Last active
July 16, 2024 10:15
-
-
Save olp-cs/9902b5cdc554afbf3faa7127ee602f20 to your computer and use it in GitHub Desktop.
GEOparse - Failing test: `test_merge_and_average` fails with a TypeError
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "id": "d27fa437", | |
| "metadata": { | |
| "id": "d27fa437" | |
| }, | |
| "source": [ | |
| "I have the following Python code:\n", | |
| "```Python\n", | |
| "tmp_data = tmp_data.groupby(group_by_column).mean()[[expression_column]]\n", | |
| "```\n", | |
| "where\n", | |
| "- `tmp_data` is a pandas dataframe that contains both numeric and string columns;\n", | |
| "- `expression_column` = 'VALUE'\n", | |
| "- `group_by_column` = 'GB_ACC'\n", | |
| "\n", | |
| "I am getting the following errors:\n", | |
| "```\n", | |
| "TypeError: agg function failed [how->mean,dtype->object]\n", | |
| "TypeError: Could not convert string 'DNA segment, Chr 8, ERATO Doi 594, expressed' to numeric\n", | |
| "```" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "# Reproducing the input" | |
| ], | |
| "metadata": { | |
| "id": "UjiKlqFl_-xI" | |
| }, | |
| "id": "UjiKlqFl_-xI" | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "id": "5b5fbcf1", | |
| "metadata": { | |
| "id": "5b5fbcf1" | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import pandas as pd" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "print(pd. __version__)" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "C8LCFiU_-4xk", | |
| "outputId": "ff5a44f1-75d4-4a52-cd59-9cdac9aa9da5" | |
| }, | |
| "id": "C8LCFiU_-4xk", | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "2.0.3\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "id": "c83d3e72", | |
| "metadata": { | |
| "id": "c83d3e72" | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "expression_column = 'VALUE'" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "id": "063b4ccc", | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 435 | |
| }, | |
| "id": "063b4ccc", | |
| "outputId": "c9a28a99-246c-4cad-ae4f-d62e03cefd36" | |
| }, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| " Unnamed: 0 ID_REF VALUE LogRatioError PValueLogRatio \\\n", | |
| "0 0 1 -1.627476 0.1360 6.410000e-33 \n", | |
| "1 1 2 0.141225 1.3400 1.000000e+00 \n", | |
| "2 2 3 0.182768 0.0519 4.330000e-04 \n", | |
| "3 3 4 -0.393227 0.0608 1.020000e-10 \n", | |
| "4 4 5 -0.986599 0.1050 6.320000e-21 \n", | |
| "\n", | |
| " gProcessedSignal rProcessedSignal ID GB_ACC \\\n", | |
| "0 9130.0 215.0 1 U02079 \n", | |
| "1 41.4 57.2 2 NM_008154 \n", | |
| "2 5130.0 7810.0 3 AK015719 \n", | |
| "3 4650.0 1880.0 4 AK003367 \n", | |
| "4 2910.0 301.0 5 BC003333 \n", | |
| "\n", | |
| " Gene_Desc Gene_Sym SPOT_ID \\\n", | |
| "0 nuclear factor of activated T-cells, cytoplasm... Nfatc2 NaN \n", | |
| "1 G-protein coupled receptor 3 Gpr3 NaN \n", | |
| "2 tropomodulin 2 Tmod2 NaN \n", | |
| "3 mitochondrial ribosomal protein L15 Mrpl15 NaN \n", | |
| "4 RIKEN cDNA 0610033I05 gene 0610033I05Rik NaN \n", | |
| "\n", | |
| " SEQUENCE \n", | |
| "0 ACCTGGATGACGCAGCCACTTCAGAAAGCTGGGTTGGGACAGAAAG... \n", | |
| "1 CTGTACAATGCTCTCACTTACTACTCAGAGACAACGGTAACTCGGA... \n", | |
| "2 CACCAGGCTCAGTGCCTAGTATCGGCTTCACCTAGTGTGGTTACTC... \n", | |
| "3 CAAGAAGTCTAGAAATTCTGTGCAAGCCTATTCCATTCTTTCTGCG... \n", | |
| "4 AGAACTGGGTGGCAGATATCCTAGAGTTTTGACCAACGTTCACAGC... " | |
| ], | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-36ec817d-b2f2-41d7-9e5d-2e912d29cb68\" class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Unnamed: 0</th>\n", | |
| " <th>ID_REF</th>\n", | |
| " <th>VALUE</th>\n", | |
| " <th>LogRatioError</th>\n", | |
| " <th>PValueLogRatio</th>\n", | |
| " <th>gProcessedSignal</th>\n", | |
| " <th>rProcessedSignal</th>\n", | |
| " <th>ID</th>\n", | |
| " <th>GB_ACC</th>\n", | |
| " <th>Gene_Desc</th>\n", | |
| " <th>Gene_Sym</th>\n", | |
| " <th>SPOT_ID</th>\n", | |
| " <th>SEQUENCE</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>0</td>\n", | |
| " <td>1</td>\n", | |
| " <td>-1.627476</td>\n", | |
| " <td>0.1360</td>\n", | |
| " <td>6.410000e-33</td>\n", | |
| " <td>9130.0</td>\n", | |
| " <td>215.0</td>\n", | |
| " <td>1</td>\n", | |
| " <td>U02079</td>\n", | |
| " <td>nuclear factor of activated T-cells, cytoplasm...</td>\n", | |
| " <td>Nfatc2</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>ACCTGGATGACGCAGCCACTTCAGAAAGCTGGGTTGGGACAGAAAG...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>1</td>\n", | |
| " <td>2</td>\n", | |
| " <td>0.141225</td>\n", | |
| " <td>1.3400</td>\n", | |
| " <td>1.000000e+00</td>\n", | |
| " <td>41.4</td>\n", | |
| " <td>57.2</td>\n", | |
| " <td>2</td>\n", | |
| " <td>NM_008154</td>\n", | |
| " <td>G-protein coupled receptor 3</td>\n", | |
| " <td>Gpr3</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>CTGTACAATGCTCTCACTTACTACTCAGAGACAACGGTAACTCGGA...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>2</td>\n", | |
| " <td>3</td>\n", | |
| " <td>0.182768</td>\n", | |
| " <td>0.0519</td>\n", | |
| " <td>4.330000e-04</td>\n", | |
| " <td>5130.0</td>\n", | |
| " <td>7810.0</td>\n", | |
| " <td>3</td>\n", | |
| " <td>AK015719</td>\n", | |
| " <td>tropomodulin 2</td>\n", | |
| " <td>Tmod2</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>CACCAGGCTCAGTGCCTAGTATCGGCTTCACCTAGTGTGGTTACTC...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>3</td>\n", | |
| " <td>4</td>\n", | |
| " <td>-0.393227</td>\n", | |
| " <td>0.0608</td>\n", | |
| " <td>1.020000e-10</td>\n", | |
| " <td>4650.0</td>\n", | |
| " <td>1880.0</td>\n", | |
| " <td>4</td>\n", | |
| " <td>AK003367</td>\n", | |
| " <td>mitochondrial ribosomal protein L15</td>\n", | |
| " <td>Mrpl15</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>CAAGAAGTCTAGAAATTCTGTGCAAGCCTATTCCATTCTTTCTGCG...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>4</td>\n", | |
| " <td>5</td>\n", | |
| " <td>-0.986599</td>\n", | |
| " <td>0.1050</td>\n", | |
| " <td>6.320000e-21</td>\n", | |
| " <td>2910.0</td>\n", | |
| " <td>301.0</td>\n", | |
| " <td>5</td>\n", | |
| " <td>BC003333</td>\n", | |
| " <td>RIKEN cDNA 0610033I05 gene</td>\n", | |
| " <td>0610033I05Rik</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>AGAACTGGGTGGCAGATATCCTAGAGTTTTGACCAACGTTCACAGC...</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <div class=\"colab-df-buttons\">\n", | |
| "\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-36ec817d-b2f2-41d7-9e5d-2e912d29cb68')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", | |
| " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| "\n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-buttons div {\n", | |
| " margin-bottom: 4px;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-36ec817d-b2f2-41d7-9e5d-2e912d29cb68 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-36ec817d-b2f2-41d7-9e5d-2e912d29cb68');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| "\n", | |
| "\n", | |
| "<div id=\"df-109bc5cf-de38-4c9e-a72b-05d6f507079b\">\n", | |
| " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-109bc5cf-de38-4c9e-a72b-05d6f507079b')\"\n", | |
| " title=\"Suggest charts\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <g>\n", | |
| " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", | |
| " </g>\n", | |
| "</svg>\n", | |
| " </button>\n", | |
| "\n", | |
| "<style>\n", | |
| " .colab-df-quickchart {\n", | |
| " --bg-color: #E8F0FE;\n", | |
| " --fill-color: #1967D2;\n", | |
| " --hover-bg-color: #E2EBFA;\n", | |
| " --hover-fill-color: #174EA6;\n", | |
| " --disabled-fill-color: #AAA;\n", | |
| " --disabled-bg-color: #DDD;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-quickchart {\n", | |
| " --bg-color: #3B4455;\n", | |
| " --fill-color: #D2E3FC;\n", | |
| " --hover-bg-color: #434B5C;\n", | |
| " --hover-fill-color: #FFFFFF;\n", | |
| " --disabled-bg-color: #3B4455;\n", | |
| " --disabled-fill-color: #666;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart {\n", | |
| " background-color: var(--bg-color);\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: var(--fill-color);\n", | |
| " height: 32px;\n", | |
| " padding: 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart:hover {\n", | |
| " background-color: var(--hover-bg-color);\n", | |
| " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: var(--button-hover-fill-color);\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart-complete:disabled,\n", | |
| " .colab-df-quickchart-complete:disabled:hover {\n", | |
| " background-color: var(--disabled-bg-color);\n", | |
| " fill: var(--disabled-fill-color);\n", | |
| " box-shadow: none;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-spinner {\n", | |
| " border: 2px solid var(--fill-color);\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " animation:\n", | |
| " spin 1s steps(1) infinite;\n", | |
| " }\n", | |
| "\n", | |
| " @keyframes spin {\n", | |
| " 0% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " }\n", | |
| " 20% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 30% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 40% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 60% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 80% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " 90% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " }\n", | |
| "</style>\n", | |
| "\n", | |
| " <script>\n", | |
| " async function quickchart(key) {\n", | |
| " const quickchartButtonEl =\n", | |
| " document.querySelector('#' + key + ' button');\n", | |
| " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", | |
| " quickchartButtonEl.classList.add('colab-df-spinner');\n", | |
| " try {\n", | |
| " const charts = await google.colab.kernel.invokeFunction(\n", | |
| " 'suggestCharts', [key], {});\n", | |
| " } catch (error) {\n", | |
| " console.error('Error during call to suggestCharts:', error);\n", | |
| " }\n", | |
| " quickchartButtonEl.classList.remove('colab-df-spinner');\n", | |
| " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", | |
| " }\n", | |
| " (() => {\n", | |
| " let quickchartButtonEl =\n", | |
| " document.querySelector('#df-109bc5cf-de38-4c9e-a72b-05d6f507079b button');\n", | |
| " quickchartButtonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| " })();\n", | |
| " </script>\n", | |
| "</div>\n", | |
| "\n", | |
| " </div>\n", | |
| " </div>\n" | |
| ], | |
| "application/vnd.google.colaboratory.intrinsic+json": { | |
| "type": "dataframe", | |
| "variable_name": "tmp_data", | |
| "summary": "{\n \"name\": \"tmp_data\",\n \"rows\": 20,\n \"fields\": [\n {\n \"column\": \"Unnamed: 0\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5,\n \"min\": 0,\n \"max\": 19,\n \"num_unique_values\": 20,\n \"samples\": [\n 0,\n 17,\n 15\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ID_REF\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5,\n \"min\": 1,\n \"max\": 20,\n \"num_unique_values\": 20,\n \"samples\": [\n 1,\n 18,\n 16\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VALUE\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7204641514436444,\n \"min\": -1.826136,\n \"max\": 0.358304,\n \"num_unique_values\": 20,\n \"samples\": [\n -1.627476,\n -0.61222,\n -0.226702\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"LogRatioError\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5979005628248862,\n \"min\": 0.0519,\n \"max\": 2.06,\n \"num_unique_values\": 20,\n \"samples\": [\n 0.136,\n 0.128,\n 0.944\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"PValueLogRatio\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.443372864054248,\n \"min\": 6.41e-33,\n \"max\": 1.0,\n \"num_unique_values\": 18,\n \"samples\": [\n 6.41e-33,\n 1.0,\n 0.436\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"gProcessedSignal\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3568.1972008985153,\n \"min\": 20.4,\n \"max\": 10200.0,\n \"num_unique_values\": 19,\n \"samples\": [\n 9130.0,\n 708.0,\n 20.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"rProcessedSignal\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1728.830112579861,\n \"min\": 8.89,\n \"max\": 7810.0,\n \"num_unique_values\": 20,\n \"samples\": [\n 215.0,\n 273.0,\n 52.8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ID\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5,\n \"min\": 1,\n \"max\": 20,\n \"num_unique_values\": 20,\n \"samples\": [\n 1,\n 18,\n 16\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"GB_ACC\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 19,\n \"samples\": [\n \"U02079\",\n \"NM_008462\",\n \"NM_010517\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Gene_Desc\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 19,\n \"samples\": [\n \"nuclear factor of activated T-cells, cytoplasmic 2\",\n \"killer cell lectin-like receptor, subfamily A, member 2\",\n \"insulin-like growth factor binding protein 4\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Gene_Sym\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 18,\n \"samples\": [\n \"Nfatc2\",\n \"Gpr3\",\n \"Ngfrap1\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SPOT_ID\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"-- CONTROL\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SEQUENCE\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 19,\n \"samples\": [\n \"ACCTGGATGACGCAGCCACTTCAGAAAGCTGGGTTGGGACAGAAAGGTATATAGAGAGAAAATTTTGGAA\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" | |
| } | |
| }, | |
| "metadata": {}, | |
| "execution_count": 4 | |
| } | |
| ], | |
| "source": [ | |
| "tmp_data = pd.read_csv('tmp_data.csv')\n", | |
| "tmp_data.head()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "id": "e24eb2ff", | |
| "metadata": { | |
| "id": "e24eb2ff" | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "group_by_column = 'GB_ACC'" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "# Error message" | |
| ], | |
| "metadata": { | |
| "id": "qeaz5GUzADat" | |
| }, | |
| "id": "qeaz5GUzADat" | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "id": "a83d91c7", | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 582 | |
| }, | |
| "id": "a83d91c7", | |
| "outputId": "71cac718-ec85-4feb-a5af-fa8de15228b4" | |
| }, | |
| "outputs": [ | |
| { | |
| "output_type": "error", | |
| "ename": "TypeError", | |
| "evalue": "Could not convert DNA segment, Chr 8, ERATO Doi 594, expressed to numeric", | |
| "traceback": [ | |
| "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
| "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36marray_func\u001b[0;34m(values)\u001b[0m\n\u001b[1;32m 1489\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1490\u001b[0;31m result = self.grouper._cython_operation(\n\u001b[0m\u001b[1;32m 1491\u001b[0m \u001b[0;34m\"aggregate\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/ops.py\u001b[0m in \u001b[0;36m_cython_operation\u001b[0;34m(self, kind, values, how, axis, min_count, **kwargs)\u001b[0m\n\u001b[1;32m 958\u001b[0m \u001b[0mngroups\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mngroups\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 959\u001b[0;31m return cy_op.cython_operation(\n\u001b[0m\u001b[1;32m 960\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/ops.py\u001b[0m in \u001b[0;36mcython_operation\u001b[0;34m(self, values, axis, min_count, comp_ids, ngroups, **kwargs)\u001b[0m\n\u001b[1;32m 656\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 657\u001b[0;31m return self._cython_op_ndim_compat(\n\u001b[0m\u001b[1;32m 658\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/ops.py\u001b[0m in \u001b[0;36m_cython_op_ndim_compat\u001b[0;34m(self, values, min_count, ngroups, comp_ids, mask, result_mask, **kwargs)\u001b[0m\n\u001b[1;32m 496\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 497\u001b[0;31m return self._call_cython_op(\n\u001b[0m\u001b[1;32m 498\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/ops.py\u001b[0m in \u001b[0;36m_call_cython_op\u001b[0;34m(self, values, min_count, ngroups, comp_ids, mask, result_mask, **kwargs)\u001b[0m\n\u001b[1;32m 540\u001b[0m \u001b[0mout_shape\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_output_shape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mngroups\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 541\u001b[0;31m \u001b[0mfunc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_cython_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkind\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhow\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mis_numeric\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 542\u001b[0m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_cython_vals\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/ops.py\u001b[0m in \u001b[0;36m_get_cython_function\u001b[0;34m(cls, kind, how, dtype, is_numeric)\u001b[0m\n\u001b[1;32m 172\u001b[0m \u001b[0;31m# raise NotImplementedError here rather than TypeError later\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 173\u001b[0;31m raise NotImplementedError(\n\u001b[0m\u001b[1;32m 174\u001b[0m \u001b[0;34mf\"function is not implemented for this dtype: \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;31mNotImplementedError\u001b[0m: function is not implemented for this dtype: [how->mean,dtype->object]", | |
| "\nDuring handling of the above exception, another exception occurred:\n", | |
| "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/nanops.py\u001b[0m in \u001b[0;36m_ensure_numeric\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 1691\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1692\u001b[0;31m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfloat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1693\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mTypeError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;31mValueError\u001b[0m: could not convert string to float: 'DNA segment, Chr 8, ERATO Doi 594, expressed'", | |
| "\nDuring handling of the above exception, another exception occurred:\n", | |
| "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/nanops.py\u001b[0m in \u001b[0;36m_ensure_numeric\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 1695\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1696\u001b[0;31m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcomplex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1697\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mValueError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;31mValueError\u001b[0m: complex() arg is a malformed string", | |
| "\nThe above exception was the direct cause of the following exception:\n", | |
| "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", | |
| "\u001b[0;32m<ipython-input-6-25aa53ce8d0d>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtmp_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgroup_by_column\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mexpression_column\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36mmean\u001b[0;34m(self, numeric_only, engine, engine_kwargs)\u001b[0m\n\u001b[1;32m 1853\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_numba_agg_general\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msliding_mean\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1854\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1855\u001b[0;31m result = self._cython_agg_general(\n\u001b[0m\u001b[1;32m 1856\u001b[0m \u001b[0;34m\"mean\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1857\u001b[0m \u001b[0malt\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mSeries\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumeric_only\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnumeric_only\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36m_cython_agg_general\u001b[0;34m(self, how, alt, numeric_only, min_count, **kwargs)\u001b[0m\n\u001b[1;32m 1505\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1506\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1507\u001b[0;31m \u001b[0mnew_mgr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgrouped_reduce\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray_func\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1508\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_wrap_agged_manager\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_mgr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1509\u001b[0m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_wrap_aggregated_output\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mres\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36mgrouped_reduce\u001b[0;34m(self, func)\u001b[0m\n\u001b[1;32m 1501\u001b[0m \u001b[0;31m# while others do not.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1502\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0msb\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mblk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_split\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1503\u001b[0;31m \u001b[0mapplied\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1504\u001b[0m \u001b[0mresult_blocks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mextend_blocks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mapplied\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresult_blocks\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1505\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/internals/blocks.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, func, **kwargs)\u001b[0m\n\u001b[1;32m 327\u001b[0m \u001b[0mone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 328\u001b[0m \"\"\"\n\u001b[0;32m--> 329\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 330\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 331\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_split_op_result\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36marray_func\u001b[0;34m(values)\u001b[0m\n\u001b[1;32m 1501\u001b[0m \u001b[0;31m# try to python agg\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1502\u001b[0m \u001b[0;31m# TODO: shouldn't min_count matter?\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1503\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_agg_py_fallback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mndim\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malt\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0malt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1504\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1505\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36m_agg_py_fallback\u001b[0;34m(self, values, ndim, alt)\u001b[0m\n\u001b[1;32m 1455\u001b[0m \u001b[0;31m# should always be preserved by the implemented aggregations\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1456\u001b[0m \u001b[0;31m# TODO: Is this exactly right; see WrappedCythonOp get_result_dtype?\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1457\u001b[0;31m \u001b[0mres_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgrouper\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0magg_series\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mser\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpreserve_dtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1458\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1459\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mCategorical\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/ops.py\u001b[0m in \u001b[0;36magg_series\u001b[0;34m(self, obj, func, preserve_dtype)\u001b[0m\n\u001b[1;32m 992\u001b[0m \u001b[0mpreserve_dtype\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 993\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 994\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_aggregate_series_pure_python\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 995\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 996\u001b[0m \u001b[0mnpvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmaybe_convert_objects\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtry_float\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/ops.py\u001b[0m in \u001b[0;36m_aggregate_series_pure_python\u001b[0;34m(self, obj, func)\u001b[0m\n\u001b[1;32m 1013\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1014\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgroup\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msplitter\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1015\u001b[0;31m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgroup\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1016\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlibreduction\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextract_result\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mres\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1017\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36m<lambda>\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 1855\u001b[0m result = self._cython_agg_general(\n\u001b[1;32m 1856\u001b[0m \u001b[0;34m\"mean\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1857\u001b[0;31m \u001b[0malt\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mSeries\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumeric_only\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnumeric_only\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1858\u001b[0m \u001b[0mnumeric_only\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnumeric_only\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1859\u001b[0m )\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36mmean\u001b[0;34m(self, axis, skipna, numeric_only, **kwargs)\u001b[0m\n\u001b[1;32m 11554\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11555\u001b[0m ):\n\u001b[0;32m> 11556\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mNDFrame\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskipna\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumeric_only\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11557\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11558\u001b[0m \u001b[0msetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcls\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"mean\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmean\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36mmean\u001b[0;34m(self, axis, skipna, numeric_only, **kwargs)\u001b[0m\n\u001b[1;32m 11199\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11200\u001b[0m ) -> Series | float:\n\u001b[0;32m> 11201\u001b[0;31m return self._stat_function(\n\u001b[0m\u001b[1;32m 11202\u001b[0m \u001b[0;34m\"mean\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnanops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnanmean\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskipna\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumeric_only\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11203\u001b[0m )\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_stat_function\u001b[0;34m(self, name, func, axis, skipna, numeric_only, **kwargs)\u001b[0m\n\u001b[1;32m 11156\u001b[0m \u001b[0mvalidate_bool_kwarg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mskipna\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"skipna\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnone_allowed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11157\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m> 11158\u001b[0;31m return self._reduce(\n\u001b[0m\u001b[1;32m 11159\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskipna\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mskipna\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumeric_only\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnumeric_only\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11160\u001b[0m )\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/series.py\u001b[0m in \u001b[0;36m_reduce\u001b[0;34m(self, op, name, axis, skipna, numeric_only, filter_type, **kwds)\u001b[0m\n\u001b[1;32m 4668\u001b[0m )\n\u001b[1;32m 4669\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0merrstate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mall\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"ignore\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4670\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdelegate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskipna\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mskipna\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4671\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4672\u001b[0m def _reindex_indexer(\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/nanops.py\u001b[0m in \u001b[0;36m_f\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 95\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0merrstate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minvalid\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"ignore\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 96\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 97\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mValueError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 98\u001b[0m \u001b[0;31m# we want to transform an object array\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/nanops.py\u001b[0m in \u001b[0;36mf\u001b[0;34m(values, axis, skipna, **kwds)\u001b[0m\n\u001b[1;32m 156\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0malt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskipna\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mskipna\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 157\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 158\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0malt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskipna\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mskipna\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 159\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/nanops.py\u001b[0m in \u001b[0;36mnew_func\u001b[0;34m(values, axis, skipna, mask, **kwargs)\u001b[0m\n\u001b[1;32m 419\u001b[0m \u001b[0mmask\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 420\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 421\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskipna\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mskipna\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmask\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmask\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 422\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 423\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdatetimelike\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/nanops.py\u001b[0m in \u001b[0;36mnanmean\u001b[0;34m(values, axis, skipna, mask)\u001b[0m\n\u001b[1;32m 725\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 726\u001b[0m \u001b[0mcount\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_get_counts\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmask\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype_count\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 727\u001b[0;31m \u001b[0mthe_sum\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_ensure_numeric\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype_sum\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 728\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 729\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mthe_sum\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"ndim\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/nanops.py\u001b[0m in \u001b[0;36m_ensure_numeric\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 1697\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mValueError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1698\u001b[0m \u001b[0;31m# e.g. \"foo\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1699\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"Could not convert {x} to numeric\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1700\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1701\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;31mTypeError\u001b[0m: Could not convert DNA segment, Chr 8, ERATO Doi 594, expressed to numeric" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "tmp_data.groupby(group_by_column).mean()[[expression_column]]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "# Exploring context that may be relevant" | |
| ], | |
| "metadata": { | |
| "id": "IF-wNk_BAZTM" | |
| }, | |
| "id": "IF-wNk_BAZTM" | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "id": "a40c49f8", | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "a40c49f8", | |
| "outputId": "58b40aed-acb7-4071-84b5-a68f0bad5edb" | |
| }, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7856b1218130>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 7 | |
| } | |
| ], | |
| "source": [ | |
| "tmp_data.groupby(group_by_column)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "id": "99274ef4", | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 1000 | |
| }, | |
| "id": "99274ef4", | |
| "outputId": "3606a413-c66b-455d-f797-c3db718c0a67" | |
| }, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| " Unnamed: 0 ID_REF VALUE LogRatioError PValueLogRatio \\\n", | |
| "GB_ACC \n", | |
| "AB045323 9 9 10 0.240589 0.3090 4.360000e-01 \n", | |
| "AK003367 3 3 4 -0.393227 0.0608 1.020000e-10 \n", | |
| "AK003755 13 13 14 -1.548040 0.1300 7.210000e-33 \n", | |
| "AK004524 16 16 17 -0.148402 0.8010 8.530000e-01 \n", | |
| "AK004937 15 15 16 -0.226702 0.9440 8.100000e-01 \n", | |
| "AK005789 10 10 11 0.320937 0.3590 3.710000e-01 \n", | |
| "AK010722 12 12 13 -0.012207 0.3640 9.730000e-01 \n", | |
| "AK015719 2 2 3 0.182768 0.0519 4.330000e-04 \n", | |
| "BC003241 14 14 15 0.007342 0.2980 9.800000e-01 \n", | |
| "BC003333 4 4 5 -0.986599 0.1050 6.320000e-21 \n", | |
| "NM_008029 6 6 7 -1.484182 0.1250 1.420000e-32 \n", | |
| "NM_008154 1 1 2 0.141225 1.3400 1.000000e+00 \n", | |
| "NM_008462 5 5 6 0.023881 0.1020 8.150000e-01 \n", | |
| "NM_009750 8 8 9 -1.034478 1.7800 1.000000e+00 \n", | |
| "NM_010517 11 11 12 0.358304 2.0600 1.000000e+00 \n", | |
| "NM_023120 19 19 20 -0.084895 0.9380 9.280000e-01 \n", | |
| "NM_025999 17 17 18 -0.612220 0.1280 1.690000e-06 \n", | |
| "NM_054088 7 7 8 -1.826136 0.4150 1.100000e-05 \n", | |
| "U02079 0 0 1 -1.627476 0.1360 6.410000e-33 \n", | |
| "\n", | |
| " gProcessedSignal rProcessedSignal ID GB_ACC \\\n", | |
| "GB_ACC \n", | |
| "AB045323 9 161.0 280.00 10 AB045323 \n", | |
| "AK003367 3 4650.0 1880.00 4 AK003367 \n", | |
| "AK003755 13 10200.0 290.00 14 AK003755 \n", | |
| "AK004524 16 96.5 68.60 17 AK004524 \n", | |
| "AK004937 15 89.0 52.80 16 AK004937 \n", | |
| "AK005789 10 125.0 261.00 11 AK005789 \n", | |
| "AK010722 12 184.0 179.00 13 AK010722 \n", | |
| "AK015719 2 5130.0 7810.00 3 AK015719 \n", | |
| "BC003241 14 221.0 225.00 15 BC003241 \n", | |
| "BC003333 4 2910.0 301.00 5 BC003333 \n", | |
| "NM_008029 6 10200.0 336.00 7 NM_008029 \n", | |
| "NM_008154 1 41.4 57.20 2 NM_008154 \n", | |
| "NM_008462 5 708.0 748.00 6 NM_008462 \n", | |
| "NM_009750 8 96.2 8.89 9 NM_009750 \n", | |
| "NM_010517 11 20.4 46.60 12 NM_010517 \n", | |
| "NM_023120 19 76.8 63.20 20 NM_023120 \n", | |
| "NM_025999 17 1120.0 273.00 18 NM_025999 \n", | |
| "NM_054088 7 719.0 10.70 8 NM_054088 \n", | |
| "U02079 0 9130.0 215.00 1 U02079 \n", | |
| "\n", | |
| " Gene_Desc \\\n", | |
| "GB_ACC \n", | |
| "AB045323 9 DNA segment, Chr 8, ERATO Doi 594, expressed \n", | |
| "AK003367 3 mitochondrial ribosomal protein L15 \n", | |
| "AK003755 13 DNA segment, Chr 4, ERATO Doi 421, expressed \n", | |
| "AK004524 16 unnamed protein product; hypothetical SOCS domain \n", | |
| "AK004937 15 RIKEN cDNA 1300007O09 gene \n", | |
| "AK005789 10 dynein, cytoplasmic, light chain 2B \n", | |
| "AK010722 12 RIKEN cDNA 2410075D05 gene \n", | |
| "AK015719 2 tropomodulin 2 \n", | |
| "BC003241 14 cleavage stimulation factor, 3\\' pre-RNA, subu... \n", | |
| "BC003333 4 RIKEN cDNA 0610033I05 gene \n", | |
| "NM_008029 6 FMS-like tyrosine kinase 4 \n", | |
| "NM_008154 1 G-protein coupled receptor 3 \n", | |
| "NM_008462 5 killer cell lectin-like receptor, subfamily A,... \n", | |
| "NM_009750 8 nerve growth factor receptor (TNFRSF16) associ... \n", | |
| "NM_010517 11 insulin-like growth factor binding protein 4 \n", | |
| "NM_023120 19 guanine nucleotide binding protein (G protein)... \n", | |
| "NM_025999 17 RIKEN cDNA 2610110L04 gene \n", | |
| "NM_054088 7 adiponutrin \n", | |
| "U02079 0 nuclear factor of activated T-cells, cytoplasm... \n", | |
| "\n", | |
| " Gene_Sym SPOT_ID \\\n", | |
| "GB_ACC \n", | |
| "AB045323 9 D8Ertd594e NaN \n", | |
| "AK003367 3 Mrpl15 NaN \n", | |
| "AK003755 13 D4Ertd421e NaN \n", | |
| "AK004524 16 NaN NaN \n", | |
| "AK004937 15 1300007O09Rik NaN \n", | |
| "AK005789 10 Dncl2b NaN \n", | |
| "AK010722 12 2410075D05Rik NaN \n", | |
| "AK015719 2 Tmod2 NaN \n", | |
| "BC003241 14 Cstf3 NaN \n", | |
| "BC003333 4 0610033I05Rik NaN \n", | |
| "NM_008029 6 Flt4 NaN \n", | |
| "NM_008154 1 Gpr3 NaN \n", | |
| "NM_008462 5 Klra2 NaN \n", | |
| "NM_009750 8 Ngfrap1 NaN \n", | |
| "NM_010517 11 Igfbp4 NaN \n", | |
| "NM_023120 19 Gnb1l NaN \n", | |
| "NM_025999 17 2610110L04Rik NaN \n", | |
| "NM_054088 7 Adpn NaN \n", | |
| "U02079 0 Nfatc2 NaN \n", | |
| "\n", | |
| " SEQUENCE \n", | |
| "GB_ACC \n", | |
| "AB045323 9 GATTCAGACTCGGGAGGAGCATCCCAACCTCTCCTTGAGGATAAAG... \n", | |
| "AK003367 3 CAAGAAGTCTAGAAATTCTGTGCAAGCCTATTCCATTCTTTCTGCG... \n", | |
| "AK003755 13 AGCAAAGAGATCTCCCTCAGTGTGCCCATAGGTGGCGGTGCGAGCT... \n", | |
| "AK004524 16 CGGAGCCCTGCGCGCCCAGAGCCCCCTCCCACCCGCTTCCACCAAG... \n", | |
| "AK004937 15 CAGACACAAACCCTAGGTTGTATTGTAGACCGGAGTTTAAGCAGGC... \n", | |
| "AK005789 10 TGCAGAAGGCATTCCAATCCGAACAACCCTGGACAACTCCACAACG... \n", | |
| "AK010722 12 GGAGCATCTGGAGTTCCGCTTACCGGAAATAAAGTCTTTACTATCG... \n", | |
| "AK015719 2 CACCAGGCTCAGTGCCTAGTATCGGCTTCACCTAGTGTGGTTACTC... \n", | |
| "BC003241 14 AAATTAGAAGAAAATCCATATGACCTTGATGCTTGGAGCATTCTCA... \n", | |
| "BC003333 4 AGAACTGGGTGGCAGATATCCTAGAGTTTTGACCAACGTTCACAGC... \n", | |
| "NM_008029 6 GAGGTGCTGTGGGATGACCGCCGGGGCATGCGGGTGCCCACTCAAC... \n", | |
| "NM_008154 1 CTGTACAATGCTCTCACTTACTACTCAGAGACAACGGTAACTCGGA... \n", | |
| "NM_008462 5 TGAATTGAAGTTCCTTAAATCCCAACTTCAAAGAAACACATACTGG... \n", | |
| "NM_009750 8 TACAGCTGAGAAATTGTCTACGCATCCTTATGGGGGAGCTGTCTAA... \n", | |
| "NM_010517 11 GGAGAAGCTGGCGCGCTGCCGCCCCCCCGTGGGTTGCGAGGAGTTG... \n", | |
| "NM_023120 19 ACCGCCTGGTCCCAGATTTGTCCTCCGAGGCACACAGTCGGCTGTG... \n", | |
| "NM_025999 17 TGCATTGATAAATGGAGTGATCGACACAGGAACTGCCCCATTTGTC... \n", | |
| "NM_054088 7 GTCTGAGTTCCATTCCAAAGACGAAGTCGTGGATGCCCTGGTGTGT... \n", | |
| "U02079 0 ACCTGGATGACGCAGCCACTTCAGAAAGCTGGGTTGGGACAGAAAG... " | |
| ], | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-9ba893fd-a203-4ba5-8865-f548071662e9\" class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th>Unnamed: 0</th>\n", | |
| " <th>ID_REF</th>\n", | |
| " <th>VALUE</th>\n", | |
| " <th>LogRatioError</th>\n", | |
| " <th>PValueLogRatio</th>\n", | |
| " <th>gProcessedSignal</th>\n", | |
| " <th>rProcessedSignal</th>\n", | |
| " <th>ID</th>\n", | |
| " <th>GB_ACC</th>\n", | |
| " <th>Gene_Desc</th>\n", | |
| " <th>Gene_Sym</th>\n", | |
| " <th>SPOT_ID</th>\n", | |
| " <th>SEQUENCE</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>GB_ACC</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>AB045323</th>\n", | |
| " <th>9</th>\n", | |
| " <td>9</td>\n", | |
| " <td>10</td>\n", | |
| " <td>0.240589</td>\n", | |
| " <td>0.3090</td>\n", | |
| " <td>4.360000e-01</td>\n", | |
| " <td>161.0</td>\n", | |
| " <td>280.00</td>\n", | |
| " <td>10</td>\n", | |
| " <td>AB045323</td>\n", | |
| " <td>DNA segment, Chr 8, ERATO Doi 594, expressed</td>\n", | |
| " <td>D8Ertd594e</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>GATTCAGACTCGGGAGGAGCATCCCAACCTCTCCTTGAGGATAAAG...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>AK003367</th>\n", | |
| " <th>3</th>\n", | |
| " <td>3</td>\n", | |
| " <td>4</td>\n", | |
| " <td>-0.393227</td>\n", | |
| " <td>0.0608</td>\n", | |
| " <td>1.020000e-10</td>\n", | |
| " <td>4650.0</td>\n", | |
| " <td>1880.00</td>\n", | |
| " <td>4</td>\n", | |
| " <td>AK003367</td>\n", | |
| " <td>mitochondrial ribosomal protein L15</td>\n", | |
| " <td>Mrpl15</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>CAAGAAGTCTAGAAATTCTGTGCAAGCCTATTCCATTCTTTCTGCG...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>AK003755</th>\n", | |
| " <th>13</th>\n", | |
| " <td>13</td>\n", | |
| " <td>14</td>\n", | |
| " <td>-1.548040</td>\n", | |
| " <td>0.1300</td>\n", | |
| " <td>7.210000e-33</td>\n", | |
| " <td>10200.0</td>\n", | |
| " <td>290.00</td>\n", | |
| " <td>14</td>\n", | |
| " <td>AK003755</td>\n", | |
| " <td>DNA segment, Chr 4, ERATO Doi 421, expressed</td>\n", | |
| " <td>D4Ertd421e</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>AGCAAAGAGATCTCCCTCAGTGTGCCCATAGGTGGCGGTGCGAGCT...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>AK004524</th>\n", | |
| " <th>16</th>\n", | |
| " <td>16</td>\n", | |
| " <td>17</td>\n", | |
| " <td>-0.148402</td>\n", | |
| " <td>0.8010</td>\n", | |
| " <td>8.530000e-01</td>\n", | |
| " <td>96.5</td>\n", | |
| " <td>68.60</td>\n", | |
| " <td>17</td>\n", | |
| " <td>AK004524</td>\n", | |
| " <td>unnamed protein product; hypothetical SOCS domain</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>CGGAGCCCTGCGCGCCCAGAGCCCCCTCCCACCCGCTTCCACCAAG...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>AK004937</th>\n", | |
| " <th>15</th>\n", | |
| " <td>15</td>\n", | |
| " <td>16</td>\n", | |
| " <td>-0.226702</td>\n", | |
| " <td>0.9440</td>\n", | |
| " <td>8.100000e-01</td>\n", | |
| " <td>89.0</td>\n", | |
| " <td>52.80</td>\n", | |
| " <td>16</td>\n", | |
| " <td>AK004937</td>\n", | |
| " <td>RIKEN cDNA 1300007O09 gene</td>\n", | |
| " <td>1300007O09Rik</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>CAGACACAAACCCTAGGTTGTATTGTAGACCGGAGTTTAAGCAGGC...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>AK005789</th>\n", | |
| " <th>10</th>\n", | |
| " <td>10</td>\n", | |
| " <td>11</td>\n", | |
| " <td>0.320937</td>\n", | |
| " <td>0.3590</td>\n", | |
| " <td>3.710000e-01</td>\n", | |
| " <td>125.0</td>\n", | |
| " <td>261.00</td>\n", | |
| " <td>11</td>\n", | |
| " <td>AK005789</td>\n", | |
| " <td>dynein, cytoplasmic, light chain 2B</td>\n", | |
| " <td>Dncl2b</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>TGCAGAAGGCATTCCAATCCGAACAACCCTGGACAACTCCACAACG...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>AK010722</th>\n", | |
| " <th>12</th>\n", | |
| " <td>12</td>\n", | |
| " <td>13</td>\n", | |
| " <td>-0.012207</td>\n", | |
| " <td>0.3640</td>\n", | |
| " <td>9.730000e-01</td>\n", | |
| " <td>184.0</td>\n", | |
| " <td>179.00</td>\n", | |
| " <td>13</td>\n", | |
| " <td>AK010722</td>\n", | |
| " <td>RIKEN cDNA 2410075D05 gene</td>\n", | |
| " <td>2410075D05Rik</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>GGAGCATCTGGAGTTCCGCTTACCGGAAATAAAGTCTTTACTATCG...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>AK015719</th>\n", | |
| " <th>2</th>\n", | |
| " <td>2</td>\n", | |
| " <td>3</td>\n", | |
| " <td>0.182768</td>\n", | |
| " <td>0.0519</td>\n", | |
| " <td>4.330000e-04</td>\n", | |
| " <td>5130.0</td>\n", | |
| " <td>7810.00</td>\n", | |
| " <td>3</td>\n", | |
| " <td>AK015719</td>\n", | |
| " <td>tropomodulin 2</td>\n", | |
| " <td>Tmod2</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>CACCAGGCTCAGTGCCTAGTATCGGCTTCACCTAGTGTGGTTACTC...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>BC003241</th>\n", | |
| " <th>14</th>\n", | |
| " <td>14</td>\n", | |
| " <td>15</td>\n", | |
| " <td>0.007342</td>\n", | |
| " <td>0.2980</td>\n", | |
| " <td>9.800000e-01</td>\n", | |
| " <td>221.0</td>\n", | |
| " <td>225.00</td>\n", | |
| " <td>15</td>\n", | |
| " <td>BC003241</td>\n", | |
| " <td>cleavage stimulation factor, 3\\' pre-RNA, subu...</td>\n", | |
| " <td>Cstf3</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>AAATTAGAAGAAAATCCATATGACCTTGATGCTTGGAGCATTCTCA...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>BC003333</th>\n", | |
| " <th>4</th>\n", | |
| " <td>4</td>\n", | |
| " <td>5</td>\n", | |
| " <td>-0.986599</td>\n", | |
| " <td>0.1050</td>\n", | |
| " <td>6.320000e-21</td>\n", | |
| " <td>2910.0</td>\n", | |
| " <td>301.00</td>\n", | |
| " <td>5</td>\n", | |
| " <td>BC003333</td>\n", | |
| " <td>RIKEN cDNA 0610033I05 gene</td>\n", | |
| " <td>0610033I05Rik</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>AGAACTGGGTGGCAGATATCCTAGAGTTTTGACCAACGTTCACAGC...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_008029</th>\n", | |
| " <th>6</th>\n", | |
| " <td>6</td>\n", | |
| " <td>7</td>\n", | |
| " <td>-1.484182</td>\n", | |
| " <td>0.1250</td>\n", | |
| " <td>1.420000e-32</td>\n", | |
| " <td>10200.0</td>\n", | |
| " <td>336.00</td>\n", | |
| " <td>7</td>\n", | |
| " <td>NM_008029</td>\n", | |
| " <td>FMS-like tyrosine kinase 4</td>\n", | |
| " <td>Flt4</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>GAGGTGCTGTGGGATGACCGCCGGGGCATGCGGGTGCCCACTCAAC...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_008154</th>\n", | |
| " <th>1</th>\n", | |
| " <td>1</td>\n", | |
| " <td>2</td>\n", | |
| " <td>0.141225</td>\n", | |
| " <td>1.3400</td>\n", | |
| " <td>1.000000e+00</td>\n", | |
| " <td>41.4</td>\n", | |
| " <td>57.20</td>\n", | |
| " <td>2</td>\n", | |
| " <td>NM_008154</td>\n", | |
| " <td>G-protein coupled receptor 3</td>\n", | |
| " <td>Gpr3</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>CTGTACAATGCTCTCACTTACTACTCAGAGACAACGGTAACTCGGA...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_008462</th>\n", | |
| " <th>5</th>\n", | |
| " <td>5</td>\n", | |
| " <td>6</td>\n", | |
| " <td>0.023881</td>\n", | |
| " <td>0.1020</td>\n", | |
| " <td>8.150000e-01</td>\n", | |
| " <td>708.0</td>\n", | |
| " <td>748.00</td>\n", | |
| " <td>6</td>\n", | |
| " <td>NM_008462</td>\n", | |
| " <td>killer cell lectin-like receptor, subfamily A,...</td>\n", | |
| " <td>Klra2</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>TGAATTGAAGTTCCTTAAATCCCAACTTCAAAGAAACACATACTGG...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_009750</th>\n", | |
| " <th>8</th>\n", | |
| " <td>8</td>\n", | |
| " <td>9</td>\n", | |
| " <td>-1.034478</td>\n", | |
| " <td>1.7800</td>\n", | |
| " <td>1.000000e+00</td>\n", | |
| " <td>96.2</td>\n", | |
| " <td>8.89</td>\n", | |
| " <td>9</td>\n", | |
| " <td>NM_009750</td>\n", | |
| " <td>nerve growth factor receptor (TNFRSF16) associ...</td>\n", | |
| " <td>Ngfrap1</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>TACAGCTGAGAAATTGTCTACGCATCCTTATGGGGGAGCTGTCTAA...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_010517</th>\n", | |
| " <th>11</th>\n", | |
| " <td>11</td>\n", | |
| " <td>12</td>\n", | |
| " <td>0.358304</td>\n", | |
| " <td>2.0600</td>\n", | |
| " <td>1.000000e+00</td>\n", | |
| " <td>20.4</td>\n", | |
| " <td>46.60</td>\n", | |
| " <td>12</td>\n", | |
| " <td>NM_010517</td>\n", | |
| " <td>insulin-like growth factor binding protein 4</td>\n", | |
| " <td>Igfbp4</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>GGAGAAGCTGGCGCGCTGCCGCCCCCCCGTGGGTTGCGAGGAGTTG...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_023120</th>\n", | |
| " <th>19</th>\n", | |
| " <td>19</td>\n", | |
| " <td>20</td>\n", | |
| " <td>-0.084895</td>\n", | |
| " <td>0.9380</td>\n", | |
| " <td>9.280000e-01</td>\n", | |
| " <td>76.8</td>\n", | |
| " <td>63.20</td>\n", | |
| " <td>20</td>\n", | |
| " <td>NM_023120</td>\n", | |
| " <td>guanine nucleotide binding protein (G protein)...</td>\n", | |
| " <td>Gnb1l</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>ACCGCCTGGTCCCAGATTTGTCCTCCGAGGCACACAGTCGGCTGTG...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_025999</th>\n", | |
| " <th>17</th>\n", | |
| " <td>17</td>\n", | |
| " <td>18</td>\n", | |
| " <td>-0.612220</td>\n", | |
| " <td>0.1280</td>\n", | |
| " <td>1.690000e-06</td>\n", | |
| " <td>1120.0</td>\n", | |
| " <td>273.00</td>\n", | |
| " <td>18</td>\n", | |
| " <td>NM_025999</td>\n", | |
| " <td>RIKEN cDNA 2610110L04 gene</td>\n", | |
| " <td>2610110L04Rik</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>TGCATTGATAAATGGAGTGATCGACACAGGAACTGCCCCATTTGTC...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_054088</th>\n", | |
| " <th>7</th>\n", | |
| " <td>7</td>\n", | |
| " <td>8</td>\n", | |
| " <td>-1.826136</td>\n", | |
| " <td>0.4150</td>\n", | |
| " <td>1.100000e-05</td>\n", | |
| " <td>719.0</td>\n", | |
| " <td>10.70</td>\n", | |
| " <td>8</td>\n", | |
| " <td>NM_054088</td>\n", | |
| " <td>adiponutrin</td>\n", | |
| " <td>Adpn</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>GTCTGAGTTCCATTCCAAAGACGAAGTCGTGGATGCCCTGGTGTGT...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>U02079</th>\n", | |
| " <th>0</th>\n", | |
| " <td>0</td>\n", | |
| " <td>1</td>\n", | |
| " <td>-1.627476</td>\n", | |
| " <td>0.1360</td>\n", | |
| " <td>6.410000e-33</td>\n", | |
| " <td>9130.0</td>\n", | |
| " <td>215.00</td>\n", | |
| " <td>1</td>\n", | |
| " <td>U02079</td>\n", | |
| " <td>nuclear factor of activated T-cells, cytoplasm...</td>\n", | |
| " <td>Nfatc2</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>ACCTGGATGACGCAGCCACTTCAGAAAGCTGGGTTGGGACAGAAAG...</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <div class=\"colab-df-buttons\">\n", | |
| "\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-9ba893fd-a203-4ba5-8865-f548071662e9')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", | |
| " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| "\n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-buttons div {\n", | |
| " margin-bottom: 4px;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-9ba893fd-a203-4ba5-8865-f548071662e9 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-9ba893fd-a203-4ba5-8865-f548071662e9');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| "\n", | |
| "\n", | |
| "<div id=\"df-bde1c7f3-472d-47d0-930f-26320bb422d9\">\n", | |
| " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-bde1c7f3-472d-47d0-930f-26320bb422d9')\"\n", | |
| " title=\"Suggest charts\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <g>\n", | |
| " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", | |
| " </g>\n", | |
| "</svg>\n", | |
| " </button>\n", | |
| "\n", | |
| "<style>\n", | |
| " .colab-df-quickchart {\n", | |
| " --bg-color: #E8F0FE;\n", | |
| " --fill-color: #1967D2;\n", | |
| " --hover-bg-color: #E2EBFA;\n", | |
| " --hover-fill-color: #174EA6;\n", | |
| " --disabled-fill-color: #AAA;\n", | |
| " --disabled-bg-color: #DDD;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-quickchart {\n", | |
| " --bg-color: #3B4455;\n", | |
| " --fill-color: #D2E3FC;\n", | |
| " --hover-bg-color: #434B5C;\n", | |
| " --hover-fill-color: #FFFFFF;\n", | |
| " --disabled-bg-color: #3B4455;\n", | |
| " --disabled-fill-color: #666;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart {\n", | |
| " background-color: var(--bg-color);\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: var(--fill-color);\n", | |
| " height: 32px;\n", | |
| " padding: 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart:hover {\n", | |
| " background-color: var(--hover-bg-color);\n", | |
| " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: var(--button-hover-fill-color);\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart-complete:disabled,\n", | |
| " .colab-df-quickchart-complete:disabled:hover {\n", | |
| " background-color: var(--disabled-bg-color);\n", | |
| " fill: var(--disabled-fill-color);\n", | |
| " box-shadow: none;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-spinner {\n", | |
| " border: 2px solid var(--fill-color);\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " animation:\n", | |
| " spin 1s steps(1) infinite;\n", | |
| " }\n", | |
| "\n", | |
| " @keyframes spin {\n", | |
| " 0% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " }\n", | |
| " 20% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 30% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 40% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 60% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 80% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " 90% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " }\n", | |
| "</style>\n", | |
| "\n", | |
| " <script>\n", | |
| " async function quickchart(key) {\n", | |
| " const quickchartButtonEl =\n", | |
| " document.querySelector('#' + key + ' button');\n", | |
| " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", | |
| " quickchartButtonEl.classList.add('colab-df-spinner');\n", | |
| " try {\n", | |
| " const charts = await google.colab.kernel.invokeFunction(\n", | |
| " 'suggestCharts', [key], {});\n", | |
| " } catch (error) {\n", | |
| " console.error('Error during call to suggestCharts:', error);\n", | |
| " }\n", | |
| " quickchartButtonEl.classList.remove('colab-df-spinner');\n", | |
| " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", | |
| " }\n", | |
| " (() => {\n", | |
| " let quickchartButtonEl =\n", | |
| " document.querySelector('#df-bde1c7f3-472d-47d0-930f-26320bb422d9 button');\n", | |
| " quickchartButtonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| " })();\n", | |
| " </script>\n", | |
| "</div>\n", | |
| "\n", | |
| " </div>\n", | |
| " </div>\n" | |
| ], | |
| "application/vnd.google.colaboratory.intrinsic+json": { | |
| "type": "dataframe", | |
| "repr_error": "Out of range float values are not JSON compliant: nan" | |
| } | |
| }, | |
| "metadata": {}, | |
| "execution_count": 8 | |
| } | |
| ], | |
| "source": [ | |
| "tmp_data.groupby(group_by_column).apply(lambda x: x)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "id": "58bafa3a", | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 677 | |
| }, | |
| "id": "58bafa3a", | |
| "outputId": "ab1c9967-db5f-41d2-f5e5-f22ebfe2051f" | |
| }, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| " VALUE\n", | |
| "GB_ACC \n", | |
| "AB045323 0.240589\n", | |
| "AK003367 -0.393227\n", | |
| "AK003755 -1.548040\n", | |
| "AK004524 -0.148402\n", | |
| "AK004937 -0.226702\n", | |
| "AK005789 0.320937\n", | |
| "AK010722 -0.012207\n", | |
| "AK015719 0.182768\n", | |
| "BC003241 0.007342\n", | |
| "BC003333 -0.986599\n", | |
| "NM_008029 -1.484182\n", | |
| "NM_008154 0.141225\n", | |
| "NM_008462 0.023881\n", | |
| "NM_009750 -1.034478\n", | |
| "NM_010517 0.358304\n", | |
| "NM_023120 -0.084895\n", | |
| "NM_025999 -0.612220\n", | |
| "NM_054088 -1.826136\n", | |
| "U02079 -1.627476" | |
| ], | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-85dd60fb-fb34-4200-9819-7251024d7ea4\" class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>VALUE</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>GB_ACC</th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>AB045323</th>\n", | |
| " <td>0.240589</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>AK003367</th>\n", | |
| " <td>-0.393227</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>AK003755</th>\n", | |
| " <td>-1.548040</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>AK004524</th>\n", | |
| " <td>-0.148402</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>AK004937</th>\n", | |
| " <td>-0.226702</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>AK005789</th>\n", | |
| " <td>0.320937</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>AK010722</th>\n", | |
| " <td>-0.012207</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>AK015719</th>\n", | |
| " <td>0.182768</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>BC003241</th>\n", | |
| " <td>0.007342</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>BC003333</th>\n", | |
| " <td>-0.986599</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_008029</th>\n", | |
| " <td>-1.484182</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_008154</th>\n", | |
| " <td>0.141225</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_008462</th>\n", | |
| " <td>0.023881</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_009750</th>\n", | |
| " <td>-1.034478</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_010517</th>\n", | |
| " <td>0.358304</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_023120</th>\n", | |
| " <td>-0.084895</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_025999</th>\n", | |
| " <td>-0.612220</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>NM_054088</th>\n", | |
| " <td>-1.826136</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>U02079</th>\n", | |
| " <td>-1.627476</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <div class=\"colab-df-buttons\">\n", | |
| "\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-85dd60fb-fb34-4200-9819-7251024d7ea4')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", | |
| " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| "\n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-buttons div {\n", | |
| " margin-bottom: 4px;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-85dd60fb-fb34-4200-9819-7251024d7ea4 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-85dd60fb-fb34-4200-9819-7251024d7ea4');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| "\n", | |
| "\n", | |
| "<div id=\"df-e8882722-d5e1-4c86-bd3c-c4ce11f9c59c\">\n", | |
| " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-e8882722-d5e1-4c86-bd3c-c4ce11f9c59c')\"\n", | |
| " title=\"Suggest charts\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <g>\n", | |
| " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", | |
| " </g>\n", | |
| "</svg>\n", | |
| " </button>\n", | |
| "\n", | |
| "<style>\n", | |
| " .colab-df-quickchart {\n", | |
| " --bg-color: #E8F0FE;\n", | |
| " --fill-color: #1967D2;\n", | |
| " --hover-bg-color: #E2EBFA;\n", | |
| " --hover-fill-color: #174EA6;\n", | |
| " --disabled-fill-color: #AAA;\n", | |
| " --disabled-bg-color: #DDD;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-quickchart {\n", | |
| " --bg-color: #3B4455;\n", | |
| " --fill-color: #D2E3FC;\n", | |
| " --hover-bg-color: #434B5C;\n", | |
| " --hover-fill-color: #FFFFFF;\n", | |
| " --disabled-bg-color: #3B4455;\n", | |
| " --disabled-fill-color: #666;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart {\n", | |
| " background-color: var(--bg-color);\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: var(--fill-color);\n", | |
| " height: 32px;\n", | |
| " padding: 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart:hover {\n", | |
| " background-color: var(--hover-bg-color);\n", | |
| " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: var(--button-hover-fill-color);\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart-complete:disabled,\n", | |
| " .colab-df-quickchart-complete:disabled:hover {\n", | |
| " background-color: var(--disabled-bg-color);\n", | |
| " fill: var(--disabled-fill-color);\n", | |
| " box-shadow: none;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-spinner {\n", | |
| " border: 2px solid var(--fill-color);\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " animation:\n", | |
| " spin 1s steps(1) infinite;\n", | |
| " }\n", | |
| "\n", | |
| " @keyframes spin {\n", | |
| " 0% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " }\n", | |
| " 20% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 30% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 40% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 60% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 80% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " 90% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " }\n", | |
| "</style>\n", | |
| "\n", | |
| " <script>\n", | |
| " async function quickchart(key) {\n", | |
| " const quickchartButtonEl =\n", | |
| " document.querySelector('#' + key + ' button');\n", | |
| " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", | |
| " quickchartButtonEl.classList.add('colab-df-spinner');\n", | |
| " try {\n", | |
| " const charts = await google.colab.kernel.invokeFunction(\n", | |
| " 'suggestCharts', [key], {});\n", | |
| " } catch (error) {\n", | |
| " console.error('Error during call to suggestCharts:', error);\n", | |
| " }\n", | |
| " quickchartButtonEl.classList.remove('colab-df-spinner');\n", | |
| " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", | |
| " }\n", | |
| " (() => {\n", | |
| " let quickchartButtonEl =\n", | |
| " document.querySelector('#df-e8882722-d5e1-4c86-bd3c-c4ce11f9c59c button');\n", | |
| " quickchartButtonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| " })();\n", | |
| " </script>\n", | |
| "</div>\n", | |
| "\n", | |
| " </div>\n", | |
| " </div>\n" | |
| ], | |
| "application/vnd.google.colaboratory.intrinsic+json": { | |
| "type": "dataframe", | |
| "summary": "{\n \"name\": \"tmp_data\",\n \"rows\": 19,\n \"fields\": [\n {\n \"column\": \"GB_ACC\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 19,\n \"samples\": [\n \"AB045323\",\n \"AK005789\",\n \"NM_008154\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"VALUE\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7298113867225522,\n \"min\": -1.826136,\n \"max\": 0.358304,\n \"num_unique_values\": 19,\n \"samples\": [\n 0.240589,\n 0.320937,\n 0.141225\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" | |
| } | |
| }, | |
| "metadata": {}, | |
| "execution_count": 10 | |
| } | |
| ], | |
| "source": [ | |
| "tmp_data.groupby(group_by_column)[[expression_column]].mean()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "id": "363dbc48", | |
| "metadata": { | |
| "id": "363dbc48" | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3 (ipykernel)", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.11.4" | |
| }, | |
| "colab": { | |
| "provenance": [] | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 5 | |
| } |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| ID_REF | VALUE | LogRatioError | PValueLogRatio | gProcessedSignal | rProcessedSignal | ID | GB_ACC | Gene_Desc | Gene_Sym | SPOT_ID | SEQUENCE | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | -1.627476 | 0.1360 | 6.410000e-33 | 9130.0 | 215.00 | 1 | U02079 | nuclear factor of activated T-cells, cytoplasmic 2 | Nfatc2 | NaN | ACCTGGATGACGCAGCCACTTCAGAAAGCTGGGTTGGGACAGAAAGGTATATAGAGAGAAAATTTTGGAA | |
| 1 | 2 | 0.141225 | 1.3400 | 1.000000e+00 | 41.4 | 57.20 | 2 | NM_008154 | G-protein coupled receptor 3 | Gpr3 | NaN | CTGTACAATGCTCTCACTTACTACTCAGAGACAACGGTAACTCGGACTTATGTGATGCTGGCCTTGGTGT | |
| 2 | 3 | 0.182768 | 0.0519 | 4.330000e-04 | 5130.0 | 7810.00 | 3 | AK015719 | tropomodulin 2 | Tmod2 | NaN | CACCAGGCTCAGTGCCTAGTATCGGCTTCACCTAGTGTGGTTACTCAGGGCACGCAGAGCTACAGAACAC | |
| 3 | 4 | -0.393227 | 0.0608 | 1.020000e-10 | 4650.0 | 1880.00 | 4 | AK003367 | mitochondrial ribosomal protein L15 | Mrpl15 | NaN | CAAGAAGTCTAGAAATTCTGTGCAAGCCTATTCCATTCTTTCTGCGGGGACAACCAATTCCGAAAAGAAT | |
| 4 | 5 | -0.986599 | 0.1050 | 6.320000e-21 | 2910.0 | 301.00 | 5 | BC003333 | RIKEN cDNA 0610033I05 gene | 0610033I05Rik | NaN | AGAACTGGGTGGCAGATATCCTAGAGTTTTGACCAACGTTCACAGCACACATATTGATCTTATAGGACCT | |
| 5 | 6 | 0.023881 | 0.1020 | 8.150000e-01 | 708.0 | 748.00 | 6 | NM_008462 | killer cell lectin-like receptor, subfamily A, member 2 | Klra2 | NaN | TGAATTGAAGTTCCTTAAATCCCAACTTCAAAGAAACACATACTGGATTTCACTGACACATCATAAAAGC | |
| 6 | 7 | -1.484182 | 0.1250 | 1.420000e-32 | 10200.0 | 336.00 | 7 | NM_008029 | FMS-like tyrosine kinase 4 | Flt4 | NaN | GAGGTGCTGTGGGATGACCGCCGGGGCATGCGGGTGCCCACTCAACTGTTGCGCGATGCCCTGTACCTGC | |
| 7 | 8 | -1.826136 | 0.4150 | 1.100000e-05 | 719.0 | 10.70 | 8 | NM_054088 | adiponutrin | Adpn | NaN | GTCTGAGTTCCATTCCAAAGACGAAGTCGTGGATGCCCTGGTGTGTTCCTGCTTCATTCCCCTCTTCTCT | |
| 8 | 9 | -1.034478 | 1.7800 | 1.000000e+00 | 96.2 | 8.89 | 9 | NM_009750 | nerve growth factor receptor (TNFRSF16) associated protein 1 | Ngfrap1 | NaN | TACAGCTGAGAAATTGTCTACGCATCCTTATGGGGGAGCTGTCTAACCACCACGATCACCATGATGAATT | |
| 9 | 10 | 0.240589 | 0.3090 | 4.360000e-01 | 161.0 | 280.00 | 10 | AB045323 | DNA segment, Chr 8, ERATO Doi 594, expressed | D8Ertd594e | NaN | GATTCAGACTCGGGAGGAGCATCCCAACCTCTCCTTGAGGATAAAGGCCTGAGCGATTGCCCTGGGGAGC | |
| 10 | 11 | 0.320937 | 0.3590 | 3.710000e-01 | 125.0 | 261.00 | 11 | AK005789 | dynein, cytoplasmic, light chain 2B | Dncl2b | NaN | TGCAGAAGGCATTCCAATCCGAACAACCCTGGACAACTCCACAACGGTTCAGTATGCGGGTCTTCTCCAC | |
| 11 | 12 | 0.358304 | 2.0600 | 1.000000e+00 | 20.4 | 46.60 | 12 | NM_010517 | insulin-like growth factor binding protein 4 | Igfbp4 | NaN | GGAGAAGCTGGCGCGCTGCCGCCCCCCCGTGGGTTGCGAGGAGTTGGTGCGGGAGCCAGGCTGCGGTTGT | |
| 12 | 13 | -0.012207 | 0.3640 | 9.730000e-01 | 184.0 | 179.00 | 13 | AK010722 | RIKEN cDNA 2410075D05 gene | 2410075D05Rik | NaN | GGAGCATCTGGAGTTCCGCTTACCGGAAATAAAGTCTTTACTATCGGTGATTGGAGGGCAGTTCACTAAC | |
| 13 | 14 | -1.548040 | 0.1300 | 7.210000e-33 | 10200.0 | 290.00 | 14 | AK003755 | DNA segment, Chr 4, ERATO Doi 421, expressed | D4Ertd421e | NaN | AGCAAAGAGATCTCCCTCAGTGTGCCCATAGGTGGCGGTGCGAGCTTGCGGTTATTGGCCAGTGACTTGC | |
| 14 | 15 | 0.007342 | 0.2980 | 9.800000e-01 | 221.0 | 225.00 | 15 | BC003241 | cleavage stimulation factor, 3\' pre-RNA, subunit 3 | Cstf3 | NaN | AAATTAGAAGAAAATCCATATGACCTTGATGCTTGGAGCATTCTCATTCGAGAGGCACAGAATCAACCTA | |
| 15 | 16 | -0.226702 | 0.9440 | 8.100000e-01 | 89.0 | 52.80 | 16 | AK004937 | RIKEN cDNA 1300007O09 gene | 1300007O09Rik | NaN | CAGACACAAACCCTAGGTTGTATTGTAGACCGGAGTTTAAGCAGGCACTACCTGTCTGTCTTTTCTTCAT | |
| 16 | 17 | -0.148402 | 0.8010 | 8.530000e-01 | 96.5 | 68.60 | 17 | AK004524 | unnamed protein product; hypothetical SOCS domain | NaN | NaN | CGGAGCCCTGCGCGCCCAGAGCCCCCTCCCACCCGCTTCCACCAAGTGCATGGAGCCAACATCCGCATGG | |
| 17 | 18 | -0.612220 | 0.1280 | 1.690000e-06 | 1120.0 | 273.00 | 18 | NM_025999 | RIKEN cDNA 2610110L04 gene | 2610110L04Rik | NaN | TGCATTGATAAATGGAGTGATCGACACAGGAACTGCCCCATTTGTCGCCTACAGATGACTGGAGCAAATG | |
| 18 | 19 | 0.079690 | 0.0878 | 3.640000e-01 | 821.0 | 987.00 | 19 | NaN | NaN | NaN | -- CONTROL | NaN | |
| 19 | 20 | -0.084895 | 0.9380 | 9.280000e-01 | 76.8 | 63.20 | 20 | NM_023120 | guanine nucleotide binding protein (G protein), beta polypeptide 1-like | Gnb1l | NaN | ACCGCCTGGTCCCAGATTTGTCCTCCGAGGCACACAGTCGGCTGTGAACACGCTCCATTTCTGCCCACCA |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment