Created
May 4, 2022 17:57
-
-
Save osbm/d65ad8401c9b521fe4122e78c5053d31 to your computer and use it in GitHub Desktop.
keras_cv_search.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "keras_cv_search.ipynb", | |
"provenance": [], | |
"collapsed_sections": [], | |
"toc_visible": true, | |
"authorship_tag": "ABX9TyO+eUmcMskZuolvsicGNJ3/", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/osbm/d65ad8401c9b521fe4122e78c5053d31/keras_cv_search.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "Fbd0fWTuo4MY", | |
"outputId": "c6ebcfb7-a287-4cb7-e33b-5d5892c2837c" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Requirement already satisfied: mlnotify in /usr/local/lib/python3.7/dist-packages (1.0.51)\n", | |
"Requirement already satisfied: gorilla<0.5.0,>=0.4.0 in /usr/local/lib/python3.7/dist-packages (from mlnotify) (0.4.0)\n", | |
"Requirement already satisfied: requests<3.0.0,>=2.25.1 in /usr/local/lib/python3.7/dist-packages (from mlnotify) (2.27.1)\n", | |
"Requirement already satisfied: qrcode<7.0,>=6.1 in /usr/local/lib/python3.7/dist-packages (from mlnotify) (6.1)\n", | |
"Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from qrcode<7.0,>=6.1->mlnotify) (1.15.0)\n", | |
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.25.1->mlnotify) (2021.10.8)\n", | |
"Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.25.1->mlnotify) (2.0.12)\n", | |
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.25.1->mlnotify) (2.10)\n", | |
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.25.1->mlnotify) (1.24.3)\n" | |
] | |
} | |
], | |
"source": [ | |
"%pip install mlnotify\n", | |
"import mlnotify\n", | |
"from tensorflow import keras\n", | |
"import pandas as pd\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"from sklearn.datasets import fetch_california_housing\n", | |
"from sklearn.model_selection import train_test_split\n", | |
"from sklearn.preprocessing import StandardScaler\n", | |
"\n", | |
"housing = fetch_california_housing()\n", | |
"\n", | |
"X_train_full, X_test, y_train_full, y_test = train_test_split(\n", | |
" housing.data,\n", | |
" housing.target\n", | |
")\n", | |
"\n", | |
"X_train, X_valid, y_train, y_valid = train_test_split(\n", | |
" housing.data,\n", | |
" housing.target\n", | |
")\n", | |
"\n", | |
"scaler = StandardScaler()\n", | |
"\n", | |
"X_train = scaler.fit_transform(X_train)\n", | |
"X_valid = scaler.transform(X_valid)\n", | |
"X_test = scaler.transform(X_test)" | |
], | |
"metadata": { | |
"id": "DLRdfjvyrBIj" | |
}, | |
"execution_count": 18, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"def build_model (n_hidden=1, n_neurons=30, learning_rate=3e-3, input_shape=[8]):\n", | |
" model = keras.models.Sequential()\n", | |
" model.add(keras.layers.InputLayer(input_shape=input_shape))\n", | |
" for layer in range(n_hidden):\n", | |
" model.add(keras.layers.Dense(n_neurons, activation=\"relu\"))\n", | |
" model.add(keras.layers.Dense(1))\n", | |
" optimizer = keras.optimizers.SGD(lr=learning_rate)\n", | |
" model.compile(loss=\"mse\", optimizer=optimizer)\n", | |
" return model" | |
], | |
"metadata": { | |
"id": "1wmY15uVpDYq" | |
}, | |
"execution_count": 19, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"keras_reg = keras.wrappers.scikit_learn.KerasRegressor(build_model)" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "P_ftBvQqqTDK", | |
"outputId": "1a250beb-e855-4feb-f499-8b7483a9abd0" | |
}, | |
"execution_count": 20, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: DeprecationWarning: KerasRegressor is deprecated, use Sci-Keras (https://github.com/adriangb/scikeras) instead. See https://www.adriangb.com/scikeras/stable/migration.html for help migrating.\n", | |
" \"\"\"Entry point for launching an IPython kernel.\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"keras_reg.fit(X_train, y_train, epochs=20,\n", | |
" validation_data=(X_valid, y_valid),\n", | |
" callbacks=[keras.callbacks.EarlyStopping(patience=10)]\n", | |
")\n", | |
"mse_test = keras_reg.score(X_test, y_test)" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "a0BeRTFCqsPD", | |
"outputId": "2ba09673-a41b-4e3b-a79e-64c59f8b1ad7" | |
}, | |
"execution_count": 21, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀ █ ▄▄▀▀▀ █▀▀▀▀▀█ \n", | |
" █ ███ █ █▄ █▀█▀█ ▄██ █ ███ █ \n", | |
" █ ▀▀▀ █ ▀█▀▀▄▄▄▀█▄▄█ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀▄▀▄▀ ▀▄█▄▀▄█ ▀▀▀▀▀▀▀ \n", | |
" █▀█▀ ▄▀ █▄ ▄▀█▀███▀▄▄█▀▀ █ \n", | |
" ▄████ ▀▀▄ ▄▄█ █ ▄ ▄▀▄▄█ ▀▀▄ \n", | |
" █▀█▀█▀▀▀█▀▄█ ▀ ▄▄▀ █ ▄ ▀█▄▄ \n", | |
" ▄▄▀▄ ▄▀█▀ ▄ █▀▀ █▀▀▀ ▄▀ ▀█▀ \n", | |
" ▄▄▄▀▀▀▀ ▄█▀▄███ ▄▀ ▄▀ █▀█▄█ \n", | |
" ▀ █▄▀▀▄▄▄ ▀█▀▄▀▀▄▄ █ ▄ █ █ \n", | |
" ▀▀ ▀▀▀ █ ▄▀█ ▄▀██▄▀█▀▀▀███▄▄ \n", | |
" █▀▀▀▀▀█ ▄▄▀▀█▀ █ █▀█ ▀ ██ █ \n", | |
" █ ███ █ ▄ ▀▄██ █▄█▄ ▀█▀██▄▀▀█ \n", | |
" █ ▀▀▀ █ █▄██ ▀▄ ▀ █ ██▄█▄▄▀▄▀ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀ ▀ ▀ ▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/564229\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 1.1607 - val_loss: 0.7454\n", | |
"Epoch 2/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.5898 - val_loss: 0.5891\n", | |
"Epoch 3/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.5223 - val_loss: 0.4974\n", | |
"Epoch 4/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.4867 - val_loss: 0.5621\n", | |
"Epoch 5/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.4636 - val_loss: 0.4491\n", | |
"Epoch 6/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.4452 - val_loss: 0.5284\n", | |
"Epoch 7/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.4299 - val_loss: 0.4347\n", | |
"Epoch 8/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.4199 - val_loss: 0.4411\n", | |
"Epoch 9/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.4113 - val_loss: 0.4798\n", | |
"Epoch 10/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.4060 - val_loss: 0.4143\n", | |
"Epoch 11/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.4002 - val_loss: 0.4352\n", | |
"Epoch 12/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3958 - val_loss: 0.4079\n", | |
"Epoch 13/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3910 - val_loss: 0.4349\n", | |
"Epoch 14/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3876 - val_loss: 0.3875\n", | |
"Epoch 15/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3845 - val_loss: 0.4265\n", | |
"Epoch 16/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3820 - val_loss: 0.3930\n", | |
"Epoch 17/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3779 - val_loss: 0.4200\n", | |
"Epoch 18/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3748 - val_loss: 0.3985\n", | |
"Epoch 19/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3726 - val_loss: 0.3896\n", | |
"Epoch 20/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3696 - val_loss: 0.4096\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.3670\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"from scipy.stats import reciprocal\n", | |
"from sklearn.model_selection import RandomizedSearchCV\n", | |
"\n", | |
"params = {\n", | |
" \"n_hidden\": [0,1,2,3,4],\n", | |
" \"n_neurons\": np.arange(1, 100),\n", | |
" \"learning_rate\": reciprocal(3e-4, 3e-2)\n", | |
"}\n", | |
"\n", | |
"rnd_search_cv = RandomizedSearchCV(keras_reg, params, n_iter=10, cv=3)\n", | |
"rnd_search_cv.fit(\n", | |
" X_train,\n", | |
" y_train,\n", | |
" epochs=20,\n", | |
" validation_data=(X_valid, y_valid),\n", | |
" callbacks=[keras.callbacks.EarlyStopping(patience=10)]\n", | |
")" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "rlYY01lpzFyV", | |
"outputId": "94f9041b-d177-4947-e455-1d3860285f56" | |
}, | |
"execution_count": 22, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ █ ▄▄ ▀▀▄ █▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ██▄ █▄▀▄▄▀▀▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄██ ▀█ ▀▀█▀▄▄ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀ █▄▀ █ ▀▄▀▄▀ ▀▀▀▀▀▀▀ \n", | |
" ▀█▄▄▀█▀▄▄ ▀ ▀▄▀█▄▀▄▀ ▄▄█▄████ \n", | |
" █▀ ▀ ▀▀▄█▀ ▄ █▄▄▄▄█▄█ █▄ ▄█ \n", | |
" █ ▀▀ █▀▄▄ ▄▀▄▄▀█▄█▄ ▀▀▄▄▄▄▄█▄ \n", | |
" █ ▀ ▀▀▀██▄▀█▀ ▀▀▄█ ▀▄▀█▀▀▄█ \n", | |
" ▄▀██▀ ▀▀ ▄█ ▀▄▀█▄█▄▀ ▀▄▄▄▄ █▄ \n", | |
" ▀▄ ▀ █ ▄▀▄█▄██ ▀▄▀▀▄ ▀▄█ \n", | |
" ▀▀▀ ▀ ▀ █ ▄▀▄▄▀█▄████▀▀▀█▀ █ \n", | |
" █▀▀▀▀▀█ ▄█ █▀▀ █▄▄███ ▀ █▀▀ ▀ \n", | |
" █ ███ █ ▀ ▀ ▀▄▀▄▄▀ █▀█▀▀▀▀ █ \n", | |
" █ ▀▀▀ █ ▄ █ ▄ ▄▀██▀▀█▄ █▀██ \n", | |
" ▀▀▀▀▀▀▀ ▀▀ ▀▀▀▀ ▀▀ ▀▀▀ ▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/500321\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 2.0879 - val_loss: 1.7074\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6503 - val_loss: 0.6160\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5919 - val_loss: 0.5926\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5708 - val_loss: 0.5671\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5596 - val_loss: 0.5553\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5466 - val_loss: 0.7543\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.5409 - val_loss: 0.6331\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5629 - val_loss: 0.5941\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5309 - val_loss: 0.5339\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5320 - val_loss: 0.8489\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5324 - val_loss: 0.6117\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5386 - val_loss: 0.9029\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5275 - val_loss: 0.5440\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5317 - val_loss: 0.5271\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5232 - val_loss: 0.5365\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5228 - val_loss: 0.6370\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5229 - val_loss: 0.5330\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5221 - val_loss: 0.5335\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5182 - val_loss: 0.5294\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5304 - val_loss: 0.5492\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.5541\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ █ ▄▄ ▀▀▄ █▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ██▄ █▄▀▄▄▀▀▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄██ ▀▄▄▀▀█▀▄▄ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀ █▄▀ █ ▀▄▀▄▀ ▀▀▀▀▀▀▀ \n", | |
" ▀▀▄▄█▀▀▄▄ ▀ ▀▄▀█▄▀▄▀ ▄▄█▄████ \n", | |
" ▀▄▄███▀▄▀█▀ ▄ ▀█▄▄▄▄█▄█ █▄ ▄█ \n", | |
" ▄▄▀█▄ ▀█▀ ▄▀▄ ▀█▄█▄ ▀▀▄▄▄▄▄█▄ \n", | |
" ▄▀▀ ▀▀▀ ▀▄█▀ ▄▀▀▄█ ▀▄▀█▀▀▄█ \n", | |
" █ ▀█▄▄▀█ ▄ ▀▄▀█▄█▄▀ ▀▄▄▄▄ █▄ \n", | |
" █ ▄▄▀ ▀ ▄ ▄ █▄██ ▀▄▀▀▄ ▀▄█ \n", | |
" ▀▀ ▀ ▀ ▄ ▄▀▄▄▀█▄████▀▀▀█▀ █ \n", | |
" █▀▀▀▀▀█ ▄▄██▀ █▄▄███ ▀ █▀▀ ▀ \n", | |
" █ ███ █ ▀█▄ ▀▄▀▄▄▀ █▀█▀▀▀▀ █ \n", | |
" █ ▀▀▀ █ ▄ ▄ ▄▀▀▀██▀▀█▄ █▀██ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀▀▀▀ ▀▀ ▀▀▀ ▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/949006\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 2.1959 - val_loss: 7.3202\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.8989 - val_loss: 6.9229\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.1459 - val_loss: 9.1836\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.9347 - val_loss: 8.3996\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.2518 - val_loss: 10.7864\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.0003 - val_loss: 11.3437\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.3659 - val_loss: 14.7820\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.2192 - val_loss: 18.0280\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.9403 - val_loss: 26.3844\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.8049 - val_loss: 31.4105\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 2.9686 - val_loss: 43.5850\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 2.5744 - val_loss: 51.6971\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 2.1225\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀█▄▄█ █▀█ ▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▄▀██ ▄█ █▄▄▄▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▀▄█ ▀▄▀ ▀█▀▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀▄▀ █ █▄█ █▄▀ ▀▀▀▀▀▀▀ \n", | |
" ▀█ ▄█▀▀ ▀█ ▀▀ ▄ ▀▄▄▀▄ ▄█▀▄▄ \n", | |
" █▀█▄█▀██▀▄█▀▀▄▀▀▀▀▄█ █ ▄ \n", | |
" █ ██▄▀▀▀▀██ ▄ █▄█▄▄▄█ ██▄ ▄█ \n", | |
" █▀▀▀▄ ▀ ▄▄ ▄▀██ ▀ ▄██▄ ▀█ ▄ \n", | |
" ▄█ ▄▀▀▀▀▄▄ ▀▀▄▄▄█▄▄█ ▄▄▄▀█▄▄ \n", | |
" █▀▀ ▄ ▀█▄▀▄▄▀ ▄▀ ▀ ▀ ██▀▀ ▀ \n", | |
" ▀ ▀▀ ▀▀▀█ █▀▄▀ ▄ ██ █▀▀▀█▄▀▀▀ \n", | |
" █▀▀▀▀▀█ ██ ▄ ▄▀▀▀ ██ ▀ █▀▀▄▄ \n", | |
" █ ███ █ ▀▄▀▀ ███ ▀██▀▀▀█▄▀▄ \n", | |
" █ ▀▀▀ █ ▄█ █▀▀ █▄ ▄▀▀ ▀████▀▄ \n", | |
" ▀▀▀▀▀▀▀ ▀▀▀▀▀ ▀▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/336713\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 2.1432 - val_loss: 1.0445\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6287 - val_loss: 0.8698\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5829 - val_loss: 0.9042\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5673 - val_loss: 0.7522\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5553 - val_loss: 0.7007\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5469 - val_loss: 0.7991\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5427 - val_loss: 0.8181\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5399 - val_loss: 0.7789\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5373 - val_loss: 0.7743\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5319 - val_loss: 0.6900\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5329 - val_loss: 0.7890\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5304 - val_loss: 0.7438\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5322 - val_loss: 0.8138\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5321 - val_loss: 0.8214\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5313 - val_loss: 0.7397\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5288 - val_loss: 0.7727\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5293 - val_loss: 0.7390\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5323 - val_loss: 0.6816\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5299 - val_loss: 0.6465\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5299 - val_loss: 0.6335\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.5415\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▄█ ▄▄█▄▄▄ █▀█ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▄█▀█ ▄▀▄▀▄▄▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄ █ ▀ █▄▀█▀▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀ █ █ █ █▄▀ ▀▀▀▀▀▀▀ \n", | |
" ██▀▀▀▄▀███▀ ▀▀▄ ▄▀▄▄█▀▄█▄▀ ▀▄ \n", | |
" █ ▀██▀█▄█▄█▀▀▄█▀▀▀▄█▄ █ ▄ ▄ \n", | |
" █▀█ ▀ ▀ ▄█▄▀▄▀▄ ▄█▄█▄▄▄▄▄▀▀ ▄ \n", | |
" ▄ ▄▀ ▀▀▄█▀ ▄▀▄▀▄▀ ▀▀▄ ▀▀▄ \n", | |
" ▄██▀▀█▀█ █▀ ▀█▄ ▄█▄▄█▄▄▄▄▀█ ▄ \n", | |
" █ ▀▄▄▀▀▀▀ ▀█▀ █▀ ▀▄▄▄▀ ▀▄ \n", | |
" ▀ ▀▀ ▀▀▄▀▄▀▄▀▄ ▄██ █▀▀▀█▄███ \n", | |
" █▀▀▀▀▀█ ▀█▀ ▄ ▀█▀▀ ██ ▀ █▀▀ ▄ \n", | |
" █ ███ █ ██ ▀▀▄▀▄▀ █▀▀▀▀▄███ \n", | |
" █ ▀▀▀ █ █▄██▀▀█▀ ▄▀█▄████▀█ \n", | |
" ▀▀▀▀▀▀▀ ▀▀ ▀▀ ▀▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/533847\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7964 - val_loss: 8.4266\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 6.0535 - val_loss: 684.7405\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 46.9935 - val_loss: 40168.2500\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 20779.3359 - val_loss: 2171282.0000\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1282100.2500 - val_loss: 111918824.0000\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 42198048.0000 - val_loss: 6085049856.0000\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 397454208.0000 - val_loss: 303827976192.0000\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 52357611520.0000 - val_loss: 15596913688576.0000\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 157158473728000.0000 - val_loss: 810976463028224.0000\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 23177189130240.0000 - val_loss: 39842195401867264.0000\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 20330891268063232.0000 - val_loss: 2068860045398900736.0000\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 4323759951446016.0000\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀█▄▄█ █▀█ ▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▄▀██ ▄█ █▄▄▄▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▀▄█ ▀▄█ ▀█▀▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀▄▀ █ █▄█ █▄▀ ▀▀▀▀▀▀▀ \n", | |
" ▀▀ ▄ █▀▀▄▀█ ▀█ ▄ ▀▄▄▀▄ ▄█▀▄▄ \n", | |
" ▀▀█▀▄▀▀▄ ▀▄█▀ ▀▀▀▀▄█ █ ▄ \n", | |
" ▄▄▀ ▀▀▀██ ▄▄█▄█▄▄▄█ ██▄ ▄█ \n", | |
" ▀▀ ▀ ▄▀▄ ▄▄ ▄ ▄█ ▀ ▄██▄ ▀█ ▄ \n", | |
" ███▄█▄▀▀▀█▄ ▀▀▄▄▄█▄▄█ ▄▄▄▀█▄▄ \n", | |
" █▀ ▄█ ▀ █▀█▄▀ ▀ ▀ ▀ ██▀▀ ▀ \n", | |
" ▀ ▀▀▀▀▀ ▄▄ ▀▄▀ ▄ ██ █▀▀▀█▄▀▀▀ \n", | |
" █▀▀▀▀▀█ █▀▄ ▄ █▀▀▀ ██ ▀ █▀▀▄▄ \n", | |
" █ ███ █ ▄ ▀▀ ███ ▀██▀▀▀█▄▀▄ \n", | |
" █ ▀▀▀ █ ▄ ██▀▀▄█▄ ▄▀▀ ▀████▀▄ \n", | |
" ▀▀▀▀▀▀▀ ▀▀▀▀▀ ▀▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/788652\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.0043 - val_loss: 4.4419\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.9104 - val_loss: 356.6701\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 180.6209 - val_loss: 5411.6719\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 36.4104 - val_loss: 112649.7734\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 36512.7852 - val_loss: 1831752.8750\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 669263.3750 - val_loss: 29171864.0000\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 8763691.0000 - val_loss: 479788736.0000\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 246638800.0000 - val_loss: 8102749696.0000\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 418072320.0000 - val_loss: 143018344448.0000\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1580802560.0000 - val_loss: 2308349362176.0000\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 762356301824.0000 - val_loss: 37772056330240.0000\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 1215185944576.0000\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀█▄▄█ █▀█ ▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▄▀██ ▄█ █▄▄▄▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▀▄█ ▀▄▀ ▀█▀▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀▄▀ █ █▄█ █▄▀ ▀▀▀▀▀▀▀ \n", | |
" █▀▄ ▄▀▀▀▄▀█ ▀▀ ▄ ▀▄▄▀▄ ▄█▀▄▄ \n", | |
" ▀█▄▄ ▀▀ ▄▀▄█▀▀█▀▀▀▀▄█ █ ▄ \n", | |
" ▄█ █▀▄▀▄▀▀█ ▄ █▄█▄▄▄█ ██▄ ▄█ \n", | |
" █ ▄█▄▄▀▀▀▄▄ ▄ ▄█ ▀ ▄██▄ ▀█ ▄ \n", | |
" ██ █▄▄▀█ █▄ ▀█▄▄▄█▄▄█ ▄▄▄▀█▄▄ \n", | |
" █▀ ▄ ▀▀ ▀▀▀▄▀▀█▀ ▀ ▀ ██▀▀ ▀ \n", | |
" ▀ ▀ ▀ ▀ █ █▀▄▀ ▄ ██ █▀▀▀█▄▀▀▀ \n", | |
" █▀▀▀▀▀█ █▄▀ ▄▀ ▀▀▀ ██ ▀ █▀▀▄▄ \n", | |
" █ ███ █ ██▀▀ ███ ▀██▀▀▀█▄▀▄ \n", | |
" █ ▀▀▀ █ ▄▄ █▀▀ █▄ ▄▀▀ ▀████▀▄ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀▀ ▀▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/370923\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7858 - val_loss: 12.4150\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.8358 - val_loss: 21.2007\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7195 - val_loss: 5.3075\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7644 - val_loss: 75.8709\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7502 - val_loss: 30.1984\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.7442 - val_loss: 23.3156\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7244 - val_loss: 32.9255\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.5997 - val_loss: 26.2264\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7676 - val_loss: 3.1781\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6813 - val_loss: 1.9629\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5834 - val_loss: 8.9499\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.6160 - val_loss: 1.2302\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6533 - val_loss: 4.0009\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6534 - val_loss: 5.4015\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7059 - val_loss: 54.0594\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.8107 - val_loss: 13.4158\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.0757 - val_loss: 10.1702\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6997 - val_loss: 5.2705\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.8490 - val_loss: 2.7500\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.8716 - val_loss: 0.5415\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.5321\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▄█ ▄▄█▄▄▄ █▀█ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▄█▀█ ▄▀▄▀▄▄▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄ █ ▀▄█▄▀█▀▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀ █ █ █ █▄▀ ▀▀▀▀▀▀▀ \n", | |
" █▀▀█▀▄▀▀▀█▀ ▀█▄ ▄▀▄▄█▀▄█▄▀ ▀▄ \n", | |
" █▄▀ █▀▀▀▄█▄█▀ ▄█▀▀▀▄█▄ █ ▄ ▄ \n", | |
" ▀▀█ ▀█▀▄▀█▄▀▄▀▄ ▄█▄█▄▄▄▄▄▀▀ ▄ \n", | |
" ▄▄ ▀█▀███▄ ▄ ▀▄▀ ▀▀▄ ▀▀▄ \n", | |
" ▄▄▀▄█▀▀▄█▄ ▀▀▄ ▄█▄▄█▄▄▄▄▀█ ▄ \n", | |
" █ █ █▀▀▀▄ █▀ █▀ ▀▄▄▄▀ ▀▄ \n", | |
" ▀ ▀ ▀ ▀ ▄▄▀▀▄▀▄ ▄██ █▀▀▀█▄███ \n", | |
" █▀▀▀▀▀█ ▀▀▀ ▄ ▀█▀▀ ██ ▀ █▀▀ ▄ \n", | |
" █ ███ █ █▄ ▀▀▄▀▄▀ █▀▀▀▀▄███ \n", | |
" █ ▀▀▀ █ █▀▀█▀ ▀ ▄▀█▄████▀█ \n", | |
" ▀▀▀▀▀▀▀ ▀▀▀▀▀ ▀▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/790040\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.1730 - val_loss: 3.9354\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 2.1505 - val_loss: 11.6075\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7093 - val_loss: 17.6914\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7753 - val_loss: 71.8758\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.7977 - val_loss: 117.7144\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 48.8540 - val_loss: 345.4234\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 86.8995 - val_loss: 955.7562\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 16.4071 - val_loss: 2058.9863\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 710.2759 - val_loss: 5000.8447\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 90.1621 - val_loss: 11522.8818\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 515.1058 - val_loss: 29569.9941\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 54.0445\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀█▄▄█ █▀█ ▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▄▀██ ▄█ █▄▄▄▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▀▄█ ▀▀▀ ▀█▀▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀▄▀ █ █▄█ █▄▀ ▀▀▀▀▀▀▀ \n", | |
" ▀▀▄▄▄█▀█ ▀█ ▀▀ ▄ ▀▄▄▀▄ ▄█▀▄▄ \n", | |
" ▄▀▄▀▀█▀▀▀▀▄█▀▀ ▀▀▀▀▄█ █ ▄ \n", | |
" ▄█▀▀██▀ ▀██ ▄ █▄█▄▄▄█ ██▄ ▄█ \n", | |
" ▀▄▄▀ █▀▄▀ ▀ ▄▀██ ▀ ▄██▄ ▀█ ▄ \n", | |
" ▄▄ ▄ █▀▄▀▄▀ ▀▀▄▄▄█▄▄█ ▄▄▄▀█▄▄ \n", | |
" █▀█▀▄▄▀ ▄ ▀▄▀▀▄▀ ▀ ▀ ██▀▀ ▀ \n", | |
" ▀ ▀ █▀ ▀▄▀ ▄ ██ █▀▀▀█▄▀▀▀ \n", | |
" █▀▀▀▀▀█ █▄█ ▄▀▄▀▀▀ ██ ▀ █▀▀▄▄ \n", | |
" █ ███ █ ▀▀▀ ███ ▀██▀▀▀█▄▀▄ \n", | |
" █ ▀▀▀ █ ▄█▀█▀▀ █▄ ▄▀▀ ▀████▀▄ \n", | |
" ▀▀▀▀▀▀▀ ▀▀ ▀▀ ▀▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/926533\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.1943 - val_loss: 3.8437\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6414 - val_loss: 16.3454\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 2.3595 - val_loss: 291.1029\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 15.8410 - val_loss: 3738.2976\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 462.9443 - val_loss: 53602.2617\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1508.0293 - val_loss: 755636.1250\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 44485.4727 - val_loss: 10577673.0000\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 672244.0000 - val_loss: 148631360.0000\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 7511152.5000 - val_loss: 2105860224.0000\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 184550464.0000 - val_loss: 29572300800.0000\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1112878848.0000 - val_loss: 420301242368.0000\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 13616688128.0000\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ █ ▄▄ ▀▀▄ █▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ██▄ █▄▀▄▄▀▀▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄██ ▀▀ ▀▀█▀▄▄ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀ █▄▀ ▀ ▀▄▀▄▀ ▀▀▀▀▀▀▀ \n", | |
" ▀▀▄▄█▀▀▄▄ ▀ ▀▄▀█▄▀▄▀ ▄▄█▄████ \n", | |
" ▄█ █▀▄▀███▀ ▄ ▄█▄▄▄▄█▄█ █▄ ▄█ \n", | |
" ▀▀▀ ▀ ▀ ▀▄▄▀▄ ▀█▄█▄ ▀▀▄▄▄▄▄█▄ \n", | |
" █▀ ▀▄█▀▀▀▀▄█▀ ▀▀▄█ ▀▄▀█▀▀▄█ \n", | |
" ▄██ █▀▀▀▀█ ▀▄▀█▄█▄▀ ▀▄▄▄▄ █▄ \n", | |
" ████▀ █▀▀ ▄▀██▄██ ▀▄▀▀▄ ▀▄█ \n", | |
" ▀▀ ▀▀ ▀▀█▀▀▀▄▄▀█▄████▀▀▀█▀ █ \n", | |
" █▀▀▀▀▀█ ▄ ▄█▀ █▄▄███ ▀ █▀▀ ▀ \n", | |
" █ ███ █ ▀██ ▀▄▀▄▄▀ █▀█▀▀▀▀ █ \n", | |
" █ ▀▀▀ █ ▄▄ ▄▀ ▀██▀▀█▄ █▀██ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀▀▀▀▀ ▀▀ ▀▀▀ ▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/618702\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.1646 - val_loss: 2.0507\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5631 - val_loss: 1.1679\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5512 - val_loss: 0.9773\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5556 - val_loss: 0.5527\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5491 - val_loss: 1.0979\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5568 - val_loss: 1.0951\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5694 - val_loss: 0.5233\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5493 - val_loss: 0.5257\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5447 - val_loss: 0.8037\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5639 - val_loss: 0.7931\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5425 - val_loss: 2.2707\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5874 - val_loss: 0.5425\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.5593 - val_loss: 0.5943\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5477 - val_loss: 0.5249\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5493 - val_loss: 0.5577\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5584 - val_loss: 1.0881\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5476 - val_loss: 0.9798\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.5901\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀ █ ▄▄▀▀▀ █▀▀▀▀▀█ \n", | |
" █ ███ █ █▄ █▀█▀█ ▄██ █ ███ █ \n", | |
" █ ▀▀▀ █ ▀█▀▀▄█ ▀█▄▄█ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀▄▀▄▀ █▄█▄▀▄█ ▀▀▀▀▀▀▀ \n", | |
" ▀███▄▄▀ █▄ ▄▀█▀███▀▄▄█▀▀ █ \n", | |
" █▀ ▀█ ▄▄█▄ █ ▄ ▄▀▄▄█ ▀▀▄ \n", | |
" ▀█▄▄ █▀▄ █▄█ ▀ ▄▄▀ █ ▄ ▀█▄▄ \n", | |
" █ █▀█▄▀ ▀ █ ▀ █▀▀▀ ▄▀ ▀█▀ \n", | |
" ▄▄▀█▀██▀▀▀▄███ ▄▀ ▄▀ █▀█▄█ \n", | |
" ▀ ██ █▀ ▄█▀█▀▄▀▀▄▄ █ ▄ █ █ \n", | |
" ▀▀ ▀▀▀▀▄█▄▀█ ▄▀██▄▀█▀▀▀███▄▄ \n", | |
" █▀▀▀▀▀█ ▄▀▀▀▄█ █ █▀█ ▀ ██ █ \n", | |
" █ ███ █ ▄▄ ▄██ █▄█▄ ▀█▀██▄▀▀█ \n", | |
" █ ▀▀▀ █ █▀▄█ ▀ ▀ █ ██▄█▄▄▀▄▀ \n", | |
" ▀▀▀▀▀▀▀ ▀▀▀ ▀ ▀ ▀ ▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/876218\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.8666 - val_loss: 0.4707\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4320 - val_loss: 0.4654\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4004 - val_loss: 0.3962\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3871 - val_loss: 0.4153\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3775 - val_loss: 0.3787\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3713 - val_loss: 0.4141\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3659 - val_loss: 0.3855\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3577 - val_loss: 0.3824\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3541 - val_loss: 0.3596\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3478 - val_loss: 0.3881\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 4ms/step - loss: 0.3457 - val_loss: 0.3606\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 2s 6ms/step - loss: 0.3427 - val_loss: 0.3501\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 2s 6ms/step - loss: 0.3402 - val_loss: 0.3565\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 4ms/step - loss: 0.3373 - val_loss: 0.3603\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3343 - val_loss: 0.3600\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 4ms/step - loss: 0.3319 - val_loss: 0.3670\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3307 - val_loss: 0.3434\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3276 - val_loss: 0.3628\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3287 - val_loss: 0.3457\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3258 - val_loss: 0.3617\n", | |
"162/162 [==============================] - 0s 2ms/step - loss: 0.3571\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀▀█▄ ▀ █▀█▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▀▄█ ██ ▄▄▄█▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄▀█▀▀ █ ▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ █▄▀ █▄█▄█ █ █ ▀▀▀▀▀▀▀ \n", | |
" ██▄▀▀▄▀ ▀▄ ▀ ▄▀▀▄█▀▄▀▄▄ ▄▄▀ \n", | |
" ▄██ ▀▀▀▄█▀ ▀ ▄▀█▄▀▄▄ ▄ ▄▀ ▄ \n", | |
" █ █▄█ ▀▄▀██ ▄▄▀▄█▄▄ ▀ ██▄▄▄▄█ \n", | |
" ▀█▀█▄▀▀ ▀█ ▄ ▀█▀▀ ▀▄█▄▄ █ █ \n", | |
" █ █▄▄▀█▀ █▀▀█▄ ▄▄▄ ▀▄▀▄▄ \n", | |
" ██ ▄▄▀▀ █▄▀▄ ▀ ▀ █▄ ██▀█▄ ▀ \n", | |
" ▀▀▀▀ ▀▀█▀█▀▄▄ ▄▀██▀█▀▀▀██▀▀ \n", | |
" █▀▀▀▀▀█ ▀ █▄ █▀█▄ ██ ▀ █▀ ▄ \n", | |
" █ ███ █ █▄▀▀▀▄▀██ █▀█▀▀▀▀ ▀▄ \n", | |
" █ ▀▀▀ █ ▄█▀█▀▀▀██ ▄ ▀ ██▄█▀█ \n", | |
" ▀▀▀▀▀▀▀ ▀▀ ▀ ▀▀▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/857795\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 2s 3ms/step - loss: 0.6616 - val_loss: 3.6633\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.6530 - val_loss: 0.6285\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4522 - val_loss: 0.8029\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 4ms/step - loss: 0.4268 - val_loss: 0.3676\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3672 - val_loss: 0.3491\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3505 - val_loss: 0.3941\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 4ms/step - loss: 0.3432 - val_loss: 0.3373\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3366 - val_loss: 0.3335\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3315 - val_loss: 0.3244\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3266 - val_loss: 0.3304\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 4ms/step - loss: 0.3228 - val_loss: 0.9202\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 4ms/step - loss: 0.3586 - val_loss: 1.3523\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3478 - val_loss: 5.6822\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.5231 - val_loss: 0.3414\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 4ms/step - loss: 0.3434 - val_loss: 0.3302\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3338 - val_loss: 0.3361\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3253 - val_loss: 0.3384\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3217 - val_loss: 0.3182\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3188 - val_loss: 0.3217\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3173 - val_loss: 0.3489\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.3320\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀ █ ▄▄▀▀▀ █▀▀▀▀▀█ \n", | |
" █ ███ █ █▄ █▀█▀█ ▄██ █ ███ █ \n", | |
" █ ▀▀▀ █ ▀█▀▀▄▄ ▀█▄▄█ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀▄▀▄▀ █▄█▄▀▄█ ▀▀▀▀▀▀▀ \n", | |
" █▀█▀▄▄▀ █▄ ▄▄▀█▀███▀▄▄█▀▀ █ \n", | |
" ▄ █ █▄▀▄ ▄▄▄█ █ ▄ ▄▀▄▄█ ▀▀▄ \n", | |
" ▄ █▄█▀▄▀▀▄█ ▀ ▄▄▀ █ ▄ ▀█▄▄ \n", | |
" █▄ ▀▄█▀▀▄ ▄ █▀▄ █▀▀▀ ▄▀ ▀█▀ \n", | |
" █▄██▄▀█ █▀▄▀██ ▄▀ ▄▀ █▀█▄█ \n", | |
" ▀ █▀▀▄▀█▀▀ ▀█ ▄▀▀▄▄ █ ▄ █ █ \n", | |
" ▀ ▀▀▀ ▄ ▄▀█ ▄▀██▄▀█▀▀▀███▄▄ \n", | |
" █▀▀▀▀▀█ █▄▀▀▄▀ █ █▀█ ▀ ██ █ \n", | |
" █ ███ █ ▄ ▄▄█▀ █▄█▄ ▀█▀██▄▀▀█ \n", | |
" █ ▀▀▀ █ █▀██ ▄ ▀ █ ██▄█▄▄▀▄▀ \n", | |
" ▀▀▀▀▀▀▀ ▀▀ ▀ ▀ ▀ ▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/091803\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6711 - val_loss: 2.4190\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4713 - val_loss: 3.1668\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4567 - val_loss: 0.7861\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4119 - val_loss: 0.4289\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3859 - val_loss: 0.3805\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3778 - val_loss: 0.3819\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3703 - val_loss: 0.3746\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3629 - val_loss: 0.3752\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3595 - val_loss: 0.3768\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3520 - val_loss: 0.3650\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3471 - val_loss: 0.4012\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3465 - val_loss: 0.3419\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3397 - val_loss: 0.3638\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3326 - val_loss: 0.3531\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3317 - val_loss: 0.3479\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3301 - val_loss: 0.3498\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3272 - val_loss: 0.3483\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3241 - val_loss: 0.3519\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3238 - val_loss: 0.3287\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3202 - val_loss: 0.3333\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.3147\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀ █ ▄▄▀▀▀ █▀▀▀▀▀█ \n", | |
" █ ███ █ █▄ █▀█▀█ ▄██ █ ███ █ \n", | |
" █ ▀▀▀ █ ▀█▀▀▄ ▄▀█▄▄█ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀▄▀▄▀ █▄█▄▀▄█ ▀▀▀▀▀▀▀ \n", | |
" ████ ▄▀▄▀▄ ▄▀█▀███▀▄▄█▀▀ █ \n", | |
" █▄ ▀▄▀▄▀ ▄▄█▄ █ ▄ ▄▀▄▄█ ▀▀▄ \n", | |
" ▀▀▄█▄▀ ▀▄█ ▀ ▄▄▀ █ ▄ ▀█▄▄ \n", | |
" ▀▀▄▀▄ ▀▄▄ ▄ █▀▀ █▀▀▀ ▄▀ ▀█▀ \n", | |
" ▄▄▄█ ▀ ██▄▀▄▀██ ▄▀ ▄▀ █▀█▄█ \n", | |
" ▀ ▄▀▀▄▀█▀▀ ▀█ ▄▀▀▄▄ █ ▄ █ █ \n", | |
" ▀ ▀▀▄█ ▀█ ▄▀██▄▀█▀▀▀███▄▄ \n", | |
" █▀▀▀▀▀█ ▀█▀▀█ █ █▀█ ▀ ██ █ \n", | |
" █ ███ █ ▄▀▄▄██ █▄█▄ ▀█▀██▄▀▀█ \n", | |
" █ ▀▀▀ █ ████ ▀ ▀ █ ██▄█▄▄▀▄▀ \n", | |
" ▀▀▀▀▀▀▀ ▀▀ ▀ ▀ ▀ ▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/674868\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 4.8455 - val_loss: 3.9935\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 3.6180 - val_loss: 3.0245\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 2.8216 - val_loss: 2.3985\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 2.3060 - val_loss: 1.9943\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.9719 - val_loss: 1.7340\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.7556 - val_loss: 1.5659\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.6153 - val_loss: 1.4582\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.5247 - val_loss: 1.3887\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.4658 - val_loss: 1.3444\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.4278 - val_loss: 1.3159\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.4030 - val_loss: 1.2978\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.3871 - val_loss: 1.2863\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.3767 - val_loss: 1.2791\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.3699 - val_loss: 1.2745\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.3655 - val_loss: 1.2717\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.3627 - val_loss: 1.2700\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.3609 - val_loss: 1.2690\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.3597 - val_loss: 1.2684\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.3590 - val_loss: 1.2681\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.3585 - val_loss: 1.2679\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 1.3439\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▄█ ▄▄█▄▄▄ █▀█ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▄█▀█ ▄▀▄▀▄▄▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄ █ ▀▄▀▄▀█▀▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀ █ ▀ █ █▄▀ ▀▀▀▀▀▀▀ \n", | |
" ██▀▀█▄▀█▀█▀ ▀█▄ ▄▀▄▄█▀▄█▄▀ ▀▄ \n", | |
" █ ▀▀█▀▀ ██▄█▀ █▀▀▀▄█▄ █ ▄ ▄ \n", | |
" ▀▄▄▀▄ ▀█ ▀▄▀▄▀▄ ▄█▄█▄▄▄▄▄▀▀ ▄ \n", | |
" ▄ █▀ ▀▀ ██ ▄ ▀▀▄▀ ▀▀▄ ▀▀▄ \n", | |
" █ ▀▀▀█▀▀██ ▀▀▄ ▄█▄▄█▄▄▄▄▀█ ▄ \n", | |
" █ ▄█▄ ▀▀██▄█▀▀██▀ ▀▄▄▄▀ ▀▄ \n", | |
" ▀ ▀▀ ▀▀▀▄█▄▀▄▀▄ ▄██ █▀▀▀█▄███ \n", | |
" █▀▀▀▀▀█ ▀ ▄ ▄▀██▀▀ ██ ▀ █▀▀ ▄ \n", | |
" █ ███ █ ██▀ ▀▀▄▀▄▀ █▀▀▀▀▄███ \n", | |
" █ ▀▀▀ █ █ ▄█▀ ▀▀ ▄▀█▄████▀█ \n", | |
" ▀▀▀▀▀▀▀ ▀▀ ▀▀ ▀▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/284774\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 3.2449 - val_loss: 2.5878\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.9553 - val_loss: 1.7955\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.5267 - val_loss: 1.4528\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.3047 - val_loss: 1.2573\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.1670 - val_loss: 1.1358\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.0737 - val_loss: 1.0518\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.0051 - val_loss: 0.9887\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.9525 - val_loss: 0.9401\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.9107 - val_loss: 0.9010\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.8767 - val_loss: 0.8683\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.8476 - val_loss: 0.8397\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.8220 - val_loss: 0.8109\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7988 - val_loss: 0.7849\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7774 - val_loss: 0.7611\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7571 - val_loss: 0.7401\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7384 - val_loss: 0.7221\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7216 - val_loss: 0.7065\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7052 - val_loss: 0.6911\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6892 - val_loss: 0.6764\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6750 - val_loss: 0.6634\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.6617\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀ █ ▄▄▀▀▀ █▀▀▀▀▀█ \n", | |
" █ ███ █ █▄ █▀█▀█ ▄██ █ ███ █ \n", | |
" █ ▀▀▀ █ ▀█▀▀▄█ ▀█▄▄█ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀▄▀▄▀ █▄█▄▀▄█ ▀▀▀▀▀▀▀ \n", | |
" ██▀█▄▄▀ █▄ ▄▀█▀███▀▄▄█▀▀ █ \n", | |
" ▀█▀▄▄ ▀▄▀ ▄▄▄█ █ ▄ ▄▀▄▄█ ▀▀▄ \n", | |
" ██▄▀▀▀▀ █▀▄█ ▀ ▄▄▀ █ ▄ ▀█▄▄ \n", | |
" █▄█ █ ▀▄ █▄ █ ▄ █▀▀▀ ▄▀ ▀█▀ \n", | |
" ▀▀█▄▄▀▀██ ▀▄███ ▄▀ ▄▀ █▀█▄█ \n", | |
" ▀ ▀▄▀▀▀█▀▀█▀█ ▀▀▀▄▄ █ ▄ █ █ \n", | |
" ▀ ▀▀▄ ▀▀█ ▄▀██▄▀█▀▀▀███▄▄ \n", | |
" █▀▀▀▀▀█ ██▀▀██ █ █▀█ ▀ ██ █ \n", | |
" █ ███ █ ▄▀▄▄█▀ █▄█▄ ▀█▀██▄▀▀█ \n", | |
" █ ▀▀▀ █ █▀██ █ ▀ █ ██▄█▄▄▀▄▀ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀ ▀ ▀ ▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/813537\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 3.9947 - val_loss: 2.6002\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 2.1812 - val_loss: 1.6377\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.6131 - val_loss: 1.3626\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.4187 - val_loss: 1.2558\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.3261 - val_loss: 1.1971\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.2716 - val_loss: 1.1587\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.2343 - val_loss: 1.1324\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.2072 - val_loss: 1.1122\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.1850 - val_loss: 1.0934\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.1638 - val_loss: 1.0743\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.1425 - val_loss: 1.0547\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.1206 - val_loss: 1.0342\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.0982 - val_loss: 1.0134\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.0752 - val_loss: 0.9923\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.0516 - val_loss: 0.9709\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.0277 - val_loss: 0.9493\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.0036 - val_loss: 0.9283\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.9795 - val_loss: 0.9069\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.9554 - val_loss: 0.8865\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.9320 - val_loss: 0.8663\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.8883\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀█▄▄█ █▀█ ▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▄▀██ ▄█ █▄▄▄▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▀▄█ ▀▄▀ ▀█▀▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀▄▀ █ █▄█ █▄▀ ▀▀▀▀▀▀▀ \n", | |
" █▀ ▄ ▀▀█▄▀█ ▀▀ ▄ ▀▄▄▀▄ ▄█▀▄▄ \n", | |
" ▄▀ █ ▀ █▀▄█▀▀▀▀▀▀▀▄█ █ ▄ \n", | |
" ▄ ▄██▄▀▀▄██ ▄ █▄█▄▄▄█ ██▄ ▄█ \n", | |
" ██▄█▄▄▀▄█▄ ▄▀██ ▀ ▄██▄ ▀█ ▄ \n", | |
" ▄▀▄▄▀ ▀▄█▀▀ ▀█▄▄▄█▄▄█ ▄▄▄▀█▄▄ \n", | |
" █▀█▄█ ▀█▀▄▀▄▀▀█▀ ▀ ▀ ██▀▀ ▀ \n", | |
" ▀ ▀ ▀ ▀▀▄▀█▀▄█ ▄ ██ █▀▀▀█▄▀▀▀ \n", | |
" █▀▀▀▀▀█ █▄▀ ▄ ▀▀▀ ██ ▀ █▀▀▄▄ \n", | |
" █ ███ █ ▀█▀▀ ███ ▀██▀▀▀█▄▀▄ \n", | |
" █ ▀▀▀ █ ▄▀▄█▀ ██▄ ▄▀▀ ▀████▀▄ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀▀▀ ▀▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/366984\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 4.2269 - val_loss: 4.6296\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 2.3245 - val_loss: 2.9337\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.5149 - val_loss: 1.9134\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.1230 - val_loss: 1.3280\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.9314 - val_loss: 1.0339\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.8370 - val_loss: 0.8843\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7891 - val_loss: 0.8111\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7620 - val_loss: 0.7718\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7439 - val_loss: 0.7504\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7302 - val_loss: 0.7357\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7185 - val_loss: 0.7248\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7080 - val_loss: 0.7158\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6980 - val_loss: 0.7077\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6886 - val_loss: 0.6999\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6797 - val_loss: 0.6923\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6709 - val_loss: 0.6854\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6625 - val_loss: 0.6782\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6543 - val_loss: 0.6702\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6466 - val_loss: 0.6622\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6391 - val_loss: 0.6542\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.6453\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀▀█▄ ▀ █▀█▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▀▄█ ██ ▄▄▄█▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄▀█▀ █ ▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ █▄▀ █▄▀▄█ █ █ ▀▀▀▀▀▀▀ \n", | |
" ▀▀ ▀█ ▀ ▀▄ ▀ ▄▀▀▄█▀▄▀▄▄ ▄▄▀ \n", | |
" ▀▀██▀▀▀█ ▀ ▀▀█▀█▄▀▄▄ ▄ ▄▀ ▄ \n", | |
" ▄▀█▀▄▀█▄██ ▄ ▀▄█▄▄ ▀ ██▄▄▄▄█ \n", | |
" ▄▀▄ ▄ ▀▀ █▄ ▄▀▄█▀▀ ▀▄█▄▄ █ █ \n", | |
" ▄▄ ▀█ ▀▀▀ █▀▀█▄ ▄▄▄ ▀▄▀▄▄ \n", | |
" ███ ▀▄▀ ▄▀ ▄▀█ ▀ ▀ █▄ ██▀█▄ ▀ \n", | |
" ▀▀▀▀ ▀▀█ █▀▄ ▄▀██▀█▀▀▀██▀▀ \n", | |
" █▀▀▀▀▀█ ▄█▄▀ ▀█▄ ██ ▀ █▀ ▄ \n", | |
" █ ███ █ ██ ▀▀▄▀██ █▀█▀▀▀▀ ▀▄ \n", | |
" █ ▀▀▀ █ ▄ ▄█▀ ██ ▄ ▀ ██▄█▀█ \n", | |
" ▀▀▀▀▀▀▀ ▀▀▀ ▀ ▀▀▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/138563\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 2s 4ms/step - loss: 3.8356 - val_loss: 2.7763\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.9610 - val_loss: 1.9318\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.3344 - val_loss: 1.4143\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.0932 - val_loss: 1.1603\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.9869 - val_loss: 1.0132\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.9255 - val_loss: 0.9263\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.8825 - val_loss: 0.8754\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.8484 - val_loss: 0.8379\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.8193 - val_loss: 0.8080\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7934 - val_loss: 0.7810\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7700 - val_loss: 0.7582\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7486 - val_loss: 0.7370\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7287 - val_loss: 0.7170\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7103 - val_loss: 0.6988\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6930 - val_loss: 0.6822\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6769 - val_loss: 0.6668\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6618 - val_loss: 0.6524\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6478 - val_loss: 0.6393\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6346 - val_loss: 0.6271\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6222 - val_loss: 0.6153\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.6092\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▄█ ▄▄█▄▄▄ █▀█ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▄█▀█ ▄▀▄▀▄▄▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄ █ ▀ ▀▄▀█▀▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀ █ █ █ █▄▀ ▀▀▀▀▀▀▀ \n", | |
" ████▀▄▀███▀ ▀▀▄ ▄▀▄▄█▀▄█▄▀ ▀▄ \n", | |
" ▄▄▄█▀▀▄██▄█▀▀ █▀▀▀▄█▄ █ ▄ ▄ \n", | |
" ▀▀█▀ ▄▀█▀▀▄▀▄▀▄ ▄█▄█▄▄▄▄▄▀▀ ▄ \n", | |
" ██▀█▀█▀ ▄ █▀▄▀ ▀▀▄ ▀▀▄ \n", | |
" █ ▀█ ▀▄█▀ ▀▀▄ ▄█▄▄█▄▄▄▄▀█ ▄ \n", | |
" █ █ ▀ ▀█ ▄▄█▀▀ █▀ ▀▄▄▄▀ ▀▄ \n", | |
" ▀ ▀ ▀ █▀▀▀▄▀▄ ▄██ █▀▀▀█▄███ \n", | |
" █▀▀▀▀▀█ ▀█▀ ▄ ▀█▀▀ ██ ▀ █▀▀ ▄ \n", | |
" █ ███ █ █ █ ▀▀▄▀▄▀ █▀▀▀▀▄███ \n", | |
" █ ▀▀▀ █ █▀▄█▀▀▀▀ ▄▀█▄████▀█ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀▀▀ ▀▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/125246\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 3.6177 - val_loss: 2.7926\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 2.2905 - val_loss: 1.8349\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.6216 - val_loss: 1.3376\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.2146 - val_loss: 1.0431\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.9649 - val_loss: 0.8702\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.8208 - val_loss: 0.7782\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7385 - val_loss: 0.7266\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6892 - val_loss: 0.6988\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6568 - val_loss: 0.6790\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6336 - val_loss: 0.6663\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6151 - val_loss: 0.6557\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5998 - val_loss: 0.6459\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5865 - val_loss: 0.6358\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5748 - val_loss: 0.6266\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5644 - val_loss: 0.6165\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5550 - val_loss: 0.6082\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5466 - val_loss: 0.6006\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5391 - val_loss: 0.5935\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5322 - val_loss: 0.5856\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5260 - val_loss: 0.5802\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.5507\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ █ ▄▄ ▀▀▄ █▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ██▄ █▄▀▄▄▀▀▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄██ ▀▄▄▀▀█▀▄▄ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀ █▄▀ ▀ ▀▄▀▄▀ ▀▀▀▀▀▀▀ \n", | |
" ▀█▄ █▀▀▄ ▀ ▀▄▀█▄▀▄▀ ▄▄█▄████ \n", | |
" ▄▄▀▄ ▀▀▄ █▀ ▄ ▀█▄▄▄▄█▄█ █▄ ▄█ \n", | |
" ▀ █▀▄▀▀▄▄ ▄▀▄▄▀█▄█▄ ▀▀▄▄▄▄▄█▄ \n", | |
" █▀██▀█▀█▀▄▄█▀ █▀▀▄█ ▀▄▀█▀▀▄█ \n", | |
" ▄ ▄ ▄█▀ ▀█ ▀▄▀█▄█▄▀ ▀▄▄▄▄ █▄ \n", | |
" █▄ ▀▀███▀ ▄ █▄██ ▀▄▀▀▄ ▀▄█ \n", | |
" ▀▀ ▀▀▀▀ █▄ ▀▄▄▀█▄████▀▀▀█▀ █ \n", | |
" █▀▀▀▀▀█ ▄▄▄█▀▀▀█▄▄███ ▀ █▀▀ ▀ \n", | |
" █ ███ █ ▀▀ ▀▄▀▄▄▀ █▀█▀▀▀▀ █ \n", | |
" █ ▀▀▀ █ ▄ █ ▄▀▄▀██▀▀█▄ █▀██ \n", | |
" ▀▀▀▀▀▀▀ ▀▀▀▀▀▀▀ ▀▀ ▀▀▀ ▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/845063\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 1.1510 - val_loss: 0.6494\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.5380 - val_loss: 0.5109\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4730 - val_loss: 0.4599\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4271 - val_loss: 0.4350\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4006 - val_loss: 0.4047\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3851 - val_loss: 0.4076\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3750 - val_loss: 0.3901\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3657 - val_loss: 0.4106\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3603 - val_loss: 0.3806\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3530 - val_loss: 0.3862\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3493 - val_loss: 0.3701\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3448 - val_loss: 0.3735\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3413 - val_loss: 0.3712\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3390 - val_loss: 0.3690\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3349 - val_loss: 0.3656\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3322 - val_loss: 0.3608\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3299 - val_loss: 0.3743\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3274 - val_loss: 0.3572\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3258 - val_loss: 0.3512\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3234 - val_loss: 0.3630\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.3567\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▄█ ▄▄█▄▄▄ █▀█ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▄█▀█ ▄▀▄▀▄▄▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄ █ ▀▄▀▄▀█▀▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀ █ ▀ █ █▄▀ ▀▀▀▀▀▀▀ \n", | |
" ███▀█ ▀▀██▀ ▀▀▄ ▄▀▄▄█▀▄█▄▀ ▀▄ \n", | |
" ▄▀▄ ▄▀▀▄█▄█▀ █▀▀▀▄█▄ █ ▄ ▄ \n", | |
" ▄▀▄█ ▀█▀▀▄▀▄▀▄ ▄█▄█▄▄▄▄▄▀▀ ▄ \n", | |
" ▀▀▄█ ▀▀▀▀█▀ ▄▀▄▀▄▀ ▀▀▄ ▀▀▄ \n", | |
" ██▄ █ ▀ ▄ ▄ ▀▀▄ ▄█▄▄█▄▄▄▄▀█ ▄ \n", | |
" █ ▄▀█ ▀██▄▀█▀ ▄█▀ ▀▄▄▄▀ ▀▄ \n", | |
" ▀ ▀ ▀▀█▀█▀▄▀▄ ▄██ █▀▀▀█▄███ \n", | |
" █▀▀▀▀▀█ ▀█▄ ▄ ██▀▀ ██ ▀ █▀▀ ▄ \n", | |
" █ ███ █ ███ ▀▀▄▀▄▀ █▀▀▀▀▄███ \n", | |
" █ ▀▀▀ █ █▄██▀▀▄▀ ▄▀█▄████▀█ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀▀ ▀▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/203153\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 1.3100 - val_loss: 1.1940\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.6021 - val_loss: 0.5168\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4814 - val_loss: 0.4676\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4376 - val_loss: 0.4430\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4112 - val_loss: 0.4154\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3954 - val_loss: 0.4028\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3843 - val_loss: 0.4048\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3771 - val_loss: 0.3866\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3711 - val_loss: 0.3894\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3654 - val_loss: 0.3853\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3591 - val_loss: 0.3748\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3564 - val_loss: 0.3700\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3512 - val_loss: 0.3724\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3492 - val_loss: 0.3670\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3449 - val_loss: 0.3642\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3413 - val_loss: 0.3595\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3371 - val_loss: 0.3552\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3357 - val_loss: 0.3506\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3333 - val_loss: 0.3496\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3304 - val_loss: 0.3518\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.3370\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀ █ ▄▄▀▀▀ █▀▀▀▀▀█ \n", | |
" █ ███ █ █▄ █▀█▀█ ▄██ █ ███ █ \n", | |
" █ ▀▀▀ █ ▀█▀▀▄ ▀█▄▄█ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀▄▀▄▀ █▄█▄▀▄█ ▀▀▀▀▀▀▀ \n", | |
" ▀███ ▄▀▄▀▄ ▄▀█▀███▀▄▄█▀▀ █ \n", | |
" ▀▄ ▄▀ ▀▀▀ ▄▄█▀ █ ▄ ▄▀▄▄█ ▀▀▄ \n", | |
" ▄▄▄▀▀▄ ▀▄█ ▀ ▄▄▀ █ ▄ ▀█▄▄ \n", | |
" ▀ █▀▀▀▀▀▄ █ █▀▀ █▀▀▀ ▄▀ ▀█▀ \n", | |
" ▀ ██ ▀▀▄ █▀▄▀██ ▄▀ ▄▀ █▀█▄█ \n", | |
" ▀ ▄█▀▄▀ ▄▀▀▀█ ▀▀▄▄ █ ▄ █ █ \n", | |
" ▀ ▀ ▀▀ █▀▄▀█ ▄▀██▄▀█▀▀▀███▄▄ \n", | |
" █▀▀▀▀▀█ ▄ ▀▀█ █ █▀█ ▀ ██ █ \n", | |
" █ ███ █ ▄ ▀▄█▀ █▄█▄ ▀█▀██▄▀▀█ \n", | |
" █ ▀▀▀ █ █▄▄█ ▀▄ ▀ █ ██▄█▄▄▀▄▀ \n", | |
" ▀▀▀▀▀▀▀ ▀▀▀ ▀ ▀ ▀ ▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/224961\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 1.2415 - val_loss: 0.7710\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5670 - val_loss: 0.5254\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4929 - val_loss: 0.4575\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4486 - val_loss: 0.4241\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4224 - val_loss: 0.4084\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4049 - val_loss: 0.4076\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3933 - val_loss: 0.3905\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3818 - val_loss: 0.3867\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3743 - val_loss: 0.3827\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3692 - val_loss: 0.3796\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3636 - val_loss: 0.3746\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3580 - val_loss: 0.3754\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3540 - val_loss: 0.3683\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3510 - val_loss: 0.3633\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3475 - val_loss: 0.3668\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3443 - val_loss: 0.3715\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3422 - val_loss: 0.3716\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3399 - val_loss: 0.3551\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3385 - val_loss: 0.3729\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3358 - val_loss: 0.3614\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.3374\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▄█ ▄▄█▄▄▄ █▀█ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▄█▀█ ▄▀▄▀▄▄▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄ █ ▀▄▀▄▀█▀▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀ █ █ █ █▄▀ ▀▀▀▀▀▀▀ \n", | |
" ▀▀███ ▀███▀ ▀▀▄ ▄▀▄▄█▀▄█▄▀ ▀▄ \n", | |
" ▀ ██ ▀▀▀ █▄█▀▀ █▀▀▀▄█▄ █ ▄ ▄ \n", | |
" ▀ █ █▀▀ ██▄▀▄▀▄ ▄█▄█▄▄▄▄▄▀▀ ▄ \n", | |
" ▀ ▄ ▀█▀███▀ ▄▀█▀▄▀ ▀▀▄ ▀▀▄ \n", | |
" █▄▀ █▀▀▄█▀ ▀▀▄ ▄█▄▄█▄▄▄▄▀█ ▄ \n", | |
" █ ▄▄▀▀▄██▀█▀▀██▀ ▀▄▄▄▀ ▀▄ \n", | |
" ▀ ▀▀ ▀ ▄█▀▀▄▀▄ ▄██ █▀▀▀█▄███ \n", | |
" █▀▀▀▀▀█ ▀▀ ▄▀▄█▀▀ ██ ▀ █▀▀ ▄ \n", | |
" █ ███ █ █▄█ ▀▀▄▀▄▀ █▀▀▀▀▄███ \n", | |
" █ ▀▀▀ █ █▄██▀ ▀ ▄▀█▄████▀█ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀▀▀ ▀▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/327730\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 2.4021 - val_loss: 2.0448\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.0641 - val_loss: 1.1136\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.7841 - val_loss: 0.8009\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.7089 - val_loss: 0.7101\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6769 - val_loss: 0.6752\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6557 - val_loss: 0.6565\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6381 - val_loss: 0.6417\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.6229 - val_loss: 0.6275\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6091 - val_loss: 0.6127\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5966 - val_loss: 0.5985\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5854 - val_loss: 0.5899\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5750 - val_loss: 0.5829\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5652 - val_loss: 0.5770\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5562 - val_loss: 0.5677\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5478 - val_loss: 0.5586\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5401 - val_loss: 0.5530\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5326 - val_loss: 0.5429\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5257 - val_loss: 0.5406\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5190 - val_loss: 0.5355\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.5129 - val_loss: 0.5297\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.5404\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀▀█▄ ▀ █▀█▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▀▄█ ██ ▄▄▄█▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄▀█▀▄▄ █ ▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ █▄▀ █▄█▄█ █ █ ▀▀▀▀▀▀▀ \n", | |
" ██▄██ ▀ ▄▀▄ ▀▄ ▄▀▀▄█▀▄▀▄▄ ▄▄▀ \n", | |
" ▀▄▄▀ ▀▀▀▀▀ ▀ ▀▀█▄▀▄▄ ▄ ▄▀ ▄ \n", | |
" █▄▄▄█▀▀█ ██ ▄▄▀▄█▄▄ ▀ ██▄▄▄▄█ \n", | |
" █ ▄▀ █▀ ▄▀██▀▀ ▀▄█▄▄ █ █ \n", | |
" ▄ ▀▀ ▀▀██▀▄█▀▀█▄ ▄▄▄ ▀▄▀▄▄ \n", | |
" ██▀▄ ▀▀▄▄ ▄▀█▀▀ ▀ █▄ ██▀█▄ ▀ \n", | |
" ▀▀▀▀ ▀▀▀▄█▀▀▄ ▄▀██▀█▀▀▀██▀▀ \n", | |
" █▀▀▀▀▀█ ▄▄█▄▀ ▀█▄ ██ ▀ █▀ ▄ \n", | |
" █ ███ █ █ █▀▀▄▀██ █▀█▀▀▀▀ ▀▄ \n", | |
" █ ▀▀▀ █ ▄ ██▀▀███ ▄ ▀ ██▄█▀█ \n", | |
" ▀▀▀▀▀▀▀ ▀▀▀ ▀ ▀▀▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/684164\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 3.3408 - val_loss: 2.5455\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.4454 - val_loss: 2.0407\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.0080 - val_loss: 1.1203\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.8191 - val_loss: 0.8836\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7432 - val_loss: 0.7475\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.7037 - val_loss: 0.6949\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6793 - val_loss: 0.6702\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6610 - val_loss: 0.6521\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.6445 - val_loss: 0.6354\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.6299 - val_loss: 0.6205\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6165 - val_loss: 0.6076\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.6046 - val_loss: 0.5961\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5930 - val_loss: 0.5850\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.5825 - val_loss: 0.5745\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5727 - val_loss: 0.5644\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5637 - val_loss: 0.5551\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5553 - val_loss: 0.5486\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.5475 - val_loss: 0.5417\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5400 - val_loss: 0.5348\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5331 - val_loss: 0.5265\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.5207\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▄█ ▄▄█▄▄▄ █▀█ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▄█▀█ ▄▀▄▀▄▄▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄ █ ▀ █▄▀█▀▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀ █ █ █ █▄▀ ▀▀▀▀▀▀▀ \n", | |
" ▀████ ▀▀▀█▀ ▀▀▄ ▄▀▄▄█▀▄█▄▀ ▀▄ \n", | |
" ▄▀█ █▀█▀█▄█▀ ▀█▀▀▀▄█▄ █ ▄ ▄ \n", | |
" ▀▄█▀▄▄▀▄▄▀▄▀▄▀▄ ▄█▄█▄▄▄▄▄▀▀ ▄ \n", | |
" █▀▀▄ █▀▄█ ▀ ▄ ▄▀▄▀ ▀▀▄ ▀▀▄ \n", | |
" █▀█▄ █▀▀▄▀█ ▀▀▄ ▄█▄▄█▄▄▄▄▀█ ▄ \n", | |
" █ █ ▀ ▀█ ███▀ ██▀ ▀▄▄▄▀ ▀▄ \n", | |
" ▀ ▀▀▀▀▀▄█ ▀▄▀▄ ▄██ █▀▀▀█▄███ \n", | |
" █▀▀▀▀▀█ ▀▄▀ ▄▀▀█▀▀ ██ ▀ █▀▀ ▄ \n", | |
" █ ███ █ █ ▀ ▀█▄▀▄▀ █▀▀▀▀▄███ \n", | |
" █ ▀▀▀ █ ████▀ ▀ ▄▀█▄████▀█ \n", | |
" ▀▀▀▀▀▀▀ ▀▀▀▀▀ ▀▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/541568\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 2.8890 - val_loss: 3.2604\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 1.0395 - val_loss: 3.0127\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.8231 - val_loss: 2.5335\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7583 - val_loss: 2.0699\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7226 - val_loss: 1.7486\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6960 - val_loss: 1.4975\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6740 - val_loss: 1.2879\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6547 - val_loss: 1.1439\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6374 - val_loss: 1.0162\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6216 - val_loss: 0.9239\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6071 - val_loss: 0.8419\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5936 - val_loss: 0.7771\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5813 - val_loss: 0.7193\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5696 - val_loss: 0.6782\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5588 - val_loss: 0.6392\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.5487 - val_loss: 0.6081\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.5392 - val_loss: 0.5826\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5304 - val_loss: 0.5622\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5221 - val_loss: 0.5462\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5143 - val_loss: 0.5298\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.5178\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀█▄▄█ █▀█ ▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▄▀██ ▄█ █▄▄▄▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▀▄█ ▀▄▀ ▀█▀▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀▄▀ █ █▄█ █▄▀ ▀▀▀▀▀▀▀ \n", | |
" █▀▄▄▄█▀▀ ▀█ ▀▀ ▄ ▀▄▄▀▄ ▄█▀▄▄ \n", | |
" ▀ ▄█▄▀▀▄▄▀▄█▀▀▀▀▀▀▀▄█ █ ▄ \n", | |
" ▄ █▀ █▀▄▄▀█ ▄ █▄█▄▄▄█ ██▄ ▄█ \n", | |
" ▀█▄▀▄▀▀█ ▄▀ ▄ ▀█ ▀ ▄██▄ ▀█ ▄ \n", | |
" █ ▄▀██▀ ▀██ ▀▀▄▄▄█▄▄█ ▄▄▄▀█▄▄ \n", | |
" █▀▀▄█ ▀ ▄▄▀▄▀▀ ▀ ▀ ▀ ██▀▀ ▀ \n", | |
" ▀ ▀ ▀ ▀ █▀█▀▄▀ ▄ ██ █▀▀▀█▄▀▀▀ \n", | |
" █▀▀▀▀▀█ █▀▄ ▄▀█▀▀▀ ██ ▀ █▀▀▄▄ \n", | |
" █ ███ █ ▀▀▀ ███ ▀██▀▀▀█▄▀▄ \n", | |
" █ ▀▀▀ █ ▄█▀█▀▀ █▄ ▄▀▀ ▀████▀▄ \n", | |
" ▀▀▀▀▀▀▀ ▀▀ ▀▀ ▀▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/365473\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 1.8322 - val_loss: 364.9241\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 493.0457 - val_loss: 25261.8008\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 22762.3418 - val_loss: 1293583.3750\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 306080.9688 - val_loss: 81630696.0000\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 11283924.0000 - val_loss: 3859052288.0000\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 87869848.0000 - val_loss: 196408131584.0000\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 28458496000.0000 - val_loss: 10477778239488.0000\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 22419557318656.0000 - val_loss: 553469115105280.0000\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1586806134931456.0000 - val_loss: 29719058416926720.0000\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 18087722191159296.0000 - val_loss: 1552903081509781504.0000\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 640489300118470656.0000 - val_loss: 75740298284000870400.0000\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 223222060397101056.0000\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀▀█▄ ▀ █▀█▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▀▄█ ██ ▄▄▄█▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄▀█▀▄▄ █ ▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ █▄▀ █▄█▄█ █ █ ▀▀▀▀▀▀▀ \n", | |
" █▀▄▀█▄▀ ▄▀▄ ▀ ▄▀▀▄█▀▄▀▄▄ ▄▄▀ \n", | |
" ▀ ▄█ ▀▀▄▄▀ ▀▀ ▀█▄▀▄▄ ▄ ▄▀ ▄ \n", | |
" ▀█▄▄▀▀▀ ▄██ ▄▄▀▄█▄▄ ▀ ██▄▄▄▄█ \n", | |
" █▀ █ ▄▀███ ▄▀▄█▀▀ ▀▄█▄▄ █ █ \n", | |
" ▄ ▄▀█▀██▄▄█▀▀█▄ ▄▄▄ ▀▄▀▄▄ \n", | |
" ██ ▄▀ ▀██▄█▄▀▄█▀ ▀ █▄ ██▀█▄ ▀ \n", | |
" ▀▀▀▀ ▀▀█▄█▀▄ ▄▀██▀█▀▀▀██▀▀ \n", | |
" █▀▀▀▀▀█ ▀▄█▄▀█▀█▄ ██ ▀ █▀ ▄ \n", | |
" █ ███ █ █▄█▀▀ ▀██ █▀█▀▀▀▀ ▀▄ \n", | |
" █ ▀▀▀ █ ▄▀ █▀▀ ██ ▄ ▀ ██▄█▀█ \n", | |
" ▀▀▀▀▀▀▀ ▀▀ ▀ ▀▀▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/660239\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 3.0470 - val_loss: 77.7362\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 21.7264 - val_loss: 1222.4170\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 694.1306 - val_loss: 23006.7480\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 11566.8828 - val_loss: 422436.6562\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 26095.7402 - val_loss: 7907896.5000\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 401851.8438 - val_loss: 144318176.0000\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 3482047.7500 - val_loss: 2650038528.0000\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 88686608.0000 - val_loss: 50349813760.0000\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 2985060864.0000 - val_loss: 899955490816.0000\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 6305911808.0000 - val_loss: 16785250189312.0000\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 511404507136.0000 - val_loss: 291617743306752.0000\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 9404817604608.0000\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀█▄▄█ █▀█ ▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▄▀██ ▄█ █▄▄▄▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▀▄█ ▀▄▀ ▀█▀▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀▄▀ █ ▀▄█ █▄▀ ▀▀▀▀▀▀▀ \n", | |
" ▀▀▄ ▄█▀▀ ▀█ ▀▀ ▄ ▀▄▄▀▄ ▄█▀▄▄ \n", | |
" █▄█ ██▀█ ▀▄█▀ ▀▀▀▀▄█ █ ▄ \n", | |
" ▀ ▄▄▄ ▀▀▄▀█ ▄ █▄█▄▄▄█ ██▄ ▄█ \n", | |
" ▀ ▄ ▀█▀▄▄ ▄ ▄█ ▀ ▄██▄ ▀█ ▄ \n", | |
" ▄▀█ ▄▀▀██▄ ▀▀▄▄▄█▄▄█ ▄▄▄▀█▄▄ \n", | |
" █▀█▀▄▀▀▄▄ ▄▄▀▀█▀ ▀ ▀ ██▀▀ ▀ \n", | |
" ▀ ▀ ▀ ▀▀██▀▀▄▀ ▄ ██ █▀▀▀█▄▀▀▀ \n", | |
" █▀▀▀▀▀█ █▀▀ ▄ ▀▀▀▀ ██ ▀ █▀▀▄▄ \n", | |
" █ ███ █ █ ▀▀ ███ ▀██▀▀▀█▄▀▄ \n", | |
" █ ▀▀▀ █ ▄▀▀█▀▀ █▄ ▄▀▀ ▀████▀▄ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀▀▀ ▀▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/200143\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.8285 - val_loss: 19.4029\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7434 - val_loss: 18.1539\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7190 - val_loss: 59.7615\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.9243 - val_loss: 46.0383\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.8982 - val_loss: 34.3186\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.1204 - val_loss: 44.3960\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.5733 - val_loss: 70.0276\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7207 - val_loss: 18.3561\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.2631 - val_loss: 9.4294\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7269 - val_loss: 14.8408\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.0090 - val_loss: 11.9487\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6864 - val_loss: 2.2515\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6512 - val_loss: 15.1333\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.8442 - val_loss: 29.7132\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.3299 - val_loss: 45.5266\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7074 - val_loss: 21.5691\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6913 - val_loss: 82.9820\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.4122 - val_loss: 63.8128\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 2.7259 - val_loss: 58.4336\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.9982 - val_loss: 64.0658\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 9.2906\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀ █ ▄▄▀▀▀ █▀▀▀▀▀█ \n", | |
" █ ███ █ █▄ █▀█▀█ ▄██ █ ███ █ \n", | |
" █ ▀▀▀ █ ▀█▀▀▄█ ▀█▄▄█ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀▄▀▄▀ █▄█▄▀▄█ ▀▀▀▀▀▀▀ \n", | |
" █▀▀▀▄ ▀ █▄ ▄▀█▀███▀▄▄█▀▀ █ \n", | |
" █ ▀█ ▀▀ ▄▄█ █ ▄ ▄▀▄▄█ ▀▀▄ \n", | |
" █▄▀█ █▀█ ▀▄█ ▀ ▄▄▀ █ ▄ ▀█▄▄ \n", | |
" ▀ ▄▀▀▄█▀▄ █ ▄ █▀▀▀ ▄▀ ▀█▀ \n", | |
" ██ ▄▀▀▄▀▄█▀▄███ ▄▀ ▄▀ █▀█▄█ \n", | |
" ▀ █ ▀█ ▀█ ▄▀▀▄▄ █ ▄ █ █ \n", | |
" ▀ ▀ ▀▀▀███▀█ ▄▀██▄▀█▀▀▀███▄▄ \n", | |
" █▀▀▀▀▀█ ▀ ▀▀█▀ █ █▀█ ▀ ██ █ \n", | |
" █ ███ █ ▄▀▀▄█▀ █▄█▄ ▀█▀██▄▀▀█ \n", | |
" █ ▀▀▀ █ ██▄█ ▀▀ ▀ █ ██▄█▄▄▀▄▀ \n", | |
" ▀▀▀▀▀▀▀ ▀▀ ▀ ▀ ▀ ▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/863024\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 1.9629 - val_loss: 0.8160\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.7341 - val_loss: 0.6844\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6608 - val_loss: 0.6383\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.6138 - val_loss: 0.6020\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5760 - val_loss: 0.5626\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5443 - val_loss: 0.5352\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.5177 - val_loss: 0.5181\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4947 - val_loss: 0.4931\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4756 - val_loss: 0.4845\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4595 - val_loss: 0.4689\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4459 - val_loss: 0.4563\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4344 - val_loss: 0.4438\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4247 - val_loss: 0.4329\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4165 - val_loss: 0.4279\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4093 - val_loss: 0.4240\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4036 - val_loss: 0.4176\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3983 - val_loss: 0.4104\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.3935 - val_loss: 0.4109\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3894 - val_loss: 0.4012\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3861 - val_loss: 0.4068\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.4125\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▄█ ▄▄█▄▄▄ █▀█ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▄█▀█ ▄▀▄▀▄▄▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄ █ ▀▄▀▄▀█▀▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀ █ ▀ █ █▄▀ ▀▀▀▀▀▀▀ \n", | |
" █████ ▀█▀█▀ ▀█▄ ▄▀▄▄█▀▄█▄▀ ▀▄ \n", | |
" ▀ █▄ ▀█▄█▄█▀ █▀▀▀▄█▄ █ ▄ ▄ \n", | |
" ▄▄▄█ ▀▀██▄▀▄▀▄ ▄█▄█▄▄▄▄▄▀▀ ▄ \n", | |
" ▄ █▀▀▀▀▄▀█▄ ▄ ▄▀▄▀ ▀▀▄ ▀▀▄ \n", | |
" ██▄█▄▀▀ ▄ ▀▀▄ ▄█▄▄█▄▄▄▄▀█ ▄ \n", | |
" █ ▄█▀▀▀▄█ █▀ ▄█▀ ▀▄▄▄▀ ▀▄ \n", | |
" ▀ ▀▀▀▀▀▄▄▄▀▄▀▄ ▄██ █▀▀▀█▄███ \n", | |
" █▀▀▀▀▀█ ▀ ▄ ▀█▀▀ ██ ▀ █▀▀ ▄ \n", | |
" █ ███ █ ██ ▀▀▄▀▄▀ █▀▀▀▀▄███ \n", | |
" █ ▀▀▀ █ █ ▀█▀ ▀ ▄▀█▄████▀█ \n", | |
" ▀▀▀▀▀▀▀ ▀ ▀▀ ▀▀▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/281140\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 1.8273 - val_loss: 4.3887\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.9699 - val_loss: 2.3075\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.7541 - val_loss: 0.6428\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.5959 - val_loss: 0.5783\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5642 - val_loss: 0.5515\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5388 - val_loss: 0.5274\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5170 - val_loss: 0.5070\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4983 - val_loss: 0.4911\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4823 - val_loss: 0.4802\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4693 - val_loss: 0.4671\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4581 - val_loss: 0.4566\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4491 - val_loss: 0.4538\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4414 - val_loss: 0.4447\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4340 - val_loss: 0.4382\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4279 - val_loss: 0.4308\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4226 - val_loss: 0.4277\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4174 - val_loss: 0.4227\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4130 - val_loss: 0.4204\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4086 - val_loss: 0.4160\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4050 - val_loss: 0.4157\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.3945\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", | |
" super(SGD, self).__init__(name, **kwargs)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ ▀▀▀█▄ ▀ █▀█▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ▀▄█ ██ ▄▄▄█▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄▀█▀ ▄ █ ▀▀ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ █▄▀ █▄█▄█ █ █ ▀▀▀▀▀▀▀ \n", | |
" ▀▀▄▀█▄▀ ▄▀▄ ▀ ▄▀▀▄█▀▄▀▄▄ ▄▄▀ \n", | |
" ▄▄▄▄▄█▀██▀ ▀ ▄▀█▄▀▄▄ ▄ ▄▀ ▄ \n", | |
" ▄▄█▀▀█▀ █▀█ ▄▄▀▄█▄▄ ▀ ██▄▄▄▄█ \n", | |
" ▄▄ ▄ ▀▀█ ▄ ▄ ▀█▀▀ ▀▄█▄▄ █ █ \n", | |
" █ ▀▄▄▀▄█▄▄█▀▀█▄ ▄▄▄ ▀▄▀▄▄ \n", | |
" ██ ▀█ ▀█▀█▀▄▀▄ ▀ ▀ █▄ ██▀█▄ ▀ \n", | |
" ▀▀▀ ▀▀▄▄█▀▄ ▄▀██▀█▀▀▀██▀▀ \n", | |
" █▀▀▀▀▀█ ▀▄█▄▀▄▀█▄ ██ ▀ █▀ ▄ \n", | |
" █ ███ █ █▀▄▀▀▄▀██ █▀█▀▀▀▀ ▀▄ \n", | |
" █ ▀▀▀ █ ▄▄██▀▀███ ▄ ▀ ██▄█▀█ \n", | |
" ▀▀▀▀▀▀▀ ▀▀▀ ▀ ▀▀▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/457774\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 1.6063 - val_loss: 2.2744\n", | |
"Epoch 2/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.7319 - val_loss: 1.0008\n", | |
"Epoch 3/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.6432 - val_loss: 0.6280\n", | |
"Epoch 4/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5922 - val_loss: 0.5779\n", | |
"Epoch 5/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.5563 - val_loss: 0.5644\n", | |
"Epoch 6/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.5282 - val_loss: 0.5207\n", | |
"Epoch 7/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.5051 - val_loss: 0.4974\n", | |
"Epoch 8/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4856 - val_loss: 0.5059\n", | |
"Epoch 9/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4700 - val_loss: 0.4888\n", | |
"Epoch 10/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4571 - val_loss: 0.4931\n", | |
"Epoch 11/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4463 - val_loss: 0.4630\n", | |
"Epoch 12/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4375 - val_loss: 0.4659\n", | |
"Epoch 13/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4302 - val_loss: 0.4432\n", | |
"Epoch 14/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4238 - val_loss: 0.4335\n", | |
"Epoch 15/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4182 - val_loss: 0.4283\n", | |
"Epoch 16/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4133 - val_loss: 0.4172\n", | |
"Epoch 17/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4085 - val_loss: 0.4150\n", | |
"Epoch 18/20\n", | |
"323/323 [==============================] - 1s 2ms/step - loss: 0.4047 - val_loss: 0.4013\n", | |
"Epoch 19/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.4010 - val_loss: 0.3994\n", | |
"Epoch 20/20\n", | |
"323/323 [==============================] - 1s 3ms/step - loss: 0.3980 - val_loss: 0.3965\n", | |
"162/162 [==============================] - 0s 1ms/step - loss: 0.3976\n", | |
" \n", | |
" \n", | |
" █▀▀▀▀▀█ █ ▄▄ ▀▀▄ █▄ █▀▀▀▀▀█ \n", | |
" █ ███ █ ██▄ █▄▀▄▄▀▀▄ █ ███ █ \n", | |
" █ ▀▀▀ █ ▄██ ▀▄▄▀▀█▀▄▄ █ ▀▀▀ █ \n", | |
" ▀▀▀▀▀▀▀ ▀ █▄▀ ▀ ▀▄▀▄▀ ▀▀▀▀▀▀▀ \n", | |
" █▀ ▄█▀▀▄▄ ▀ ▀▄▀█▄▀▄▀ ▄▄█▄████ \n", | |
" ▀▄█▀██▀ ██▀ ▄▀▀█▄▄▄▄█▄█ █▄ ▄█ \n", | |
" ▄▀▀█ █▀ ▀ ▄▀▄▄▀█▄█▄ ▀▀▄▄▄▄▄█▄ \n", | |
" ▀ ▀▄██▀▀████▀▀▄▀▀▄█ ▀▄▀█▀▀▄█ \n", | |
" ▄ ▀▄█▀▀▄▀▄▀ ▀▄▀█▄█▄▀ ▀▄▄▄▄ █▄ \n", | |
" █ ▄▄▀▄▀█ ▄ ▀█▄██ ▀▄▀▀▄ ▀▄█ \n", | |
" ▀▀▀▀ ▀▀███▀▄▄▀█▄████▀▀▀█▀ █ \n", | |
" █▀▀▀▀▀█ ▄█▀█▀▀▄█▄▄███ ▀ █▀▀ ▀ \n", | |
" █ ███ █ ▀█▄ ▀▄▀▄▄▀ █▀█▀▀▀▀ █ \n", | |
" █ ▀▀▀ █ ▄▀█ ▄ ▀▀██▀▀█▄ █▀██ \n", | |
" ▀▀▀▀▀▀▀ ▀▀▀▀▀▀▀ ▀▀ ▀▀▀ ▀ ▀ ▀ \n", | |
" \n", | |
" \n", | |
"https://mlnotify.aporia.com/training/863434\n", | |
"\n", | |
"Scan the QR code or enter the url to get a notification when your training is done\n", | |
"\n", | |
"\n", | |
"Epoch 1/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.6769 - val_loss: 2.2651\n", | |
"Epoch 2/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.4350 - val_loss: 0.4882\n", | |
"Epoch 3/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3977 - val_loss: 0.3918\n", | |
"Epoch 4/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3744 - val_loss: 0.3822\n", | |
"Epoch 5/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3609 - val_loss: 1.0467\n", | |
"Epoch 6/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3598 - val_loss: 0.3552\n", | |
"Epoch 7/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3448 - val_loss: 0.3521\n", | |
"Epoch 8/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3466 - val_loss: 0.3547\n", | |
"Epoch 9/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3331 - val_loss: 0.3399\n", | |
"Epoch 10/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3267 - val_loss: 0.3388\n", | |
"Epoch 11/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3243 - val_loss: 0.3609\n", | |
"Epoch 12/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3180 - val_loss: 0.6181\n", | |
"Epoch 13/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3179 - val_loss: 0.3381\n", | |
"Epoch 14/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3114 - val_loss: 0.3736\n", | |
"Epoch 15/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3081 - val_loss: 0.3164\n", | |
"Epoch 16/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.3045 - val_loss: 0.3354\n", | |
"Epoch 17/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.2999 - val_loss: 0.3136\n", | |
"Epoch 18/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.2981 - val_loss: 0.3057\n", | |
"Epoch 19/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.2962 - val_loss: 0.3101\n", | |
"Epoch 20/20\n", | |
"484/484 [==============================] - 1s 2ms/step - loss: 0.2965 - val_loss: 0.3528\n" | |
] | |
}, | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"RandomizedSearchCV(cv=3,\n", | |
" estimator=<keras.wrappers.scikit_learn.KerasRegressor object at 0x7f38ac501150>,\n", | |
" param_distributions={'learning_rate': <scipy.stats._distn_infrastructure.rv_frozen object at 0x7f38ac543a90>,\n", | |
" 'n_hidden': [0, 1, 2, 3, 4],\n", | |
" 'n_neurons': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n", | |
" 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,\n", | |
" 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,\n", | |
" 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,\n", | |
" 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,\n", | |
" 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])})" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 22 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"print(rnd_search_cv.best_score_)\n", | |
"print(rnd_search_cv.best_params_)\n" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "RuuYVphp0yNf", | |
"outputId": "4e542875-25b3-437f-cae3-0aba5bac6f9a" | |
}, | |
"execution_count": 27, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"-0.33462345600128174\n", | |
"{'learning_rate': 0.016890898178784634, 'n_hidden': 2, 'n_neurons': 22}\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"" | |
], | |
"metadata": { | |
"id": "BkwzpeufJi4k" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment