Skip to content

Instantly share code, notes, and snippets.

@patricksnape
Created July 27, 2015 15:14
Show Gist options
  • Save patricksnape/d36d7f2c3a855737a6a6 to your computer and use it in GitHub Desktop.
Save patricksnape/d36d7f2c3a855737a6a6 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"metadata": {
"collapsed": false,
"trusted": true
},
"cell_type": "code",
"source": "%matplotlib inline\nimport numpy as np\nimport menpo.io as mio\nfrom itertools import chain, islice\nfrom functools import partial\nfrom menpo.feature import ndfeature, fast_dsift",
"execution_count": null,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": true
},
"cell_type": "code",
"source": "@ndfeature\ndef menpo_dsift(pixels):\n return fast_dsift(pixels).astype(np.float32)",
"execution_count": null,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": true
},
"cell_type": "code",
"source": "from menpofit.fitter import noisy_shape_from_bounding_box\nfrom menpofit.sdm import Newton\n\nbbox_method = partial(noisy_shape_from_bounding_box, noise_percentage=0.001)\nsdm_alg = partial(Newton, alpha=0.01)",
"execution_count": null,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": true
},
"cell_type": "code",
"source": "sdm = SupervisedDescentFitter(images, \n group='sclera',\n bounding_box_group='bbox',\n sd_algorithm_cls=sdm_alg,\n patch_features=sparse_hog, \n scales=(1, 0.5), \n iterations=10, \n patch_shape=(17, 17),\n n_perturbations=20, \n perturb_from_bounding_box=bbox_method,\n verbose=False, \n batch_size=None)",
"execution_count": null,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": true
},
"cell_type": "code",
"source": "sdm.increment(images, \n group='sclera', \n bounding_box_group='bbox', \n verbose=True, \n batch_size=None)",
"execution_count": null,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": true
},
"cell_type": "code",
"source": "print(sdm)",
"execution_count": null,
"outputs": []
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "mio.export_pickle(sdm, '/mnt/data/sdm_test.pkl.gz', overwrite=True)",
"execution_count": null,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": true
},
"cell_type": "code",
"source": "from menpofit.fitter import align_shape_with_bounding_box\nfrom menpo.transform import AlignmentAffine, AlignmentSimilarity\n\n\ninit = align_shape_with_bounding_box(sdm.reference_shape, \n im.landmarks['bbox'],\n alignment_transform_cls=AlignmentSimilarity)\nleye_result = sdm.fit(im, init, crop_image=1)",
"execution_count": null,
"outputs": []
}
],
"metadata": {
"kernelspec": {
"name": "python2",
"display_name": "Python 2",
"language": "python"
},
"notify_time": "30",
"language_info": {
"mimetype": "text/x-python",
"nbconvert_exporter": "python",
"name": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10",
"file_extension": ".py",
"codemirror_mode": {
"version": 2,
"name": "ipython"
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment