasq+fptK/jcffsZSmT56T0b+b8vtfCfr3fy\n6hev5MuPHOSRvb0oCnx8cw1fuH5xgf8as1sia7DtcA+v7z/CQE8X7twYPiVLRDiJCicxy0FCuEmL\nAGlhI4tOVmgYqMy0AD5XFiptZpg2M0yJmmDFcC8P//wH/CxQzydvvZp1dcWFLnHWuH93Fy82D5LI\nmgzGMvz9rcv5p2eaT9vm89ctYkVVgGuWlrOhtojusTQAJV4HP/qDDaiqgiIEpiVQFYUVVUGi6Rx5\n0yJnCnRV5Q8ursO0BEII+qJpGsvOPk1z2gf1u8mZFjevqmBNTYi/feQQn71mITcsr+Dxg33cvq6a\nZ5sG+JsbfhusK6oCLK3087ePHOJrty5nXU2ILz9yiC9c987hG03n+fnrnfzdB5bSWOZjb+cYedPC\npsnrWE2mzpEkT71xjIOHjyCifQSVFIOWl17Lz4BZy4hwIeS1wwAYsry8kGsgpKRYM9bLr378fX5V\nvZLP3XEVZQFXocubFUxL8NN7NvLrfT08tLeHX/3xlnfc7pqlZdy/u2vie11TCXnsmJbgiw8e5GMb\n5+G0aVQGnXzxoYP4nUdZXxNiftgNgKYqfOBfXyGazvOZqxrPWteMDWqbpnDl4jL2dI4B410kH1lf\nzd0/2MmzTf2kciY3rqjgYHcUgKuWlNI6NH4thmuXlk38O2uawHi/J4xffAcg4LLx1VuW8Z87O+gZ\nS3P10jIMUyBPKnt/hBAc7YvxxOuHONZ8FF9mCBXBiBWgw6xgwPJhymA+ozHh5oVcA6VqnM3dh/nq\nt4+x4bJr+MTly+Vp6u/TonI/AJVBF9FUno9+77XTfv/56xaxobboHe+byZt8+hd7WFjm408vbwDg\n608c4dd/djHzi9x86eGDPLq/l1tWVQLw2GcuYU/nGJ/91b53/UA4ZcYG9e9OWxICNtUVURl08ZVH\nm7huWRnet8xHfevmvzvjyWVX6YtmiGfy7O2MANAXTbO7Y4y/u2UZAHfdu5OPbpjHRfXyUPN8HB+I\n8cgrBzh+9Aih/BBZoTNkBnnDrJ+RfcfTwaDl47HsUpZqAwS2P8qn9x3ib37/A9TIMx7P21v/Fzpt\n2lkD9K3++GdvcuXiUj5xUe3Ez/wuGz6nDUVRKPY6iKXzfOelE1QGnXxwdRU+h865DBLO2KB+J4qi\ncPvaar79/DE+tLb6nO/3sQ3zeal5iOv/+WXW14YAKPc7KfU5+G8/exPTEty2por1Ne/8SSq9nRCC\n4wNxHttxiOajhwnmBskKnQEzxOvmImLCWegSZwWBQpNZTqcV5JJoO//0b99j9SVX88krV6LJ1vUF\n8+LRQXa2jZDJmzx5sA+Af71rDV+9ZRmf+skb2FSVsoCTP7uigVgmz+fu288vdnaiqQpfv3X5WR9/\n2s/6eC8SWYP/9UwzTx3qY8cXr5L/US+wnGGx68QQ2/Y00X6ihZAxTE5otJtFtJkhomJ296PqqsKy\nEjfVzjwtCZ2WsTSmdSHfXoIl2hCrbb2Muqr5oztukoONs8SsCuoPf2cHJ4YSfO3W5dy8srLQ5cxq\nmbxJ12iKI13DHG7tpLurm3xskGIlwZjlptsK0G6G5kTLWVUUrp3vpMFsJx3px+4OkEtFcYfn8US0\ngtZI9oLW4ybHRnsXJUqSbFE9H7nuUi5aWC4bLjPYrArq6cwwLYwL2Lo69aoKBJYASwgsS2BYgpxh\nkTMs0nmTVM4knsoSS6aJpdIkkmnSJ08ayWZz5PM5crk8Rj5PPpcln88i8hnsVhafkkVDMGq5GBEe\n+kwfA5aX3OzqUTujKp+DD5aMkRtppax+A6HKRjTdjpnP0tv8Gun4CK9aizkwlL7gtRUrSVbY+qlQ\nYwwpQYrK51Ezr4qFNZWUBz0EXDacNg27rqKpCqoCysle2gtx5rq83Ou5k0F9AcQzef7iH+7FZaWm\nfF+/fX+J036mIFAAFYGKQFMsdMZvCpBHJSc0DDTyQsVAw1Q0TNSTXzUMRcNUbJiqHVN3IuwedIcL\nj8M2J2cbzHOBv+8N7C4f1UsvQ3ec3rUjhKC/5Q1iA62MVFzEQPbCv9VMSxCNx3EkBggYo/hJ4Vey\nWChkhY6Binnyf8fp1Y2/nlNZcd3KzXz+9kumcA+zhwzq83Dtt7dxbCBR6DKkArq0ysXixJsU162i\npGblGS+e1Nv8OonRHp7OLqItkrmAVUrvxcIyL8/+1dZCl/GOZFBL0nvUMxTjZz/5EcU1K/5fe3ce\nHlWVp3H8e2tPUtkqGwESSCCyRDYXRMSddmnFHjeghajYqG239vQ8vYiKjm3z9Azd6sxot+MyAgKi\nuOACqOxgQNljWCJmIRBCyFbZqpLa750/Lou0AQImqST8Ps8T8qSq7jmHmzzvPffcc88lIS37jJ/X\nNI3yvRsIet3cl3MPCXJzijhLcmeBEGfB4wvy/gdLsDv6tCmkQZ822nfoVRhMFhYsWkyDu3MvLoru\nT4JaiLOw7utd+Fpc9B489qy2UwwG0odfj6rBovc/IRBUO6iFoieSoBaijeqavORv20DqoMtRDGc/\nY0ExGEkfPp7GmsOsyM3rgBaKnkqCWog20DSNL9Z+hTUylujEtHMux2gykzbsOvI3r6H4UG07tlD0\nZBLUQrRBeU0T+7/dRuqgtq/9cCpR8b2I7zOYL1au7uQ7F0V3JUEtxBlomsaa9V8Rk5iOzd4+670k\nZ4ykoeoge4or2qU80bNJUAtxBgePNFJevIvkARe3W5lGs5WE9Gw2bdx4fGldIU5FglqI09A0jTUb\ncolNycAa2b7PK0xMH0ZdZSkF+6vatVzR80hQC3EaxYecHNm/l+TMi9q9bJPFhqPvUHI3bkTuOxOn\nI0EtxCmomsaadV8S3+cCLBHRHVJHUr/hOA8XU3TI2SHli55BglqIU9hbcoTaw4Ud0ps+xmSNIC51\nILkbv5ZetTglCWohWhFSNTZs+JKE9AsxWTp2bY6kjBEcObCXQ9VNHVqP6L4kqIVoRf535TRUHySp\n/4gOr8sSEUNMUj/Wrt8kvWrRKglqIf5JMKSxMfdLkvqNwGiydEqdKQMuobxkF8UyVi1aIUEtxD/Z\nWXAQl/MwCelnfuhoe7FExhDfexCr166TedXiBySohfieQFDlq40bSMoYidFk7tS6kzMvwlmxn7x9\nZZ1ar+j6JKiF+J6NO/fR0lTb5rWm25PJYiNlwMWsW72CZm+w0+sXXZcEtRBHNXuDbNu0nl4XXIbB\nGJ4H9CakZ6OpKstWfyUXFsVxEtRCoN8qvvLL7QDE9RoYtnYoioG+F15N0a6v+ba0OmztEF1LeLoN\n5yB3bx21rsBJryVGm7kyu31WMxPnt11FFezdsYGMUTef9kG1ncFmd5DUfwSfLf2I3r+YRpzdGtb2\niNaVHGnBH1QZkmYHYH9lC2U1HlAURmZEExdlpt4dIL+0CcWg0CvOyqA+Uce3b2oJsrmwgRtGJp6x\nrm7Tox47JJ4JlyaRFGshLdHGhEuTGDskPtzNEj1AVX0zXyxdQq8BlxIZlxLu5gCQlDESg9nGex99\nRjAkj+3qSlRNY2dJIyWVLcdf8wdVDlR7uPpCB6OzYvmm1AXAN6VNjMyM4epsBy5PkHq33tnUNI09\nZS60Ns7w6TY9aqNBART0f8FkNKBpGvmlTZTVejEZFAb2jiQrNYpvD7k5Uu/DZjHgdAVIT7QxIiMG\nlyfItqJGPP4QKXFWDtV6uX1MCrl767BHmBiVGUPe/ibcniBXZjsorGimqKIZo0HhwvRo+ibawrwX\nRHsrq2rgg/c/ICImCUfa0HA35zhFUUgbdh3FX3/Ie8s2MPHWazAZw9vT7+kOVnuobPARDGl4Ayoj\nM6IpKHOf9JkhaXbi7WZS460kRFto8YUAsJgMXDPMgaIotPhCWEz678ofVImL0mcPOexmnC4/8XYz\nB2u8pMRZcbW07aJxtwnq1pRWeThU6+XKofH4Aypf7WsgLlLfKS5PkBEZ8ThdAfaWuRmaZmdPmRuT\nUeG64QnsPuA6bdlNLUH2lrkZNyQeVdPYUthIcpwFi6nbnISI09A0jW17D7Lms4+ISe5P6gVjwj7k\n8c9MZiuZl97K/m3LWBQMMHHC9dgsZ/+sRtF2mgZXDInnUK2HshrvKYdWUx02DlZ7TnrNoCgUHm6m\nsKKZ4f31RbxsZiN17gDxUSaqGv047GZ8AZXDTi9jB8dRXNHcpnZ166BubAkSG2k6fsSyWQw0NOun\nFhFWIwnRFtSjZ40hVcPtCdI30UaExUhKnJXDdb4flHnsRKTJox/pthY1HN++qSVIYkzn3KkmOk5T\ns5+PP19PWWEevQePJb73BeFu0ilZImIYMPpnlO5YzitvlHPlNdczcnAaZqN0GDpCbKQeiREWI4Gg\nj9y9dSe9PyTNftoMuKBPFJm9IsktqCMh2syozBh2HXRhNECU1YTFpLC3zMWQvvaz6hh066COiTRx\n2OmloTmAP6Di9avE283UNPppbRfYbUZqG/14kkNUNpwIaaNRP13xB1Ua3AHMRoVom95zGdYvGoNB\noabRT3REt95d5z1V09i2+wAb1nyO0Wwh6/I7O2z50vZktkWRdfmdOA8VsOKTd9mwJp5+AwZz0cgL\n6Z8af3RYULQ3o0Fp82QFtzdIQZmb0RfEYTTovWuAygYflw6MxWJS2FrUSGavCIqOtNDs1c/ovQGV\nvP1NjMqMOW353Tp5MpIjcHmC5BbUYzQoZPfTj3Y1jf5WP5/dL5pthY2s212Hw37irrMBvSLZUdLE\nl3vrsNtMBIIqsVFmso8Ol4RUjYzkCKxm6cV0V+XVTXy+ah1VZftIzRpDfJ9BXW6o43QUg5HEfsNw\n9B2Cy3mIw+Ul7PtmEzEJfbh0zFhGD8vEJL3ssLHbTNgjTKzfU4cCpCXaiLKZsNuCbPq2HoNBIT3R\nht1mOmmWx4qdNWcMaQBFO49m1ZdUtuALqGSkRFBU0UJFnZebLkoKd7NEB9E0jSO1zazftJXSb3cQ\nnZROr6zRmK2R4W5auwgF/dRXFFK9fyf2+BRuuOFGBvdP7lYHINE251VQO11+8vY30ewNYbMYuLBf\nNH0cMpOjp9A0/Wp9ldNNYckBSooKcR7Zj93Rm+TMi4iIOfN81e5IDQWpKf2G2rI9ZA27jJuvH0tM\npFxL6UnOq6AWXVswpOELqARCKsGQhqaBouhjhSajgtmof1c1/bOulgCV1U4qKquoqa6moa6WFpeT\ngNdNREwSMcn9iU3JwBJx5lPLnsDrruNwQS6hoJ9LL7+WS0deQHRE5y4sJTqGBHWYuD0B8vcd0OcD\nhdGxX7+maaiahqqqBINB/P4APp8Pr9eD1+MhEAgQCgVRFAWj0YTVasVmi8BqtWK1WTEaTRgUhWAo\nRDAQxONtwev14fN6CQb9x+sxGIwoij4fXkMjFAoRDAQI+L0E/V6Cfg+hoB81FDi+bwxGEwaTBaPJ\ngsFoRlNV1JCfgK8FkzUSm91x4ivagS0qHsVwfo7XappGY2UJVSU7UNUgiakZOBwJxMTGYjabMBn1\ni+SKooR9iGTwgDQSYjv26Tk9hQT1OVidX4vLEwp3M4QQ7Sg6wsj4EV1zeEyCOoy62gLxxzpY4e5p\niY6haZp+n0AX+bMzyLTCNpOgFqKjaBpN296lYMdGPF4/kVYTl9z+a4ypnffkGNEzSFAL0QGCh/LY\n+N5LbHWlMEgpIVZzcVjpRRPR/OySNHrf8sdwN1F0IxLUQrQnTaN23at8kFuAg3pu0NYTh34Xmgbs\nYTBfcA0P3TSc2DFTwttW0W106zsThehKtKZKdr7976ytiuM6vuEidp20lIECDGMfjUSzZEUj9w0Y\njSEpK1zNFd2I9KiF+LE0jcbNC1m2agPNqoV/4QuScZ7648BC5U7S7SpX/9scOE+nEoq2k78QIX4E\n1VnKVy9N57UVe0lTy/gF75w2pEHvWf9MW8EWVy+ati/unIaKbk161EKco+Zdy1jy8aeENI3btJU4\naDir7VcpV+E1O5jwxzfAJLd8i1OTHrUQ58C54f94fck6emuHuVd7/6xDGmCctpVv/ak4N87pgBaK\nnkSCWoiz5Nq5hIXrC7iKrVyvbcRwjneQRODlcnawfuNmCHjOvIE4b0lQC3EW/Pu/5u2l6xil7eFi\ndv3o8i4jj/3BFGo2vNkOrRM9lQS1EG2kNTtZ/s5rpFLFlWxplzItBBjDTnI3b4eAt13KFD2PBLUQ\nbaGq5L31BJWBaH6qrWn1UW/najTfUBJMoTZ3bjuWKnoSCWoh2qByxYusqY7nbpZiJtiuZVvxcxl5\nfPnVFvC3tGvZomeQoBbiDLzfreW9rYe5mXUkUt8hdVzGTkqDSRxZ/fcOKV90bxLUQpyGWneAj997\nmyxKuZDvOqweKwGuZjOrthehuWs6rB7RPUlQC3EKWuNhlr76LD5V4QZtQ4fXN4o9NKmRFH/6YofX\nJboXCWohWqHWFLH8ladwBiz8XPsYI2qH12lE5QY28EWRh8CBrR1en+g+5BZyIb5PVanfOIcl63Zg\nwcdEbSlW/J3ahCXKT4m0mrnpd6+D2dapdYuuSYJaCICWOpxb32Pz11+zx9ebq9jMGHa26zS8NjcF\nG//Lvdx1oY1+d/05DC0QXY0EtTh/eRtp2LGEPdu/oqDBTKMWzUXKHkZreUTTHNamFZLBMsYz/dbR\nxFwyMaxtEeHX9YN67i1wcOPJr/UbB9OWn1t5z8bCnW/CsLt+fNtE9+Sp5+BnL7FhTzmVWgJDTsah\n1QAADChJREFUlSKyte/oR/k5r9vREXIZzT4li/sfmI457aJwN0cc422E9+/X7ySNdOh5cmyIKuCB\nf1wG9y2F+H5Q8x0s/x0EfZA0CG57+cRTpM9C13/Cy9QPQA3B4ikQlQy3/hcYjOFuleiONI2Gr97i\nszW51KixXM0eprAPo9bxFwrPxTi2UkMCS+b9g7se+iPGlEHhbpIA2PUe9B0N1z4Ba/4M+e/AJdP0\n9758Hjzfm2u//Hfw079B8hD4+hVorgV70llX2fWD2hyhf1eMYDCB1Q55b8PKmRDTG+L7wxX/Ch89\nDA2HIGEgTJwPSRfAiqfgm7f1ba99Ai6drpf17afwxQywp8DP3wV7MnzyKHz3OTgy4PZXISUb1v0F\nNr8KIT8MvQ3ueD1su0H8OGp1IVsX/5UvnYmMpYxJbO+UmRw/xrEHDLynTmDJG7O58+En5NFdHSnv\nbShaAT43uKvglhf0IP6+62ZCr2FQ8Kn+s98NxqNridcUQv0B6DX86Hst4GmAbW9CdQFk335OIQ3d\nIahPxVOnB2ev4VC+DS57BC64Af7vJ7BvGdQNha2vwy9W6qcfxWvgovv1bc2R8ItV8PrVsOdDsERB\n6ZfwyCbYOR+W/RtM+1zvyd+zGJzF8Omj8JM/Q3RKWP/b4uxozv2UrpnDym8biAAe4N0Ou7uwIxhR\nuVtbxuLQbbz/6n9yx/2/lmGQjqSGIGcJ7P4A8t9tfYj1yC7YtxSKV+vDGNfN1F9f9bQe7kse1n/2\n1EP1XvjZ3yF5KLw1AfpfCcmDz7pZ3TeoFQMMHK/vKLMN9n4EJWv094I+qNkH0anQe5T+NWLyiW0H\nXK/3nKOSIeiFhjJoqYXXrwE1eHRtYAXUAKz+d7DFHS1XVjfrclQVXBVoTUcINFbR0lhLi6ueuqoK\nqmqdFLhiMBLiarYwlMKwzOL4sUyEmKx9wifqjcyf8wY/v2MCkcN+Gu5m9Uwp2fr3mD560M695eT3\nr5sJX/8drnsahk+E/MWw8mlIuwz6jYXYvic+GxEPEQ7oPVL/uf8VenCfV0FtMJ8YlF/9LKSOhMt/\nrR+10PSB+6YKKN+h94g3/bfei4aTB/M1DRKzIDIR7nwDKvLA59J36Kb/gZyPobZQPyXqQheazjua\nBi1OghW7qSnJp7L8AJXOBpxeA3VaLC7sgEYUHiLwEq80kqQ5uYNN9KayWwb09xlRuV37nLXKOF7/\ncDV378+jz4QZcr2m3X3vL8Uc2XqPOm/Bic5bdIp+cbF4NTQdhsKVULkbPngA7l8GMalQuUc/ABze\nqQ9/nIPuG9TfN3wyrP8POJAL9l56D/mao2PSC2/Xx5CumaGPb7fm4vuh4ht4dwpY7HDjLH2su984\neGcy9LtCPzA0lOlj4qLjhIJoVXtpOpiPs+IA9c5a6l3N1DcHqVVjqCMWB42kKLX00qoYSB3xNBCD\nC8v3V7XrgcdUBbhe20hvKlmUN56xpQ9y+RQZt+501zyhD4Vu+m/9zP62l8CReeL9ubfAv7yiX1+b\n8BIs+61+pp51gz6+fQ66/vQ80bNpGlpVAVX5qyj+roCD9UHKtRRMBEmknnilkTitAQeNJFJHAvXt\nvsxod1RPLEuVn+DDyi0X96P3DY/q11pEjyRBLX4cbxM0lOGrKaWh8gBNddW43W68Xh+qqqIYFGwW\nC7aICCKi7FgsNlQ1hKfZRW2tk4p6D6WhFGz4GKAcJEMrI40K7Mi6zGeiAd+QzVquIN1Uy7iLLyT1\nyhx9FpPoUSSoz3dqSL94GmjRpxr53Gg+F0GPC7/Hhb/Zha/FhbfFjafZTUtLM26PF7fHj8sPjWok\nDcQSwkgsTcTiwq60YMOLARUNA16s+pdmxY8ZAypW/CQq9aRo1WRQRhyucO+JbsuPia2MYjsjiFQ8\nDIkL0j8zk14DRmBOHghRSWCNAYOswdZdSVB3EuemhaxduyZsQ6fH6tU00FBQNQihENIMBDARwIwf\nC76j34+FqYUAVnxY8ROp+IhQ/EThwa54iTF6iDH4iTP5iDSqKCazPmf9VHdeadrRlhx9/xzu0BKn\npgZ8lLZEUhRM4aCaSi0ObHiJogUbfkxKCKMCChqKQlgvsGYmmLnkV3JfQltJUJ+Lf4yBmm/D3Qoh\nRHtKGgK/3hzuVrRKgloIIbo4GbQSQoguToJaCCG6OAlqIYTo4iSohRCii5OgFmHx8ssvs27durPa\npqmpibvvvvv4z5s2beKuu+5iypQpFBUVAeDz+fjLX/4CwKhRo8jJySEnJ4cJEyawaNGic2prYWEh\nM2bMOKdt21NOTg7Nzc3ccccdAMyePZvm5vA+iUZ0Dglq0S0UFRXx4IMP4nQ6j7/28ssvM2/ePGbP\nns2LL74IwOLFixk/fjwAGRkZLFiwgAULFvDhhx+ec1B3VTfffDMLFiwIdzNEJ+gZizKJbqukpIRn\nnnkGVVUZOXIkjz/+OJs2beKFF14gISGBI0eOsHjxYvx+Py+99BKPPPIIAC6Xi8jISOx2O3a7nerq\nagDWrFnD1KlTf1BPY2MjRqO+0lxeXh5//etf0TSNqVOncuutt/L++++zfPlyXC4XkyZNYuLEiTzz\nzDMUFRWRlJREZGQkTqeT3/72t4RCIQYOHMhzzz13vPwtW7bw5ptv4vV68fv9vPjii6SmpvL0009z\n8OBBoqOjmT17NqtWrWLJkiUAzJkzB4tFX3T+448/Zv78+QA8+eST9O/fnyeeeAKv18uQIUN48skn\nf/B/Gj58OH/729/45S9/2Y6/EdEVSVCLsHr++ef505/+xMCBA5kxYwbbt2/n1VdfZe7cuSiKcrx3\nnJ2dfdJ2brebqKiTFyHyeDz4/X4MR2+VLi0tJScnh6qqKuLj43n22WcBeOGFF3jllVeIiYnh/vvv\nZ/z48bjdbubOnUtjYyMPPvggQ4cOxev18s4777B8+XJyc3PJz89n0KBBPPnkkyxfvhy/3388aAFU\nVWX+/Pls3LiRefPmMXr0aBwOB7NmzWLVqlUsXLiQlJQUBg8ezMyZM09q+1tvvcXixYupr69n5cqV\nrFy5kvvuu49x48Yxa9YsduzY0er+M5lM1NXV4XA4ftTvQXRtEtQirGpqahg4cCAAI0aMoLS0FJ/P\nR2xsLKAPX7QmKiqKlpYTCzcZjUaampqIi4s7/tqxoY9Dhw7xyCOP0Levvqh7cXExv/nNbwCor6+n\npqYGg8HAH/7wB6KjowmFQpSXlzN4sL7A+7Bhw8jNzeWqq65i3759PPDAA2RmZnLjjTee1KaRI/UF\n4ocOHcrChQtJTExk7dq15OXlEQwGyc7OJiUlhfT09JO2czqdpKSkYLFYSElJIScnh+nTp7N7925e\ne+01mpubGTFiRKv7weFw0NjYKEHdw8kYtQirxMREiouLAcjPz6dPnz4YDAaamppobm7mwIEDrW4X\nExOD2+3G7XZTXl5OXFwcsbGxrV5cS0tL4+GHH2bWrFkAZGVl8dprrzF//nxuvvlmrFYrS5cu5fnn\nn2fy5MkEg0EyMzPZtWsXAPv27QNg+/btDB48mHnz5uHxeI6/f0xBQQEAu3fvJiMjg/T0dG677TYW\nLFjA448/zpgxYwCO9/iPiYuLo7KykkAgQF1dHTNnziQ9PZ0ZM2awYMEC7r333uMHjX/mcrmIj49v\ny64W3Zj0qEVY/f73v+fZZ58lEAhw8cUXM3bsWACmTZtGUlISNpsNk6n1P9NHH32UadOmoaoqzz33\nHDabDUVRUFX1B2F4bNbH9u3beeyxx5g+fToej4drr72WxMREHA4Hd999N7GxsZhMJrKyskhPT2fS\npEn07dsXs9lMVlYWjz32GHPmzMHhcDBs2MmLwFdVVZGTkwPoQzqJiYk89dRTTJ06lUAgwOzZs9m5\nc+cP/h9Go5Hp06czZcoUFEVhxowZ9O7dm6eeegq3201CQgI33XRTq/sgEAicdBYheiZZ60N0OYsW\nLWLixIn4fD5uv/12Vq5c2eZt33rrLQYNGnS899pZtmzZwvr163n88cc7rc5du3axefNmHnrooU6r\nU4SHDH2ILiciIoKJEycyefJkfvWrX53VtpMmTWL16tUd1LKu5bPPPuOee+4JdzNEJ5AetRBCdHHS\noxZCiC5OgloIIbo4CWohhOjiJKiFEKKLk6AWQoguToJaCCG6uP8HMF4sPidgck0AAAAASUVORK5C\nYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11e529208>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"g = hm.horizonplot(x='log10 nReads', **kwargs)\n", | |
"g.set_xlabels('log10(Reads per cell)')\n", | |
"for ax in g.axes.flatten():\n", | |
" if not ax.is_last_row():\n", | |
" ax.set(xticks=[])\n", | |
"g.savefig(f'{figure1_folder}/horizonplot_log10_reads_per_cell.pdf')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>tissue</th>\n", | |
" <th>n_cells</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>Aorta</td>\n", | |
" <td>364</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>Bladder</td>\n", | |
" <td>1287</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>Brain FACS microglia</td>\n", | |
" <td>4365</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>Brain FACS neurons</td>\n", | |
" <td>3000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>Brain Microglia</td>\n", | |
" <td>4365</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>Brain Neurons</td>\n", | |
" <td>3000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>Colon</td>\n", | |
" <td>3459</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>Diaphragm</td>\n", | |
" <td>870</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>Fat</td>\n", | |
" <td>4709</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>Heart</td>\n", | |
" <td>4585</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>Kidney</td>\n", | |
" <td>517</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>Liver</td>\n", | |
" <td>710</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td>Lung</td>\n", | |
" <td>1620</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>13</th>\n", | |
" <td>Mammary</td>\n", | |
" <td>2304</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>14</th>\n", | |
" <td>Mammary Gland</td>\n", | |
" <td>2304</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td>Marrow</td>\n", | |
" <td>4897</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>16</th>\n", | |
" <td>Muscle</td>\n", | |
" <td>1937</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>17</th>\n", | |
" <td>Pancreas</td>\n", | |
" <td>1327</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>18</th>\n", | |
" <td>Skin</td>\n", | |
" <td>2263</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>19</th>\n", | |
" <td>Spleen</td>\n", | |
" <td>1689</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>20</th>\n", | |
" <td>Thymus</td>\n", | |
" <td>1283</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>21</th>\n", | |
" <td>Tongue</td>\n", | |
" <td>1394</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>22</th>\n", | |
" <td>Trachea</td>\n", | |
" <td>846</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" tissue n_cells\n", | |
"0 Aorta 364\n", | |
"1 Bladder 1287\n", | |
"2 Brain FACS microglia 4365\n", | |
"3 Brain FACS neurons 3000\n", | |
"4 Brain Microglia 4365\n", | |
"5 Brain Neurons 3000\n", | |
"6 Colon 3459\n", | |
"7 Diaphragm 870\n", | |
"8 Fat 4709\n", | |
"9 Heart 4585\n", | |
"10 Kidney 517\n", | |
"11 Liver 710\n", | |
"12 Lung 1620\n", | |
"13 Mammary 2304\n", | |
"14 Mammary Gland 2304\n", | |
"15 Marrow 4897\n", | |
"16 Muscle 1937\n", | |
"17 Pancreas 1327\n", | |
"18 Skin 2263\n", | |
"19 Spleen 1689\n", | |
"20 Thymus 1283\n", | |
"21 Tongue 1394\n", | |
"22 Trachea 846" | |
] | |
}, | |
"execution_count": 20, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"n_cells_per_tissue = nreads_ngenes.groupby('tissue').size().reset_index()\n", | |
"n_cells_per_tissue = n_cells_per_tissue.rename(columns={0: 'n_cells'})\n", | |
"n_cells_per_tissue" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcYAAAE2CAYAAAD78DIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XlclXX6//EXIjuC4m6OaKa5QGKa\n6SiTpGaOmQ7qN5cxF0zDMnNcwD3UUDTNMsdxoVxitJkis7R+OuU+SdPJNE0DJ/ddlFiU7XB+f/j1\nfA+JaArnPhzez3+Ec+5zn+tzPcCLz+c+9/VxsVgsFkRERASACkYHICIi4khUGEVERGyoMIqIiNhQ\nYRQREbGhwigiImJDhVFERMRGRaMDKMtMJpPRIYiIyD1q1apVkY+rMN6nEesPlfp7mOY/X+rvUdIO\nHz5M06ZNjQ7DYSk/xVN+bk+5Kd7d5qe4iY2WUkVERGyoMNo4e/as0SGIiIjBnL4wpqWl0aFDh7u6\nHjh9+nQ7RCQiIo7M6a8xfvDBB4wZM4Z3332XFi1aMGPGDLy8vLh69SoxMTGMHz+eatWq8fTTT3P8\n+HH27dvHrl27SE9P58SJE4wcOZLWrVsbPQwREbETpy6MeXl5bNmyhQ8++IAvv/ySdevW0ahRI4YM\nGcKWLVv45JNPuHbtGlOmTMHLy4vAwEBatmyJ2WwmLy+P7du3s3fvXhVGEZFyxKmXUj///HMKCgqY\nOXMmZrOZJUuW4OLiAkCFChWwWCy4ubnh5eVlfU12djZvvfUWZrOZ5s2bo81HRETKF6eeMf7jH/9g\n+fLlVK9eHYvFQv/+/dm2bRvnz58nMzOTiRMnsm3bNuvxubm57NmzB09PT3bu3El6ejo+Pj4GjkBE\nROzNqQvj+++/b/3axcWF9evX33JMfHy89eu1a9cC0KlTp9IPTkREHJJTL6WKiIj8ViqMIiIiNpx6\nKdUeymK7NhERuT3NGEVERGyoMIqIiNjQUup92px00ugQHJQPx0o4N398vF6Jnk9EpCiaMYqIiNhQ\nYRQREbFRZgtjYmIiAwYMYPz48QwZMoSPPvrojrtjJCUlsXz58kKPRURElGaYIiJSxpTpa4wDBw6k\ne/fu/PDDDyxatIgHHniAY8eOsWTJEry8vMjJyWHevHksW7aMS5cucfHiRYKCgvjxxx+Jj48nICCA\njIwMzGYz8+fPJz8/n4yMDKKjo5k0aRLVqlWje/futGvXzuihioiInZTpwrhu3Tp27tzJ/v37GTp0\nKIcOHcLb25u+ffuSmprKwoULuX79OocOHeLtt99mx44d/PTTT8THx/Paa6/h4+PDkCFD2L17N0eP\nHqVJkyZkZWWxf//+QrtuiIhI+VGmC2P//v3p3r07OTk5tG3blh49erBp0yauXbtG586dqVy5Mi4u\nLtYdNSpWvDFcFxcXLBYLLi4uuLq6YrFYCA4OZsyYMfznP/8hICDgll03RESkfCjThTEhIYHt27eT\nk5PDqFGjOHXqFDVq1GDLli2kpaWRnZ3N9evXadGiBbGxsVy+fJkmTZowfPhwZs+ejb+/P7m5uXTo\n0IFNmzYRExNDamoqsbGxRg9NREQM4mLRhoP3zGQycSG/utFhlBvOdB/j4cOHadq0qdFhOCzl5/aU\nm+LdbX5MJhOtWrUq8rky+6lUERGR0qDCKCIiYqNMX2N0BM60vFeStNwjImWVZowiIiI2NGO8Tydn\nBhsdgkPyAdRe/faUn+IpP7dnz9zUm/6Dnd7JsWjGKCIiYkOFUURExIYKo4iIiI0SL4y/3vVi7969\nd3xNXFxcsc8vXryYZ5991vr9N998Q4sWLe7qtXcjOjqaS5culci5RESkbCuVD9/Y7nrxz3/+k7p1\n6zJ69GiCgoL405/+xPr166lYsSL+/v5ERUWRnJxMUlISK1asoFWrVhw5coSFCxfi6upqPWetWrXY\nv38/LVq04IsvviA4+MaHXpKTk8nLy2Pu3LlUqFCBzMxMRo0axSuvvEJQUBC9e/dm9erVVKpUicDA\nQIYMGUJMTAzu7u4cPXqUvn37Wt8jOTmZ3NxcZsyYgZeXFydPnmT+/PlUqVKlNNIkIiIOqFSWUtet\nW0dUVBQTJkzgqaeeAqB+/frMmjWLqlWr0qdPH9q2bcvXX39d6HVBQUFERkbi7e3NhQsXCj3Xu3dv\nNmzYwC+//IKnpyceHh7W55KSkggMDGTKlCkMHTqUvLw86/utXr2aGTNmMHPmTL777jt27NhBw4YN\nmTp1apHbSeXn59OrVy9CQ0MBSElJKen0iIiIAyuVwti/f3/i4uL45JNPrMuTlSpVAmDNmjX8/PPP\nNGvWrFBxA/D29gbAzc2NgoKCQs/VrFmTjIwMPvjgA3r27Fnouby8PCpUuDGUixcvcv36dev7FRQU\nWHfXcHFxKfT9zdfYSklJYd26dfj5+VG/fn3USlZEpHwplcKYkJDAhAkTmDBhQqFrgwC1a9dm3759\nJCQkkJOTg9lsvuvzduvWjV27dvHwww8XerxDhw4cOnSI2bNn8/nnn1uLIsCIESOYNWsWsbGxtG7d\nmo4dO3L48GHi4uL46quv8PT0LHQuX19fMjIy2Lp1K0ePHiUtLe0eMiAiImVVudtdIy0tjbfffhsP\nDw+ysrKYOHEivr6+93Quk8lE9U1DSjZAEREHURZv8C+J3TXKXeebypUrM336dKPDEBERB1XuCmNJ\nK4t/UdmDmogXT/kpnvJze8pN6dMN/iIiIjZUGEVERGxoKfU+Xf3XPKNDcEi1gKtnPjU6DIel/NzB\nAz2MjkDKMc0YRUREbKgwioiI2Ci1wlhazcTHjh1r/T4iIuK+4xQREbFVqtcYS6OZuNlsZu3atQwa\nNMj6WEJCAseOHSMjI4MBAwawc+dOQkNDCQkJISIigvj4eLp27Urr1q156aWXmDdvHgEBAXh4eBAV\nFUW3bt3o2bMnhw4dYuLEiezcuZPjx49z6dIlxo4dS2BgYGmmSUREHEipLqWWRjPxYcOGYTKZ2L9/\nPwBZWVmsX78eT09P/P392bNnT5Gx+Pv78/rrr5OQkMCIESOYPn06eXl5pKSkUKVKFV588UU6deqE\nyWTi9OnTeHt7Ex4eTvXq1UshMyIi4qhKdcbYv39/unfvTk5ODn369GHp0qWFmok3atSI1q1b/6Zm\n4gCzZs3i5ZdfJisrC4vFgr+/P+PHj+fs2bOkpKRw6NAh8vPzsVgspKenAxRqKn6zebiLiwsWiwUv\nLy/r++Xk5PD000/j4+PDRx99xMmTJ/nzn/9cOgkSERGHU6qFMSEhge3bt5OTk3PbZuI//fTTb24m\nXqlSJSZNmsRzzz2Hr68voaGhTJo0iatXr/Lqq68SEBDAokWLaNCggbXo3fTnP/+ZhQsXUqNGDby9\nvWncuPEt578Zl9lspmvXrvc2eBERKZPKXRPxkmQymXjw6pdGhyHidM4/0ENtz25DLeGKVxJNxHW7\nhoiIiA0VRhERERtqCXefqnSeaHQIDknLPcVTfop3/vBho0OQckwzRhERERuaMd6n9ovbGx2C4/qX\n0QE4OOWneAbnZ8/oou+JFuenGaOIiIgNFUYREREbKowiIiI2nPIaY35+PgsWLCAtLY2MjAwCAwOZ\nMGFCoWMSExPx8PCge/fuBkUpIiKOyCkL4/r163nwwQfp27cvAJ988gkbNmwgKSmJ3NxcwsPDrcfu\n2bOHxMRE3N3dadu2LbVq1Sp2dw8REXFuTrmUmpycTJs2bazf9+zZk40bNzJnzhzmzp3Lu+++a31u\n9erVxMXFMWfOHBITE4Hid/cQERHn5pSFsUmTJvz73/+2fr9ixQputoR1cXEpdGxBQcEtj91pdw8R\nEXFeTrmU2rdvX15//XX+8pe/4OLiQp06dXj22WeZOnUqAC+88AJnz54FYPDgwUyePBkfHx/r0quI\niJRfTlkY3dzceO211255/E9/+lORx4eGhhb6/vHHHwdg5syZJR6biIg4NqdcShUREblXTjljtCe1\njSqammQXT/kpnvIjRtKMUURExIYKo4iIiA0tpd6nVYf+anQIdjek+SijQxARKTWaMYqIiNhQYRQR\nEbHhUEupiYmJfPjhh9SpU4f8/Hwee+wxTp8+TVRU1B1fe/r0aZYvX657D0VE5L44VGEEGDhwoHXH\niylTpnDmzBkAZs2aBcDx48eZMmUKmzZt4sKFCwQGBuLm5kbnzp3Zt28fMTExnDlzhoULFzJ+/Hiq\nVatG165d2bx5M15eXpw8eZL58+eTnJzMBx98gJ+fH0eOHOGNN97g1Vdf5YknnuDHH38kKCiIU6dO\n0blzZzp37mxYPkRExL4ceim1efPmJCUlkZ+fT9euXXniiScICAhg//79APTq1YsXXniBffv2kZeX\nx0MPPcSMGTNo0aIFR44c4dq1a0yZMoVWrVrRq1cva4eblJQU1qxZw/z585k8eTL5+fkABAYGMnr0\naLy9venZsyeRkZHs3r3bsPGLiIj9OXRh/P7773n88ce5ePEiy5cvx93dncaNG1sbgt/8Nz8/nwoV\nKlCpUiXgRks4s9mMm5sbXl5epKSksG7dOvz8/Khfvz4Wi4Xc3FwAKlSoYG0i7uPjY329h4cHrq6u\naiIuIlLOONxSakJCAtu2bSM3N5dHH32U1NRUPD09KSgoYPv27Zw+fZpHH30UgLVr17JlyxY6dOhQ\n7J6Jvr6+ZGRksHXrVo4ePcpjjz3GoEGDmDx5Mv7+/rfsriEiIuWXi+XmtKuMWbx4MaGhoYSEhNzT\n6zds2MCPP/5IQUEBISEhPPPMM7/5HCaTiR88k+7p/cuyu7mPUS29iqf8FE/5uT3lpnh3mx+TyUSr\nVq2KfM7hZox3a/To0ff1+l69etGrV68SikZERJyFQ19jFBERsbcyO2N0FGqPJiLiXDRjFBERsaHC\nKCIiYkNLqfdpxx+eMDoEh3XR6AAcnPJTPOXn9pwlN0/s3GF0CEXSjFFERMSGCmMxzp49a3QIIiJi\nZ+V2KdV2Jw+AHj168MQThZdFp0+fzsqVK40IT0REDFJuCyMU3slj69atTJ48mezsbB555BEaN27M\n8ePH2bdvHy1btjQ4UhERsZdyXRjXrVvHrl27ABgyZAjh4eEcO3aMzz77jCFDhhAYGKiiKCJSzpTr\nwti/f3/rjPGVV17h6aefpkWLFnz66acGRyYiIkbRh2/+V40aNfjmm29ISEiwbmeVm5vLjh2O+XFi\nEREpHeV2xhgeHl7o+6lTp95yzNq1a+0VjoiIOAjNGEVERGyU2xljSXHUzg1G055xxVN+iqf83J5y\nU/o0YxQREbGhwigiImJDS6n3KePv7xsdgkOqC2TsMxkdhsNSfoqn/NxeWclNpQF/NjqEe6YZo4iI\niA0VxmKcO3fO6BBERMTOnLYwJiYmsmnTJuv30dHRXLp06a5ff+bMGZYuXVoaoYmIiAMrV9cYv/nm\nG/bt20dWVhZdunShQYMGLFmyBC8vL3Jycpg3bx79+vXjwQcfpEmTJhw8eJD//ve/NGzY0OjQRUTE\nTpy6MNo2CTeZTPznP/+hW7dueHp6smfPHpo3b07fvn1JTU1l4cKFABQUFBAbG8vp06c5evSoiqKI\nSDnj1IXRtkl4dHQ0JpOJv/zlL1y7do3t27ezadMmrl27RufOnalcuTIAlSpVAsDFxcWwuEVExDhO\nXRh/bdSoUUyYMIGcnBwGDhwIwJYtW0hLSyM7O5urV69aj/X39yc5OZkDBw7wyCOPGBWyiIjYmYvl\n5lYS8puZTCYa/3TY6DBERByOUfcx3m3LPJPJRKtWrYp8zmk/lSoiInIvVBhFRERslKtrjKWhLLc9\nKk3aAaB4yk/xlJ/bU25Kn2aMIiIiNlQYRUREbGgp9T69M+5To0Mo5OUFPYwOQUSkTNOMUURExIYK\no4iIiA2nKIy2O2l88MEHTJo0iZUrVxY6JiIiwojQRESkjHGaa4wWi4VFixbh5+fHSy+9xPLlyzl7\n9iwLFiygatWqnDp1CoBu3brRs2dPDh06xMSJEzl16hRbt27FbDYTHByM2WzG19eXZ555hjFjxjB3\n7ly8vLwMHp2IiNiLU8wYAVasWMF3331XqK/punXreOGFF5g8eTI1atQAoEqVKrz44ot06tQJk8nE\nsmXL8PHxwc/Pj71799KrVy82bdpESkoK9erVU1EUESlnnKYwDho0iL/+9a8sWrSIm+1fbXfIcHV1\nBbAWOjc3NwoKCjCbzURGRjJ27Fjatm2Lp6cnTZs2Ze7cuQwYMMD+AxEREUM5zVKql5cXvr6+zJ49\nm/79+/Pkk08yYMAAFi5cSJUqVbh8+XKRrxs5ciSTJk3C1dWVsLAwALp3786xY8eoXbu2PYcgIiIO\nwCkKY3h4uPXr+vXrs3v3buv38+bNK3RsfHw8gHWfRoDQ0FDr18nJybzxxhtERUWVVrgiIuLAnKIw\nlqTGjRuzfPlyo8MQERGDOM01RhERkZKgGeN9Ugs2ERHnohmjiIiIDc0Y79OezfuNDqFEtP9jC6ND\nEBFxCJoxioiI2FBhFBERsXHHpdTMzEzef/99UlNTadeuHQ899BD16tWzR2wiIiJ2d8cZY3R0NA89\n9BA//vgjVatWZeLEifaIq8TY7rwBEBcXZ2A0IiLi6O5YGNPT0+ncuTOurq60aNECNzc3e8RVapKT\nk3nvvfes3XFefvllMjIyiImJYfbs2UyfPp3c3Fz69evH5MmTOXLkiMERi4iIPd2xMAYGBvLmm29y\n9epVVq5cSd26de0RV6nq2bMnmzZt4tSpU9SpU4dPP/2UtLQ0PD09ycrKIjk5mYKCAmJjY2nSpInR\n4YqIiB3d8RrjrFmz+PLLL/H19aVevXpOseFvQEAAAH//+9/p3bs33377Le3bt6dPnz58+eWX1KxZ\nk0qVKhkcpYiIGOGOhfGdd96xfp2cnExycjIvv/xyqQZV0hISEti2bRsAZrMZgGeffZa33nqLqKgo\n6tSpw+TJkzl48CDZ2dl07NjRwGhFRMRIdyyMQUFBAFgsFlJSUjh16lSpB1WSwsPDC+2+cVO7du1o\n164dAJUqVWLx4sWFnr+5C4eIiJQvdyyMtrOnsLAwnn/++dKMR0RExFB3LIxxcXG4uLgAkJqaWuY/\nlVrS1EpNRMS53LEw3tzVHsDT05NmzZqVakAiIiJGuuPtGtnZ2WRmZpKamsrUqVP5+OOP7RGXiIiI\nIe7qU6krV67k1Vdf5cMPP2TYsGH07dvXHrGVCa//uY/RIUgJmfL+h0aHICIO4I4zRhcXF06ePEn1\n6tXJy8sjIyPDHnGJiIgY4o6FcfDgwSxfvpyXXnqJ9957j8jISHvEJSIiYog7LqWGhoYSHByMm5sb\nFSpUoHnz5vaIq8QkJibi4eFB9+7djQ5FRETKgDsWxldffZXIyEjWrl1LWFgY06ZNY9WqVXYIrXRE\nREQQHx/Ppk2byMnJ4cyZM1y5cgVfX18qVKjAK6+8QkxMDO7u7hw9epS+ffuqqIqIlCN3XErNzc0l\nODiY69ev06tXL65du2aPuOzqqaeeYty4cezfv5+kpCQaNmzI1KlTrZ1xRESk/LhjYaxRowbPP/88\nvXr1Ij4+ngYNGtgjrlJjsVgASEtLsz7m5eUFgKurK7m5udaGBhUq3DE9IiLiZO64lLpgwQIyMzPx\n9fXl8uXLVKtWzR5xlSjbJuK1a9dmxowZpKenExoaesuxHTp0YNq0acTFxfH9998zfPhwe4crIiIG\num1hnDFjBjExMTRt2rTQB24sFgsfffSRXYIrCbdrIl6U+Ph40tLSrDPIRo0a8fjjj5dmeCIi4mBu\nWxjDwsKIi4ujZs2aPPbYY9bHd+3aZZfAjFK5cmWmT59udBgiImKQ2xbGkJAQvL29OXPmDE8++SQW\niwUXFxcGDx5sz/hERETs6raFsXLlyrRp04Y2bdrYM54yR23Einb48GGaNm1qdBgiIr+ZPnYpIiJi\n446fSpXibVu9wugQHNb5b3YbHYJDK438hA1+ocTPKVLeaMYoIiJiQ4VRRETEhgqjiIiIDYctjImJ\nibRr147c3FwATp8+TbNmzbh06ZLBkYmIiDNz6A/fBAcH869//Ys//vGPJCYm0qZNGz766CPOnz/P\nxYsX6dGjBwEBAfztb38jJCSEo0eP0rRpU44cOcLw4cPZsWMHly5domLFily/fp369evz3XffsWDB\nAj755BNSUlIKnWfx4sU0a9aMY8eO8fbbb3PlyhXi4+N1w7+ISDnisDNGgK5du7J161bMZjOXL1+m\nVq1aPProo/zxj38kJCSEnTt3AjcK6JgxY7h69SojRoygX79+JCUlATd2zpg0aRKnT59m5MiRNGnS\nhJ9//pmgoKBbzhMSEsLkyZPp3bs3GzduJCEhgYEDBxo2fhERsT+HLoyenp5UrVqV9evX07FjRwCW\nLFlCZmYmwcHB1p0yfH19AfDw8KBixYq4uroWes7NzQ13d3cAKlasSEFBAQsXLrzlPH5+fgB06dKF\nXbt2ceHCBRo2bGjPIYuIiMEceikVoE+fPowePZovvviCLVu2ULFiRb7++mtyc3PJzMy85/MGBATc\n9jyurq4EBgaqgbiISDnkYrk5XRKrhIQEDh48yJw5c4o9zmQykX7wOztFJXJnznKDv1oK3p5yU7y7\nzY/JZKJVq1ZFPufwM0Yj6LqiiEj5pcJ4n5zlL/SSpr9qi6f8iDguh/7wjYiIiL2pMIqIiNjQUup9\nOvz6V0aH4LAOc87oEBya8lM85ef2yntumk55slTPrxmjiIiIDRVGERERG2W6MKrRuIiIlLQyf43x\nbhuN32wQnp6eTsWKFfn973/PDz/8QHZ2Nr/88gvjxo0jNjaWJUuWMGTIEEaOHImrqys//fQTgwYN\nMnqYIiJiJ2V6xgh332j8ZoNwgKFDh/Lwww+Tl5fHjBkziIiI4P3336dKlSpcuHABPz8//v3vf7Nt\n2za6dOli5PBERMTOynxhvNtG4zcbhN/8uqCggAoVbgz/5r9hYWG8+eab9OjRg7Nnz1oLrYiIlB9l\nvjDCjUbjq1at4oknngCwNhr/4osvbttovFGjRri6uhIbG8uaNWsYPHgwHTp0YNu2bbRt25YqVarw\n8MMP23MYIiLiANRE/D6YTCa8v/jF6DBERMqV4u5jLIkm4k4xYxQRESkpKowiIiI2yvztGkYr7dZE\nZZV2jyie8lM85ef2lJvSpxmjiIiIDRVGERERG1pKvU9p2w4aHYJDqg2knVdubqocFmR0CCJylzRj\nFBERsaHCKCIiYqPMF8aS2mEjKSmJ5cuXl0aIIiJShjjFNcaidtiIjo4mPj6eS5cusWDBAkaNGsXi\nxYvx8vLi4YcfpmfPnsydOxcPDw/c3NwICwsD4MiRI6xbtw4XFxfq1KnDiBEjDB6diIjYU5mfMULR\nO2z8WlpaGpmZmbRt25b27duzadMmwsLCmDZtGs8884z1uGXLluHt7Y2vry/fffcd+fn59hyKiIgY\nzCkKY1E7bAAUFBSQlpYGQNWqVRk3bhwAs2bNIi8vz7qrxpkzZzCbzQCYzWYGDBjA+PHjCQsLo2JF\np5hUi4jIXXKa//X79OnD6NGj+eKLL9iyZQstW7Zk3Lhx1tljdnY2CxYs4IEHHqBly5b06NGD2bNn\ns3PnTry8vKw7c4wcOZK5c+dSqVIlHnroISOHJCIiBtDuGvfBZDLRMN3D6DCkDPj1fYxq61U85ef2\nlJviaXcNERGREuY0S6lGUUeToumvWhEpqzRjFBERsaHCKCIiYkNLqffptddeMzqEckl5F5HSohmj\niIiIDRVGERERGyqMIiIiNhz+GmNiYiIffvghDzzwAPn5+TRo0IBXXnnF6LBERMRJOXxhBBg4cCDd\nu3cH4LnnnuPcuXN4eXlx8uRJ5s+fT1xcHLVq1SIzM5MGDRoUuXPG4sWLadasGR07drQ2HA8ODqZT\np07MmTMHHx8fLly4wNtvv83SpUu5du0a586dIyYmhsqVKxucARERsZcyURjXrVvH7t27MZvNDBw4\nkJo1a3Lt2jUSEhJISUkBIDw8nLp16zJ8+HAqVqxIWFgYnTp14uDBg2RlZRESEsL48eMZPHgwwcHB\nAOzdu5cuXbrQp08f0tPT+dvf/sbFixc5c+YMDRo0oGPHjnh7exs5dBERsbMyURj79+9vnTHu37+f\n9957j0GDBlG/fn1utnr18vKiQoUKuLi43LJzRqVKlfDz8wNu7J4RGRmJp6cniYmJJCUl8fXXXxMe\nHk6dOnWwWCz069cPNzc31q5dy/Xr1617NYqIiPMrE4XRlq+vLxkZGWzdupWjR4/y2GOP3XLM7XbO\ngBu7Z0yaNAlXV1fCwsKoXLky586dY/PmzZw/f560tDT+9a9/kZGRgdls5sEHH7Tn8ERExGDaXeM+\nmEwmPv30U6PDKJfK+g3+6iVbPOXn9pSb4ml3DRERkRJW5pZSHU1Zn7mUFv1VKyJllWaMIiIiNlQY\nRUREbGgp9T7t3bvX6BAclnJTvJLKT9u2bUvkPCJyg2aMIiIiNlQYRUREbJSbpdQrV64wZ84cPDw8\nyMrKYuDAgWzcuJGZM2cCcOnSJTZu3EhERITBkYqIiJHKTWE8fPgwDzzwAGPGjCEvL481a9YAsHPn\nTr788ksiIiI4ceIEiYmJ7N69mwcffJDz588ze/ZsgyMXERF7KjeFsX379mRmZhIbG0tOTg7BwcHs\n27eP5ORk1q1bx5kzZ6zHtmvXjr59+zJkyBDjAhYREUOUm8K4YcMGHnzwQaZMmUJ+fj4RERH87ne/\no0GDBuzYsYOHHnrIeuzNHTVcXV2NCldERAxSbgpju3bteP3113F3dycvL49nn32W/fv3M2bMGF54\n4QUmTJhgdIgiIuIAyk1hrFmzJm+//Xahx3r37g3A6tWrAQgKCir0fHx8vH2CExERh6HbNURERGyo\nMIqIiNgoN0uppUXtuIqm3TWKp/yIOC7NGEVERGxoxnif/vHPNkaH4LB+OGh0BPfvf/p+Y3QIImJn\nmjGKiIjYUGEUERGxocIoIiJiwymuMRa1c0br1q0LHRMREaEb9kVE5I6cojAWtXNGbGwszzzzDKdP\nn2bcuHHWY9955x3S0tL45Zc0R4WSAAAOJ0lEQVRfePnllzlz5gxbt27FbDYTHBxMvXr1WLFiBa1a\nteLIkSMsXLhQPVNFRMoRp1hKbd++PU2bNiU2NpbZs2fj7+9P06ZNGTZsGO3atWPLli0A/Pe//2X3\n7t14enri4+PDN998w7Jly/Dx8cHPz4+9e/cCN1rDRUZG4u3tzYULF4wcmoiI2JlTzBiL2jmjTp06\nAGRnZ+Pm5gZAQUEB9erVY/z48Rw5coTs7GzMZjORkZF4enqSmJgI/N/uGm5ubhQUFBgzKBERMYRT\nFMaids6Ij48nLi6OrKwsJk+ezMcff0yjRo3w8/Nj+vTpXLp0iddee42RI0cyadIkXF1dCQsLM3oo\nIiJiMKcojL/eOeP06dPs37+fqKgo62M3P3gzderUW14bGhpa6LHHH38cgJkzZ5ZWyCIi4qCc4hrj\nr9WtW1dFTURE7olTzBiNpJZhRVOTbBEpq5xyxigiInKvVBhFRERsaCn1Ph048DejQ3BYBw7sKNHz\nPfLIiyV6PhGRomjGKCIiYkOFUURExEaZXEpdsmQJx44dY+/evbRt25bPP/+c7du3U716daNDExGR\nMq5MFsaXXnoJuLFjxhtvvEHFihVZtGgRGRkZhIaGYjab8fX15ZlnnmHMmDGEh4ezatUqQkJCOHr0\nKE2bNuXIkSMMHz6cHTt2EBoaSkhICBERESxbtoypU6dSuXJlrl+/TkxMjMGjFRERe3KapdRhw4ax\naNEivvjiC3r16sWmTZtISUmhXr16eHp6EhwczJgxY7h69SojRoygX79+JCUl3XKe/Px8zp07R2Bg\nIH369DFgJCIiYiSnKYx+fn5UqHBjOJ6enjRt2pS5c+cyYMAAAHx9fQHw8PCgYsWKuLq6YrFYcHV1\nJT8/H4vFQnp6Ovn5+URFRREYGMi8efNITU01bEwiImJ/ZXIp9W50796dY8eOUbt2bU6ePHnb40JD\nQ1m0aBENGjTAy8sLNzc3li1bRrVq1ahbty5+fn52jFpERIzmYrFYLEYHUdKSk5N54403iIqKomHD\nhqX2PiaTCTe3/5Ta+aUwZ7qPUS3ziqf83J5yU7y7zY/JZKJVq1ZFPueUM8bGjRuzfPlyo8MQEZEy\nyGmuMYqIiJQEp5wx2pMzLe+VJC33iEhZpRmjiIiIDc0Y71OLD/+f0SE4rkO3/zRwadjfp6td309E\nnJNmjCIiIjZUGEVERGyoMIqIiNgos9cYf73DRsOGDYmMjDQ6LBERKePKbGH89Q4be/bsYdy4cbi7\nu9O2bVtq1arFihUraNWqFUeOHGHhwoWsXbuWn3/+mdzcXNzd3QkJCcHDw4Pu3bsTERFBfHw8CQkJ\nHDt2jIyMDAYMGECLFi0MHqmIiNiT0yylrl69mri4OObMmUNiYiIAQUFBREZG4u3tzYULF9i3bx8z\nZ87kueeeK/IcWVlZrF+/Hk9PT/z9/dmzZ489hyAiIg6gzM4Yf62goAAXF5dCj3l7ewPg5uZGRkYG\nN9vCurq6Wv/Ny8sDIC0tDYvFgr+/P+PHj+fs2bOkpKTYcQQiIuIInKYwDh48mMmTJ+Pj40Pfvn1v\ned7Hx4fmzZsze/Zsrl69SrVq1WjdujXTpk3j4MGD5Ofn4+vrS2hoKJMmTeLq1au8+uqrBoxERESM\nVOYLY3x8PHBj+6jQ0NBCzz3++OMAzJw5E4Dr16/j5uaGp6cnvXv35oEHHuDdd98t9JqRI0faIWoR\nEXFUZb4w/haaAYqIyJ2Uq8JYGtSGrGhqIi4iZZXTfCpVRESkJKgwioiI2NBS6n1af+i/RodgN/2a\nNzQ6BBGRUqcZo4iIiA0VRhERERtlbin1fpqHL168mNDQUEJCQko5ShERKavKXGH8dfPw6Ohopk6d\nyu9//3tMJhMAx48fZ8qUKeTl5bFq1SrMZjPt27cHYNWqVXh4eFC3bl1GjRrF/Pnzyc/PJyMjg+jo\naDZv3kxKSgoXL16kR48edOvWzbCxioiI/ZW5wliUoUOHEhgYSLVq1cjOziY9PZ39+/eze/duXnvt\nNXx9ffnxxx85efIk4eHh/OEPf2DYsGHs3r2bo0eP0qRJE7Kysti/fz9BQUE0atSI77//np07d6ow\nioiUM05xjdHPz4+LFy+yfPly3N3dady4MRaLhby8PGtj8RMnTliPBXBxccFisRAcHMz48eMJDw/n\nd7/7HQsXLiQzM5Pg4GBr03ERESk/nGLGCODp6UlBQQHbt2/n9OnTPProowwfPtzaJ/XXfVQBOnTo\nwKZNm4iJiSE1NZXY2FgCAgL4+uuvyc3NJTMz097DEBERg7lYNC26ZyaTiRTPykaHYTe/5T5GtYQr\nnvJTPOXn9pSb4t1tfkwmE61atSryOadYShURESkpKowiIiI2nOYao1HUJk1ExLnoGuN9uHnfpIiI\nlD23u8aowigiImJD1xhFRERsqDCKiIjYUGEUERGxocIoIiJiQ7dr3IMLFy4wd+5c/P39adSoEQMH\nDjQ6JEOcOHGCMWPGsGHDBlauXMmZM2fIyMhg8uTJ5OXl3ZKjXx8TEBBg9BBKxXfffceaNWvw9vam\nTp06XLt2zdpicObMmfz8888sX74cT09PwsLC6NKlC/PmzSt0jLu7u9HDKDXHjx9nwYIFVKtWjeDg\nYK5cuaKfnSKMGzeOJ598knPnzik//+vs2bNERkbStGlTqlevjtlsLp3fLYv8ZosWLbKYTCaLxWKx\nDB8+3JKbm2twRPZ38eJFy/z58y39+vWzZGdnW0aOHGmxWCyWr7/+2rJ06dJbcpSRkXHLMc5q27Zt\nloyMDIvFYrEMHTrUMm3aNIvFYrF8+OGHlo0bN1omTJhgOX/+vPX5kydP3nKMMztw4IDl5MmTltzc\nXMvQoUP1s1OEd9991zJt2jTLZ599pvzY+Pjjjy3Dhg2zREVFWVatWlVqv1taSr0Hly9fpnbt2sCN\n3ToyMjIMjsj+qlevzvjx4/H29iYtLc36F2qtWrW4ePHiLTlKT0+/5Rhn1bFjR3x8fFi6dCmPPvoo\nNWvWBP5v3FeuXLE+5uLiwqVLl245xpkFBwfj7u7OyJEjadOmjX52fuWrr76iUqVKhISEUFBQoPzY\neOSRR5gzZw6xsbF8+eWXpfa7pcJ4D2rXrs358+cB+OWXX6xbWZVXVatWJS0tDYDz589To0aNW3JU\no0aNW45xVpmZmUyZMoWQkBB69+7NhQsXgP8bd82aNa2/oBaLhdq1a99yjDM7fPgw7u7uvPvuuxw6\ndIirV68C+tm5aePGjRw4cICPP/6Yf/zjH1y5cgVQfuDGz05eXh4VKlTAYrFw+vRpoOR/t3SD/z24\ndOkSc+fOxcfHh6CgIP7nf/7H6JAMExERQXx8PKtXr+bYsWOkp6cTExNDdnb2LTn69TGVKlUyOvxS\nMWnSJE6cOEGdOnVwdXWlZs2aXLt2jczMTGbNmsWJEydYunQpbm5udO3albCwMBYuXFjoGDc3N6OH\nUWoOHDjAypUrqVy5Mj4+PtSqVUs/O0VITEzEw8ODy5cvKz//6+DBg6xYsYKAgAAaN27MuXPnSuV3\nS4VRRETEhpZSRUREbKgwioiI2FBhFBERsaHCKCIiYkOFUcSBJSYmFuqslJSURFxc3D2dKzw8vKTC\nAmDz5s306tWLb7/99je9Ljo6muTkZAYNGkRWVlaJxiRSElQYRRzc0aNH+eSTT4wO4xa7du1izpw5\ntG7d2uhQREqUeqWKOLjnn3+e+Ph4OnXqZH0sKSmJ7du3ExUVxbZt2zh48CBt2rQhPj4es9mMxWKh\nbdu2fPXVV7Rs2ZKoqCjy8vJ49dVXOXPmDJGRkTz55JOsX7+eDRs24OrqyrRp0/D19eXll1/G09OT\nqVOnEhQUBMC3337L/PnzAejWrRtBQUHs3LmT5ORk1qxZg4+PDwC7d+/mzTffpKCggBdffJE//OEP\nREVFcfXqVWrVqsWcOXNuGV9cXBwHDhzAYrEQFxfH7373OztkVeT2VBhFHJy/vz+DBg1i8eLFPPnk\nk8UeazabiY+PJyoqiipVqrBu3Tp69uwJQG5uLtHR0fj5+TFo0CBCQkLYvHkzf//730lNTWXq1KlM\nmzaNgoIC1q9fX+i8b7zxBkuXLqVKlSoMGzaMzp07ExoayrBhw6xFEeCvf/0r8fHxuLu7895773H+\n/Hnat2/Pc889x6pVq9i8efMtMe/Zs4e1a9dy9uzZctleURyPCqNIGdCnTx8GDhxIvXr1bnnOtkdH\no0aNAAgICKBevXq4uLhQseKNX/Pq1atTq1YtANzc3Dh16hTHjx9n8ODBwI3CCRT5Hvn5+dZ+nM2b\nN+fkyZNFxpmXl0flypUBeOmll5gxYwY//PADn332GTk5OXTp0uWW10RFRREdHU1BQQFjx469u4SI\nlCJdYxQpA1xcXJg8eTLvvPMOAB4eHqSmpgKQkpJS6LjbuXTpEpcvXyYzMxOz2UydOnVo1qwZa9eu\n5a233uKpp54CoEKFW/9bcHV15cqVK1gsFg4cOECdOnVuG2d6ejq5ubmMHTuWevXqMXz4cNauXcuo\nUaNo2bJloeMtFgt79+5l6dKlDB8+nDVr1vy2xIiUAs0YRcqIoKAg64yrefPmpKamMmjQIOrVq2ed\nCRanSpUqxMTEcO7cOcaOHUv16tVp164dAwYMICsri9GjR9/2tRMmTGDUqFHk5+fTo0cP6tevX+Rx\nY8eO5YUXXsBisTBixAjatm1LdHQ077//Pm5ubrz55puFjndxcaGgoIDw8HC8vLyYOHHi3SdEpJSo\nV6qIiIgNLaWKiIjYUGEUERGxocIoIiJiQ4VRRETEhgqjiIiIDRVGERERGyqMIiIiNlQYRUREbPx/\n5sWAWJO8OBIAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1194fe4e0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig, ax = plt.subplots()\n", | |
"sns.barplot(x='n_cells', y='tissue', data=n_cells_per_tissue, palette=colors, order=tissues)\n", | |
"ax.set(xlabel='Number of cells')\n", | |
"fig.tight_layout()\n", | |
"fig.savefig(f'{figure1_folder}/barplot_n_cells_per_tissue.pdf')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"20" | |
] | |
}, | |
"execution_count": 22, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"n_tissues = len(tissues)\n", | |
"n_tissues" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0 Aorta\n", | |
"1 Bladder\n", | |
"2 Brain Microglia\n", | |
"3 Brain Neurons\n", | |
"4 Colon\n", | |
"5 Diaphragm\n", | |
"6 Fat\n", | |
"7 Heart\n", | |
"8 Kidney\n", | |
"9 Liver\n", | |
"10 Lung\n", | |
"11 Mammary\n", | |
"12 Marrow\n", | |
"13 Muscle\n", | |
"14 Pancreas\n", | |
"15 Skin\n", | |
"16 Spleen\n", | |
"17 Thymus\n", | |
"18 Tongue\n", | |
"19 Trachea\n", | |
"dtype: object" | |
] | |
}, | |
"execution_count": 23, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"pd.Series(tissues)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 24, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"tissue\n", | |
"Aorta 6\n", | |
"Bladder 5\n", | |
"Brain Microglia 2\n", | |
"Brain Neurons 14\n", | |
"Colon 8\n", | |
"Diaphragm 5\n", | |
"Fat 10\n", | |
"Heart 9\n", | |
"Kidney 7\n", | |
"Liver 5\n", | |
"Lung 17\n", | |
"Mammary 10\n", | |
"Marrow 12\n", | |
"Muscle 6\n", | |
"Pancreas 9\n", | |
"Skin 6\n", | |
"Spleen 6\n", | |
"Thymus 8\n", | |
"Tongue 5\n", | |
"Trachea 6\n", | |
"dtype: int64" | |
] | |
}, | |
"execution_count": 24, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"cell_annotations.groupby('tissue').apply(lambda x: len(x.groupby('annotation_subannotation')))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"width: 2.9921259842400003, height: 10.6299212598\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAOQAAAMKCAYAAACV8ejiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXtcjvf/x5/q7lyiaKWRHKIk2Rpl\n0iqUHNcwixGZ82GUQw4lQtmYaWYaM9p3Y6af2XLIbLKwNtWYTGkVSqmldNDxrt8fHve97g6Ezvf1\n/Gd2XZ/r8/5c17z3ua7X/T60q6ysrERAQKBFoNDcCxAQEPgPwSEFBFoQgkMKCLQgBIcUEGhBCA4p\nINCCEBwSqKioIC0trbmXISDQ9hyysLAQKysrFi1aVO9r/P39CQ0NbcRVCQjUD1FzL6ChOXr0KKam\nply8eJHk5GSMjY35+++/Wbt2Lfn5+QwZMoQNGzbg6OhI586d6dGjB+Hh4YhEIoYNG0ZwcDAJCQko\nKCiwb98+unbt2ty3JCBHtKkdUiwWExISwnvvvYeLiwsHDhwAwNfXFzc3N06ePElkZCSXLl0C4J13\n3mHr1q2MGDGCadOm0a9fP958800WLlxIWVkZ0dHRzXk7AnJIm3LI8PBw0tPT8fb25qeffuL48eP8\n+++/VFRUyIxTUHh82/r6+gC0a9cOgPT0dNavX0+3bt3o1KlTjesEBBqbNuWQX375JcuXL+fixYtE\nRUVhYWFBSEgIPj4+fPXVV7i4uGBnZ4eNjQ3wnyOamppy5MgR7t+/T/v27Vm5ciV5eXlkZ2c35+0I\nyCHthFhWAYGWQ5vaIQVoEd+99+7da+4ltFranMr6NNI3ftKk9nRnTyZ737dNZ3C0zTMNDw0NRUVF\nhbt37zJlyhQ6dOjwwkvw8fFh3759LzyPPCJ3DimvxMTEcPjwYUQiEdra2lRWVlJZWUlCQgITJ04k\nJSWFsrIy3n77bYYNG0ZOTg6TJ09GLBYTHByMlpYWRkZGTJ8+nYCAABQUFCgoKMDFxYUbN24wd+5c\nfHx8ePXVV0lJSSE2NpYbN26QnJxMfn4+bm5u3L9/n8jISAoLC5k2bRoDBw5s7sfS4hAcUk7Q1dVl\n4sSJZGRksGnTJlxdXfH29ubrr7+WGaempsbChQt5+PAhAQEBFBcX4+vrS4cOHVi4cCFGRkZSx0xI\nSKB79+6EhITw77//UlZWxvjx4zlx4gQmJib4+PhgZ2eHgoICFy9eRFNTE5FIhIuLC8bGxs30JFo2\nwjeknHDo0CGSkpIwMzNDRUVFelwkkv1/skTjKy4uRklJiYqKCqkaLfmn5GejzMxMHj16hJOTE15e\nXkyePFlmHm1tbby8vHB3d6dfv3688sorTJ8+nZSUFPbu3duo99takbsd0sCn/iF1rdHmvTpEHQMD\nA2JjY4mPj6dTp04oKysTGBhIYmIiEyZMkI7Ly8vD39+fgoIC5s+fT0FBAZs2bUJHR4fevXtjZ2eH\nj48P/v7+FBUVYWNjg7OzM0ePHpW+gpaWlhIdHY2trS3e3t7k5OTw/vvvk5SUxNmzZ1FXV8fe3r5J\nnkdro83/7HF053Dpnx3f2c25bxY2qf2mttnDNpBXX331ua+fOnUqPXv2ZOPGjTXOzZ49m3379uHh\n4cH+/fuBx7ukr68vM2fOZNCgQdKxHh4eeHp6kpiYyLhx42rMVXUOgf+Qux1SXrl58ybffPMN7dq1\no0uXLpw7d4433niDuLg4tmzZQnh4ONeuXcPIyAiAjIwMAgIC0NHRQUVFhdGjR5OSkkJERAQVFRX4\n+/tz9+5d3Nzc8PHxYc+ePZw+fRoVFRVWrlwJQH5+PhkZGTUEpVWrVjXno2jRCN+QcsLevXtRV1dH\nU1OTmJgYDA0NmT9/Pn379iU+Pp7w8HA2btyIh4cHACEhIcyZMwcfHx/KyspQUVHByMgIOzs7xGIx\nnp6ebNiwgTNnzvDVV18BoK6uTmpqKpmZmTK2JYKStbU1ly9fbvJ7b00IO6ScIBaLcXNzo2vXrhw5\ncoS4uDgAlJWVZYQbRUVF4HGOqES8adeuHVW/bJSUlFBTU6OgoICKigoqKioYNWoUNjY2HD9+HG1t\nbRnbhw4donfv3lhZWckISgI1afMOOen9n574782xhsakrkiduXPnEhAQgJaWFr169apxftSoUfj5\n+SEWiwGYNm0aO3bsQE9PD3V1dUxMTNDQ0OD48eM1rp02bRpbtmzh1KlTqKmpSUWisrIyCgsLZQSl\nkpISqQ2BmrR5UUfeiI6OrlXUSUpKwtfXF1dXV1JTU7G1tcXS0vKp86WmphIcHCwj8tRXkPm///s/\nlJWVGT169LPdhBzT5nfIF+WdQw4vdP1mlz2sPTm/gVbzdLz6fVDr8a+//po//vgDa2trAL744gs6\ndeqEgYEBo0aNYvHixZibm/PWW29x8OBBaWSOk5MT0dHRbN26lezsbDZs2CCdc9OmTQCkpKSwdu1a\nEhMTZSJxLl68SHFxMSYmJgQHB6OmpkafPn2YOnVqoz+H1orgkHLCiBEj0NPTA6CkpIS3336b119/\nnblz5+Lg4ED37t3ZtGkTy5Ytk4nMGTp0KH379sXb25sff/yRU6dOAVBeXo6TkxPFxcXk5eVx9epV\n8vPzZSJxhgwZgoqKCkVFRRQUFGBvb4+ZmVlzPoYWj6CyyilqamrAY1FHUVERLS0tgBqROZWVlair\nqwOPxRyJ6JOZmUlwcDDKysqYmJhQWVlZIxJHMo+uri6enp7Af7uqQO0IO6SccvToUS5dusTgwYNl\nwufmzJkjjcyxsrJCU1OTv/76i+DgYNLS0li9ejVhYWGoqqpSUVHB+fPnSU1N5ZVXXuHOnTsykTjt\n27dnz549GBoasnfvXgwNDYWA8qcgiDptjLpEnYaktLSUvLw8OnXq1KDz3rt3jy5dujTonK0NYYds\nAEYe+KzOc5+MdWXRD01XYnKrxWu1Hg8KCqq3svo0wsLCnls9zcrK4sSJE9IAhKpI8igDAwPlNppH\ncEg54ssvv0RFRQUDAwOKi4spLy8nPz+f1atXs2bNGkxMTEhKSqJbt26oq6uTlpbGli1baqipEvXU\nzs4OX19fOnbsSFFREX5+fkydOvWJ+ZROTk7cvn2b9PR09uzZg0gkqhGal5CQAMBHH31EcXEx9+/f\nZ/PmzWhoaDTn42sSBIeUI1xdXRk2bBj9+vXDxsaGvn37UlhYyNWrVyksLGTBggVcuXKFmJgYFi5c\nyKxZs2pVUyXq6YkTJ3B2dmbEiBEcOHCAyMjIp+ZTDh06FEAm3O727dt07txZGpp36NAhkpOTKS4u\nxtvbm9u3b8tNBUBBZZUj2rdvL/1z//798fLywtXVla5du6KkpISKiop0x4LHKmttaqpEPa36Z4ki\n+7R8Ssl5Sbidl5cXjo6ONcLtysrKpKF7OTk5PHz4sBGfTMtB2CEbgPCZ817ofENSnyJXr732Gqmp\nqfj5+ZGdnc2WLVvqHFubmmpubs7OnTv54IMP2LlzJ9HR0ZSVlTF16lR27dpVZz6lRLWF2sPtqobm\nmZiYUF5ejr+/Pw8ePJCbn0sElfUJvPXl3y88R+CY7qz6MeXFF1NP1vR/1OgqK9SeGwmNl+coL/mT\nwg4pJ4SHh8uEtUVGRpKVlYVIJKKoqIju3bsTExPD9u3b+emnn4iKiqK0tBRXV1d69uxZ79xIidOk\npqby/vvvY2dnx40bNzA3N+fu3bsMHz6cvLw86TwSR9u0aRNKSkpkZWURGBhISEgI9+7dIyMjg3Xr\n1gGPM1Y++OADGTGqY8eOzflYGxzhG1JOyMjIqFFgauTIkXh7e5OamsrcuXPp27cvSUlJnDhxgq1b\ntxIQEMAXX3zxTLmRVTEyMmLx4sWoq6szfvx45s+fT2RkZK3ru3v3Lvr6+kydOpXS0lL+/PNP1q5d\ny7p166TfkpGRkSQmJqKqqoqCggJXr15t3IfWDAg7pJzwyiuvMGzYMM6dO8eVK1ekycpKSkooKysD\njwteVVUzJWLMs+RGVkXyM4VEMCopKaGiogJFRUXKysoAyM3NpaysjEWLFlFaWkpwcDCzZ8+W2igo\nKJCOrayspH///ixdupQ//vgDHR2dxnhUzYrgkHJC9bC2v/+u+/t43Lhx0tfE9957j65du9Y7N7I+\nWFlZsX79eq5fv055eTlKSkocPnwYFRUVtLS06NmzJ6ampmzatImsrCzWrl0LwNChQwkLC6uXGNVa\nEUSdNkZThM4JNB7CDlmNBO+7DTpft4UvcWf3/Qad84lMfL7LVq9ejaenJ507d27Y9Qg8E4JDyglV\nY1k9PDy4d+8e48ePJy4uTlolrqSkBC8vL6ZPn87XX3+Nvr4+BQUFGBsbM378eJkwuSlTpnDu3DkW\nLFiAra0tERER7Nu3jxEjRuDj4yNT0a5qQILAkxFUVjmlY8eOzJs3D0dHR2kwwZIlS3B2dsbCwgJ4\nHGq3Zs0azp07Jw2TW7duHb169SI7O5ukpCSuXLmCpaUlf/zxB0lJSWhoaNCtWzeZinYC9UdwSDlB\nUVGR8vJyKisrycvLkyYoS8Lb4LFDHjlyRFqESk1NDQUFBamyWj0EztDQkB9++IHly5cTGhrKyy+/\nLL0O/qtoJ1B/hFfWaphs7doq5qyL6OjMWo/b2tqyc+dOjI2NpQ5TnX79+jF69GiCg4NrnBs3bhwb\nN26UCZPT0tJi27Zt9OnTh8TERGbOnNmg9yKPCCprG0NQWVs3rdohQ0ND8fPzw8DAgMLCQgYNGkT3\n7t1JS0sjICCgzutSU1NxdHSU+b6p7ZiAQFPT6l9ZLSwsCAkJ4c6dOzg7OzNjxgzgcS+L999/n5KS\nEqysrPjggw/YtWsXx44dkykUXNuxLVu2cPHiRekr2aeffkpcXByKioocO3ZMWuhJQKChafWizrVr\n13B2dsbV1VWmYJOenh4LFizgrbfe4scff6SgoIBPP/2Uw4cPM3fuXIBaj/3zzz989dVXiMViMjIy\npNEo/fv35/jx44IzCjQqrd4hLSwsOH36NJcuXeLWrVucPHkSeFxV7fTp0wwcOFCaJFs1sRao9ZhY\nLEZZWZnvvvuOtWvXMnLkSAD09fWb+tYE5JBW/8oq2SFLSkrQ09OjX79+lJWVYWhoyBdffEFWVhZq\namoUFxezZMkSpkyZIi30pKGhUeOYiYkJb731FuPGjUNTU5M9e/YA/wVaCwg0Jq1a1BGoiaCytm5a\n/Q75LJTeyyR737dNalN39uSmtTnaptbDL1oGsramOwINj1w5pLwjabCjr69PcnIyampq3Llzhw8+\n+ICTJ0+SkpJCVlYWy5YtIyEhgV9++YXi4mIsLCwYPnz40w0IvDCtXtQRqD9vv/02Pj4+/Prrr4wa\nNQpbW1sAbt26RWpqKurq6ri6utK5c2e6du2Kq6srNjY2/PLLL828cvlBcEg5omrI3NGjR2nfvj3d\nu3ensrISZ2dnxo4dy+XLlwkNDeXTTz8lMzOTAQMGIMgMTYdcvbIqd9HDwGdRk9ttSpv3nlAGUtJg\nZ+TIkZw/f56zZ8+SmJjIa6+9Rnp6OvHx8YjFYpycnEhJSeH3338nKipKcMgmpMWqrC/aKLU2mrp5\nanPY9Or3Qa0q67OKOt999x2Wlpa1tj+vjryUaGwK5GqHlHeCgoLYv38/WVlZbN++nTfffJPPPvsM\nS0tLEhMTMTU15ebNm8yePZv09HR69erFvHnzMDc3Jy0tDUdHR3r27Mnu3btRU1OjpKSEbdu2Nfdt\ntSmEb0g5R1LFLScnhzlz5jBlyhSioqKk54uKipgzZw6LFy/m3LlzqKurM2nSJGxsbIiJiWnGlbdN\nhB1SzqioqCA3N1f675LS/pK+HoqKijLfjCKRCGVlZZSUlKisrCQsLIxHjx4xfPhwOnTo0OTrb+sI\nDilHDBw4EE9PzxeKy9XT0yM8PJzc3FyKi4vJyclpwBUKtFhRR+D5EELnWjctbodsiAY3ddHUjW+a\nw+aa/k1mqk4auqSkPKm4Lc4hBRqHoKCgWpvrjBo1iuvXr1NYWMiIESPo2LEj3377LZWVlTg6OmJu\nbi7T6XjlypW4uLjIlJBMTU0lLCyMwsJCJk2aBMDOnTvJz8/H1tYWsViMpqYmY8aMYenSpbi6uvLl\nl1/Wqu6Wl5dz+PBhRCIR2tractfaXFBZ5YjamuusXr0aVVVVdHV1uXjxItnZ2ZSWluLg4ICFhYVM\np+PU1FQyMzNrlJA8dOgQfn5+BAQESHfFWbNmsXPnTk6fPs2ECRMICwvj1q1bdOvWDVVV1TrVXV1d\nXSZOnIi1tTWXL19uzsfVLAgOKUfU1lxHQUGB5cuXM2/ePAYOHIixsTELFy4kLy+PwMDAWjsdVy8h\nWV5eTrt27aioqODu3ceV39u3by9t0KOqqoqpqSkBAQG4ublJ1wI11d1Dhw6RlJSEmZmZtJOzPNHi\nXlmPuZu26vmb22Z9OihXZcGCBaxYsYKSkhKmTp3KgwcPOHjwIJ07d8bKygo7O7sanY6r4+bmxtq1\naykuLmby5Mm12hk9ejTJyckYGBhw586dOtdjYGBAbGws8fHxlJSUSGvEyguCytrGaIkqa0JCAh9+\n+CGrVq2iZ8+ezb2cFk2LeGUNDQ1lwIABODs7Y2tri6enZ72uc3Z25v79JzeyWb16NX369OHixYsU\nFBRgbm6Og8PjONkZM2Zw7dq1F14/PE7g7dOnT4PP+6y0NGeEx2VRgoODBWesBy3CIeG/YlX/+9//\nOHXqFIWFhaxevZqxY8cyYcIEfv31V0aMGMEbb7zBRx99BEBycjJlZWW8++67zJ49GwcHB1asWFFj\n7i5dunD+/HkuXryInp6e9Pjdu3cpKiri0qVLODs788YbbxAcHExUVBRDhw5l9OjRXLhwgeDgYEaN\nGoWzszPnz5+nrKyMefPm4eTkhLu7O++++66MPcm8wcHBODg4YGdnx08//dS4D1CgTdBiHLJ6OUcl\nJSXgv/KLPXr0YNGiRTg4OBAWFlbjeisrK/bs2SOtOleVoUOHcuHCBSIiIhg6dGiN8zt27GDRokV8\n99130uyGwsJCjh07hqGhIXv27OHo0aP4+Piwfv16Ll26RHJyMqdOnWLgwIF13tOgQYNYunQpPXr0\n4Oeff37eRyMgR7QYh6yrnKMkzGvv3r3ExMRgYWFRawMXPT09NDQ0KC8vr/WcsrIyZ86cYciQIbXa\nF4vFiMVibt++DUCHDh1QVVWtkQuooKAgY1+iJNbGqlWrKC0tpWfPnkLTGYF60WJU1urlHG1sbPjt\nt9+k5ReNjIz4/PPPiY+PJy8vT9p3vr4MHTqU33//nY4dO9Y4t3z5cvz8/Pjoo4945513gP/KPvbq\n1YvZs2czceLjTqgbN25kyJAhGBsb4+LiQocOHdDQ0KjVZs+ePdm1axedOnWiU6dOz7ReAflEUFmf\ng+zsbBYvXkxOTg5lZWV4eXnh7Ozc