Skip to content

Instantly share code, notes, and snippets.

View patil-suraj's full-sized avatar
🏠
Working from home

Suraj Patil patil-suraj

🏠
Working from home
View GitHub Profile
@patil-suraj
patil-suraj / bottom_sheet_fix.dart
Created May 4, 2019 05:47 — forked from crimsonsuv/bottom_sheet_fix.dart
Flutter Modal bottom sheet whith input fix and full screen sheet
//Flutter Modal Bottom Sheet
//Modified by Suvadeep Das
//Based on https://gist.github.com/andrelsmoraes/9e4af0133bff8960c1feeb0ead7fd749
import 'dart:async';
import 'package:flutter/material.dart';
import 'package:meta/meta.dart';
const Duration _kBottomSheetDuration = const Duration(milliseconds: 200);
@patil-suraj
patil-suraj / yahoo_finance.py
Created June 12, 2019 06:07 — forked from scrapehero/yahoo_finance.py
Python 2 code to extract stock market data from Yahoo Finance
from lxml import html
import requests
from exceptions import ValueError
from time import sleep
import json
import argparse
from collections import OrderedDict
from time import sleep
def parse(ticker):
@patil-suraj
patil-suraj / update_swift.sh
Created October 4, 2019 15:44 — forked from sgugger/update_swift.sh
Updating S4TF
#!/usr/bin/env bash
pushd ~/swift/
rm -rf usr
popd
pushd ~/download/
rm swift-tensorflow-DEVELOPMENT-cuda10.0-cudnn7-ubuntu18.04.tar.gz
wget https://storage.googleapis.com/s4tf-kokoro-artifact-testing/latest/swift-tensorflow-DEVELOPMENT-cuda10.0-cudnn7-ubuntu18.04.tar.gz
tar -xf swift-tensorflow-DEVELOPMENT-cuda10.0-cudnn7-ubuntu18.04.tar.gz
mv usr/ ~/swift/
mv ~/swift/usr/lib/python3.6 ~/swift/usr/lib/python3.7
@patil-suraj
patil-suraj / pipeline_parallel.py
Created October 2, 2024 11:32 — forked from 3outeille/pipeline_parallel.py
Self contained example of how pipeline parallel works (AFAB and 1F1B) in 200 LOC
#VERBOSE=0 torchrun --nproc_per_node 3 self_contained_pp_LOC.py
import os, random, numpy as np, torch, torch.nn as nn, torch.distributed as dist, torch.nn.functional as F
from torch.optim import AdamW
from torch.utils.data import DataLoader, DistributedSampler
from datasets import load_dataset
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
STEP, local_rank, world_size, verbose = 0, int(os.environ["LOCAL_RANK"]), int(os.environ["WORLD_SIZE"]), os.environ.get("VERBOSE", "0") == "1"
def set_all_seed(seed):