Skip to content

Instantly share code, notes, and snippets.

config = """
language: "en"
pipeline:
- name: "nlp_spacy" # loads the spacy language model
- name: "tokenizer_spacy" # splits the sentence into tokens
- name: "ner_crf" # uses the pretrained spacy NER model
- name: "intent_featurizer_spacy" # transform the sentence into a vector representation
- name: "intent_classifier_sklearn" # uses the vector representation to classify using SVM
- name: "ner_synonyms" # trains the synonyms
from rasa_nlu.training_data import load_data
from rasa_nlu.config import RasaNLUModelConfig
from rasa_nlu.model import Trainer
from rasa_nlu import config
# loading the nlu training samples
training_data = load_data("nlu.md")
# trainer to educate our pipeline
trainer = Trainer(config.load("config.yml"))
domain_yml = """
intents:
- greet
- goodbye
- mood_affirm
slots:
group:
type: text
entities:
from rasa_core.actions import Action
from rasa_core.events import SlotSet
from IPython.core.display import Image, display
import requests
class ApiAction(Action):
def name(self):
return "action_retrieve_image"
from rasa_core.policies import FallbackPolicy, KerasPolicy, MemoizationPolicy
from rasa_core.agent import Agent
# The fallback action will be executed if the intent recognition has #a confidence below nlu_threshold or if none of the dialogue #policies predict an action with confidence higher than #core_threshold.
fallback = FallbackPolicy(fallback_action_name="utter_unclear",
core_threshold=0.2,
nlu_threshold=0.1)
agent = Agent('domain.yml', policies=[MemoizationPolicy(), KerasPolicy(), fallback])
from rasa_core.channels.slack import SlackInput
from rasa_core.agent import Agent
from rasa_core.interpreter import RasaNLUInterpreter
import yaml
from rasa_core.utils import EndpointConfig
nlu_interpreter = RasaNLUInterpreter('./models/nlu/default/current')
action_endpoint = EndpointConfig(url="http://localhost:5055/webhook")
agent = Agent.load('./models/dialogue', interpreter = nlu_interpreter, action_endpoint = action_endpoint)
from rasa_core.channels.slack import SlackInput
from rasa_core.agent import Agent
from rasa_core.interpreter import RasaNLUInterpreter
import yaml
from rasa_core.utils import EndpointConfig
nlu_interpreter = RasaNLUInterpreter('./models/nlu/default/current')
action_endpoint = EndpointConfig(url="http://localhost:5055/webhook")
agent = Agent.load('./models/dialogue', interpreter = nlu_interpreter, action_endpoint = action_endpoint)
articles = pd.DataFrame({
'holiday': 'Article_Published',
'ds': pd.to_datetime(['2018-07-02', '2018-07-06', '2018-07-08',
'2018-07-09', '2018-07-12', '2018-07-19', '2018-07-26', '2018-07-31',
'2018-08-06', '2018-08-15', '2018-07-19', '2018-08-26', '2018-08-31',
'2018-09-01', '2018-09-04', '2018-09-11', '2018-09-17', '2018-09-23',
'2018-10-02', '2018-10-09', '2018-10-18', '2018-10-19', '2018-10-26',
'2018-11-02', '2018-11-08', '2018-11-24', '2018-12-05', '2018-12-13',
'2018-12-19', '2018-12-24', '2018-12-27', '2019-01-08', '2019-01-11',
'2019-01-22', '2019-01-24', '2019-01-28', '2019-02-01', '2019-02-04',
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.