3MsCWqbKKlB/BId8CukbP3mh65u6DOS90TbN6pDyFHfaGLSY\nV1aBxqWuWNYhQ4aQnJxMZmYmY8eOxdbWloCAAFRUVFBSUsLe3p6goCDMzMyws7MjNDQUZWVlrK2t\n0dfXZ/fu3Tg4OJCens6KFSvIycnB39+fpKQkPD09KSkpqRGbun37dgoLC8nMzMTCwoJhw4bxzTff\n0K5dO7p06cLkyZPZvHmz9HPg/fffb+7H12S0GFFHoPGpLZbV0tISFxcXLC0tuXDhAmFhYdjb27N+\n/XrGjBkDgKWlJWvWrOHgwYMEBgaydetWQkNDAbC2tsbd3R0DAwNiYmJQUlJi7dq1LFiwgPPnz9eI\nTb19+zYlJSX4+PhIX/P37t2Luro6mpqaxMTEUFRUxIMHDzAzM8PFxaXZnldzIDikHFFbLOuOHTso\nKCigf//+VFZWUlZWJlWO09LSEIvFtG/fHkDatKgqEvW4uLgYJSUlNDU1adeuHSKRiIqKihqxqaWl\npdI5JHbEYjFubm54eXlhb2+PsrIyK1asQFtbGx8fH7kKnxNeWZ9CQ5RwbCllIGtDJBJx+fJlSktL\nKSgoYOzYsfj7+3PhwgXU1NSws7OTjp0xYwZr1qxBQ0NDmmYVERHBo0ePEIvFDBgwoMb81WNTe/To\nQWVlJVu3biU5OZmhQ4cyd+5cAgIC0NLSkv4OvGvXLrp06YK5ublctQB8ZlFn5IHPGsz4J2NdWfRD\naIPN19LsNYfNrRavPZOoExgY+Nw5h1FRUVy9epWSkhJsbW05c+bMU+cqKytj27ZtiEQi8vLyWLJk\nCS+99NJz2W+LCDuknFCXqFNcXAzARx99RHFxMffv32fz5s24urpiZWXFwoUL2bZtGzo6OqioqNQq\nykhISEgAYNOmTQCkpKSwdu1aevToIR0j+cYUqB3hG1KOqE3UqaysJDk5meLiYry9vVm2bBkVFRVo\na2uzefNm/ve//zFnzhx8fHwoKyvj5s2bNUSZqpSXl+Pk5ISdnR06OjpcvXq1Ge609SI4pBxRm6ij\npKQkI+Tk5OTw8OFDtLS0gMeijeScRIypLspUJTMzk+DgYJSVlTExMRHaEDwjwiurACYmJpSXl+Pv\n78+DBw+kr5wA06ZNY8eOHejp6aGuri7dVauKMiUlJdLxqqqqVFRUcP78eVJTU3nllVea45ZaLUKk\nThujsUPnBFGmcWkxDhkaGoqfnx8GBgYUFhYyaNAgtm/f/tTrnJ2dOXjw4BP/UqxevZrY2FiOHz9O\ndnY2jo6OxMfHN+TyBQQahBb1DdmYScppaWkEBATIHPviiy9wcXHB1dWVq1evEhQUxOrVqwFwcHAg\nKipKxn5OTg6zZ8+WJiY/ePCAoKAgpkyZwtixYxk3bhwFBQXs3LkTe3t7HBwcas3PFBCoixblkI2Z\npDxlyhTOnz/PhQsXAHj06BEffvghYrGY3NxcDh8+XOe6JPb379+Pjo4OZ86coVOnThw8eBB4XCLx\n+++/Jysri/j4eK5fv46FhQVTp06tVzs3AQEJLUrUsbCwICQkRFoXtLYk5Xbt2jFw4EDOnz9f4/on\nJSlra2uzdetWFi5cCDxWDysrKwkODiYtLQ1lZWWuXLlCcXExpaWl5OfnS6+V2K+eZCxRG/X09FBQ\nUEBNTY3y8nKmTJlCaWkpERERnD179onOLiBQlRa5Qzo5OUmTlAGZJOUzZ85w+PDh50pSHjJkiLRM\noaamJsuWLWPmzJn4+fmhqqrK0KFDiYmJ4f3335fK/lXte3h4kJ2djZOTE9nZ2bi7u9dqJz4+nm3b\nthEVFcXIkSOf9TEIyDEtRtQRaF7u3btHly5dXmiO7OxstLS0pL9zCjw7rcIhXzRJWIL2GHse/vhL\ng8zVUm0+b4Ly7Nmz2bdv3wvZ9vb2Zvny5Q3WZEceaVHfkI2NSL/p/6I0h83aiImJkUkUzsnJoUOH\nDhQVFTFp0iRSUlKIiIjgm2++oVOnTjg7O0urlefk5ODn58fPP//Mn3/+SVZWFosWLSIwMJD9+/cT\nHR1NTEwMcXFxHD9+HFtbWyHh+DlpUd+QAo1H9UTh9PR0jIyMmDhxIubm5hgZGWFnZ8ejR49Yu3Yt\nYrGY3r17s27dOpycnPj+++8JCwvDx8eHTZs2oa6uzuuvv87Fixc5evQokydPxszMjAkTJggJxy+A\n4JByQtVEYXhcotLIyIht27aRnZ0tHaekpISamhqVlZUyMauVlZVS9bqkpISMjAzefvttvvrqKzQ0\nNOjQoYN0vJBw/PzI1SurPFM1URjgs88+o3Pnzrz88su0b98eDQ0Njh8/Lh0/dOhQzp49S2BgIAUF\nBaxcuRIVFRV8fX3Jyclh4cKFaGpqoq6uLu1o1b17d/bu3SskHL8ArULUEag/jRnLWl2J/eSTTygs\nLJS7pqqNSYtzyJ+2N97vdoOmfsLv/2u6chrNYbPjG1tfyCFTU1MJDg5m48aNNc5JlNj6lHr08PDA\n09OTxMRExo0bV+t5oVxkTYRXVjnh5s2bMsrnuXPneOONN4iLi2PLli2Eh4dz7do1ysvLEYlEZGRk\nEBAQIK0UMHr0aKkSW1FRgb+/P3fv3sXNzQ0TE5Mabc8B8vPzycjIqKHwCjtq3QiijpxQXfk0NDRk\n/vz59O3bl/j4eMLDw9m4cSMeHh4AhISEyFQKUFFRkSqxYrEYT09PNmzYwJkzZ2pte14VeW9T/iwI\nO6ScIFE+u3btypEjR4iLiwNAWVlZpryjRHCpXimg6peNRIktKCigoqJC2vbcxsaG48ePo62tLWP7\n0KFD9O7dGysrK7lsU/4stDiHHO4Z3qrnb26bdbU0r035rMqoUaPw8/OT/iRRvVKAiYlJDSVWwrRp\n057Y9lze25Q/Cy1O1HkRtn9q/8TzUyd+xv++m9dEq2kem28M/lBottOKaXE7pEDjEBQUxIMHD9DU\n1AQel+IoLy8nPz+f1atX4+Xlxf79+8nKymL79u28+eabT+zp8fnnn/Pqq69y8+ZNduzYwZYtW1BS\nUiIrK4vAwEBEIuGv1vMgiDpyxMiRI/H09GTfvn0kJiaiqqqKgoJCnaUan9TTw9zcnPnz56Ours79\n+/e5e/cu+vr6TJ06tUa7AYH6IzikHKGmpgY8DoXr378/Xl5euLq60rVrV+CxkJObmysd/6SeHurq\n6sBjgae0tJRFixZhbm5OcHCwtGCywLMjvFfIIa+99hqpqan4+fmRnZ3Nli1bGDFiBJ6entLqCFWp\nradHVUQiEYcPH0ZFRQUtLa1a5xCoH21K1BEQOii3doQd8ik4hix4oes/dVnFgpOBDbSap7PNzKPJ\nbAk0PIJDyglVVdZ79+6RnJzMmDFjSE1NxdPTk3PnzskkH585c4ZHjx6Rnp6On58fHTp0aO5bkAsE\nh5QjRo4ciY2NDe7u7piamjJr1izOnj1LeHg4p0+fZu/eveTm5pKfn09aWhrGxsa88cYbUgFHoPER\nHFKOkKisioqKNTofV08+njJlCkpKSoSEhFBUVIS9/ZODLgQaBsEhn8K5dz9tEXPUl7pC56pz9epV\nAgMDKSwsZM2aNRQVFckkH584cYL8/HzEYrFMf8fmJD09HQMDg+ZeRqPSLCqrpAuz0EG54alPB+Ur\nV67g4+PDqlWrUFZWlta/rQ88IUQBAAAgAElEQVRPypd8Ei+a/5iWlsbevXuf2W5rQ9gh5YS///6b\n4OBgtLS0MDIywsrKiuzsbFRUVIiKiuLIkSO0b9+emzdv8tVXX+Hr6ytTce706dMy+ZLp6ek1ciBd\nXFwYP348cXFxrFy5kqSkJE6dOiXN/oiKiqozHM/R0ZGAgABUVFRQUlKie/fuaGpqMmbMGJYuXcqr\nr77K9evX+eeffzh16hS5ubk8fPiQRYsWERkZSUpKCllZWSxbtgwjI6NmftrPj+CQckJwcDC+vr50\n6NCBhQsXyqRIHTp0iF27dklTtC5evEjv3r1xd3cnPDyc77//noiICIKDg/nnn384ePCgTA7k7du3\nyczMpGPHjsybN4/jx48THR3N6dOn2b17N8XFxSxfvhx4HI7n5eXFnDlz+PTTTxGJRMyYMYPi4mLs\n7e1xdHTk+vXr9OrVi2XLltGnTx+6deuGg4MDiYmJAERGRmJlZUV5eTm///47qampqKur4+rq2upr\nwgoOKSdUDX+rnt9YWloKPA6pk5yrXnGutnzJ6jmQEtFISUmJkpISmWskf64rHK9qF+e0tDT69u2L\nqakpAQEB+Pv7S0WoiooKunXrhpeXFzdv3qS4uFiaGnbs2DHu3LnDtGnTGuEJNg2CQ8oJc+bMYdOm\nTejo6GBlZUVSUpL03LvvvsuaNWvQ1tamXbt2tVac09TUrJEv+aQcSMm869evR1NTs0YsbPVwPFtb\nW/z9/blw4QJqamo4OTkxevRokpOTMTAwoKCggISEBIqKimjfvj0+Pj5kZWWxYcMGTp06RXx8PGKx\nGCcnp8Z9kI2MEDrXxnie0Lnjx49z48YNKioqsLS0ZMyYMY20uvqTkJDAhx9+yKpVq+jZs2dzL6fJ\naDMOOfbLn586ZscYK5b/eKUJVtN8Njf01xZiWVsxwiurnFBdZQ0LCxNC51oggkPKCdVV1r59+wqh\ncy0QwSHlhLpUViF0rmXRZr4hBR5Tl6gTFxfHgQMH0NHRoUuXLnz77bfY2dlJQ+d++OEHrl+/XiN0\n7tGjRyxevLjGj+0VFRVkZWXx0ksvNdWtyQVt3iG/C86Q/tnhTV1+/r/sJ4xueJrapvGraU8VdZ4U\n/paVlcWJEyekBZPr4vfff+fPP/9kzpw5L7ReAVmEV1Y5ISgoiPv372NkZISioiLq6ur4+/tLq855\ne3vTqVMnLC0tuX37NhkZGXz88ccoKSnRtWtX8vLycHBwwNLSkgULFmBiYkJsbCzjx4/nwIEDMhXs\nQkJCBEHoOREcUo6YMGECVlZWWFtbY25uTt++fSksLOTq1avSRq3Z2dlcu3aNr7/+mhkzZtC3b1+u\nX79O586d2blzJw8fPmTYsGH06NEDDQ0Nbt68SWJiosxcgiD0/AgOKUdIvk7EYjFmZmYsX76cP/74\nAx0dHWl7AAlVQ9lu376Nubk5IpGII0eOsGPHDv766y/pnP3792fp0qXSuQRB6PkRHFKOCAkJITw8\nnKVLl3L16lWZqnPVcXNz4+OPP0ZNTY3u3bsDMHz4cP744w/U1NR46aWXiIiIYPjw4YSFhcnMFRoa\n2uJyKVsLbV7UkTfqUlmDgoKwtbXF0tLyueaNioriwIEDbN68GV1d3RddpkAdtDmHvLviWp3nXlrS\ni/u7EptwNU1vM3NK2XOFzq1evRpPT89Wn77U2hFeWeWEqjukh4cH9+7dk0kmhsdBAV5eXkyfPp2v\nv/4afX19CgoKMDY2Zvz48fj6+tKxY0eKioqYMmUK586dY8GCBdja2hIREcG+ffsYMWIEPj4+Ms1g\nJSlXAk9HaCUgp0iSiR0dHaV1eJYsWYKzszMWFhYAuLq6smbNGs6dO8eJEydwdnZm3bp19OrVi+zs\nbJKSkrhy5QqWlpb88ccfJCUloaGhQbdu3WSawQrUH8Eh5QRFRUXKy8uprKwkLy9PJplYkvy7ZMkS\njhw5Is15VFNTqzVpWfLvhoaG/PDDDyxfvpzQ0FBefvll6XXwXzNYgfrT5l5Zu35g8ULnG4OmtJlZ\nR9U5W1tbdu7cibGxsczPG1Xp168fo0ePJjg4uMa5cePGsXHjRqKjoykrK2Pq1KloaWmxbds2+vTp\nQ2JiIjNnzmzQe5FH2pSoIxaLCQgIIDIykvz8fMaMGcOqVatqZKu/++67vPnmm7i6ujbTShsPobdH\n66ZNvbIeO3aMv//+mxMnTnDixAnKy8v566+/cHV1ZcSIEfj6+srUkklLS+Odd95h5MiRLFmyhJKS\nElavXs306dNxcnJi+vTpre6VS3DG1k2bcsi///6bgQMHoqSkhI6ODuvWrcPf3x83NzdOnjxJZGQk\nly5dko7/8MMPsba25syZM2RnZ/P9998DYGRkxLFjx4iKiiIrK6u5bkdADmlTDikJeC4vL+fff//F\nzc2Nhw8fyoyRhIMBMrtfVdFCT09PpvW3gEBT0aYcctKkSZiYmDB69GgmTJjA4MGD+eCDD/jqq69w\ncXHBzs5Opkr38uXLuXz5Mk5OTnTu3Jnx48c34+oFBNqYqCMg0NppUzukQP2b7Qi0TJr9d8j0jZ80\nmS3d2ZPJ3vdtk9lrFpuj6984p754eHgQEBDAiRMnmDRpEvPnz+fNN99k4sSJ0jH1rTQg8GSa3SEF\nmoaYmBgOHz6MSCRCW1ubX375hTFjxnDt2jUGDBhATk4OxsbG9OrVi927d+Pg4EB6ejorVqwAHse5\n3r59m2PHjlFUVMSDBw/Yu3cvc+fOxcfHh3HjxnH79m1CQ0OJjIykR48eZGRk4O/vz/bt2yksLCQz\nMxMLCwuh7McTEF5Z5QRdXV0mTpyItbU1ly9fpkOHDixatAhTU1OsrKxYvXo158+fB8Da2hp3d3cM\nDAyIiYmRmWfEiBGYm5szZ84coqOj+ffffykrK0NfX186xsbGhkWLFpGamsrt27cpKSnBx8cHZ2fn\nprzlVongkHLCoUOHSEpKwszMDBUVFTQ0NACk7eREIpFMQxv4r0RkXTg5OeHl5cXkyZNljkvKdigq\nKlJaWirTuEfgyTT7K6uBz6I2ba+pbd6rQ9QxMDAgNjaW+Ph4SkpKnljrJiIigkePHiEWixkwYECd\n45ydnTl69CgDBw4kNTW11jG9e/emsrKSrVu3kpyczNChQ5/thuQM4WePZ+TozuHPNN7xnd2c+2Zh\nI62mJj1sA58aPvek6gFRUVFcvXr1qd95mZmZ+Pr6MnPmTAYNGiQ9/tlnn3Hr1i2GDx/Od999x8CB\nA7l586a0ct2SJUuEWq5PoNl3SIGmIT4+ni+//BKxWExsbCz//PMPKioqvPzyy7z55pssXrwYc3Nz\n3nrrLf7++298fHwwMjLCycmJ999/Hzs7O27cuIG5uTl3795l+PDhrFy5kt27d/PDDz9QUlLC4sWL\nOXnyJA4ODnz//feoqamhpqbGqFGj+PXXX9HX1+fzzz/H2NiYqVOnNvcjaZEIL/VyQnBwMGvWrCEw\nMJCePXvi6upKYGAgsbGxAHTv3p1NmzZx8OBBfH192bhxIzExMRQWFmJkZMTixYtRV1dn/PjxzJ8/\nn8jISNTV1Zk0aRI2NjbExMTQtWtXzMzMmDp1KiNHjmTUqFF07NhRuoaqCc8CtSPskHJCWVmZVFy5\nc+eOtKyG5JiWlhZQew8QiQCkpKSEiooKJSUlVFRUEBYWxqNHjxg+fHi9iiFXTXgWqB3BIeWE2bNn\nS1sHSCoC1Eb1TsuSIPva0NPTIzw8nNzcXIqLi8nJyWnwdcsbgqjTxnjeBOXs7Gy0tLRQVlZu0PXc\nu3ePLl26NOicbZkWs0O+c8ih0W1sdtnD2pPzG91Oc9r06vfBc1334Ycfsnz58gYvA+nj48O+ffsa\ndM62TItxSIHG5ebNm3zzzTe0a9eOLl26cO7cOWmpRn9/f+Li4jh+/Di2trYy41xcXGQU2IMHD0q7\nME+fPp2AgAAUFBQoKCjAxcWFGzduSMPpXn31VVJSUoiNjeXGjRskJyeTn5+Pm5sb9+/fJzIyksLC\nQqZNm8bAgQOb+xG1CASVVU7Yu3cv6urqaGpqEhMTg6GhobRU461btzAzM2PChAk1xonF4joV2IiI\nCIyMjFi7di0zZ85k8ODBMuF048ePx8jICBMTEw4fPoyqqira2tpcvHiRjIwMRCIRLi4uGBsbN/fj\naTEIO6ScIBaLcXNzo2vXrhw5coS4uDjgv1KNEuWz+jhFRcU6FVj4LxwuMzMTPT09aTjd0qVLpbYr\nKyvR1tbGy8uLe/fucevWLXR1dRk2bBjnzp3jypUrrFq1qsmeRUumxTjkN9N/blN2mstmXfmQc+fO\nJSAgAC0tLXr16lXjfPfu3aXZG3WNkyiwysrKWFlZYWdnh4+PD/7+/hQVFWFjYyMTTgdQWlpKdHQ0\ntra2eHt7k5OTw/vvv09SUhJnz55FXV1d6I5VhRahso488FmT2PlkrCuLfghtElvNZXOrxWsN0tvj\nSSF0s2fPrlWoqSucTqD+tJgdUqBxSUxMZNeuXejq6vLbb7/xxhtvUFxczMOHD/Hy8gLgo48+ol27\ndgwaNEiaTlVdDDI3N5cKNdWFGD09Pfbs2dPk99aWEBxSTggODsbf35/27dtjbm5OWVkZvr6+xMXF\nERISAjx+Je3evTvu7u7Mn//4p5q9e/eir6+PoqIiMTExzJo1CyMjI0EVbSQEh5QTSkpKpEKMJIQN\nZHMUJS0GVFVVpceqizwikfBXpjERnq6cMHPmTLy9vTE0NERHRwdFRUW2bNlCfn4+S5cuZfv27ezZ\ns4f27dszbtw46XW1iTylpaVERERgZ2fXXLfTZmkRoo5Aw1FX6NzWrVtJTEykd+/e6Ovr4+7uDsDx\n48c5e/YspqamGBsbM3r06CZesUBVhB2yFt768u8GmytwTHdW/ZjSYPM9jTX9az+enZ3NX3/9xeDB\ng3F3d8fHx4d33nmHo0eP0q1bN1JSUrh58ybDhw9HRUWlydYrIIvgkHLCkCFDsLe3Jy0tTXpMS0sL\na2trbG1tSUpKQkVFRXDGZkZwSDmhXbt23L59W9r9Kzc3t8Z5geZHiGWVEwwNDbl8+TIxMTH4+/vX\n6OplaGjId999R15eXjOtUAAEUafN0Roatqanp2NgYFDn+cbKzWwNNPsra4L33Saz1W3hS9zZfb/J\n7DWLzYlPH/I0PDw88PT0JDExEXNzc3x9fXF3d+fLL79k2LBhvPfee889d1paGnv37mXjxo0EBgbW\nGlRen9zMJ1XOa800u0MKNA1V/wJ7eHhw7949xo8fT1xcHCtXriQpKYlTp06hra0NQH5+PhkZGVy7\ndo127drxzz//kJ6ejqmpKZ988gm5ubk8fPiQRYsWsWfPHkQiEUOGDCEpKanGOX19fQoKCjA2NkZZ\nWZnr16/zzz//kJCQwIMHD9i6dSsaGhrcv3+fTZs21ZmbOXPmTPz8/NDU1JQGrLc1hG9IOaVjx47M\nmzcPR0dHoqOj+eabb9i8eTNLliyRicYZMWIEQ4cOZc6cORgZGWFgYEBkZCSqqqpoaGjw+++/A48D\nD/r06VPruarV5mxsbDA3N6dnz57A40ihiRMn8vrrr5OZmUlJSUmduZm//fYbJiYmrF69us0Grws7\npJygqKhIeXk5lZWV5OXlSavOKSkpyYTVKSoqPlFxraiooFu3bnh5eXHz5k2Ki4uJjo6mffv25Obm\n1nquarW56nNHRUVx+fJlXF1d6dKli0wn6+phe1WvbashfM1+VyZbu7Zpe01tMzo6s9bjtra27Ny5\nE2NjY2nMalXeffdd1q9fj6am5hMdsnfv3rRv3x4fHx+ysrLYsGFDvc5J0NbWJiEhgWvXrgHQoUMH\n0tPTOXnyJBkZGeTm5taZmzl48GDOnTvHtm3biI2NbZN5lILK2sZoDSqrQN20GocMDQ3Fz88PfX19\nCgsLcXd35+HDh7z00ktMmzbtqddHRUXh7e3Nzz83fcUAAYH60uyvrM+ChYUFISEhPHjwABcXFwYN\nGoSysjKXLl3C19dXWlhp0qRJjB07Fmtra+Li4ti4cSNqamoUFhbi4eFBQkICe/bs4ZdffuHkyZOU\nl5ezefNmfHx8KCkpwcrKig8++IBPPvmE7777jv79+xMeHk58fDx9+vTBycmJ2NhYRowYQWRkJIaG\nhnz++edt9rtGoOlolSqrjo4O3bt358KFCwAYGRmxaNEiHBwcCAsLA+DRo0ds2LABT09PgoKCgMci\nwe7duxk4cKD0Wj09Pc6ePUuvXr1YsGABb731Fj/++COFhYV88sknfPPNN7i5ucnY9/DwYPz48dy+\nfZsTJ05w6dIlMjNr/3YTEHgWWqVDFhYWkpKSwuuvvw48zmqPiYnBwsJC2mwUHuftwX9xmu3bt0dV\nVRV1dXVpOX1JqYqjR49y+vRpBg4cSEVFhUyFteqNRnV1dVFRUaFz587SZN6qdgUEnpdW9Y517do1\nRo0aRVlZGbNmzSIpKQl4vEN+/vnnxMfHk5eXR3l5OQCbN2/m77//lva0qA2J0xkaGvLFF1+QlZWF\nmpoapaWlLFy4EDc3N3r16vXETsICAg1FqxF1noXU1FQcHR2Jj49/oXlWrlzJtWvXKC0txcXFRVoM\nSkCgsWiTDlkf0jd+0iR2tMfY8/DHX5rEFsC90Ta1/uzxIrGfkmuDgoLYv39/QyxToA5a1Stra0Sk\n37DNa16EL774gk6dOmFgYCATIH7gwAHu3btHRkYG69at46effpLpw1GV8vJy1q1bR4cOHSgqKsLP\nz6+pb6NNIzikHPH222/z+uuvM3fuXKZPn46KigrFxcX8+eeffPzxx9y/f5/KykoOHz6MnZ0dCgoK\nXLx4UWaO8vJy0tPTGTBgAObm5s10J22XVqmyCjwfkpA5ZWVlqXIsiW8FKCgoIDc3V9qHw93dnX79\n+snMUV5ezqpVqzAyMmLbtm1kZ2c37U20cYQdUo44evQoly5dYvDgwVLVWFNTE1NTUzZt2kRWVhZr\n166t0YdDQnFxMUpKSuzdu5dOnTrx8ssvS4PUBRqISoE2xZUrV17o+rt371auX7++1nMeHh6VlZWV\nlbNmzXrqPLNmzaqMi4ur/P777+s8L1ATud0hDwQ1fsdmgLGT9/DDt03XQdliSO0dlJ/UsHXLli2E\nh4dz7do1ysvLEYlEZGRkEBAQgI6ODioqKowePZqUlBQiIiKoqKjA39+fu3fv4ubmhomJiTRJWUVF\nhZUrVwL/JTnHxMRw+PBhRCIR2traQuu5JyB8Q8oJT2rYGh8fT3h4OBs3bsTDwwOAkJAQ5syZg4+P\nD2VlZaioqGBkZISdnR1isRhPT082bNjAmTNn+OqrrwBQV1cnNTW1Rhihrq4uEydOxNramsuXLzf5\nvbcm5HaHlDfq27BVUVEReBwKKBF+2rVrJxV+4HFSs5qaGgUFBdIww1GjRmFjY8Px48elZUAkHDp0\niN69e2NlZSXUfX0KgkPKCU9r2Dpq1Cj8/PykMb7Tpk1jx44d6Onpoa6ujomJCRoaGhw/frzGtdOm\nTWPLli2cOnUKNTU1JkyYIHPewMCA2NhY4uPjKSkpkdoQqIncRuq0VYQE5daNsEPWk+GHvJ/rut0u\nC1l4cncDr6ZuAvs1QB3IF8DDw0MIr3sBBIeUE4KCgsjKykIkElFUVET37t2JiYlhyJAhJCcnk5mZ\nydixY7G1tSUgIAAVFRWUlJSwt7cnKCgIMzMz7OzsCA0NRVlZGWtra/T19dm9ezcODg6kp6ezYsUK\ncnJy8Pf3JykpCU9PT0pKSmoorNu3b6ewsJDMzEwsLCwYNmyYjAI8efJkNm/eTIcOHdDQ0JD5LbSt\nI6iscsTIkSPx9vYmNTWVuXPn0rdvXywtLXFxccHS0pILFy4QFhaGvb0969evZ8yYMQBYWlqyZs0a\nDh48SGBgIFu3biU0NBQAa2tr3N3dMTAwICYmBiUlJdauXcuCBQs4f/58DYX19u3blJSU4OPjg7Oz\nM1BTAS4qKuLBgweYmZnh4uLSbM+rORAcUo7Q1NRESUlJWqJfJBKxY8cOCgoK6N+/P5WVlZSVlUnV\n1bS0NMRisTQap6oaK0GSmC2J4pFUrROJRFRUVHDo0CGSkpIwMzNDRUWF0tLSGonfEgXYy8sLe3t7\nlJWVWbFiBdra2vj4+MiVCCS8staTn6ZvbZZrn5Xo6OhnGi8Sibh8+TKlpaUUFBQwduxY/P39uXDh\nAmpqajJdkmfMmMGaNWvQ0NBg0qRJAERERPDo0SPEYjEDBgyoMX91hbVHjx5UVlaydetWkpOTGTp0\naK0K8K5du+jSpQvm5ubSn2LkAUFlbWM0pcoaFRXF1atXmTNnTr2vKSsrY9u2bYhEIvLy8liyZAkv\nvfTSC6/l3r17dOnS5YXnaW5avUOOPhBW77E7x77O+z9cfPrABqSpbW600G8RP3usXr0aT0/PJzbM\neRaept7Onj2bffv2NYit5kR4ZZUT6lJZt2/fTkREBLGxsRQWFjJixAg6duzIt99+S2VlJY6Ojpib\nm9eIVXVxcZFp1pOamkpYWBiFhYXS19mdO3eSn5+Pra0tYrEYTU1NxowZw9KlS3F1deXLL7/E0tKS\nxMRETE1NuXnzJrNnz6a8vPyJsa/Vk6QnTZokjbMtKCiQuZfc3FwiIiLo1q0bd+/exdTUlNjYWNat\nW8fLL7/cHP8pnogg6sgRtamsSUlJ7Nu3D1VVVXR1dbl48SLZ2dmUlpbi4OCAhYVFrbGq1Zv1HDp0\nCD8/PwICAqS74qxZs9i5cyenT59mwoQJhIWFcevWLbp164aqqir9+/dn6dKl5OTkMGfOHKZMmUJU\nVNRTY18lSdJGRkZMnDgRc3NzaZxt9XuBx+3cPT09ycjIYO7cuTg6OkpbGbQ0BIeUI2pTWSXK6fLl\ny5k3bx4DBw7E2NiYhQsXkpeXR2BgoDRW1cvLC0dHR7S1taXJzkpKSlRUVFBeXk67du2oqKjg7t3H\nPT/bt28vVVJVVVUxNTUlICBAWhZEU1MTABUVFUQiEYqKilRWVtZQZqvzpCTp6vdS1Y6GhgaA1E5L\npNW/sobNHN2o4xuCprT5rCorPG60s2jRIhQUFJg6dSoPHjzg4MGDdO7cGSsrK+zs7GrEqhYXF8vM\n4ebmxtq1aykuLmby5Mm12hk9ejTJyckYGBhw586dOtfztNjX2pKkJXG27777LitWrKCkpISpU6eS\nnp7+zM+jOWkVos5v2+41yDzm0ztx/dC/DTJXS7Wp5Jj+XKJOXaJIaGgoKioq/Prrr3h6evLFF1+w\natWqZxZREhIS+PDDD1m1apW0N6RATVr9DilQP8LDw4mMjKSwsBA3NzeOHDkiFU2qJh9XF0Wqk5CQ\nwKVLl0hJSSE2NpYbN27IVKir7bdIABMTE4KDgxv7Nls9wjeknJCRkYFIJMLFxQUlJSUZ0eRpokh1\nhgwZgpGRESYmJhw+fBhVVVW0tbXrHC9Qf4QdUk545ZVXGDZsGOfOneOnn35iwIABtSYMS0SRR48e\ncf78eWl/lNqorKyUVqi7d+8et27dauzbaPO0Coe0XtlwERgNOVdLtBkdXbuIcefOHc6ePYu6ujqG\nhoY1RJNnFUVKS0uJjo6us0KdwPPRKkSdxubu3bt07dr0rc4bAyFBuXXT5r8hQ0NDGTBgAM7Ozjg7\nO3Pw4EGZ8/fv32fUqFHNtLqGR3DG1k2bd0h43Hn59OnTnD59Gm1tbRwcHLCzs+N///sfX375JWVl\nZdLShQICzYlcOOS1a9ekO2SXLl1YsmQJr7zyCuHh4UydOhWAbdu2NfMqBQTkxCGr7pB79+4lNTUV\nU1PTWhNuBQSaE7lwyKoYGxvzzTffcPbsWbKzs9HV1cXQ0JBly5Y199IEBASVta0hqKytmxb9O2RD\ndznWnT2Z7H3fNuicLc7maJtaDwsdlFsHLdohBRoWoYNyy0dwSDlC6KDc8pE7UUeeEToot3xa9A5p\n4LOoVczZkmzee0KCstBBuRXQpO1hBRodoYNy66ZF7pCXA50bZd7+03fx16EljTJ3S7GpPHxzrceF\nDsqtA+EbUk4QOii3DlrkDinQ8AgdlFsHgkPKCUIH5daBEDrXxnjR0Lm20iOjtSLskNU4EOTQoPON\nnbyHH76d36BzPgmLIR8813WBgYGsWrUKHx8f9u3bV69OyB4eHnh6epKYmMi4ceNqPS+E2j0bgkPK\nCdVV1tOnTzNmzBhSU1Px9PQkISGB69evC0pqMyOorHJCdZXV1NSUWbNmYWNjQ3h4OIBMOUhBSW0e\nhB1STqiusv7555/Af9E31RGU1OZBcMhqzFz8c6uYsy7q6u1RXWW9evUqgYGBFBYWsmbNGv7v//4P\noNGVVEE0ejKtRmVdud/+hedYMu4zdp2Y1wCrabk237b88Kkqa2pqKsHBwWzcuPG57TyvYNNWGqs2\nFsIOKSckJiaya9cudHV1+e2336ioqGDt2rVMmDCBI0eOoKamRklJCdu2bWPKlCnY2dmRkJCAu7s7\nFy5ckCY3V3XEgoICfH196dixozQ3MiQkRCa3ctOmTXzyySd8//333L9/n5SUFH744Qd0dXU5e/Ys\nYrGY/v37M3jwYIKCglBTU6NPnz7S4mPyhuCQckJwcDD+/v60b9+e8ePHo6KiwubNm7l//z6TJk0i\nOzubHTt2AKCgoMD8+fP5448/+PXXX+uc88SJEzg7OzNixAgOHDhAZGSkTG6lgoICL730EklJSYSH\nh/Pxxx8TFRXF2LFjmTFjBv379wfgt99+o0+fPhQUFGBvb4+ZmVmTPJOWiKCyygklJSXS8DgFBQW0\ntLQACAsL448//qBHjx506NABQKYZa2VlJYqKitK8yby8POmclZWV0jklzVorq+RWZmdnM2PGDPz9\n/bGwsEAk+u///2KxmPnz57Ns2TKsra3R1dXF09MTgE2bNjXy02i5CDuknDBnzhw2bNhAp06dePTo\nETo6OgDo6ekRHh5ObphF3ZYAACAASURBVG4uxcXF5OTk1LjW1taWnTt3YmxsLHVWgHHjxrFx40ai\no6MpKytj6tSpxMfHy+RWvvTSS5SXl0ubuHbt2pX9+/czd+5cvL29UVRUxN7enuLiYrZv346hoaG0\n87E80mpEHYH6UVfoXEREBBcuXEBJSQl9fX3c3d2fOldpaSl5eXl06tSp3vazs7PR0tKStk3fsGED\nXbt2lWaRPGlsU9JS1d5Gc8jhh7yfOma3y0IWntzdGOZbhL3msBnYb+ILl4GMiori6tWrdO7cGWVl\nZYyNjesMj6uOt7c3y5cvp3Pnzg06tqH47LPPmDJlCl5eXi1S7RVeWeWEoKAgsrKyEIlEFBUV0b17\nd2JiYti+fTtLly5l//79ZGVlsX37dt58800ALl68SHFxMZMnTyYjI4OgoCDu37+PkZERSkpKTJs2\nDV9fX9TU1MjJycHT05O4uDiOHz+Ora2tTKiei4sLnp6e0qRof39/6VhJBbyoqCh2796Ng4MD6enp\nrFixgmnTptGjRw+mT5/O559/LqPofvXVVyQlJVFaWoqysjLz58+vEd7n4uLC+PHjiYuLY+XKlaSk\npPDPP/9I1V4dHR1CQ0NRVlbG2toafX19goKCMDMzw8jIiJSUFLKysli2bBlGRkaN/t9JEHXkiJEj\nR+Lt7U1qaipz586lb9++JCUl1Tl+yJAhjBo1SibyZsKECbz33nvExsZy/vx5evfuzbp163BycuKX\nX37BzMyMCRMm1AjVE4vFdOvWTZoUfevWLenYqlhbW+Pu7o6BgQExMTFUVFSwZcsWYmJicHZ2Zt26\ndfTq1YvIyEhiY2PZuHEjb7/9NkCt4X0dO3Zk3rx5ODo6SoMmunXrhpGREWPHjuXgwYMEBgaydetW\nQkNDAbC0tGTNmjWkpqairq6Oq6trk+3iwg4pR2hqaqKkpCT9ZhOJRFRUVACPE5Jzc3NlxtfW90Ty\nhVNeXi4zRkFBQUZ1rR6qp6ioKFP1rq6+KpL1SEL6JGrwkxTdqknV1cP7qirGJSUltdqrvg5J4S5n\nZ2c0NDQ4duwYd+7cYdq0abU+14ak0Rzyp+lbG3RcQ9HU9praZl2hc09ixIgReHp6oq+vL3Pc0NCQ\nPXv2yPxIHxISQnh4OEOHDuWNN97A19eXwMBACgoKWLlyJYWFhezdu/epCdEA3bt3Z+/evaxbt056\nLCIigkePHiEWixkwYID0eG2K7q1bt/D39ycnJ4dOnTo9NbyvKhK1d8aMGaxZswYNDQ0mTZokM0YS\nCigWi3FycnqmZ/q8CCrrMzDywGfPfM0nY11Z9ENoI6ymdrZavNZovT2CgoLQ0dGhsLCQOXPmNPj8\nEjGpvnPv3LmTkpIS8vLymDFjBiYmJg2+pqZGeGWVE+oSdYqLizl48KBU0FmwYIFMCNv48eMJCAhA\nRUUFJSUlBg0axNWrV2vkVzaEgw4ePJjBgwfXe3zVmrFtBUHUkSNqE3WqvyDl5uZSUFCAtbU1r7/+\nOmFhYdjb27N+/XrGjBkjHVddtJF8Uwq8GIJDyhG1iTpKSkoygk71ELaysjJp9bm0tDRpWpVEtPHy\n8sLe3l4mLE7g+RGeopwzcOBAGUGnegjb2LFj8ff358KFC6ipqWFnZwc8vYqdwPMhiDptDKFha+um\nxe+Qow+ENdhcO8e+zvs/XHz6wAakqW1utNB/+qBnIDQ0VNpKoCo3btyoEU4nVJl7cVq8Qwo0DHWp\nrI8ePeLQoUNER0dLWwzExsZSWFjIiBEjpNdfvHixRohZRkYGN27cYP/+/ejo6JCfn9+Md9g2EEQd\nOeL/2TvzuKjK9g9fsg2bguIKCi6JqGBkVCgi7opLEaGZouKGIfiaggouCIIo5lIuGbimvWXpz8xS\nCrNXDTMzMUxM0RAFBEQWAWUbht8ffObEwCCo7HOuf96Yc87zPOfU/T5nvnPf91eZyjp48GDOnz/P\n4cOHmTRpErt370ZbWxsjIyMFs1ZlKWYAe/bsISAgAD8/P7S1tRvitpoV4g6pQihTWa2trdmzZw/G\nxsYYGhrSokULFi9ezJMnTzhz5gxFRUWA8hQz+Nf3o0WLFkIKm8jz0+gD8sTMcdWf1IDjNbY5nzV1\nTlNTE11dXaZMmUJeXh4uLi4sWbKEwsJCpk6dSkpKCkCVKWZz5swhODgYAwMDIXhFnp9mr7IGfJYs\n/LP7uHaEn0iv1/nre84JlqnPpLJu376dx48fs2zZMrZv386gQYOwtrZ+pjkrijkV/5bbFMyePRt3\nd/dnSo9TNRr9DilSO2zbto3MzEz09fVRU1PD09NTqGW8d+8eWVlZXLhwgYcPHxIfHy8oq/Lgmjx5\nMt27d8fJyYnDhw+jp6dHWloaW7duVTpfdnY2/v7++Pj4EBcXV+l4xdS7sWPHsmDBAiwtLVm5cqXK\nNlsWRR0VYtSoUXh7exMTE4NUKsXJyQl7e3sAbt26ha2tbZUVEvK6RHNzc1xcXLCzs+PBgweVLAXk\n586YMYP58+djamqqdDxl9ZJdu3YlKChIZYMRxIBUKeS1gerq6ty6dYsvv/ySVq1a0bVrV4V6Q3V1\ndYqLiwGElDp5XeLFixeJiIigQ4cOGBsbV8qFlbNs2TJ27dpV5Voqpt6pq6sLc6gyYkCqKPr6+uTm\n5nLq1Clu375NdnY2pqam7N69GxsbG44fP05wcHClpHFDQ0NSUlI4efIkqamplYqaoaxYeeDAgXTr\n1o3jx48rnV+eeufr6yv+flmOZi/qqBq1mTqXkpJCp06damUskZrRLESd3zbcr9F5ltPbcu3Awzpe\nTcPOqTm8dsZJTk4mLCzsmf0/fH198fb2FnrQyFPs7t69K9gRiFRNswhIkeopr7ICFBcXI5VKyc3N\nxdfXFx8fH4XOc6+++irXrl3jn3/+Yf78+djY2ODp6cmGDRto06YNEomEZcuWMWrUKFxcXEhJScHD\no8wp+qOPPiI3Nxd7e3tMTU1JTU0V1rF161aePHlCSkoKgYGBQrd0kTLE75AqhFxl3b17N7dv30Zb\nWxs1NTViYmIqnTtgwAAsLS3p0aMHBgYGrF27lv/+97+4u7vj7+9PcXExt27dEroFTJw4ka+//hqA\nWbNm8dFHH/HDDz9UGjc5ORlDQ0Pee+89dHV16/yemxriDqlCyFVWNTU1rKysWLhwIZcuXRJsBcoX\nKpdPk5OrnzKZTChWlqfMVewSB2Vd2+TnVWTy5Mloampy8OBB8vPzGTr0xW0GmxPNIiBtl9a8Jfyz\nnFtb1Oecly+nKP28pKRECLbXXnuNpKQkAgMDycjIICQkpFLnOQMDA+Li4rh69aowhqurK5s3b6Z9\n+/bo6upibm7OvXv3WLduHTk5OSxZsoQNGzY8dX0//fQTubm5lJSU0L1791q66+ZDk1JZk3x/faHr\n23v148H2q9WfWIvU95xpEyVKVdZvvvkGLS2tSnWNT0Mu0Pj6+lZZ5yjWQNYuzWKHFKkeuS3AiBEj\nhEyYLVu2UFBQQFpaGmvXrmXfvn1kZ2fz6NEjvLy8FK7Pzs5m7dq1GBoaoqenJ3R8E4OxdhEDUkUY\nOHAgEolECMY7d+5QUFCAn58fd+/eJTExkaioKGxsbJBKpfz+++8K1+fn55OZmcnAgQPp27dvQ9yC\nSiCqrCpCxVrG8t3ksrKyUFdXx9TUFB8fHyZPnkzPnj0VztfS0mLJkiUYGBjg7+8vdJ8TqV3EgFQR\nTExMOHLkiOCAbG5ujlQqJTg4mAMHDmBsbEyrVq3w9/fn448/Vpqhs3XrVn799VcsLS3FYuQ6okmJ\nOvWFTCYjJSUFExOThl7KMyN2nWvaNLsd8ujRo0ybNk34e9iwYVy8ePGZxggODlboG9OUEIOxaaMS\noo5MJmPChAnIZDLc3NwYPHgw8+bNIzc3l86dO7N3715GjhxJu3bt6N69O5GRkWhoaODg4EC/fv0a\nevkiKkSzDMirV68yZswYANLS0tiyZQs5OTlIJBJ2796No6Mjc+fOJTMzk5CQEKHI9r333sPJyYnS\n0lJMTEzEYBSpd5plQPbr14+DBw8CZa+sUqkULy8vbGxs+Ouvvzh79iyfffYZq1atQkNDQ1AM5Vkq\nyrqriYjUB83uO6QyFi9ezK5du5g5cybFxcW0a9eOxMREVq5cScuWLcnMzAT+DcTevXvz1Vdf8ccf\nfzTkskVUEFFlFWmUZGRk0LJlS6GHrKrQLF9Z5aSs2a7wt8H4oTz6/n/1uob6nvP+uAG1prTK81Tl\nbRzrk40bN7J48WKh0FlVaNYBWRGNjvX/L7ch5lTGzZs32b9/PyUlJZiamnLv3j00NDQwMDBg2bJl\njB49WihC3rRpE0ZGRiQmJgIQFxdHXl4eq1evpnXr1uTn5xMYGMi0adOwtbXl+vXr9O3bl5KSEmQy\nGa+//jrXr19n3rx5+Pv7K7gyZ2VlERgYyM8//8yff/5Jeno6Xl5ehIaGsmfPHsFjJDY2lmPHjmFv\nb6/QLnLSpElKc2qbCyoVkKpMeHg4AQEB6Ovr89dff1FQUEBqaip79+4FEIqQN23axNy5c7GwsOD6\n9evC9cePH2fMmDGMHDmSffv2ERUVRWlpKQsXLuTrr79GQ0MDZ2dnZs2ahbe3NwcPHuThw4cUFxdz\n8+ZNevbsiZubG5GRkXz77becO3eOsLAwsrOzyc3Nxc7OjvPnz/Pdd9/h5+dHfHw8Tk5OhISE0LFj\nR9TV1YmOjmbChAnNOqdWJUQdkbLcVblotWzZMuLj4+nTp4+QbC4vQi6vMJdPjyvfJlJenKynpweU\neYTIx5GfM3r0aHx8fJg0aZLCtWpqapSWlgrd7AoLC0lNTeXdd9/l888/R09PT/AYgcrtIpt7Tq24\nQ6oIc+bMERpWjRs3jitXrnDz5k0KCwsV/qOeMmUKmzdvpnXr1jx8+G9zrjfffJM1a9Zw+fJliouL\nmTp1Kp9//nmV840ZM4bDhw/zyiuvIJVKOXXqFKGhoeTl5bF06VIkEgmrV68mKysLT09P9PX1BY8R\ngK5duxIWFqbUqXnr1q0YGxs3y5xaUWVtZtRlLuv9+/cxNq6++8GDBw9YvXo1M2fO5PXXX6/R2OU9\nRlSZet0hD380QuHv4e/t4PSXnvU2f33P1xBzdrcPfaHrk5KSCA8PV9r+0d/fn927d1fbJaB9+/YU\nFRWhr6/P8ePHFVyW5VQco2JBtKoivrKqCBXNbU6fPs2QIUOIjY0lJCSEyMhIrl69ilQqRUNDg9TU\nVNavXy+0fBw3bhwJCQmcPXsWmUxGcHAwiYmJTJkyBXNzc3bu3Cl8l1y6dCkAubm5pKamEh0dzaFD\nhxRUXRHliKKOilDR3MbExAQPDw8sLCy4efMmkZGRrFmzhtmzZwNw8OBBhZaPEokEMzMzHBwcKCkp\nwdvbm4CAAH788Ufhu6Suri5JSUmVDHiMjIxwcXHB1taWCxcu1Pu9NyXEHVJFkKuVXbp04auvviI2\nNhYo6wRQ3h1ZLpIoa/koR1NTEx0dHfLy8pDJZMhkMhwdHRkwYADHjh3DwMBAYe4DBw7Qs2dPbGxs\nVNrZqibUa0BO/OCnGn1W32toTnNW5aCsTK0sj6OjI4GBgRQVFVFcXMy8efMqtXzU09Pj2LFjla51\ndXUlJCSEiIgIdHR0KlnaderUifPnzytVdUUUEVXWOuS9A8NYO3YnK0561NucPn0/fCGVVd4usm3b\ntrXqdDxnzhx2795dK2M1Z8RXVhWhoqgTERGBpaUljx49ws/PDwMDA1auXImamhoFBQVMmjSJn3/+\nmaSkJLKzs/noo4+YMmUK3bt3Z/r06ezatUshje7gwYPcv3+f1NRUVq5cSVBQENu3b+fbb78lLS2N\nhIQEvvvuO4yMjDh16hQlJSVYWVnxxhtvCGl1vXr1YurUqQ39qBoUMSBVhLCwMIUUtC5duhAUFMRf\nf/3FoUOHaN++PU5OTjx8+FBoF2ljY4OPjw/Lly8nLS1NcFH+4osvKqXR/fnnn3z88cekpaWhpqZG\nhw4diI+PJzIyko8//piLFy8yYcIEZsyYgZWVFQC//fYbvXr1Ii8vj6FDh9KnT58GfkoNj6iyqggV\nU9DkrlNWVlbcvXuXixcvYm9vr5A616pVKwChiFueXlcxjU4mkwmiT15eHhkZGcyYMYPg4GD69euH\nhoaGwjo8PDxYtGgRtra2GBkZ4e3tDUBQUFDdP4hGjrhDqghPE3Vef/11WrRoQYsWLTAxMWHnzp1P\nfXVUlkZ38+ZNgoKCSE9PZ8WKFXTo0AGpVMqkSZMA6NKlC3v27GHevHn4+fmhrq7O0KFDKSgoYNOm\nTZiYmPDKK6/U6TNoCoiiTjPjWVPnIiIiOHnyJBs3bqzVnyQCAgLo1KkT77zzDm3btq21cZs7dRaQ\no/Z9Wu052yc44/Vd/bVbrO/5GmLOdf1eUxqQ8fHxrF69GmdnZ5KSkmrsZqwsla6mBjvPY/Cj6oiv\nrCrCF198waVLl7C1tQVg7969tG3blk6dOuHo6MiCBQuwtLTknXfe4bPPPqNly5aYmZkxevRoLl++\nzLp168jIyCAgIEAYU/6dLyEhgRUrVnD79m2ioqJ4/Pgxrq6ugsGPubk54eHhopJaA8SAVBFGjhxJ\n+/btgbIaxHfffRc7OzvmzZvHsGHD6Nq1K0FBQSxatIjVq1djaGiIp6cngwYNwsLCAj8/P77//nsi\nIiIAkEqljB49moKCAnJycoiJiSE3NxcNDQ3Gjh1Lt27dBIOf/Px8UUmtIaLKqqLI3ZS1tLRQV1dX\ncEmuWIgstx7X1NQUUusePHhAeHg4WlpamJubU1paSv/+/Zk+fToJCQmEhYUJ44hKas2psx0ycub7\ntXpebVHf89X3nFWlzlXk8OHD/Prrr7zxxhsKP0u4u7sTFBREmzZtsLGxEVp+hIeHk5ycjK+vLydO\nnEBbWxuZTMaZM2dISkqif//+3Lt3j1OnTqGrq8vQoUNp1aoVO3fuxMTEhLCwMFFJrQGNWmV9Z//f\ntTpe6PiuLPs+oVbHbGxzLrd6olTUOXLkCNbW1krzWEUaD+J3SBUhJSVFSJeLj4/H1NQUXV1dkpOT\nCQkJYcyYMYwfP56rV6/y8ssvk5WVRbdu3XjppZeEnFZ/f3/c3d0JDg7G0tKS5ORkhg8fTt++fSvV\nQ4rd358P8TukClFcXMz8+fOZPHky2traeHp6kpqaCoChoSFeXl707t0bGxsbfH19OXPmjNJx8vPz\ncXd3Z8GCBZw+fbraekiRmiPukCqEpqYmEolEaZe4ih3kNDQ0kMlkqKurU1xcDEB2drZwjpaWFpqa\nmpSWllZbDylSc8QdUuSpWFhYEB0dTXBwMOnp6cLn9+/fF/7Z1dWVzz//HH9/f/7++2+0tbUbYqnN\ng1KRZsUff/xRL/PMnj27tLS0tHTWrFn1Ml99zdPQNItX1ji/xBqdZ+rZgXs70up4NQ08p4vyjyMj\nIxWyaKKiokhPT0dDQ4P8/Hy6du1KdHQ0mzZt4qeffuLixYsUFRXh7OxMjx49atzwysHBAShLufvg\ngw9wcHDg+vXrWFpakpiYyIgRIwSvznHjxglpeEFBQWhqapKenk5oaGil+kooqxT58MMPkUql5Obm\n4uvrS+vWrevrydYL4iuripCamqqQRQMwatQo/Pz8SEpKYt68eVhYWBAfH8/x48dZt24d69evZ+/e\nvc/U8Ko8ZmZmLFiwAF1dXd566y08PDyIiopSur7ExEQ6duzI1KlTKSoq4s8//2TFihVC0TRAVFQU\nt2/fRltbGzU1NWJiYur2oTUAzWKHFKme/v37M3jwYE6fPs0ff/whdKDT1NQULN/kQo4cueDzLA2v\nyiMXiuRiUmFhoVKhqLi4GC8vL4qKiggPD2fOnDkK9ZXyc0tLS7GysmLhwoVcunSJNm3a1MWjalDE\ngFQRKmbR/P131UkXb775pvCaOHfuXLp06VLjhlc1wcbGhlWrVnHt2jWkUimampocOnQIiURCy5Yt\n6dGjB71791aorwQYNGgQJ06cIDAwkIyMDEJCQp5r/sZMo87UEXl26tJKQKTuaRbfIY8ePcq0adMA\n2L9/P4MGDcLT07OSGYyvry/btm1riCWKiNSIZvXKumPHDr799lu+/PJLduzYQVZWFvfu3cPT0xN1\ndXWKioowMTHh6NGj7N+/H21tbR4+fMiBAwdITEwkJCQEmUyGm5sbWVlZXLt2ja1btzJ16lQmTZrE\nW2+91dC3WC3i7ti0aRY7JMCVK1f46quvUFNTU/iy/+WXX2JlZcWxY8cwMjISPi8qKuLQoUMYGhoS\nHR3Nli1byMnJobi4mN27dzN58mR+++03Ll26REJCAo6Ojg1xWyIqRrPZITt37szRo0fx8PAgICBA\nqNurKsm5Xbt2qKmpoaenh1QqRSqV4uXlhY2NDX/99RetWrXizTff5IMPPmDSpEmCEikiUpc0mx2y\nXbt26OrqEhISwunTp/n1118BmDp1KteuXcPJyYnCwsIqr1+8eDG7du1i5syZgsw+ZswYHj16xOTJ\nk+vlHkRERJW1Cs6cOcPy5cuZPHky//nPfxp6OSIqghiQzYz6/NkjJSWFTp061ctcDTFfQ9BsvkPW\nJilrttfaWEZzJpGx++taG69axg14rsvk7R6tra2FPNOnkZycTFhYGGvWrCE0NPS5TVi3bdtWo5aU\n5edrzogBqSLcvHmT/fv3U1JSgp2dndCasXy7x/L8+uuvCqY4jo6OrF+/HolEgqamJj169ODatWv8\n888/xMXFcfHiRXbt2sWrr77KjRs32Lx5MwcPHiQ+Pp6ioiK0tLSEYCouLiYwMBB9fX0uX76Mvb29\nkGSenp7Opk2bWLlyZZXz9ejRoyEeYb0gBqSKEB4eTkBAAPr6+ly/fp3w8PBK7R7LExYWpmCKI5PJ\nGDp0KMOHD+fatWsYGhry119/KQSHpaUlHh4e+Pn5kZaWxpUrV/j444+5cuUK33zzjXDeb7/9hrm5\nOdOnT+fDDz9Uut4TJ05UO19zRAxIFaG4uFj4Ceju3btK2z2WR26Ko62tzdGjRyksLBQSzJOTk5WW\nPZVvF5mbmyuMKf8JSk75n6LKd7yTyWRCV4Li4uJq52uOiAGphE7+Xo16vKdxv4o2kHPmzBFeGe3t\n7ZW2eyxPRVOcUaNGsXz5cs6dO4eOjg52dnbExcVx9epVpfPp6enRt29fgoODycrKUvD3eOONNzh9\n+jQbNmzgypUrDB06lJEjR+Lt7U3Hjh0BmDBhAsHBwUrn69evX208qkaJqLI+hcMfjXjhMYa/t4PT\nX3rWwmpqRnf70BdSWZV5eciRuyDXxNtj9uzZdOzYkfT0dNq1a8eMGTMwNzdXOF4TfxBVQ9whVYSK\nDsqnT59myJAhxMbGEhISQmRkJFevXkUqlaKhoUFqamqNuwSYm5tXagMJZWVcMTEx2NjYsHv3bjQ0\nNDAwMHhuRVYVaDaZOiJPJywsTChKjo6OxsTEBA8PDywsLLh58yaRkZGsWbOG2bNnAzxTl4Dq2kAa\nGRnh4uKCra0tFy5cqPd7b0qIO6SKIHdQ7tKlC1999RWxsbFAmbdHeYFHLsA8S5eA6tpAHjhwgJ49\ne2JjY1OrHpTNETEgVYSnOSgDODo6EhgYSElJCVDW2rGmXQJcXV0JCQkhIiICHR0dnJycFI536tSJ\nK1eucPPmTQoLC4U5RCojijrNjPpKnbt//z7GxsZPPScjI4OWLVuKlTLPgMrvkO8dGFan468du5MV\nJz3qdI7y+PRV/kO73EHZzc2N4cOHv/A8/v7+7N69+6nnbNy4kcWLF9OuXbsqz6lp6tzT+PTTT5k8\neTLe3t4EBgZWqRI3BVQ+IFWFL774ghYtWmBiYkJgYKDQQWHlypVMnz4dBwcH4uLicHNzQyKRKCiy\nkyZNYu3atRgaGqKnp8frr79OQkICV65cITQ0lO7du+Pk5MThw4fR09MjLS2NoKAgYmNjOXbsGPb2\n9grjzZw5s1LqnJyKKX5dunTh0KFDCgrtqFGjcHFxISUlBQ8PDxISEoSSOTl37txhx44d6OjoUFhY\nyIYNG5g8eTLdu3enV69eGBkZMX78eBYuXMj69esFv8yGRgxIFUHuoBwdHU12djYmJiZkZWURFxeH\nmpoaHh4eXLp0iV9++YV//vmHjh07oq6uTnR0NBMmTCAzM5OBAwfSt29fzM3NMTMz45VXXkEmkxES\nEkJ2djYuLi7k5OTw6aefUlhYSJ8+fXByciIkJERhvN69e1eZOlcxxU9fXx8XFxdSU1PZu3cvAMbG\nxri7u3P9+nW+/lp54r6uri4TJ04kIyODzZs3AwhrLSgoYNGiRfTq1QtTU9NGE4wgBqTKUVpaip2d\nHS4uLpw+fZoOHToI/0HKzXMqKrJaWlosWbKE+/fv4+/vz3//+19hPLnz8sWLF7lw4QLOzs4YGxtT\nWloqKLcVx6sqdQ4qp/hdvny5kkIr7/9aUFCApqam0vs8ceIET548YcSIERgaGiqsVVtbm969e7N+\n/XqCg4Nf7IHWMiofkF9O/7lZzCGnOgflN998k+XLl3Pt2jUKCgoYMmRIpXOUKbJbt27F2NgYS0tL\n4XX37NmzwjWGhoakpKRw8uRJUlNTyc7OpnPnznz00UeVxlOWOienYoqfMoX23r17rFu3jpycHJYs\nWcKGDRsq3UP79u2JjIwkOzubgoICsrKyFI6PGzeOO3fuNLr6SlFlBUbt+7TOxt4+wRmv747W2fgV\nWdfvNaUqq1zUcXZ2JikpqcZCirJUupqmvX3zzTdoaWlVW1v5rLxo2l1cXBwbN25k2bJlja56ROV3\nSFXhiy++4NKlS9ja2gKwd+9e2rZtS6dOnXB0dGTBggVYWlryzjvv8NlnnynUSV6+fJl169aRkZFB\nQECAMGZQUBAACQkJrFixgtu3bysY+pw/f56CggKh9lJHR4devXoxderUF7qXF82Bla+nMSIGpIog\nF3UACgsLeffdoKXVRAAAIABJREFUd7Gzs2PevHkMGzaMrl27EhQUxKJFiyrVSVpYWODn58f3339P\nREQEAFKplNGjR1NQUEBOTg4xMTHk5uYqGPoMHDgQiURCfn4+eXl5DB06lD59+jTkY2j0iLmsKopc\nyNHS0kJdXV0QPJTVSZavc5Sn1j148IDw8HC0tLQwNzentLSU/v37M336dBISEggLCxPGMTIywtvb\nG/h3VxVRjrhDApEz32/S45enOlFHzuHDh/n111954403FJROZXWSf/31F+Hh4SQnJ+Pr68uJEyfQ\n1tZGJpNx5swZkpKS6N+/fyVDn1atWrFz505MTEwICwvDxMSEV155pa5uvVkgijrNjKpS544cOYK1\ntbXSPFaRxoO4Qz6Fd/ZXbdlWU0LHd2XZ9wkvvpgastxK+ecpKSlERERgaWlJfHw8pqam6Orqkpyc\nTEhICGPGjGH8+PFcvXqVl19+maysLLp168ZLL71ETEyMUIrl7u5OcHAwlpaWJCcnM3z4cPr27Vup\nHrKqjvEiT0f8DqlCFBcXM3/+fCZPnoy2tjaenp6kpqYCZb8jenl50bt3b2xsbPD19eXMmTNKx8nP\nz8fd3Z0FCxZw+vTpaushRWqOuEOqEHInY/lOBv82nJK7HcuPyd2UK7ody8/R0tISMnuqq4cUqTni\nDinyVCwsLIiOjiY4OJj09HSl57i6uvL555/j7+/P33//jba2dj2vsvkgijrNjKpEnaKiInJychS6\nv4k0Ppr0K2ucX+IznW/q2YF7O9LqaDWNZE4X5R+fOHFCaRpbTTvIiR3i6ocmHZAiNef8+fOcO3eO\n5ORkBcVU3kHu0aNHvP3226Smpgpd5soHYklJCR9++CFSqZTc3Fx8fX1VpnlxfSJ+h1QRBg4cyOrV\nqyt93qJFCxYvXszatWvZt29flddHRUVx+/ZttLW1UVNTIyYmpi6Xq7KIO6SK0KJFC+7evSt0j5Mr\npurq6oLiKk+Nq6iqQlkdpZWVFQsXLuTSpUsKtvEitUeTDkjzdV3q5ZoXpT7nvHxZ+W+AJiYmHD16\nFC0trUqK6datW8nPz8fNzQ0TExNWrVrFtWvXkEqlwjmDBg3ixIkTBAYGkpGRQUhISJ3fiyoiqqzN\njPo0bBWpfZrld8ijR48ybdo04e/PP/+cTZs2NeCK6g8xGJs2zTIgK5KVlUV6ejp+fn5s2bIFgDFj\nxhAVFcXevXsZO3Yszs7OxMTEsG3bNhwdHRk5ciSPHj1q4JWLqBoqEZBypkyZwrFjx/jjjz+QyWT0\n79+fjRs3UlJSQnZ2NocOHQLK+rGcOnVKTAETqXeatKjzrFhZWdG+fXsCAwN57733kMlklJaWCrV+\nWlpaXLhwQfAoFBGpb5rtDnnlyhXs7Oyws7NTePWcOnUq9+7dw9nZGX19fRYtWiQ07pXnYIqlQyIN\nhaiyNjNElbVpo1KvrC9Kyprtz3yN0ZxJZOxW3l27Thg3QOnHL+KhIb9227ZtYk5rHSMGpApRvvXj\n3Llzhc/37dvH/fv3SU1NZeXKlfz000/cuXOH3NxcpkyZojCGVCpl5cqVGBoakp+fT2BgYH3fRrNG\nDEgVonzrx+nTpyORSCgoKODPP//k448/Ji0tjdLSUg4dOoSDgwNqamqcP39eYQypVEpKSgovv/wy\nlpaWDXQnzZdmK+qIVKZ860e5O7JUKhXyW/Py8sjOzsbAwAAfHx/c3Nzo27evwhhSqZRly5ZhZmbG\nhg0byMjIqN+baOaIO+Qz0Mnfq16vex7uP6UNZPnWj3KTGn19fXr37k1QUBDp6emsWLECe3t7/Pz8\nyMrK4oMPPhCul5vbhIWF0bZtWzp37kyrVq3q/J5UilKRZsUff/zxQtcnJiaWrlq1Sumx2bNnl5aW\nlpbOmjWr2nFmzZpVGhsbW/rtt99WeVykMs1qh9y37eluyBMm7eS7r+vPzbgh5uw3ULmD8o0bNxRM\nU0+fPs2QIUOIjY0lJCSEyMhIrl69ilQqRUNDg9TUVNavX0+bNm2EguWEhATOnj0rFDUnJiYyZcoU\nzM3NK7WBBMjNzSU1NZXo6OhKpqsiyhG/Q6oIYWFh6Orqoq+vT3R0NCYmJnh4eGBhYcHNmzeJjIxk\nzZo1zJ49G4CDBw8KnQWKi4uRSCSYmZnh4OBASUkJ3t7eBAQE8OOPP1bbBtLIyAgXFxdsbW25cOFC\nvd97U6JZ7ZAiVVPRNDU2NhYoE3jK+3nIvTtkMpkg/Mg9PuRoamqio6NDXl4eMpms2jaQBw4cqGS6\nKqIcMSBVBGUmrOVxdHQkMDCQkpISoKy14+bNm2nfvj26urqYm5ujp6fHsWPHKl3r6upKSEgIERER\n6Ojo4OTkpHBcmemqiHLE1LlmRl2mzt2/fx9jY+PnujYlJaXRuRU3RprMDjnigN8Lj7FjrCeeJ3fU\nwmoa75yhfZX3gXyR1Dk5/v7+7N69+5mvS05OJiwsTMGFWUQ5TSYgRV6c/fv3I5FI6NSpEwUFBQot\nHX19fenTpw/FxcXY2dnRsWNHduzYgY6ODoWFhXh5eZGQkMB3331HmzZthP48tra2DB8+nPXr1yOR\nSNDU1KRr167o6+szfvx4Fi5cyKuvvsq1a9f4559/iIiIIDs7m0ePHuHl5UVUVBQJCQmkp6ezaNEi\nzMzMGvoxNShiQKoQzs7ODB48mL59+zJgwAAsLCx4/PgxMTExyGQy5s+fj7q6Ov/5z39YtWoVEydO\nJCMjg82bN2NqaoqZmRkTJkzA3d2dTz75BA0NDWbMmEFBQQFDhw5l+PDhXLt2jZdeeolFixbRq1cv\nTE1NGTZsGLdv3wbK2kna2NgglUr5/fffSUpKQldXF2dnZ9q1a9fAT6jhEQNShSifVVOxpWNpaSml\npaVIpVLU1NQ4ceIET548YcSIERgaGiqMU16VhTJXLbkim5ycjIWFBb1792b9+vUEBwcjk8mE60xN\nTfHx8eHGjRsUFBQIYtH//d//ce/ePVxdXevhSTRemkxA/jR9XaMap7HOWRMH5ddee42kpCSFlo5S\nqZQNGzbw5MkTZs2aRVJSEpGRkWRnZ1NQUEBWVhZdunRhz549zJgxg+XLl6Onp8fEiROxt7cnODiY\nc+fOoaOjw+jRoxk3bhx37tyhU6dO5OXlERcXR35+Pq1atcLf35/09HQCAgKIiIjg5s2blJSUMHr0\n6Hp4Qo0bUWWtwLh9J2p1vI8m2PHBd+erP7GWWNOvo1KVtTpRpyb+HdOmTWPw4MEKpVvKiIuLY+PG\njSxbtowePXrUfPEiTWeHFHlxZDIZa9as4c8//8Tf3x9ra2shEBMTEwkPDyclJQUPDw82b95M27Zt\n0dHRoUuXLmhra5OSkkLv3r3Zvn27gjAjT5sbOHAgY8eOxdzcnPDw8Ia+3SaJmDqnQgQHB2NmZsbQ\noUMrHTM2Nsbd3Z2JEyfy9ddlHQ5cXV3x9PQkIiKCUaNGYWZmRqdOnYiKikJbWxs9PT1+//13AGbO\nnMnYsWPr9X6aI2JAqhAzZszgf//7H+rq6kIdZE5ODoAgvMhLrMp/Vv5bTXlhZvLkyfTs2RNALMOq\nJcRXVhXCzMyM+fPns2PHDi5fvky3bt2EouV79+6xbt06cnJyWLJkCRs2bGDHjh1oaGjg4vJvskHP\nnj0rCTMitYco6jQznjd1bvbs2Xz88cfIZDJatWqFr68v3t7e4m+D9YwYkNXw24b7L3S95fS2XDvw\nsJZWUz2aw1OeO5d1+/btDBo06JnT6yoqtBX/Dg0NZdmyZcyePRt3d3diYmJwd3d/rjU2d8RXVhVh\n27ZtZGZmoq+vj5qaGp6enqxevRodHR3u3bvHhx9+yIULF3j48CHx8fGVXJQnT55M9+7dcXJy4vDh\nw+jp6ZGWlsbWrVuVzpednY2/vz8+Pj7ExcVVOl6xYHrs2LEsWLAAS0tLVq5cqbJlWqKoo0KMGjUK\nb29vYmJikEqlODk5YW9vD8CtW7ewtbWtVDolRyaTERISgrm5OS4uLtjZ2fHgwYNKxcjyc2fMmMH8\n+fMxNTVVOl7FgumSkhK6du1KUFCQygYjiAGpUsgFHHV1dW7dusWXX35Jq1at6Nq1K6WlpQpFyhVd\nlFu2bAnAxYsXiYiIoEOHDhgbG1PVN55ly5axa9euKtciL5j28fFh6NChqKurC3OoMuIrazXYLn2+\n+r/aHqOmXL6cUqPz9PX1yc3N5dSpU9y+fZvXXnsNU1NTdu/ejZ+fn1IXZQBDQ0NSUlI4efIkqamp\nCrbnctTU1Bg4cCDR0dEcP35c6fzVFUyrKqKo08wQvT2aNs3ylbWig7IqIQZj06ZZBmRFfH192bZt\nGwC9evUiKSkJX19fpk+fzujRo5k+fToymYwjR44wePBgvLy8sLKyIikpqYFXLqJqqPR3SDMzMz75\n5BNeffVV0tPT2bRpE9u2baNDhw6cOnWqoZcnooKoxA6pqalJQUEBmZmZCp+3b98efX19oKzIVp67\nKRq2ijQUzXaHlDsoA0JfmLS0NPT09Kq8xsfHh8WLF9OvXz+grGepiEh9Iqqs5di4cSM//fQTUqkU\na2trNm7c2NBLemZElbVpIwZkOZ7HIbk66ttB+f64Ac/VMeBpiA7K9UezfWUVqYzooNz4EQNShRAd\nlBs/KqGyipQhOig3fsQdshx15XTcVB2U09LSWLRokcIYooNy3SKKOrXM7cBxCn93nvsRSbs+qOLs\n2ufR+DXVqqxHjhzB2tqadevWsWfPHqGAuCJ+fn4sXrz4qV0DasMzRORfxB1SRbh58yb79++npKSE\nK1eu8OGH/zotx8XFkZmZybp164TC46CgIGJjYzl27Bj29vYKxcQzZ84kMDAQfX19Ll++LNRUirw4\n4ndIFSE8PJzly5cTGhqqtHmxmpqaQuFxYWEhffr0wcnJqVIx8W+//Ya5uTm+vr68/vrrDXA3zRdx\nh1QRiouLhZTAe/fuVTp+8eJFLly4gLOzs1B4LD+/ovty+dRCDQ3xP6HaRHyaKsKcOXMEf0ZlDsbK\nCo+7du1KWFhYpWLiN954g9OnT7NhwwauXLmitPGyyPMhijrNDDF1rmkj7pC1zA+bRyn8PWDKdi58\nUX8/e7RzqN5pqypl9OLFi2KLxgZGDEgVoaLKam9vL7R4lNeCvv3225w6dYrMzExycnIICgpCXV29\noZeuUogqq4pQncoqZ+DAgfj6+mJmZsbFixfrcYUiIAakylCVyiqTyRQ6x8nT6zQ1NcXdsQEQX1lr\nmTGLI2v0WV1RlYOyMpV15MiReHt707FjR+G88+fPo6amRnp6Om5ubk+dKy8vT/ACEakdVF5l3bdt\nWJ2OP2HSTr772qNO5yhPv4EfVquy1sQt+Wnnnz17Fi0tLS5fvsygQYN49OgRWlpaDBgw4LnXLVKG\nuEOqCNevX2fPnj20adOG7Oxs1q9fj1QqJTc3F19fX/z8/LC0tCQ5OZnhw4fTp08fNm3ahJGREYmJ\niQCMHj0aGxsbunTpgomJieAF0q9fPyQSCRcuXODEiRM8fvyYiRMnMnDgwAa+66aHGJAqwp49ewgI\nCEBPT4/evXvTunVrLCwsePz4MTExMeTn5+Pu7s7Dhw/Ztm0bMTExzJ07FwsLC65fvw6AgYEBa9eu\n5ejRo6ipqWFra4u9vT3x8fEAHDhwgO3btyOVSpVmA4lUjxiQKkKLFi2EdDgNDQ2srKxYuHAhly5d\nok2bNmhoaKClpYWmpqZC2hwgiDsVvTcqdueTSqW0aNECmUxGYmKi4K4sUnPEgFQR5syZQ3BwMAYG\nBkIT6MDAQDIyMggJCal0/pQpU9i8eTOtW7fm4UPl/pZyL5Bhw4YJ16xYsYKCggImTZpUp/fTXFF5\nUae5UZepc/fv38fYuP6Mg1SRRrNDhnxa9wnKM50/Zd/R9+t8noacc/RrL9a6MikpifDwcOEnkvL4\n+/uze/fuGqm0s2fPxtvbm9u3b/Pmm28qPS52sKtMowlIkbqlomPx6dOnGTJkCLGxsYSEhBAZGcnV\nq1eRSqVoaGiQmprK+vXradOmjeCmnJCQwNmzZ5HJZAQHB5OYmMiUKVMwNzdn586daGhoIJFIWLp0\nKQC5ubmkpqYSHR3NoUOH0NDQwMDAQGl3ApEyxEwdFaFikbGJiQkeHh5YWFhw8+ZNIiMjWbNmDbNn\nzwbg4MGDuLu74+/vT3FxMRKJBDMzMxwcHCgpKcHb25uAgAB+/PFHPv/8cwB0dXVJSkqq5KpsZGSE\ni4sLtra2XLhwod7vvSkh7pAqQsUi49jYWKCsA51MJlNwT4aylDp5Zzq5QitHU1MTHR0dIVNHJpPh\n6OjIgAEDOHbsGAYGBgpzHzhwgJ49e2JjY6PSduU1odEE5PL3/9es5mmoOatKnavOsdjR0ZHAwEBy\ncnLQ09PD1dWVzZs30759e3R1dTE3N0dPT49jx45VutbV1ZWQkBAiIiLQ0dHByclJ4XinTp24cuUK\nN2/epLCwUGmBtEgZKqeyvnegblPlKrJ27E5WnKy/1DmfvtWnzilD3nluzpw5onDTgDSaHVKkbqko\n6vzwww+MHz+epKQkvL29iYuL49q1a6Jw08CIoo6KUFHU6d27N7NmzWLAgAFERpZVo1haWorCTQMj\n7pAqQkVR588//wSgoKBA6GJeHlG4aRjEgFQRKoo6MTExhIaG8vjxY5YvX84333wDIAo3DYzKiTrN\nnZqkzj0tG0ekYREDsoaMOOD3XNftGOuJ58kdtbyaqgnt66I0IOV+Hsp+8hBpPIivrCpCSkoKERER\nWFpaEh8fj6mpKbq6uiQnJxMSEsKYMWMYP348V69e5eWXXyYrK4tu3boJr7fyrB13d3eCg4MVipn7\n9u1bSYGtWJolUjNElVWFKC4uZv78+UyePBltbW08PT1JTU0FyjqXe3l50bt3b2xsbPD19eXMmTNK\nx5EXMy9YsIDTp09Xq8CK1Bxxh1QhNDU1kUgkwk4G/xYZ6+npAQjHNDQ0kMlkqKurU1xcDCB0p6tY\nzFydAitSc8SArCE/Ta++I3hdXPusVJU697xYWFiwc+dOgoODSU9PV3pOdQqsSM1ReVFn5P6P6nT8\nHePfw/P7L+t0jvKst7JvUG8PMV3uxRB3SBVh27ZtpKeno6GhQX5+Pl27diU6OpqBAwdy584dHjx4\nwIQJE7C3t2f9+vVIJBI0NTUZOnQo27Zto0+fPjg4OHD06FG0tLSwtbWlY8eO7Nixg2HDhpGSksKS\nJUvIysoiODiY+Ph4vL29KSwsrJRSt2nTJh4/fsyDBw/o168fgwcPVkjrmzRpEmvXrsXQ0BA9PT0+\n+KD+HKgbGlHUUSFGjRqFn58fSUlJzJs3DwsLC6ytrRk7dizW1tacO3eOEydOMHToUFatWsX48eMB\nsLa2Zvny5Xz22WeEhoaybt06jh49CoCtrS1ubm506tSJ6OhoNDU1WbFiBfPnz+fMmTOVUuru3r1L\nYWEh/v7+jBkzBqic1pefn09mZiZ9+vRh7NixDfa8GgIxIFUIfX19NDU10dLSAsrEmc2bN5OXl4eV\nlRWlpaUUFxcLdZDJycmUlJQIncnL103KkclkwL8pePr6+kJnO5lMxoEDB4iPj6dPnz5IJBKKioqE\nMeTzyNP6fHx8GDp0KFpaWixZsgQDAwP8/f1VKutHfGVVcTQ0NLhw4QJFRUXk5eUxYcIEgoODOXfu\nHDo6Ojg4OAjnzpgxg+XLl6Onp8fEiROBsi7mT548oaSkhJdffrnS+BVT6rp3705paSnr1q3jzp07\nDBo0SGmt5tatWzE2NsbS0lKlPEZUXtRpbtSHYau8+9zz+EkWFxezYcMGNDQ0yMnJ4T//+Q8dOnSo\nw9U2LcSAbGKM2rv/qcfXvWxV5wEpFjHXHeIrq4pQlcrq6OjItWvXePz4MSNHjqR169Z8/fXXlJaW\nMnz4cKysrMTuc/WIKOqoEMpUVl9fX7S1tTEyMuL8+fNkZGRQVFTEsGHD6Nevn9h9rp4Rd0gVQpnK\nqqamxuLFi3ny5AlnzpyhW7dueHp6Eh0dTWhoKB06dBC7z9UjYkA2MSJnuT31+LOmzs2fP58lS5ZQ\nWFjI1KlTyczM5LPPPqNdu3bY2Njg4ODwzN3njh8/jkQiEYuYnwNR1AHG7TtRZ2N/NMGOD747X2fj\nV2RNv44NmjoHsH37dgYNGoS1tXWDrqMpIu6QKsLTRJ2LFy9SVFSEs7MzaWlpREVF0b17d1JTUwkO\nDiY0NJSCggIePXqEj48Pd+/eVTBm3bdvH1u3biUzM5Ndu3Zx69YtHj58SIcOHRREnsWLF7Nq1SoM\nDQ3Jz88nMDCwoR9Lo0MMSBVi1KhRvPHGG8yaNYt169axZcsWjh49yoEDByguLub9999n3LhxDBgw\ngIkTJ+Lm5sY///xDcXExq1evJjY2loMHD5KQkKBgzPrOO+9w/Phx7t69y7Rp0zh58iT29vYKIs/d\nu3fJzMwkJSWFl19+GUtLywZ+Go0TUWVVIZSJOhoaZf+fXD4lTldXFyizFShvKSD/34rGrCNHjuSX\nX34hLS2NHj16CGPJRR4fHx+GDx+Onp4ey5Ytw8zMjA0bNpCRkVFv995UEHdIFad///6sXLkSgLlz\n53L//n2F4z179kRdXZ2QkBByc3NZuHAhf//9t4Ixq7q6OmZmZrzxxhvAv0aufn5+CnWSjo6OhIWF\n0bZtWzp37izkyIr8iyjqNDNeJHVO/vPFswbKf//7X65du8a6dfVXiN1cEXfIanhn/98vdH3o+K4s\n+z6hdhZTA5ZbPf+1+/fvfy519Oeff1ZIf6uYDif3DZk9ezbu7u7PnP+qSogBqSJs27aNzMxM9PX1\nUVNTw9PTk9WrV6Ojo8O9e/f48MMPuXDhAg8fPiQ+Pl5Ik5MH1+TJk+nevTtOTk4cPnwYPT090tLS\n2Lp1q9L5srOz8ff3x8fHh7i4uErHK3qNjB07lgULFmBpacnKlStVNnFAFHVUiFGjRuHt7U1MTAxS\nqRQnJyfs7e0BuHXrFra2tlX2w5HJZISEhGBubo6Liwt2dnY8ePBAaYc5mUzGjBkzmD9/PqampkrH\nq1iUXFJSQteuXQkKClLZYAQxIFUKHR0doEw9vXXrFl9++SWtWrWia9eulJaWKpi2Vuw017JlSwAu\nXrxIREQEHTp0wNjYmKokiGXLlrFr164q11KxKFldXV2YQ5URX1mr4f/cejeKMWpKTVPn9PX1yc3N\n5dSpU9y+fZvXXntNQR1dtWoV165dQyqVKlxnaGhISkoKJ0+eJDU1VQjY8qipqTFw4ECio6M5fvy4\n0vmrM5BVVUSVtYnx2b60px637JfU4KlzFXnWmsf09HSOHz/O7Nmz63BVjRNxh1QRyos6UFa5L5VK\nyc3NxdfXFx8fH/bs2UN6ejqbNm3i7bffrrLb3PDhw9m0aRPq6uoUFRWxcuVKpk+fjoODA3Fxcbi5\nuaGpqcmePXto06YNubm5SKVSQUTKysoiMDCQn3/+mT///JP09HS8vLzYsmULbdu2xdramrt373L0\n6NFKaXzbt28nOzubR48e4eXlhZmZWQM/2dpFDEgVYtSoUQwYMIDevXtjZ2eHhYUFjx8/JiYmRun5\n1tbW+Pj44O7uzieffIKGhgYzZszg8ePHZGdnY2JiQlZWFnFxcaipqeHh4cGlS5f45ZdfuHPnDgEB\nAejp6eHm5sb58+fp2bMnbm5uREZG8u2333Lu3DnCwsLIzs4mNzeXJ0+esGLFCjIyMrh69SpApTS+\nqKgobGxskEql/P7772JAijRd5KKOmpoaVlZWLFy4kEuXLtGmTRugTB0t/52wqm5zpaWl2NnZ4eLi\nwunTp+nQoYMwttxeQF472aJFC9TV1RVEIzU1NUpLS4Xvp4WFhaSmpgr1leWpmMZnamqKj48PN27c\noKCgoC4eU4MiBqQK8tprr5GUlERgYCAZGRmEhIQwcuRIvL296dixY6XzK3abc3BwYPny5Vy7do2C\nggKGDBlS6Zo5c+YQHByMgYEBRUVFDBo0iFOnThEaGkpeXh5Lly5FIpGwevVqsrKy8PT0rHbdPXv2\npFWrVvj7+5Oenk5AQEAtPI3GhSjqNDPqo+tcQ5CRkUHLli2FxPjmirhD1gO/bbhf/Um1hObwuh3/\n+vXrSjvI1ZUyKjea3bNnD4sXL+bQoUPY29s/Nb1PrurKU/aqOt4YEQNSRdi2bRt37tzBxsaG0tJS\n7ty5Q25uLlOmTOHcuXNKi5c3bdrEt99+y61btwTvjzZt2pCamlopFW/ixIlVKqMVvTzkeax5eXmV\n1Npp06YxePBgsrKymDRpEikpKXTv3p3Y2Fihbcj+/fuRSCR07tyZ+fPn8+GHHyooxnLi4uLIzMxk\n3bp11ab6NRbETB0VwsnJibfeeotDhw6hra2NgYEB58+XtRdR1pEuPj4eS0tLBe+P8pRPxSvPgAED\n8PLyIikpSamXh5zjx4+TnZ2NtrY2jx8/Ji4uDh0dHTw9PVmwYAH79u0DykSgPn36CGl9zs7OhIaG\ncuXKFaKiorh9+zba2tqoqalVWouamlq1qX6NCTEgVYhWrVpRWlqKgYEBPj4+uLm50bdvX0B58bJM\nJqvk/VGe8ql45SmvjCrz8pAjV2t9fHwYO3YsHTp0EOaQe4XIKa/yytVfuZJrZWWFj48Pzs7OdOnS\nRWGOmqb6NRbEV9Z6wHapcb3NdflyylOP6+vrM2DAABYtWkR+fn61Vm9t2rRR8P54Vnr27FnJy0PO\nm2++WUmtzcnJITg4mLy8PDw8PITUu65duxIWFlapteSgQYM4ceKEgmJcnpqk+jUmmpTKmuh9/YWu\n7/BBN9I+ulNLq2mccz6Ykl+tyvrNN9+gpaXFuHHjam3eqoSSZ/XyaMyCS30g7pAqQmRkJFFRUTx+\n/JiHDx/SsmVLWrZsSXh4eJVmrJ9++inW1tbcvn2b3r17c+PGDebMmYNUKq2xJYDcL7KmqHIwgvgd\nUmVITU0zE8XJAAAgAElEQVRFQ0ODsWPHMmTIEBwdHZFIJE81Y5Vn82RlZeHu7s7kyZO5ePGiaAlQ\nh4gBqSL079+f6dOnk5CQwMGDB4XPn2bGKk9El0gkaGhoCClwFU1YRWqPJvXK2mVTn0YxRmOe80EV\n9ZDx8fH88MMPtG7dGmdnZ44cOcLUqVOF48rMWKtCtASoO5pUQIo8PyUlJYwbN65KIcfe3l5o5yHn\nm2++IT09Xfj7jTfeEFo9VkTVv/vVFmJAliN55claH7Odhx3pO+vP24O3lSuY58+fp6CggBEjRgiv\nmVu2bKGgoIC0tDTWrl3Lvn37FGoNy5Odnc3atWsxNDRET0+v2p9LRJ4PMSBVhIEDByKRSIRgvHPn\nDgUFBfj5+XH37l0SExMr1RqWJz8/n8zMTAYOHCgkE4jUPqKooyJUFGyKi4uFzJmsrCzU1dWFWsPJ\nkyfTs2dPhfO1tLRYsmQJBgYG+Pv7i98b6wgxIFUEExMTjhw5Qk5ODgDm5uZIpVKCg4M5cOAAxsbG\nQq3hxx9/TKdOnSqNsXXrVn799VcsLS0rpcuJ1A5NKlNHpHqaaz2kqtDkdsijR4/Sq1cvtmzZAsDE\niRPp1asXSUlJDbyyxoEYjE2bJinqmJiYcObMGWbMmEFmZiYAJ0+e5NChQ5SUlLBq1SpycnLYt28f\nmpqalJSU0KdPH3755Rfmz59Pjx498PX1pXPnzty/fx87OzvOnj2Lk5MT8+bNY+7cuTx48AB9fX32\n79+Pl5cXjx8/pnXr1qSmprJkyRK6d+/OO++8w5kzZ9DT02vgJyLSXGhyOySUBWRBQQGHDx/Gzs4O\ngNdff52FCxfSvXt3fv75Z6Dst7cjR47w8OFD7OzsmD9/Pj/88ANQVhy7Z88ejIyMMDExYc2aNXz/\n/feoqakxbdo03N3dSUpK4tatWwAMHz6cPXv24ObmxqFDhzhy5Ahvv/22GIwitUqTDEgoK7v59NNP\nhXIeV1dXioqK6NGjBzKZDAAjIyPU1NSQSCS0a9cObW1toR5O3p+l4rHY2Fg2b96MhYUFenp6gpoo\nb/701ltvERsbWynTRUSkNmjSAVlUVMSAAQMAGDx4MFu3buXy5csv5MxraGhIQUEBS5cuRU1NTRhL\n/rOBlpYW9vb2WFlZNbueoCINj6iyPiPLly8XGvyKP5CL1DZiQDYzqvrZY9u2bdV2a3saSUlJhIeH\ns2bNmhddoshTqHeVNWXNduGfjeZMImP31/U2d33P1yBzjhtQ5aG9e/fStm1bOnbsyJ07dxTMWk+e\nPElCQgLp6eksWrSIuLg4/ve//1FQUEC/fv0YMWJE/d2DCtNkv0OKPDvvvvsu/v7+/PLLLzg6OiqY\ntSYlJaGrq4uzszPt2rWjS5cuODs7M2DAAP73v/818MpVBzEgVYjyvhmHDx9WMGsdM2YMEyZM4MKF\nCxw9epRPPvmEBw8e8PLLLzf6Tm3NiSaZGCDyfBw+fJhff/2VUaNGcebMGQWz1pSUFG7evElJSQmj\nR48mISGB33//nYsXL4oBWY+Iok4zoy5zWe/fv4+xcf21tFRFxB2yAvu2DavV8SZM2sl3X3vU6phP\no9/AD1/o+qepqf7+/uzevbtGrRpnz56Nt7e3Uh8Q+XGxy0BlxIBUEW7cuMGXX35JixYtMDY25vTp\n0wwZMoTY2FhCQkKIjIzk6tWrSKVSNDQ0SE1NZf369bRp0waJRMK4ceNISEjg7NmzyGQygoODSUxM\nZMqUKZibm7Nz5040NDSQSCQsXboUgNzcXFJTU4mOjq5x20hVRxR1VISwsDB0dXXR19cnOjoaExMT\nPDw8sLCw4ObNm0RGRrJmzRrBvergwYO4u7vj7+9PcXExEokEMzMzHBwcKCkpwdvbm4CAAH788Uc+\n//xzoMxCICkpqZJ/htg2suaIO6SKUFJSwpQpU+jSpQtfffUVsbGxQFkqYPkWkPLCY5lMJnQUkHto\nyJE7Hefl5SGTyZDJZDg6OjJgwACOHTtWqd3/gQMH6NmzJzY2NmLbyGoQA7ICMxf83CTGrIrLVbSB\nnDdvHuvXr6dly5a89NJLlY47OjoSGBgoJNO7urqyefNm2rdvj66uLubm5ujp6QmWcOVxdXUlJCSE\niIgIdHR0BJcqOWLbyGegVKRZ8ccffyj9fOvWraVXrlyp59U0POvXr3+m85/nOR0+fLj01q1bNTp3\n1qxZTz3ebHfIEQf8Kn22Y6wnnid31Os66nvO0L4uVR4rb3Tq4eHB6tWr0dHRISsri8DAQHx8fGjb\nti3W1tYcOnQIBwcHrl+/jqWlJYmJiYwYMQJLS0sFsWfZsmU4OjoKZWlLly4lMTGRU6dOUVJSgpWV\nlULj5dGjR2NjY8P8+fMJCwsThKDFixezatUqDA0Nyc/PJzAwkFGjRuHi4kJKSgoeHh7cunWrkv/I\nrl27ePXVV7lx4wabN28mJCQETU1N0tPTCQ0NJS4ujsjISLKysnj33XdZsWIF//nPf9i3b5+CyWvr\n1q0VnpVcBU5PT2fTpk28/fbbVXqdpKSk8NJLL/H+++9jaWlJcnIyw4cPp0ePHuzYsQMdHR0KCwvZ\nsGFDtf/+RFFHhShvdHr+/Hl69uzJypUrGT16NN9++y1PnjxhxYoV2NraYmZmxoIFC9DV1eWtt97C\nw8ODqKioSmLPrVu3aN26Ne+//z7Dhw/n8uXLhIWFoaenR6tWrfjtt98U1mBgYMDatWv54osvgH+F\noMzMTFJSUjAzM8PFpez/VIyNjXF3d2fixIl8/fXXSv1HLC0t8fDwQFdXl7S0NBITE+nYsSNTp04V\nvhcPGzZMMBoqKCjgxo0bTzV5rYqqvE7k5Ofn4+7uzoIFCzh9+jS6urpMnDiRAQMGEB0dXaM5mu0O\nKVKZikan5Y1US0tLBbEGEDohaGpqIpFIKCwsFAScimKP/BpNTU3hO6KHhwfa2tpC4Mhp2bIlQCUh\nSE9Pj2XLlpGdnc2GDRv46KOPhEJzuXmrMv8RuTmspqYmRUVFeHl5UVRURHh4OAsXLgTKzGe7du3K\nrl27GDdunGDyunDhQi5dukSbNm2UPi+ZTKbgJ1mV14kcDQ0NtLS00NTUpLS0lBMnTvDkyRNGjBiB\noaFhjf4diQGpogwaNIhTp04RGhpKXl4eS5curVESuTKxpyLz5s3Dz88PdXV1hg4dWuU45YUgR0dH\nwsLCaNu2LZ07d6ZVq1bcu3ePdevWkZOTw5IlS+jTp89T/Uc0NDQ4dOgQEomEli1bCl0eAFxcXHBz\nc2PBggVCsFRl8gowcuRIvL29FcZ4Vtq3b09kZCTZ2dkUFBSQlZVV7TVi6lwzozm1gaxJNk9RURE5\nOTm0bdu2nlZVtzSZgBy378QLj/HRBDs++K4efTYaYM41/TrWWoHykSNHsLa2VvozSUXqOxXu+vXr\n3L59m5KSklp3g25IxFdWFaO+1MN3332XwYMHk5WVxaRJk/jxxx+5c+cONjY25Ofnk5CQwOPHj5k7\ndy6ampps3boVIyMjfvvtNyIiIti+fbuC8c/OnTvp2LEjeXl5dOvWjZdeeonU1FTi4uIoKCjAwcGB\n1atX07p1a0GldXV1pXv37kyfPp09e/ago6NDr169GnVzMjEgRQSBw9XVFXd3d6HsSo5cPXz48CHb\ntm0TfsrIyMhg8+bNSsfU0dHB09OTR48esX79eoyNjXFycsLGxoalS5eyfft2srKyCAgIQCKREBwc\nTKtWrXjrrbf4559/lBr/ODs707lzZ+bMmSPs2nIToePHjzNmzBhGjhzJvn37iIqKQiaTERISwtWr\nV8nLy2Po0KH06VP//qDPgvizhwpSG+rhpUuX6N69e5Xqofx6uUIKZSpveaVUru4WFhYqfCaTyZQa\n/+jo6KCmpqagtMr/ubxqLFd/5YqukZER3t7eAAQFBb3Io6tzmswOeWLm/7d35nFVVesffhgPM84i\nJGjlgKKi0RUHAkVNnPI6JOGYAyrazwwMcEAFVLAcsRwSB7SrpZGVaGKWmkNY4VCWAikKCIgMySDC\n4fD7gw87joCawgHOWc9fcs7e61373N679v7ud33fmnlGqKlx6mvM6krnyhk4cCDvvvtutVL/0/A0\n6uH9+/cJDg4mLy+P2bNn8/XXXwNlyd+1a1cCAwN58OABc+bMQS6Xs2zZMpo1a0ZBQQHt2rWTGv9k\nZGSwbNmyaudiZWXF5s2bCQ4OZv369fz6668UFxczfvx4qei9sLCQNWvWYGVlRffu3Z/5ulVBgxB1\nflp9p0bGsZvUjN8j7tXIWPU1pp5r6hNV1i+//LLGhZBHRZ1/I/KcOnWK06dPo6enh4WFBVOmTKmx\neTU0GswKKXg+oqOjpWqVe/fuYWpqiqmpKdu2baNTp044OztXKkurTuyRy+VP3N/4bxRXZ2dnnJ2d\na/JyGyziGVJDSEtLQ1dXlyFDhuDi4oKbmxsymQx7e3sWLlxYZVladaViYn9j7SESUkPo0aMHkyZN\nIjExkT179kifl5fTVVWWVp3YExERwY0bN+jUqZPY31jDiFtWDeH27dscP35c8l59tFnQ5MmTH1uW\nVhGxv7H2aBCijuDpUafSOU2kwd+yio7KyohkbNg0+ISEfzoqZ2VlKXVU7t+/P87Oznz33XdERkbi\n6urKgAED+N///kffvn0ZOnQop0+fZtu2bbi5uTF48GBOnjzJypUrCQsL44cffqBz587k5eXh4eEh\nLPUFtY7aJOTTdFTW1tbm+PHjvPTSS+Tn5/PFF19IL5YPHDhAQEAAS5Ys4fXXX+fkyZOcPXuWRo0a\nER0dzV9//SWNLRDUFmqRkPB0HZVbtmwpKYmNGjVS6qhcjra2Nj169ODevXscP34cLy8vNmzYgLOz\nM/r6+qq9KIHGoVYJ+aSOylXVQL788stMnz6dMWPGEBgYSGBgIFpaWgwcOJAmTZowbNgw7t69y+uv\nv676ixJoHEJlFQjqEbX2HrJiY9bqMB/Wj78Pq04oUXW8uoh5Z2ivGu+gXH5uWFiY6MdRy9RpYYCu\nRXO1jldXMaujvINyq1atmDFjhvT5zp07uXPnDmlpaSxevJjvvvuOmzdvkpubi4eHh9IYcrmcxYsX\nK9k1CmoOUamjQYwbN44+ffowc+ZMJk2ahEwmo7CwkEuXLrFhwwbS09MpLS2VPFm1tbU5e1bZfkQu\nl5Oamkq3bt2ws7OroytRX9RG1BE8mXK7Rn19fcnKUS6XS0pzXl4eOTk5mJub4+Pjw5QpU+jcubPS\nGHK5HF9fX2xsbFi9erUkmAlqBrFCahDlHZR79uwp7eI3MTHB1taWoKAgMjIyWLRoEU5OTvj7+5Od\nnc27776rNIaenl4lu0ZBzSFUVjWjvteyii7Mj6dBrZCH1w18rvP7enzEmf/NqaHZ1M+YrV4LUUmc\nZ7V9LO/CLKiaBpWQgmcnISFByWpRoVDg4ODAyJEj+eyzz5QsHd3d3XF2diYuLo4pU6Zw+vRp6ZVJ\nxUTMy8urZL24Z88eJcU2KCiITZs28dVXX5Genk5iYiLffPMNTZs2VWrI07NnT8LCwhqEVWNtIhJS\nQ9i2bZuS1aJMJmPFihWkp6dXsnTU1tZm9uzZ/Pzzz/z444/VjlmV9WJFxVZbW5uWLVty48YNoqOj\n2bBhAzExMQwfPpzJkyfTpUsXAH766Sc6dOjQYKwaaxOhsmoIj1otllskVmXpWLF5TmlpKTo6OpIa\ne//+fWnMR60XFQqFkmKbmZnJ5MmTCQ4OpmvXrujq/vP//+UNeebPn4+jo2ODsmqsTRrUCjls/vF6\nMUZ9jlmdDaSnp6eS1WK5DeTTWDo6OTmxfv162rZtKyUrwIgRIwgMDFSyXrx+/bqSfWPLli2Ry+W8\n+eabALRu3Zrw8PBKDXkaklVjbdIgVdaAT6ruqPQkZo7cwtZDs2p4NvUr5hs9PqxSZVWl1eKmTZvo\n27cv9vb2LFu2jNatWzNt2rRai6dONKgVUvDsXLlyheLiYkpLS7l+/Tpbt24lNjYWNzc3YmJiKCoq\nYtSoUaSnp3PmzBlefPFF0tLSCA4OJjQ0lMLCQv7++298fHy4desWUVFR5OfnM3bsWHbu3MnGjRvJ\nysrik08+IT4+nnv37tGyZUsUCgUpKSmEhoZW2SVZoIxISA1i0KBB9OzZk6lTp7Jq1SrWrVtHZGQk\nERERFBcXM2vWLIYOHUqvXr0YO3YsU6ZM4a+//qK4uJilS5dy9epV9uzZQ2JiIps2bUIul3P79m1G\njx7N119/za1bt5g4cSJHjhzByclJcg43MjLi1q1bUpdkUXZXPULU0SBMTEzQ09OTNlrr6upKQkvF\nvaLlXYl1dHSUOiZXLLcrF3GSkpIYOHAgP/74I+np6bz00kvSWOVdkn18fHB1dZW6JIuyu+oRK6SG\n06NHDxYvXgzAjBkzuHNHuW1Du3bt0NHRYeXKleTm5jJv3jz+/PNPFi1aRGFhIW+++SY6OjrY2NjQ\ns2dPAKytrdm+fTv+/v5P7JIsUKZBijqC6nme0rm8vDwUCsW/TpRPP/2U33//nVWrVj1TXME/qPUK\nOWD3CqW/Pxo6lTlRO1Q6B1XHDLUb/Mzn7tq1S1JH/w3ff//9YxvthIaG4uvry7Rp0/D09OTy5ct4\neno+8zzVGbVOSME/hIWFkZWVhYmJCdra2syZM4elS5diaGjI7du3+eCDDzh//jz37t3jxo0byGQy\nhg4dKiWXu7s7L774IiNHjuTAgQMYGxuTnp7Oxo0bq4yXk5NDQEAAPj4+xMXFVfr+2rVr7Nu3Dy0t\nLSwtLRkyZAjvvPMOdnZ2LF68WGNbFAhRR4MYNGgQ3t7eXL58GblczsiRI3FycgIgPj4eR0dHRo4c\nWeW55d2I27dvz5gxY+jTpw93797l7t27VR47efJkvLy8sLa2rnK8rVu3YmRkhImJCbGxsZSUlNCm\nTRuCgoI0NhlBJKRGUV5lo6OjQ3x8PPv27cPMzIw2bdoolcHp6OhQXFwMIHVaLi+1i4mJ4ejRo7Rs\n2RJLS8tKNprl+Pr68sknn1Q7l5KSEjw8PPDx8aFfv37o6OhIMTQZtb5l/W7yoqf6rC7mUVs8qYNy\nOSYmJuTm5nL8+HESEhJ49dVXldTRJUuWEBMTg1wuVzqvUaNGpKamcuTIEdLS0pRao5ejra1N7969\niY2NlTonP8rMmTMJCQnB1NSUl19++d9fqJpSL1VWt50HamXcDcNdmffNiVoZu77EDO76Yo1sUE5J\nSWHr1q0EBgb+q/P8/Pzw9vamefMyc68//viDhIQEbt269cyud5qEWq+Qgn+oKOoAFBcXI5fLyc3N\nxc/PDx8fH8LDw8nIyGDNmjW88sor/P777/z11194eXnh4ODAnDlzWL16NU2aNEEmk+Hr68ugQYMY\nM2YMqampzJ49G4D169eTm5uLk5MT1tbWpKWlSfPYuHEjBQUFpKamsnz5cmmHiaAM8QypQZSLOtu3\nbychIQEDAwO0tbW5fPlypWN79eqFnZ0dL730Eubm5qxYsYJPP/0UT09PAgICKC4uJj4+HktLSzw9\nPRk7diyff/45AFOnTmX9+vV8++23lcZNSUmhUaNGvPXWW1JFkOAfxAqpQZSLOtra2lK78p9//lna\niqVQKKRnwoqldOViS8UyOi0tLUpLS6W+KYWFhZJxlpmZmXTco7i7u6Onp8eePXt48OAB/fo9284d\ndUUkpAby6quvkpyczPLly8nMzGTlypUMHDgQb29vLCwsADA3NycuLo4rV65I502YMIG1a9fSokUL\njIyMaN++Pbdv32bVqlXcv3+fBQsWsHr16sfG/u6778jNzaWkpIQXX3yxVq+zIVIvRR3Bs6Nq17lH\nq3KEq9zzodKEXL87Venvt4Y2ZV+U6ir+VR2vLmI62d2pExvI8vK46dOnC1e550DcsmoIYWFhpKen\nY2Njg56eHl999RV2dnaMHj2a3bt3Y2pqio2NDVOmTGH58uXo6+uTkJDA2LFjady4sZJDnLW1NZ98\n8gmvvPIK165dY+3atcTFxXHu3DkSExO5ePEisbGxJCYmkp+fz4wZM6R+IQ4ODvz111/o6emRkZFB\naGiokteOpiNUVg1i5MiRzJgxg4sXL2JlZUVQUBC7d+9m6dKlBAYGEhsby6lTp3jppZdYvHix1Gtz\n69atGBsbY2Zmxk8//QSAnZ0ds2fPxsjIiPT0dAB69+6NjY0NHTp04OLFiwQFBbFkyRK2bNkixffw\n8CApKQkLCwvGjx+vJB4JxAqpUZQ/ncjlcun9n0KhqOQcV9GdDv5xiDMwMCAyMhL4ZxOznp6epLSW\n8+gY5XHNzMwoLi5m7ty5FBUVsW3bNubNm4etrW1tXnaDQqUJ+e7kVk/1marnoE4xf/31TpWfl5SU\nsH37dqKjo+nbty9//vknUOZGFxQURJMmTXBwcMDFxYUlS5YQGhrKpUuXmD59eiWHuMdRVFTEr7/+\nSteuXQkMDOTBgwfMmTOH6OhooCyB9+/fj0wmw9TUVFJ1BWWotcqaND9B6e+W771A+tpklc5B1THv\nTvi7SlHHy8uLzp07M2fO49sa5OTksHHjRmQyGd9//z1bt24lKChINGpVEeKWVUMwMjLizz//5OHD\nh9L2pnXr1lFYWEh6ejorVqxg586d5OTkkJuby+TJk8nOzsbY2BgoS9QVK1bQqFEjjI2NK3XFEtQM\nIiE1hN69eyOTyaRkvHnzJoWFhfj7+3Pr1i2SkpI4c+YMDg4OyOVyLly4oHT+gwcPyMrKonfv3pV6\nRgpqDqGyagiPqpnFxcWSaJOdnY2Ojg7W1tb4+Pjg7u5Ou3btlI7X19dnwYIFmJubExAQQElJicrm\nrkmIhNQQrKysOHjwoNSbo3379sjlcoKDg4mIiMDS0hIzMzMCAgLYsGEDrVpVFqI2btzIuXPnsLOz\nQ0dHR9WXoBGotaijidT3hq2Cx6MWK2RkZCQdOnRg3bp1AIwdO5YOHTqQnPxs6ubEiROl920NDZGM\nDRu1SEgouyU7efIkWVlZZGVlATBp0iQiIyNJTk6mQ4cOQNmO9v79+zNgwAAuXLhAXl4eb7/9Nq6u\nrkycOJG8vDxpzPPnzzN8+HCGDh3KgQO142IgEFRErRKysLCQAwcO0KdPn2qPu3z5Mn379sXDwwMr\nKyu++uortLW1OXHiBJMnT6aoqEg6dt26ddy/f5/i4mJRMC1QCWr12qNv375s2bKF0NBQPvvsM9q0\naUNhYaG0YhYXFzN79mxkMhmRkZFcvXqVHj16SIrh3bt3lVZIuVzO3LlzcXBw4LfffquTaxJoFmqz\nQkJZQhYVFUlF0YMGDWLbtm3s27cPKCvb+uWXX1i1ahXx8fG4uLjwxhtvANC/f3+OHDlC48aNpfHe\ne+89PvnkE95++23JFlEgqE2EyioQ1CPU6pb135IauKnWY5gP68ffh3+o9Tjl3Bnaq0qlNSws7Jlt\nGMvPDQsLEzWttYxGJ6Qq0LVoXtdTkNixYwfNmjWjVatWzJgxQ/p8586d3Llzh7S0NBYvXixtJs7N\nzcXDw0NpDLlczuLFi0UX5FpCJKQGMW7cOPr06cPMmTOZNGkSMpmMwsJCLl26xIYNG0hPT6e0tJT9\n+/fj7OyMtrY2Z8+eVRpDLpeLLsi1iFqJOoLHU24Dqa+vr9QNuVxGyMvLIycnB3Nzc3x8fJgyZUql\nQnK5XC66INciYoXUIA4cOMC5c+fo2bOn5KFqYmKCra0tQUFBZGRksGjRIpycnPD39yc7O7vSNis9\nPT3RBbkWESqrmlGbtazC4rH2UfsV8sD6AdK/Xd/6iBP7Hr9jvqZRdcwXnUKf6/zk5GS2bdtWZZOd\ngIAAtm/fXsmLtSqmTZuGt7c3CQkJjBgxosrvhWJbGbVPSEEZj3YsPnHiBC4uLly9epWVK1cSHR3N\nlStXkMvl6OrqkpaWRkhIiNRYZ+jQoSQmJnLq1CkUCgXBwcEkJSXh4eFB+/bt2bx5M7q6ushkMt5/\n/30AcnNzSUtLIzY2lv3796Orq4u5uTm+vr51/GvUX4SooyE82rHYysqK2bNn07FjR65fv050dDSB\ngYFMmzYNgD179ig11pHJZNjY2ODs7ExJSQne3t4sW7aMY8eOsXfvXqDMJiQ5OblSV+WmTZsyZswY\nHB0dOX/+vMqvvSEhVkgNobxjcevWrfnss8+4evUqUKa4VrRtLN94XFVjnXL09PQwNDQkLy8PhUKB\nQqHAzc2NXr16cejQIczNzZViR0RE0K5dOxwcHDS6XfnToPYJOfbd7x77d13MoTaproPykzoWu7m5\nsXz5cqnQvqrGOsbGxhw6dKjSuRMmTGDlypUcPXoUQ0NDRo4cqfR9q1atuHjxItevX+fhw4fC/uMx\nCJX1MbwV0f+5x1gxZDOLjsyugdk8HT6dP6jTTcpCrHk+1H6FFJQRFhZGRkYGurq6PHjwgDZt2hAb\nG0vv3r25efMmd+/eZfjw4Tg5ORESEoJMJkNPT49+/foRFhZGp06dcHZ2JjIyEn19fRwdHbGwsOCj\njz6if//+pKamsmDBArKzswkODubGjRt4e3vz8OHDSoLOmjVryM/P5+7du3Tt2pXXXntNSXB68803\nNdZyUog6GsSgQYPw9/cnOTmZmTNn0rFjR+zt7RkyZAj29vacPn2aqKgo+vXrx5IlSxg2bBgA9vb2\nLFy4kN27dxMaGsqqVaskixNHR0emTJlCq1atiI2NRU9Pj0WLFuHl5cXJkycrCTq3bt3i4cOHBAQE\nMHjwYKCy4FRuOdmpUyeGDBlSZ79XXSASUoMwMTFBT08PfX19AHR1dVm7di15eXl06dKF0tJSJXvI\nlJQUSkpKpGqciuJPOY92UDYxMUFLSwtdXV0UCgURERHcuHGDTp06IZPJKCoqqrJ3iIeHBz4+PvTr\n10+jLSfFLauGo6ury/nz5ykqKiIvL4/hw4cTHBzM6dOnMTQ0xNnZWTp28uTJLFy4EGNjY8aOHQvA\nqTxz0sQAACAASURBVFOnKCgooKSkhG7dulUa/1FB58UXX6S0tJRVq1Zx8+ZN+vbtW6XgtHHjRiwt\nLTXOclKIOmqGKm0gY2JiuHz5Mp6enk99TnFxMatXr0ZXV5f79+/zf//3f7Rs2fK556IuZX0NPiEH\n7dzy1MduGj6Kud+o1t5R1TFXdX21XlhB+vn54e3tTfPmNbMf9Enqrbp0bha3rBpCdSrrmjVrOHXq\nFBcvXiQ/P5+BAwfSuHFjPv/8c0pLS3F1dcXOzq5SadyQIUN44403uHr1Ku+//z7JyclERUWRn58v\n3c6uX7+e3NxcnJycKCkpwcTEhGHDhjFv3jxGjRrFrl27sLe3JyEhAVtbW65du8b06dORy+WPLbV7\ndJP02LFjpbK+vLw8pWvJycnh1KlTWFtbk5SUhK2tLRcvXmTx4sW88MILdfE/xWMRoo4GUZXKeuPG\nDbZv346BgQFNmzbl7NmzZGZmUlRURP/+/enatWuVpXGNGzdm1qxZuLq68uuvvxIREcHy5csJCQmR\nVsWpU6eyfv16vv32W0aOHElUVBTx8fFYW1tjYGBAly5dmDdvHtnZ2Xh6euLu7k5MTMwTS+3KN0nb\n2NgwZswY7OzspLK+R68FyhoNeXt7k5aWxsyZM3F1deXKlSuq++H/BSIhNYiqVNZy5fS9995j1qxZ\ndO/enbZt2zJnzhzu379PaGioVBrn4+ODq6sr5ubm0mbn8g7Kcrlc6sCclJQElHVMLldSDQwMsLW1\nJSQkRLIFMTExAUAmk6Grq4uOjg6lpaWVlNlHedwm6UevpWKc8tZ65XHqIw3+ljX67Vm1enxNoMqY\n1ZXOPY6JEyeyYMECHj58yPjx48nKymL37t00b94cBwcHnJ2dH1saB+Dh4cGiRYsoLCzkzTffrPT9\nnTt3GDp0KDdv3qRVq1bcvn272vk8qdSuqk3S5WV9j15Lamrqv/496pJ6K+qM3vVnjY8ZOqwNvocT\na3zc+hRzYZeCWhd1nkVdfeuttzA1NcXX15eXXnqpFmfXsGnwK6Tg6XicqDNv3jzCw8PJyMhgzZo1\neHl5ERYWhqGhIR06dOCNN96oVE4HlfdYVkzQoKAg9PT0yMjIYM6cOWRkZODh4UF6ejp79+6lpKSE\nLl26YG1tzZYtW6oUd7p27VpXP1edIZ4hNYjqRJ1HycnJIS8vD0dHR/r06VNlOR1ULnmTy+XSd0lJ\nSVhYWDB+/HhsbGywsbFh+PDhbN26FWNjY8zMzPjpp58AqhV3NBGxQmoQ1Yk6UFYCl5OTA5RtKPb2\n9iYuLo6goCD69eunVE5namoKVN5jqatb9p9TcXExc+fOpaioiG3btjFv3jxpDiUlJcyePRsDAwOp\nHrY6cUcTEQkpYODAgXh7e2NhYQGU1aWuWbMGKysrunfvXm05XXV7LPX09Ni/fz8ymQxTU1MsLCxo\n3bo14eHhzJw5E39/f3R0dKRbX8E/1FtRR/BsVFc6V1RUxP3792nWrFkdzErwtIgV8gnE+Sc91/nW\nc1py+6P0GprNUzCm6o+joqLQ19dn6NChTz1Uefmbn5+f2HSsIkRCaghnz56lsLCQAQMGSC/b161b\nR2FhIenp6axYsYKdO3eSk5PD33//zdy5c5XOz8nJ0dhNw6pEJKSG0Lt3b2QymZSMN2/epLCwEH9/\nf27dukVSUhJnzpzBwcEBuVzOhQsXlM4v3zTcu3fvSu0FBDWHeO2hITy6sbjiRuTs7Gx0dHSwtrbG\nx8cHd3d32rVrp3S8Jm8aViVihXwC7Ve1rhdjPC2//nq3ys+trKzYvHkzTk5OmJmZ0b59e+RyOcHB\nwWRlZREUFISZmRkBAQFkZGSwbNmySmNo6qZhVdIgVdbIyEiWL19Oq1atyM7OxsPDQ+ldlyajyg3K\ngpqnwa6QXbt2Zc+ePURFRfH+++9z4cIF7t69i4mJCbt27WLVqlXcuXOH9PR0WrZsya5duzh8+DAb\nN26kpKSEefPmoVAo+Oijj9DS0uKjjz7igw8+IC0tDRsbG9atW0doaCg//FDW/XjdunVkZGSwcuVK\nafdDfbTEF8nYsGmwCXnlyhUGDx5MaWkpixYtokmTJuTm5rJ69Wri4+MBsLGx4eOPP+aVV14hIyOD\nVatW8fHHH9OkSRPS0tJISUlBW1ub6Oho9u/fT2xsLC1atODy5ctcuHABFxcXunXrxs6dOzlz5gx6\neno0adIENzc3USAtqBUarKjTtWtXvv32W44dO0aHDh1Yu3YtHTt2xNjYWBIcWrRoIZVlFRcXA2Wl\nW0VFRSQnJwPQsmVLtLS0KCkpoWPHjhw9epTZs2fTtm1bfHx8MDc3p3Xr1igUChwdHZk4caK0wubl\n5dXNxQvUlgabkBVp1KgRhYWFvP/++2hra1fb1dff3x9fX188PT2V+lYADB8+HH19fVxcXDh79iwt\nWrTA2tqapUuXcvPmTTIzM8nKyiIsLIx9+/bRr18/acOrQFBTNEhRRyBQV9RihRT8w7M4BgjqDw1W\n1KmO1MBN1X7XdPqbZG7/XIWzqYOYQ3s902mhoaH1UjXWNNQuIQVV82gXY319faU61ri4OGJiYvjk\nk0945ZVXuHbtGmvXruWjjz7i/v373Lp1i5kzZ3L79m2OHTtGt27d8PLyquvLUjvELauGUNFa8eDB\ng1Id6/z586VNygB2dnbMnj0bIyMj0tPT6d27N66urrz44ovSDn8XFxeRjLWESEgNoaK1IqBUx/r3\n339LxxkZGQFlm4wfPHjAhg0bKCkpoXPnztIu/vLmO4KaR+1uWVsFzH2u72sDVca8U42oU9Fa0crK\niqKiIqU61qrQ1tbGwMCA06dPc//+fYyNjbGysqrN6Ws8Dfa1x+kPXv/X53SfGMbFPe/UwmzqT0zj\n/iufqnyuul4ZogNy3aJ2K6Sgah4VdaDMX/VZOiALag/xDKkhVNcv4992QBbULiIhNYTq+mX82w7I\ngtpF3LJqCI/2yyhXU8s7IOfl5WFra/vE80pKSsTm5FqkwYo6gqqpboNyWFgYTk5O2NvbS59V7NHh\n7+/Pe++9V2MNVgXPRoNZITdven5T3dFvbuGLz1Xb/UrVMf/T68Nqv9uxYwfNmjXDwsKCrKws5HI5\nubm5ZGdnc/XqVQ4dOsQrr7wiRJw6pMEkpOD5GTduHH369MHW1hYHBwe6detGfn4+ly9fplOnTowc\nOZKCggLGjBlDWloaO3bsqOspaxwiITWI8iarJiYm2Nvb4+3tzc8//0yTJk2kfaERERG0a9cOBwcH\nIeLUASIhNYgDBw5w7tw55s2bx+XLl1m+fDmZmZmsXLmSNm3asHXrViHi1DFC1FEzntd17s6dO1ha\nWtbgjAT/Bo1bId+K6K/SeCuGbGbRkdkqi+fT+YMnHlNVeVz5ZwEBAWzfvr22pid4AhqXkJrKH3/8\nQXh4OE2aNCEnJ4eQkBBJZfXz8wPg999/JzExkVOnTpGcnEx8fDx3795l+PDhuLm51fEVaAYiITWE\n8PBwli1bhrGxMba2tjRu3JiOHTtKKiuU7YW0sbHB2dmZy5cv065dOy5dusTp06dFQqoIUTqnIWhp\naVFaWiqVxXXp0gUfHx9GjRpF69aVWx2sXbuWvLw8unTporHdjOsCjVsh9036Xq1jVmdyNX36dIKD\ngzE3N6dLly4kJycrqazlGBsbc+jQIczMzDh16hSA8J9VJaUCteKXX3554jFTp0594jFhYWGlFy9e\nfObzBc+G2q+QA3etlv790bBJzDkcodL4qo4Z0sW1ys8rijrXrl0jICCAwMBAtm3bRrdu3VAoFERF\nRZGfn8/o0aM5f/489+7dw9zcnI8++ghDQ0MePnzI6tWrqxxfUDOofUIKyqgo6ly/fr3S9xEREWza\ntAm5XM7t27dxdHTEyckJIyMjxo4dS2ZmJmvXrq2DmWsWIiE1hIqiTmlpKXK5HCgzuQKQy+VoaWmh\nUChISkqSSumioqIoKChgwIABNGrUqM7mrymIhNQQKoo6CoWCv//+m8DAQJKSknBxccHDw4NFixZR\nWFjIm2++ibW1Ndu3b2fw4MFER0eTk5NDYWGhlMCC2kGUzqkZtdmwVZTV1T5ihXyEwTv31eh4G4cP\n4v++ia7RMR/Hiq7tn+v85ORktm3bRmBgYKXvysvqnsaZbtq0aXh7e5OQkMCIESOq/F6421VGJKSG\ncO3aNfbt24eWlhaWlpacOHECFxcXrl69ysqVK4mOjubKlSvI5XJ0dXVJS0sjJCSEJk2aIJPJGDp0\nqFRWp1AoCA4OJikpCQ8PD9q3b8/mzZvR1dVFJpPx/vvvA5Cbm0taWlolxzux6bl6RKWOhrB161aM\njIwwMTEhNjYWKysrZs+eTceOHbl+/TrR0dEEBgYybdo0APbs2YOnpycBAQEUFxcjk8mksrqSkhK8\nvb1ZtmwZx44dY+/evUCZ63lycjJ3795Vii2c654esUJqCCUlJXh4eNC6dWs+++wzrl69CoC+vj4K\nhUJSVcv3PioUCqWmthWlBj09PQwNDcnLy0OhUKBQKHBzc6NXr14cOnRI8n0tR2x6fnpEQj7Ct2+/\n1SDGrI7qSudmzpxJSEgIpqamvPzyy5W+d3NzY/ny5VI7+AkTJrB27VpatGiBkZER7du3l8rqHmXC\nhAmsXLmSo0ePYmhoyMiRI5W+r2rTs6BqhMqqZlSnsh48eBB7e/sqk1FQfxArZBWM3vVnjY0VOqwN\nvocTa2y8J7GwS9Wfp6amcvToUezs7Lhx4wbW1tYYGRmRkpLCypUrGTx4MMOGDePKlSt069aN7Oxs\n2rZty8svvyxZRQYEBODp6UlwcDB2dnakpKTg6upK586dK4k65bfAgn+HEHU0iOLiYry8vHB3d8fA\nwIA5c+aQlpYGQKNGjZg7d67kSOfn58fJkyerHOfBgwd4enryzjvvcOLEiSeKOoKnR6yQGoSenh4y\nmUxayQBpJTM2NgaQvitvJaCjo0NxcTEAOTk50jH6+vro6elRWlr6RFFH8PSIFVLwWDp27EhsbCzB\nwcFkZGRUecyECRPYu3cvAQEB/PnnnxgYGKh4luqDEHXUjNosnRPUPhpzy/rdxlT+M64pFz7LVGlc\nVcds3EdloQS1gMYkpKYTFhZGeno6NjY26Onp8fXXXzNs2DCSk5Px9vaWniEFdYt4htQgRo4cyYwZ\nM7h48SIdOnRg6tSp9OrVi+ho1RW/Cx6PSEgNolwuKN+cDP80ahXUD4Soo2Y8rj9kfHw8LVu2xNra\nmj179uDq6kp+fj4LFy58amVU7ImsXcQz5L8g2ffnf31Oi3c6cTfsj1qYTTW8Wf1Nz9SpU7G3tyc8\nPBxLS8sqt0FNmzaN5cuXP3FPpKB2EAmpIXTo0IHIyEj27NnDvXv3MDU1JS8vjzVr1qCjo0NRURGL\nFy9WOufmzZtKjnNz584lMTGRb775hqZNm3L8+HFKSkro0qULY8eOraMrUy/EM6SGkJaWhq6uLkOG\nDMHFxQU3Nze+/vprcnJyMDAwID8/n7i4OKVzyh3nevXqRWxsLNbW1tjY2DB8+HC2bt2KsbExZmZm\n/PTTT3V0VeqHWCE1hB49evDaa69x4sQJPv30U7y9vSktLaVPnz6MGTOGEydO0LJlS6VzHuc4V1JS\nwuzZszEwMCAyMlKVl6LWiITUEG7fvs3x48cxMjJi1KhRHDx4kODgYEJCQvj9998pLCzExcVF6ZwW\nLVpUcpxr3bo14eHhzJw5E39/f3R0dOjXr1/dXJQaIlRWNUOUzjVs1PYZMikpiXHjxjFgwAAGDx7M\nF198QYcOHZSO2bt3L2vWrKmjGdYOIhkbNmqbkKdPn6a4uJjt27czf/58CgsLAbh8+TJ9+/blypUr\nZGdnk5GRQUxMDP379+ftt9+WvhMI6gK1TcjRo0fTp08f5s6dS3BwMIaGhgB4enoyZ84cunbtqnT8\n/fv32bx5M927d+fs2bN1MWWBQH0T8uuvv6ZRo0YcPnwYX19f/P39ARgzZgz79u2rZLRkZmaGgYEB\nxsbGSqVlAoEqUduE7NGjB1FRUfTv359NmzbxzjvvALBgwQKaNWsm2U4IBPUJobIKBPUIlb6HTA3c\npPS3+bB+/H34B5XFV3W8uoh5Z2ivaovLnZycsLe3r/bcLVu24O7uXmXbuaVLl6JQKFi6dCm6uv/8\nZxMZGYlMJuPHH3/E29ubHTt2VKqRfVy/EIEydVoYoGvRXK3j1VXM6ti1axcymYwXXniBmTNnsnTp\nUgwNDbl9+zYffPABiYmJFBcX4+7uzosvvsikSZPo2LEjf/zxB2fPnmX69OkcPnyYmJgYioqKGDVq\nVKUYcXFxFBcXExISgra2Nnl5eXh5eQFlVpTCLvLxiEodDWLUqFG89tprTJ06FblczsiRIykoKODT\nTz8lPj5eOk6hULBy5Urp706dOmFjY4O7uztTp05lx44dFBcXM2vWLIYOHVopTkxMDDY2NkyaNElK\nUEDJLvLWrVvcvXu3UrmepqO2oo6gMmZmZkCZ9WN8fDz79u3DzMyMNm3aKPXuMDU1feJYj1vZiouL\npb4gd+/e5cGDBwCSXaSPjw+urq7CLrIKREJqKCYmJuTm5nL8+HESEhIkz9UnMWLECBYvXsyyZcuY\nMWNGlcf07duXq1evEhwczNGjR6UEF3aRT0aorGrGv61lVSgUZGRkiFvHekKdP0MO2rlFZbE2DR/F\n3G9Uu1VI1TFXdX21ys+ra7bzyy+/cOnSJTw9PR877v/93//RunVrFixYoPR5uXobFhZGeHg4oaGh\nT9WQtaY7KD8a92lU5X8znqqo84QUqIbU1FRefvllZs2apdQo57fffuPixYu88cYb7Ny5E7lcTm5u\nLn5+fvj7+9OsWTOGDh3KH3/8weDBgwkPDycxMZH8/Pwqb1nj4uLIy8sjJCQEmUyGnp4e/fr1q9Sw\np5ygoCAAEhMTWbRoEVFRUdy8eRMHBwc8PDwAOHfunJI7gbW1NR999BH9+/cnNTWVBQsWSOLR8uXL\nMTEx4ddff8XJyYmoqCguXrxIfn4+AwcOJCcnh2PHjtGtWzd+++032rdvX2Xzobi4OG7fvk1YWBiG\nhoZ06NCB8ePH1/r/TuIZUsN4tFFO79696du3L9euXSMhIQEDAwO0tbW5fPkyBQUFLFq0iF69emFj\nY4OLiwsXL14kKCiIJUuWsGVL1Xc3UVFR9OvXjyVLljBs2LBq5yKXy3n99ddxdnamSZMmXL58GSiz\nqyxPRqBKdwJHR0emTJlCq1atiI2NBeCnn36iffv2+Pn58Z///AeA7du3Y2BgQNOmTaUaZRcXF7y8\nvMjPz6+2+RCU9TLJy8vD0dGRPn1U40AtElLDeLRRTrlaWlpaSpcuXfDx8WHUqFG0bt1a6pRcTsVO\ny9ra2lQnP1RUWVNSUqps2ANlCuy2bdvQ19enffv20njlanA55e4E8+fPx9HRUZoLKNtYVlR+y4sX\ntLS0eO+995g1axbdu3dXGv9xzYegrBW7t7c38M9KXtvU+S1r9Nuz1DqeqmNW10G5Olq2bMmpU6cY\nMGAAUVFRLF++nMzMTKX3kOWYmJjQtWtXAgMDefDgAXPmzKnSZHn48OEEBwdz+vRpDA0N8fLyYvPm\nzZUa9hgYGKBQKDh58iTJycn06NGjyjlW5U5w6tQpCgoKKCkpoVu3bgD07NmTEydOsHr1ai5evEi/\nfv2YOHEiCxYs4OHDh4wfP57U1NSn/m0KCwtZs2YNVlZWUjLXNkJlVTM0wTEgJiZGeiZVN9QiIZOS\nkvDx8SEzMxNdXV2WLVsm3dqUExMTg7+/P99//30dzVIgeDJ1fstaE1R0B7h+/Tp//fUXs2fPxtHR\nkatXrxIYGCg9C5WUlEiqXNOmTdmwYQNnzpzh448/RldXl/nz52NkZIS/vz82NjbEx8fz8ccfV9rQ\nLBDUBmoh6lTlDlBQUMCyZcvw9vYmLCxMOvbs2bN89913yOVybty4wfHjx1m1ahUPHz6koKCA3bt3\nA8JBQFA3qMUKWdEd4PDhw5IyVlRUBCgrZyUlJTRr1ozDhw/zzTff4ODggFwuJygoCBMTE7KysgDh\nICCoG9RihazOHWDFihWsXbtW+hvK6iy7dOnCwIEDOXDgAObm5vj7+7NkyRLeffddsR1IUKeohajz\nKMnJybi6unL9+vW6norK0QSVVZ1ReUJWdA1oOv1NMrd/rrLYqo5XFzGfxzGgOh6tVxXUHmrxDCl4\nOnbs2EGzZs1o1aqVUh3qzp07uXPnDmlpaSxevJjvvvuOmzdvkpubq1TCBmXlbosXL6ZRo0Y8ePCA\n5cuXq/oy1BqRkBrEuHHj6NOnDzNnzmTSpEnIZDIKCwu5dOkSGzZsID09ndLSUvbv34+zszPa2tqV\nFGa5XE5qairdunXDzs6ujq5EfVELUUfwdJS/i9XX15dqTeVyuVRDmpeXR05ODubm5vj4+DBlyhQ6\nd+6sNIZcLsfX1xcbGxtWr15NZmamai9CzVH5CtkqYO5j/1Z1fHWLeecxtawHDhzg3Llz9OzZUyrI\nNjExwdbWlqCgIDIyMli0aBFOTk74+/uTnZ3Nu+++qzSGnp4eW7dupVmzZrzwwguVCsEFz4daqqzP\nw1sR/Wt0vBVDNrPoyOwaHfNx+HT+oEZV1nKbx0fNrP744w8SEhIYMWKE9FlNbzrWRMQzpIYQFhZG\nRkYGurq6PHjwgDZt2hAbG0tBQQERERH8+uuvxMbGYmVlpbSht5yzZ88SGRmJvr4+jo6OWFhYkJaW\nxh9//EF4eDhNmjQhNze3Dq9QPRDPkBrEoEGD8Pf3Jzk5mZkzZ9KxY0dee+01zp49y4EDB3jzzTer\n3NALsHv3bkJDQ1m1apVSx+Tw8HCWLVuGv7+/MK2qAcQKqUGYmJigp6eHvr4+ULaJ197envDwcCwt\nLWnUqJG0obegoICTJ09K5YcVNydXREtLS9rorKOjo9LrUUdEQmo4enp6GBkZSe8bq9vQO3nyZBYu\nXIixsTFjx46Vzp8+fTrBwcGYm5tLySt4doSoo2ZUVzpXVFTE/fv3adasmdLnmzZtIj8/v04c1gSV\naTAJOXrXn889RuiwNvgeTnz+ydTjmAu7FFSZkF9++SX6+vpVWv9Xh5+fH97e3vj5+Qn1VEWIW1YN\n4ezZsxQWFjJgwADJ0GndunUUFhaSnp7OihUr2LlzJzk5Ofz999/Mnav87jQnJ4cVK1bQqFEjjI2N\nK72fFNQMIiE1hN69eyOTyaRkvHnzJoWFhfj7+3Pr1i2SkpI4c+aMtD/0woULSuc/ePCArKwsevfu\nXal6R1BziNceGsKjCmlFq8bs7Gx0dHSwtrbGx8cHd3d32rVrp3S8vr4+CxYswNzcnICAgEot4QU1\nQ4NZIb+YYluvxqmvMauzgbSysmLz5s04OTlhZmZG+/btkcvlBAcHk5WVRVBQEGZmZgQEBJCRkcGy\nZcsqjbFx40YsLS2xs7MTrzhqiQYj6gieDrFBuWHToBNy1qxZJCQkkJSURNu2benZsycPHz4kJCSk\nrqcmEDwTDfoZcsuWLezatQuAb7/9lmbNmnH16lVGjBjBf//7X3Jzc+nZsyfx8fGcP3+eQYMG8dNP\nP0mO1q6urgQEBODs7My6detITk6mQ4cOQFntp5+fH0lJSQwbNgxXV1cmTZpEYWFhHV6xQN1p0AlZ\nFS1atODQoUOkpaVx/fp13N3d+eyzzzh48CDjx49HS0uLvLw8wsPDadq0KVZWVgQGBnL48OEqx8vI\nyCA3N5dx48YxfPhwSQgRCGoDtfuvq3nz5mhra2NoaEhJSQkTJkzgyJEjnD17ltGjRwNlLbv19fWR\nyWQ0b94cAwMDSktLpT2ChYWFkh1kixYtmD9/Pk2bNmX9+vX8/PPPdXZtAvWnwaisz0rz5s1p164d\nL730EiYmJo89tkWLFvTq1Qt3d3caNWqEhYUFpaWl7N69m7///hsLC4tKDU8FgpqkQYs6T8Pbb79N\ncnIyERERtGrVqq6nU+s8rcpaXW1rbXLnzh0sLS1VFq8hovYJWRNUtK78t9QXG8hHeZba1ifxJMeA\n6dOns3379hqLp46o/S2roIzo6GjOnDlDfn4+EyZMkGpbTU1N2bZtG506dcLZ2bmSK8CWLVuwt7cn\nISEBW1tbrl27xvTp05HL5ezfvx9dXV3Mzc0r7RZ51C5y7NixJCYmcurUKfLy8iq1GT916hTW1tYk\nJSVha2vLxYsXWbx4MS+88EId/WJ1g9qJOoKqSUtLQ1dXlyFDhtC2bVt69+6Nm5sbMpkMe3t7Fi5c\nWKUrQJcuXZg3bx7Z2dl4enri7u5OTEwMTZs2ZcyYMTg6OnL+/PlK8crtIm1sbBgzZgx2dnbY2Njg\n7OxcpStB79698fb2Ji0tjZkzZ+Lq6sqVK1dU+hvVB0RCagg9evRg0qRJJCYmsnXrVqXa1nLnuKpc\nAcqFsPLW3zo6OpSWlhIREcGNGzfo1KmTVLBekcfZRVbVZrw8jrGxMYAUR9MQt6xPwfPaONYHG8gb\nN27w7bff0rhxY/r164eZmRmbN29m/Pjx0jHVuQJURatWrbh48SLXr1/n4cOHlYrNq7KLNDY25tCh\nQ8/VZlzdUbmoM2jnFunfm4aPYu43kY85umZRdby6iLmq66tig3IDRqyQGoLYoNwwEAmpIYgNyg0D\nIepoCGKDcsNAJKSGYGVlxcGDB7l//z6A0gbliIgILC0tpQ3KGzZsqLKqaePGjZw7d05sUK5FRKWO\nmiE2KDdsGnRCVrVBWTQQFTRkGnRCAiQnJ+Pq6sr169dJSUnBx8eHzMxMOnbsyAcffMDSpUu5c+cO\n6enptGzZkl27dhEZGcnGjRvp2rUrp06d4ujRo0yaNIlVq1YB4O/vz/fff8/KlSs5e/YspqamrF69\nGmtr6zq+WoG6o1bPkB9++CGOjo4cO3aMzMxMvvrqKwBsbGz44osviImJISMjgzVr1rB27Vp8vcKK\nfwAADv1JREFUfX2rtb//66+/2Lt3LyUlJaSlpXHo0CFVXopAQ1Gr1x4KhUL6d3kDGCjb51hemlVc\nXCwdV1F51NPTo7CwkIKCAgBKSkrQ19fn4MGDnD9/ntatW6vqMgQajFqtkO+99x7nz5/n9ddfp3nz\n5rzxxhtVHufj48N7770nmWHp6+vj5uZGcHAwx44dA8pUyNGjRzNixAjCwsIwNTVV2XUINJcG/wz5\nLHz44Yd89913yOVy7O3t+fDDD+t6SgIBUIcJmRq4CfNh/fj78A8qi6nqeHURs7oNymFhYTg5OWFv\nb/9M4yYnJ7Nt2zYCAwOfd4qCx1Cnz5C6Fs3VOl5dxayOHTt20KxZMywsLLh58yaGhobcvn2bDz74\ngCNHjpCYmEhGRgbz588nLi6OH374gcLCQrp27cqAAQPqevoagVo9Qwoez7hx4wgICODHH3/Ezc0N\nJycnAOLj40lOTsbIyIhRo0bRvHlzWrduzahRo+jVqxc//KDauwpNRiSkBmFoaCj9+8CBA5iZmdGm\nTRtKS0sZPHgww4cP5/z580RGRvLxxx9z9+5dunXrppEbhesKtXrtIXg8Bw4c4Ny5cwwaNIiTJ09y\n/PhxEhISePXVV0lNTeX69euUlJTw+uuvk5iYyIULF4iJiREJqUI0UmVVZ2qjlrU27BtTU1M1wpbz\n39KgVsiKbgPPgqY4BlTF86isAQEBbN++ndDQ0Erucs9CSkoKW7duFYptFTSohBQ8HwqFgsDAQGxs\nbLhx4wZaWlpYWloyZMgQ3nnnHezs7Pjvf/+rZO84dOhQyb4xLi4OADc3N9544w2uXr3K+++/z+3b\nt5XsI11dXQkJCUEmk6Gnp0ebNm0wMTFh2LBhzJs3j1deeYXff/+dv/76i6NHjyq5FJw5c0ZJ7bWx\nsanjX021CFFHgwgODsbGxoZLly5hZGSEiYkJsbGxlJSU0KZNG4KCgirZO1a0byyncePGzJo1C1dX\nV3799ddK9pFRUVH069ePJUuWMGzYMEaOHElUVBTx8fFYW1vTv39/7OzsADhz5gwGBgYYGxtz4cKF\nSmqvpiFWSA1i8uTJfPnllxgbG+Ph4UHr1q357LPP0NHRkUoDIyIiaNeuHQ4ODlXaO8I/aq2enh4P\nHz6sZB9Z0Y0gJSWFjh07YmtrS0hICMHBwVItsUKhkFwKrl27RmFhIe3bt8fY2JgvvviC27dvM2HC\nhNr8SeodDSoho9+eVS/GqM8xq2tpDmW7Xry8vNi8eTMhISGYmppWah5Ulb1juX1jdTxqH+nk5ERw\ncDCnT5/G0NCQ119/naFDh3Lz5k1atWpFXl4ecXFxPHjwoFIb9aNHjyqpvZqGUFnVjProGBAXF8eH\nH36Ir68vL730Ul1Pp17ToBPyeR0DwsLCSElJES3QBfWGBi3qPNrS/OHDhwwfPpyRI0fy448/MnDg\nQFxcXFi3bh0AK1asoH///gwePJhr164BKLVAz8vL4/DhwwwZMoQRI0bwww8/cO3aNQYPHky/fv1Y\nsGBBXV2qQENo0AlZFV26dOHQoUO8+OKLzJ07l/79+xMVFUVCQgKRkZEcPXqUFStWSN2SK7ZAv3bt\nGqtWreLhw4cUFBSwe/duWrRogZeXF6NHj6627blAUFM0KFHnabCwsACQGsp0796dkydPAmUuAqWl\npeTm5lJcXAxUboEul8sJCgrCxMSErKwsDhw4wOXLlxk/frySI4FAUBuoXUKWy+82NjZ88sknXL9+\nnfv372NjY8Po0aMZMmQI+vr6rF27tsrz/f39WbJkCaWlpSxduhQrKyt27NhBRkYGhoaGZGZm0rRp\nU1VekkCDaNCijqAytamyipbktY/arZC1QUNqac7QXs91+uOcAcprWp/UuhzK2pt7e3uTkJDAiBEj\nqvxedNSqjEhIDeHatWvs27dPql89ceIELi4uXL16lZUrVxIdHc2VK1eQy+Xo6uqSlpZGSEgITZo0\nQSaTKdW0KhQKgoODSUpKwsPDg/bt27N582Z0dXWRyWS8//77AOTm5pKWlkZsbOxj258L/kHtVFZB\n1WzdulWpftXKyorZs2fTsWNHrl+/TnR0NIGBgUybNg2APXv24OnpSUBAAMXFxchkMqmmtaSkBG9v\nb5YtW8axY8fYu3cvAEZGRiQnJ3P37l2l2E9qfy74B7FCagglJSVK9atXr14FyiwwK9ailjfRUSgU\nUj2qlpaW0iZlPT09DA0NycvLQ6FQoFAocHNzo1evXhw6dAhzc3Ol2E9THysoQyTkU6AOLc1nzpxZ\nbf0qlG2pWr58Offv38fY2JgJEyawdu1aWrRogZGRkVT0XVVN64QJE1i5ciVHjx7F0NCQkSNHKn3/\npPbngn9Qe5V1zcf9pH+PH7OFTw+qtrhc1TFden74TCpr+ebj6dOnC+GmDhErpIbwqKjz7bffMmzY\nMJKTk/H29iYuLo7ff/9dCDd1jBB1NIRHRR1bW1umTp1Kr169iI6OBlDajCyEm7pBrJAawqOizqVL\nlwAoLCyU6norIoSbukEkpIbwqKhz+fJlQkNDyc/PZ+HChXz55ZcAQripY9Re1NE0nqZ0TvTpqL9o\nREKW20dqig1kVQl58OBB7O3tq3zlIag/iFtWDSE1NZWjR49iZ2fHjRs3sLa2xsjIiJSUFFauXMng\nwYMZNmwYV65coVu3bmRnZ9O2bVvp9ra8asfT05Pg4GDs7OxISUnB1dWVzp07V1JgK5peCZ4eobJq\nEMXFxXh5eeHu7o6BgQFz5swhLS0NgEaNGjF37lxsbW1xcHDAz89P2kf6KA8ePMDT05N33nmHEydO\nPFGBFTw9YoXUIPT09JDJZNJKBv/sHzU2NgaQvtPV1UWhUKCjoyNt5s7JyZGO0dfXR09Pj9LS0icq\nsIKnRyMSsqINoybbQJZTXFxMfn7+U43XsWNHNm/eTHBwMBkZGVUe8yQFVvD01FtR5+C2tBofs/9/\nm/L9l5k1Pm59itn2lZQnqqxffvkl+vr6DB06tMbiijK5mkEjVkgBREdHc+bMGfLz87l37x6mpqaY\nmpqybds2OnXqhLOzs1J/DgsLC7Zs2YK9vT0JCQnY2tpy7do1pk+fjlwuF2VytYQQdTSEtLQ0dHV1\nGTJkCC4uLri5uSGTybC3t2fhwoWV+nNAmYPfvHnzyM7OxtPTE3d3d2JiYkSZXC0iElJD6NGjB5Mm\nTSIxMZE9e/ZIn5uZmQFU6s8BYGJiAiCJPDo6OpSWlhIREcGNGzfo1KmTKJOrYcQtq4Zw+/Ztjh8/\nLnWWOnjwIOPHj5e+f7Q/x+MQZXK1R70VdQTPRn3s7SF4eupFQl64cIGkpCR69OhB27ZtVRLz4sWL\n3Lp1Czs7O5WVkx07dkylHZ3Onz+Pjo4OhoaGdOnSRWVxBc9OvXiGvHfvHq1bt672PVdtkJSUxODB\ngzl79qxK4t25c0flAsj169f5z3/+81TvJgX1A5U8Q2ZmZnLixAkKCgqYMmUKSUlJnDlzhgcPHjBm\nzBgGDhzIvn37nvjsUpMxR4wYwc8//0zPnj1VEs/S0pIWLVrUSKynjVlUVASU7XkUNAxUskI2bdoU\nGxsb6eH/f//7H8OGDaN3795ERkby+eef06dPH7744guVxSwuLqagoKDGetg/KV5t8KSY5Z2OdXWF\ndtdQqJNb1pSUFExNTWnatCk3b97khRde4MqVK/To0UNlMT/99FPOnz/Pzz//rJJ4qampxMXFkZqa\nWivxqorZpk0bfvzxR3r37l1rMQU1S53+X2d58bKzs7PKY06ZMkWl8Vq1asX69etVGtPJyUkl8QQ1\nR52skC1atKCgoID09HTatGmjljE14RoFNY9KXntkZWWxdetWkpOT8fHxQaFQ8Msvv5CVlcX48eOl\napGGHFMTrlFQ+9SL95ACgaCMevEeUiAQlCESUiCoR9RpQkZGRioVOMfExBAaGvpMY40aNaqmpgXA\nkSNHGDlyJL/88su/Os/Pz4+4uDgmTpz41LvyBYJy6nyFTEhI4KuvvqrraVTixx9/ZNWqVTg4ONT1\nVAQaRJ2XcEyaNInw8HBcXV2lz2JiYjh58iS+vr788MMP/P777/znP/8hPDyckpISSktLcXR05Pvv\nv6d79+74+vpSXFzMu+++S0pKCrNnz6Z///7s37+fQ4cOoaOjw5IlSzAxMWHu3LkYGBiwePFi7Ozs\nAPjll1/44IMPgLK2bHZ2dpw+fZq4uDgiIiIkA6gzZ86wbt06FAoFs2bN4rXXXsPX15fs7GwsLCxY\ntWpVpesLDQ3lypUrlJaWEhoaSuvWrVXwqwoaKnWekObm5kycOJGwsDD69+//2GNLSkoIDw/H19eX\nxo0bs2/fPt544w0AioqK8PPzw8zMjIkTJ2Jvb8+RI0f43//+R2ZmJosXL2bJkiUoFAr279+vNO6H\nH37I5s2bady4MVOnTmXAgAE4OTkxdepUKRkBPv74Y8LDw9HX12fnzp2kpaXRp08fxo0bx65duzhy\n5EilOZ89e5Y9e/Zw584dcnNza+AXE6gzdZ6QAGPGjGH8+PFYW1tX+q7iW5l27doB0KRJE6ytrdHS\n0pLqNJs3b46FhQVQZneYlJREYmIikydPBpAKrauKIZfLadKkCQCdO3fm9u3bVc6zuLiYRo0aATBn\nzhyWLl3Kb7/9xuHDh3n48CEDBw6sdI6vry9+fn4oFArmz5//dD+IQGOp82dIKPMGXbhwIZs2bQLK\nLCMyM8uc2uLj45WOq46MjAzu3btHXl4eJSUlWFpa0qlTJ/bs2cOGDRsYNGgQgNSmuyI6OjpkZWVR\nWlrKlStXsLS0rHae9+/fp6ioiPnz52Ntbc306dPZs2cPXl5edO/eXen40tJSfvrpJzZv3sz06dOJ\niIj4dz+MQOOoFysklPUmLF9hOnfuTGZmJhMnTsTa2lpa+R5H48aNWb58OampqcyfP5/mzZvTq1cv\nPDw8yM/P55133qn23AULFuDl5YVcLmf48OHVlp3Nnz+fGTNmUFpaiqenJ46Ojvj5+bF371709PRY\nt26d0vFaWlooFApGjRqFoaGh1ORUIKgOUakjENQj6sUtq0AgKEMkpEBQjxAJKRDUI0RCCgT1CJGQ\nAkE9QiSkQFCPEAkpENQjREIKBPWI/weCh9p+D6eIKQAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11f167630>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"mm_to_inch = 0.03937007874\n", | |
"\n", | |
"width = 76 * mm_to_inch\n", | |
"height = 270 * mm_to_inch\n", | |
"\n", | |
"print(f'width: {width}, height: {height}')\n", | |
"\n", | |
"col = 'annotation'\n", | |
"\n", | |
"height_ratios = cell_annotations.groupby('tissue').apply(lambda x: len(x[col].unique()))\n", | |
"\n", | |
"fig, axes = plt.subplots(figsize=(width, height), nrows=len(tissues), sharex=True, \n", | |
" gridspec_kw=dict(height_ratios=height_ratios))\n", | |
"\n", | |
"for (tissue, df), ax in zip(cell_annotations.groupby('tissue'), axes):\n", | |
"# print(f'\\n--- {tissue} ---')\n", | |
" annotation_subannotation = np.log10(df.groupby(col).size()).reset_index()\n", | |
" annotation_subannotation = annotation_subannotation.rename(columns={0: 'n_cells'})\n", | |
" annotation_subannotation['annotation'] = annotation_subannotation['annotation'].str.replace('_', ' ')\n", | |
"# print(annotation_subannotation)\n", | |
"# print(len(annotation_subannotation))\n", | |
" \n", | |
" \n", | |
"# fig, ax = plt.subplots(figsize=(width, height))\n", | |
" sns.barplot(x='n_cells', y=col, data=annotation_subannotation, palette='husl', ax=ax, zorder=-1)\n", | |
"# fig.tight_layout()\n", | |
" ax.set(xlabel='', ylabel='')\n", | |
"\n", | |
" # Remove \"FACS\"\n", | |
" tissue = tissue.replace('_FACS', '').replace('_', ' ')\n", | |
" ax.set_title(tissue, va='top', fontweight='bold', size=8)\n", | |
" \n", | |
" ax.yaxis.set_ticks_position(\"right\")\n", | |
"# ax.set_ylabel(tissue, rotation=0, ha='right')\n", | |
" \n", | |
" # only y-axis grid\n", | |
"# ax.grid(axis='x')\n", | |
" ax.grid(axis='x', zorder=100, color='white')\n", | |
" ax.grid('off', axis='y')\n", | |
" \n", | |
" ax.spines['left'].set_visible(False)\n", | |
"\n", | |
" if ax.is_last_row():\n", | |
" \n", | |
" xticklabels = [f'$10^{int(i)}$' for i in ax.get_xticks()]\n", | |
" ax.set_xlabel('Number of cells', va='center')\n", | |
" ax.set_xticklabels(xticklabels, va='center')\n", | |
"\n", | |
" ax.spines['top'].set_visible(False)\n", | |
" ax.spines['bottom'].set_visible(False)\n", | |
" \n", | |
" \n", | |
"ax.invert_xaxis()\n", | |
"left, right = -0.05, 1.04\n", | |
"bottom, top = -0.015, 1.01\n", | |
"fig.tight_layout(h_pad=-0.1, rect=[left, bottom, right, top])\n", | |
"fig.savefig(f'{figure2_folder}/barplot_n_cells_per_annotation_all.pdf')\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (MACA)", | |
"language": "python", | |
"name": "maca" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment