Skip to content

Instantly share code, notes, and snippets.

View ozgurshn's full-sized avatar

Ozgur Sahin ozgurshn

View GitHub Profile
def modelFitGenerator(fitModel):
num_train_samples = sum([len(files) for r, d, files in os.walk(train_data_dir)])
num_valid_samples = sum([len(files) for r, d, files in os.walk(validation_data_dir)])
num_train_steps = math.floor(num_train_samples/batch_size)
num_valid_steps = math.floor(num_valid_samples/batch_size)
train_datagen = ImageDataGenerator(
rotation_range=90,
def saveCoreMLModel(kerasModel):
coreml_model = coremltools.converters.keras.convert(kerasModel,
input_names=['input'],
output_names=['probs'],
image_input_names='input',
predicted_feature_name='predictedMoney',
class_labels = 'drive/Resnet/labels.txt')
coreml_model.save('resnet50custom.mlmodel')
print('CoreML model saved')
@ozgurshn
ozgurshn / read.swift
Created January 6, 2019 15:13
Read CSV with MLDataTable
import CreateML
import Foundation
// 1. CSV'den veri alma
var data = try MLDataTable(contentsOf: URL(fileURLWithPath: "/Users/ozgur/Documents/CreateMLFiles/dataset/bitmojiReviews.csv"))
@ozgurshn
ozgurshn / parsingoptions.swift
Created January 6, 2019 15:33
ParsingOptions MLDataTable
let parsingOptions = MLDataTable.ParsingOptions(containsHeader: true, delimiter: ",", comment: "", escape: "", doubleQuote: false, quote: "", skipInitialSpaces: false, missingValues: [], lineTerminator: "\r", selectColumns:["author","rating","review"], maxRows: nil, skipRows: 0)
var table = try MLDataTable(contentsOf: URL(fileURLWithPath: "/Users/ozgur/Documents/CreateMLFiles/dataset/bitmojiReviews.csv"), options: parsingOptions)
@ozgurshn
ozgurshn / NewColumn.swift
Last active January 6, 2019 16:32
MLDataTable merge columns
let newColumn = data.map { row -> Double in
guard let deger1 = row["deg1"]?.intValue,
let deger2 = row["deg2"]?.intValue,
let deger3 = row["deg3"]?.doubleValue
else {
fatalError("Missing or invalid columns in row.")
}
let sum = Double(deger1)+Double(deger2)+deger3
return sum
}
@ozgurshn
ozgurshn / dictionaryMLDataTable.swift
Created January 6, 2019 16:01
MLDataTable from dictionary
let data: [String: MLDataValueConvertible] = [
"Title": ["Alice in Wonderland", "Hamlet", "Treasure Island", "Peter Pan"],
"Author": ["Lewis Carroll", "William Shakespeare", "Robert L. Stevenson", "J. M. Barrie"],
"Pages": [124, 98, 280, 94],
]
var bookTable = try MLDataTable(dictionary: data)
@ozgurshn
ozgurshn / MLDataTableAddColumn.swift
Created January 6, 2019 16:02
MLDataTable add column
let pagesColumn = MLDataColumn([124, 98, 280, 94])
bookTable.addColumn(pagesColumn, named: "Pages")
@ozgurshn
ozgurshn / MLDataTableAddNewColumn.swift
Created January 6, 2019 16:28
MLDataTable add new column
let newColumn = data.map { row -> String in
guard
let average = row["deg3"]?.doubleValue
else {
fatalError("Missing or invalid columns in row.")
}
var sentiment = "negative"
if average < 0
@ozgurshn
ozgurshn / NLTokenizer.swift
Created March 10, 2019 19:59
NLTokenizer
import NaturalLanguage
let text = "All human beings are born free and equal in dignity and rights. They are endowed with reason and conscience and should act towards one another in a spirit of brotherhood."
let tokenizer = NLTokenizer(unit: .word)
tokenizer.string = text
//let tokenArray = tokenizer.tokens(for: strRange)
tokenizer.enumerateTokens(in: text.startIndex..<text.endIndex) { tokenRange, _ in
print(text[tokenRange])
return true
@ozgurshn
ozgurshn / NLLanguageRecognizer.swift
Last active March 10, 2019 20:16
NLLanguageRecognizer
import NaturalLanguage
let recognizer = NLLanguageRecognizer()
recognizer.processString("oduncu")
let lang = recognizer.dominantLanguage
let hypotheses = recognizer.languageHypotheses(withMaximum:2)
//convenience method: NLLanguageRecognizer.dominantLanguage(for: "oduncu")