Created
May 3, 2014 18:48
-
-
Save paulgb/b413732825d1a16abe95 to your computer and use it in GitHub Desktop.
Fibonacci sequence approximates km/mile conversion
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "metadata": { | |
| "name": "", | |
| "signature": "sha256:ab61aea63e18fbed6daf8dbc9649fb6bc4ac32bb4b7bf20e885a5320ef4f8fad" | |
| }, | |
| "nbformat": 3, | |
| "nbformat_minor": 0, | |
| "worksheets": [ | |
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "%matplotlib inline" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 9 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "KM_PER_MILE=1.609344\n", | |
| "N_FIBS=10" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 10 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "import matplotlib.pyplot as plt\n", | |
| "from itertools import islice\n", | |
| "import numpy as np" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 11 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "def fib():\n", | |
| " a, b = 1, 1\n", | |
| " while True:\n", | |
| " yield a, b\n", | |
| " a, b = b, (a+b)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 12 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "fibs = np.matrix(list(islice(fib(), N_FIBS)))\n", | |
| "max_miles = fibs[N_FIBS-1, 0]" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 13 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "plt.figure(figsize=(10,6))\n", | |
| "plt.scatter(map(int, fibs[:,0]), map(int, fibs[:,1]))\n", | |
| "a= plt.plot([0, max_miles], [0, KM_PER_MILE*max_miles])\n", | |
| "plt.xlabel('Miles')\n", | |
| "plt.ylabel('KM');" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "display_data", | |
| "png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAF/CAYAAAD91DX3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Wl4VeXdtvFzMwiCFBUlEYLFIiEEwiRC1YpRDCiKIiKI\nihQVa1GLOADFx0prJVEcqrXaPk71VQtqWwUUERyCClqUeUYFFBCiDGGekqz3w7J5ShWFkGTtnZy/\n48hRspOQqzcaLte91v+OBUEQIEmSpLhRJeoAkiRJ2pcFTZIkKc5Y0CRJkuKMBU2SJCnOWNAkSZLi\njAVNkiQpzpR5QbvqqqtISkoiIyOj+LWNGzeSlZVFamoqXbp0IT8/v/hj2dnZNG3alLS0NCZPnlzW\n8SRJkuJOmRe0AQMGMGnSpH1ey8nJISsri2XLltG5c2dycnIAWLRoES+88AKLFi1i0qRJDBo0iKKi\norKOKEmSFFfKvKCdfvrpHHXUUfu8Nn78ePr37w9A//79eeWVVwAYN24cffv2pXr16jRu3JgTTzyR\nGTNmlHVESZKkuBLJPWh5eXkkJSUBkJSURF5eHgBffvklKSkpxZ+XkpLCmjVroogoSZIUmcgfEojF\nYsRise/9uCRJUmVSLYpvmpSUxLp160hOTmbt2rXUr18fgIYNG7Jq1ariz1u9ejUNGzb81tefeOKJ\nfPbZZ+WWV5IkqaSaNGnCp59+elBfE8kVtAsuuIBnnnkGgGeeeYYePXoUvz527Fj27NnDihUr+OST\nT+jQocO3vv6zzz4jCALfSvh25513Rp4hkd9cP9fPtUvMN9fP9YvqrSQXlcr8Clrfvn2ZOnUq69ev\np1GjRvzud79j+PDh9O7dmyeffJLGjRvz4osvApCenk7v3r1JT0+nWrVqPProo25xSpKkSqfMC9qY\nMWO+8/U333zzO18fMWIEI0aMKMtIkiRJcS3yhwRU/jIzM6OOkNBcv0Pj+pWca3doXL9D4/qVr1gQ\nBEHUIQ5WLBYjAWNLkqRKqCS9xStokiRJccaCJkmSFGcsaJIkSXHGgiZJkhRnLGiSJElxxoImSZIU\nZyxokiRJccaCJkmSFGcsaJIkSXHGgiZJkhRnLGiSJElxxoImSZIUZyxokiRJccaCJkmSFGcsaJIk\nSXHGgiZJkhRnLGiSJElxxoImSZIUZyxokiRJccaCJkmSFGcsaJIkSXHGgiZJkhLa3r17o45Q6ixo\nkiQpIS1btozU1LbUqHE4Rx/dkMmTJ0cdqdTEgiAIog5xsGKxGAkYW5IklZKioiJ+/OPmrFlzI0Ew\nCHiPWrV6sWTJLBo1ahR1vH2UpLd4BU2SJCWcvLw81q/fRBDcQFhnzqBatZ8yc+bMqKOVCguaJElK\nOEcddRRFRTuB5d+8soPCwsUkJydHGavUWNAkSVLCqVGjJpdf/gqx2GFUrTqT2rW70KPHmXTs2DHq\naKXCe9AkSVJC+eADuPlm2LMHfvGLpcRi73L88cfTpUsXYrFY1PG+pSS9xYImSZISwsqVMHw4vP8+\n3H039OsHVRJgL9CHBCRJUoWzZUtYzE46CZo3h6VLoX//xChnJVWB/69JkqREVlAAf/kLpKZCXh7M\nmwd33gm1a0edrOxVizqAJEnSf3vjDbjlFjjmGJg4Edq1izpR+bKgSZKkuLFoUVjMPv0URo+GCy+E\nOLzvv8y5xSlJkiL31VcwaBCccQZ07QoLF0KPHpWznIEFTZIkRWjXLrj3XkhPh+rVYckSuOkmOOyw\nqJNFyy1OSZJU7oIA/v53GDYMMjJg2jRo1izqVPHDgiZJksrVjBkwZAhs3w5PPAFnnRV1ovjjFqck\nSSoXX3wBl18e3lt29dUwc6blbH8saJIkqUxt3Qq33w5t20KTJrBsGVx1FVStGnWy+GVBkyRJZaKw\nMNzCbNYsvHo2Zw787ndwxBFRJ4t/3oMmSZJK3Ztvhgea160L48bBySdHnSixWNAkSVKpWbIEbrst\nHDh7773Qs2flnWV2KNzilCRJh2z9erjxRjj9dMjMDAvaxRdbzkrKgiZJkkps9264/35o3jycbfbv\no5pq1Ig6WWJzi1OSJB20IICXX4ahQyEtDd59NyxpKh2RXkHLzs6mRYsWZGRkcNlll7F79242btxI\nVlYWqampdOnShfz8/CgjSpKk//Lxx+GZmSNHwmOPwauvWs5KW2QFbeXKlTz++OPMmjWL+fPnU1hY\nyNixY8nJySErK4tly5bRuXNncnJyooooSZL+w+rVcOWV0L079OsHs2dDVlbUqSqmyAraj370I6pX\nr86OHTsoKChgx44dNGjQgPHjx9O/f38A+vfvzyuvvBJVREmSBGzbBnfeCa1bQ6NG4aDZgQMdNFuW\nIitoRx99NLfccgvHH388DRo04MgjjyQrK4u8vDySkpIASEpKIi8vL6qIkiRVaoWF8PTT4aDZTz+F\nWbPg7ruhTp2ok1V8kT0k8Nlnn/GHP/yBlStXUrduXS655BKee+65fT4nFosR8/lcSZLK3TvvhINm\nDz8c/vEP+OlPo05UuURW0D7++GNOPfVU6tWrB0DPnj354IMPSE5OZt26dSQnJ7N27Vrq16//nV8/\ncuTI4l9nZmaSmZlZDqklSarYli0LB83Omwf33AOXXOIss4OVm5tLbm7uIf0esSAIgtKJc3Dmzp3L\n5ZdfzkcffUTNmjX5+c9/TocOHfj888+pV68ew4YNIycnh/z8/G89KBCLxYgotiRJFdLGjeE5mc89\nFxa0wYOhZs2oU1UMJektkV1Ba926NVdeeSXt27enSpUqtGvXjmuvvZatW7fSu3dvnnzySRo3bsyL\nL74YVURJkiq8PXvCURl33x1O/l+0CPazeaVyFNkVtEPhFTRJkg5NEMD48eHVsp/8JDwNoEWLqFNV\nTAl1BU2SJEVj9uzwAYCvvoKHH4Zzzok6kf6bZ3FKklRJfPklDBgA554LffrA3LmWs3hlQZMkqYLb\nvj18ACAjA5KSYOlSuO46qOY+Wtzyj0aSpAqqqCh8KvP22+HUU8MzNE84IepUOhAWNEmSKqB33w3v\nM6taFV54ISxoShwWNEmSKpBPP4Vhw8KrZTk54b1mVbyhKeH4RyZJUgWwaRPccgt07AgnnQRLlkDf\nvpazROUfmyRJCWzvXnjkEUhLg61bYeFCGDEiPENTicstTkmSElAQwGuvwa23QqNGMGUKtGoVdSqV\nFguaJEkJZu7ccDtzzZrwBIBu3TzQvKJxi1OSpASxbh0MHAhdusBFF8G8eXDeeZazisiCJklSnNu5\nMzzMvEULqFs3HDR7/fVQvXrUyVRW3OKUJClOFRXBmDHw619Dhw4wYwY0aRJ1KpUHC5okSXFo2rRw\n0GxRETz/PJx+etSJVJ4saJIkxZHly2H4cPjgA8jOhssuc5ZZZeQfuSRJcWDzZhg6FE4+OTzUfOlS\nuOIKy1ll5R+7JEkRKiiAxx6DZs1g/XqYPx/uuANq1Yo6maLkFqckSRF5/fVwnllycvjrtm2jTqR4\nYUGTJKmcLVgQngCwfDncdx907+4sM+3LLU5JkspJXh5cdx2cdVY4/X/BArjgAsuZvs2CJklSGdu1\nC3JywkGzhx8OS5bAr34Fhx0WdTLFK7c4JUkqI0EAL7wQjs1o2xamT4fU1KhTKRFY0CRJKgMffghD\nhsDu3fDXv0JmZtSJlEjc4pQkqRR9/jn07QsXXwy/+AV89JHlTAfPgiZJUinYsgVGjIB27cKZZsuW\nwc9/DlWrRp1MiciCJknSISgogP/937CUffklzJ0LI0dC7dpRJ1Mi8x40SZJKaPLkcNDs0UfDq6/C\nSSdFnUgVhQVNkqSDtGhROGh22TIYPRp69HCWmUqXW5ySJB2gr7+G66+HM86As88Oi9pFF1nOVPos\naJIk/YDdu8MjmdLTw5v+Fy+Gm2920KzKjluckiTtRxDAP/4BQ4dCy5bw3nuQlhZ1KlUGFjRJkr7D\njBnhVbKtW+Hxx6Fz56gTqTJxi1OSpP+wahVccUV44/+AATBrluVM5c+CJkkSsG0b3HEHtGkDJ5wA\nS5fC1Vc7aFbRsKBJkiq1wkJ48snwEPMVK2DOHLjrLqhTJ+pkqsy8B02SVGm99VY4aPaII+CVV6BD\nh6gTSSELmiSp0lm6FG67DRYsgHvvDQ82d5aZ4olbnJKkSmPDBvjVr+C00+D008NBs716Wc4Ufyxo\nkqQKb88eePDBcIZZYWE4aPa226BmzaiTSd/NLU5JUoUVBOG9ZUOHhg8BTJ0angYgxTsLmiSpQpo5\nMxw0u2ED/OlP0KVL1ImkA+cWpySpQlmzBn7+czj/fLj88nBshuVMicaCJkmqELZvh5EjoVUraNAg\nfFLz2muhmntFSkAWNElSQisqgr/+FZo1C0vZzJkwahT86EdRJ5NKzv+ukCQlrNzc8D6zGjXgpZfg\nlFOiTiSVDguaJCnhfPJJ+GTm7Nlwzz3Qu7ezzFSxuMUpSUoYmzbBkCHhlbKOHWHJEujTx3KmiifS\ngpafn0+vXr1o3rw56enp/Otf/2Ljxo1kZWWRmppKly5dyM/PjzKiJCkO7N0LDz8c3me2cycsXAjD\nhztoVhVXpAVt8ODBdOvWjcWLFzNv3jzS0tLIyckhKyuLZcuW0blzZ3JycqKMKEmKUBDA+PHQsiW8\n9hq8/Tb8+c+QlBR1MqlsxYIgCKL4xps3b6Zt27YsX758n9fT0tKYOnUqSUlJrFu3jszMTJYsWbLP\n58RiMSKKLUkqJ3PmhA8ArFsH998P55zjVqYSU0l6S2RX0FasWMGxxx7LgAEDaNeuHQMHDmT79u3k\n5eWR9M1/GiUlJZGXlxdVRElSBNauhauvhq5d4ZJLYN48OPdcy5kql8gKWkFBAbNmzWLQoEHMmjWL\n2rVrf2s7MxaLEfPfSEmqFHbsgLvuCrczjzkGli2DX/7SQbOqnCL7xz4lJYWUlBROPvlkAHr16kV2\ndjbJycmsW7eO5ORk1q5dS/369b/z60eOHFn868zMTDIzM8shtSSptBUVwfPPw4gR4dOZH30EP/lJ\n1KmkksvNzSU3N/eQfo/I7kED6NSpE0888QSpqamMHDmSHTt2AFCvXj2GDRtGTk4O+fn533llzXvQ\nJCnxvfdeeJ9ZLAYPPginnRZ1Iqn0laS3RFrQ5s6dyzXXXMOePXto0qQJTz/9NIWFhfTu3ZsvvviC\nxo0b8+KLL3LkkUfu83UWNElKbJ99BsOGwYwZkJMDl14KVZzMqQoq4QpaSVnQJCkx5efD3XfDU0+F\nV86GDIFataJOJZWthHqKU5JUeezdC3/6UzhoNj8/HDR7++2WM2l/fDZGklRmggAmToRbb4WGDWHy\nZGjdOupUUvyzoEmSysT8+eE25qpVcN99cN55zjKTDpRbnJKkUrVuHVx7LZx9Nlx4YVjUzj/fciYd\nDAuaJKlU7NwJ2dnhoNk6dWDJErjhBqhePepkUuJxi1OSdEiCAMaOheHDoX17+PBDOPHEqFNJic2C\nJkn6QXl5eWzZsoXGjRtT/T8uiU2fHt5nVlAAzz4LnTpFGFKqQNzilCTtVxAE3Hjjrfz4x81o27YL\nJ57YipUrV7JyJfTpE75df304cNZyJpUer6BJkvbr5Zdf5umnJ7N79wp27z6KHTse5NRTP2T37sYM\nHhwOnK1dO+qUUsVjQZMk7dfcufPYvv1C4CgAguBXfP31C3z+OTRoEG02qSJzi1OStF9Nm55IjRpb\ngaJvXhlPWtojljOpjHkFTZL0nRYuhOeeu5xq1ToTBL+gZs1FVKv2OWPGTIo6mlTheVi6JGkfX30F\nd94J//hHeF7mddcFLF48l82bN9OmTRvq1q0bdUQpoZSkt3gFTZIEwK5d8NBDMHo0XHFFOGj26KMB\nYrRp0ybqeFKlYkGTpEouCOCll2DYsPAg8+nTITU16lRS5WZBk6RK7F//giFDwmOannoKzjwz6kSS\nwKc4JalS+uILuPxy6NkTBg6Ejz+2nEnxxIImSZXI1q3hjf9t24bnZS5dCgMGQNWqUSeT9J8saJJU\nCRQWwuOPh/eWrVoFc+fCb38LRxwRdTJJ38V70CSpgnvzzfBA8yOPhAkToH37qBNJ+iEWNEmqoBYv\nhttuC/939Gi46CKIxaJOJelAuMUpSRXM+vVwww3QqROcdRYsWhQ+DGA5kxKHBU2SKojdu+H++6F5\n87CMLV4cbm3WqBF1MkkHyy1OSUpwQQD//CcMHQrp6fDee5CWFnUqSYfCgiZJCeyjj8KrZFu2wF/+\nAmefHXUiSaXBLU5JSkCrV0O/fnDhhdC/P8yaZTmTKhILmiQlkG3b4De/Cc/M/PGPw0Gz11zjoFmp\norGgSVICKCwMz8ps1gyWL4fZs+H3v4c6daJOJqkseA+aJMW5t9+GW26BWrXChwE6dow6kaSyZkGT\npDi1bFk4aHb+fLjnHujVy1lmUmXhFqckxZkNG2DwYDj1VDjttHDQ7CWXWM6kysSCJklxYs8e+MMf\nwhlme/eGxWzoUKhZM+pkksqbW5ySFLEggHHjwu3Mpk0hNxdatIg6laQoWdAkKUKzZoUPAHz9NTzy\nCHTtGnUiSfHALU5JisCaNTBgAHTrBpdeCnPmWM4k/R8LmiSVo+3b4be/hVatIDk5fFLzF7+Aau5n\nSPoP/kiQpHJQVATPPQe33x4+mTlzJjRuHHUqSfHKgiZJZWzq1PBA8+rV4cUX4ZRTok4kKd5Z0CSp\njHz6aTgmY9YsyMmBPn2cZSbpwHgPmiSVsk2bwiczf/pT6NABFi8OHwSwnEk6UBY0SSole/fCH/8Y\nHmi+bRssXAjDh8Phh0edTFKicYtTkg5REMBrr8Gtt8Lxx8Nbb0FGRtSpJCUyC5okHYK5c8PtzDVr\n4IEH4Nxz3cqUdOjc4pSkEli7Fq65Brp0gZ49Yd68cOis5UxSabCgSdJB2LkTfv97aNkSjj4ali6F\nQYPCERqSVFr2u8U5a9YsAIIgIPYd/0nYrl27skslSXGmqAjGjIFf/xo6doQZM6BJk6hTSaqoYkEQ\nBN/1gSpVqtCyZUvq1av3nV/4zjvvlGmw7xOLxdhPbEkqde+/Hw6aDQJ48EH42c+iTiQpkZSkt+z3\nCtoDDzzASy+9RK1atejTpw8XXXQRderUOeSQ/62wsJD27duTkpLChAkT2LhxI3369OHzzz+ncePG\nvPjiixx55JGl/n0l6YcsXx6OyfjwQ8jOhr59oYo3hkgqB/v9UXPTTTcxbdo0Hn74YVavXk3nzp25\n5JJLmDNnTqkGeOihh0hPTy/eRs3JySErK4tly5bRuXNncnJySvX7SdIP2bw5PAHg5JPDQ82XLIHL\nL7ecSSo/P/jjpkmTJlx44YV06dKFjz76iKVLl5baN1+9ejUTJ07kmmuuKb70N378ePr37w9A//79\neeWVV0rt+0nS9ykogEcfDQfNbtwICxbA//wP1KoVdTJJlc1+tzg/++wzxo4dy7hx4zj++OPp06cP\nt99+O4eX4kjsIUOGMHr0aLZs2VL8Wl5eHklJSQAkJSWRl5dXat9Pkr5LEMCkSeE8s+OOgzfegNat\no04lqTLbb0Fr2rQpGRkZ9OjRgx/96Ed88cUXPPbYY8VPdd58882H9I1fffVV6tevT9u2bcnNzf3O\nz4nFYt/5BCnAyJEji3+dmZlJZmbmIeWRVDnNnx+eALByJdx3H5x/vrPMJB2a3Nzc/XabA7Xfpzj/\nXYD2V5DuvPPOQ/rGI0aM4Nlnn6VatWrs2rWLLVu20LNnTz766CNyc3NJTk5m7dq1nHnmmSxZsmTf\n0D7FKekQ5eXBb34DL78Md9wB113nLDNJZaMkvWW/Be2LL77g+OOP/84vmjBhAt27dz/4hPsxdepU\n7rvvPiZMmMDQoUOpV68ew4YNIycnh/z8/G89KGBBk1RSu3bBH/4QXi3r3z+8x+yoo6JOJakiK0lv\n2e9DAllZWaxYseJbrz/11FMMHjz44NP9gH9fqRs+fDhTpkwhNTWVt99+m+HDh5f695JU+QQBjB0L\naWnhkNkPPoD777ecSYpP+72CNnHiRAYPHsxrr71GamoqANnZ2Tz//PNMmjSJlJSUcg36n7yCJulg\nfPBBOGh2z57wQPMzzog6kaTKpFQH1Xbr1o0aNWpw7rnnMm7cOJ544glmzJjBe++9x1H+J6ekBLBy\nZTho9v33YdQouOIKZ5lJSgzf+6Oqc+fOPP3005xxxhksX76ct99+23ImKe5t2RKemXnSSdC8eXig\n+ZVXWs4kJY79bnEeccQRxfeF7dq1i8MOO4wq3/x0i8Vi+8wuK29ucUr6LgUF8OSTMHIknHMO/P73\n0LBh1KkkVXalusW5bdu2Qw4kSeVl8uRw0Gy9evDaa9CuXdSJJKnk9lvQJCkRLFoUDpr95BMYPRou\nvNBBs5ISn3dkSEpIX38NgwaFT2R26QILF0KPHpYzSRWDBU1SQtm9O7xS1rx5OPl/yRK46SY47LCo\nk0lS6XGLU1JCCAL4+99h2DDIyIBp06BZs6hTSVLZsKBJinszZsCQIbB9OzzxBJx1VtSJJKlsWdAk\nRS4IAp555hk+/HA2zZqdwKBBv6RGjRp88QWMGAHvvBOOzLjySqhaNeq0klT29jsHLZ45B02qWK65\n5gbGjJnBjh2Xcvjhb9GqVTXOOutl/vKXKlx/PQwdCkccEXVKSSqZkvQWC5qkSG3YsIEGDU5gz55V\nQF2giFhsPV26wOOP16dRo6gTStKhKUlv8SlOSZHasWMHVavWAup880oVatX6H265Za7lTFKlZUGT\nFKmtWxtSrdrfgY3AKmKxP3D44W/QoUOHqKNJUmQsaJIisWED/OpXcMYZVbj11rZ06zaE4447m1NP\nfYPp09+kbt26UUeUpMj4FKekcrVnDzzyCGRnQ58+4VFNxx5bG3g26miSFDcsaJLKRRDAyy+HT2Sm\npcG774anAUiSvs2CJqnMzZwJN98MmzbBY49BVlbUiSQpvnkPmqQys3o19O8P558PV1wBs2dbziTp\nQFjQJJW67dvhzjuhdWtISYFly2DgQE8BkKQDZUGTVGqKiuCvfw0PMf/0U5g1C+6+G+rU+cEvlST9\nB+9Bk1QqcnPD+8xq1oS//x1++tOoE0lS4rKgSTokn3wSPpk5Zw7ccw9ccgnEYlGnkqTE5hanpBLZ\nuBGGDIFTTgmvli1eDL17W84kqTRY0CQdlD174KGHwllmu3aFg2aHDQu3NiVJpcMtTkkHJAhgwgS4\n9Vb4yU/gnXegRYuoU0lSxWRBk/SDZs+GW26BvDx4+GE455yoE0lSxeYWp6T9+vJLuOoqOPfc8P6y\nuXMtZ5JUHixokr5lxw646y7IyID69WHpUrjuOqjmNXdJKhf+uJVUrKgInn8eRoyAU0+Fjz+GE06I\nOpUkVT4WNEkAvPtuOGi2alV44YWwoEmSomFBkyq5zz4LB81+/DHk5ECfPlDFmx8kKVL+GJYqqfz8\ncGRGx45w0kmwZAn07Ws5k6R44I9iqZLZuxceeSQ80HzLFliwILzn7PDDo04mSfo3tzilSiIIYOLE\n8KpZSgpMmQKtWkWdSpL0XSxoUiUwb144aHb1arjvPujWzTMzJSmeucUpVWDr1sHAgZCVBT16hEXt\nvPMsZ5IU7yxoUgW0cyeMGgUtW0LduuGg2euvh+rVo04mSToQbnFKFUhREYwdC7/+NZx8MvzrX9Ck\nSdSpJEkHy4ImVRDTpoWDZouK4Lnn4PTTo04kSSopC5qU4FasgOHDYfp0yM6Gyy5zlpkkJTp/jEsJ\navNmGDYM2rcP7zVbuhSuuMJyJkkVgT/KpQRTUAB//nM4aHb9epg/H+64A2rVijqZJKm0uMUpJZBJ\nk8J5ZklJ4a/btIk6kSSpLFjQpASwYEF4AsDy5eGg2e7dnWUmSRWZW5xSnNiwYQOvv/4606ZNo6io\nCICvvoJf/hLOOiuc/r9gAVxwgeVMkiq6yAraqlWrOPPMM2nRogUtW7bk4YcfBmDjxo1kZWWRmppK\nly5dyM/PjyqiVG7mzp3LiSdm0LfvA5xzzjV07tyb7OxC0tPDQ8yXLIFf/QoOOyzqpJKk8hALgiCI\n4huvW7eOdevW0aZNG7Zt28ZJJ53EK6+8wtNPP80xxxzD0KFDueeee9i0aRM5OTn7ho7FiCi2VCYy\nMk5lwYKBwACggFjsa9q02c0LLzSmadOo00mSDkVJektkV9CSk5Np880dzkcccQTNmzdnzZo1jB8/\nnv79+wPQv39/XnnllagiSuVm1aqVQLdv3qtGELzBOec8YTmTpEoqLu5BW7lyJbNnz6Zjx47k5eWR\nlJQEQFJSEnl5eRGnk8rW559DjRpjgJpAAKyndu3RnHzySREnkyRFJfKCtm3bNi6++GIeeugh6tSp\ns8/HYrEYMe+GVgW1dSuMGAHt2sEVV7QjNfU8Dj88merVG/PLX15Ejx49oo4oSYpIpGM29u7dy8UX\nX0y/fv2K/zJKSkpi3bp1JCcns3btWurXr/+dXzty5MjiX2dmZpKZmVkOiaVDV1gITz0Fv/kNdO0K\n8+ZBw4Z1GD36XdauXcsRRxxB3bp1o44pSSqh3NxccnNzD+n3iOwhgSAI6N+/P/Xq1ePBBx8sfn3o\n0KHUq1ePYcOGkZOTQ35+vg8JqMKYMiUcNHvUUfDAA3CSu5iSVOGVpLdEVtDef/99OnXqRKtWrYq3\nMbOzs+nQoQO9e/fmiy++oHHjxrz44osceeSR+4a2oCnBLF4cDppduhRGj4YePZxlJkmVRUIVtENh\nQVOiWL8eRo6EF14I7ze7/npnmUlSZZNQYzakimz37vBIpubNoUqVcNDskCGWM0nSgfEsTqkUBQH8\n4x8wbBi0aAHvvQdpaVGnkiQlGguaVEo++ghuvhm2bIH//V/o3DnqRJKkROUWp3SIVq2Cfv3gwgvh\n5z+HWbMsZ5KkQ2NBk0po27ZwllmbNtC4cfiE5tVXQ9WqUSeTJCU6C5p0kP49aLZZM1ixAubMgbvu\ngv86CEOSpBLzHjTpILz9dnif2RFHwMsvQ4cOUSeSJFVEFjTpACxdCrfdBgsWwL33wsUXO2hWklR2\n3OKUvsfAK5t8AAARlElEQVSGDTB4MPzsZ9CpU3giQK9eljNJUtmyoEnfYc8eePDBcIZZQQEsWhQe\n1VSjRtTJJEmVgVuc0n8IAhg3LtzOTE2FqVMhPT3qVJKkysaCJn1j1qzwAYANG+BPf4IuXaJOJEmq\nrNziVKW3Zk04YPa88+Cyy2D2bMuZJClaFjRVCgUFBQwceCM1a9ahVq0jGTFiJNu2BYwcCa1aQYMG\n4ZOa114L1byuLEmKmAVNlcJvf5vN3/62kN27P2Pnznncf38RjRrtYOnScGtz1Cj40Y+iTilJUigW\nBEEQdYiDFYvFSMDYilCbNmcwd+5vgH8fkvk1p576R6ZN+12UsSRJlUBJeoubOaoU6tTJAH5c/H7V\nqvfRosWO6AJJkvQ9vIKmCm3TpvCczKefLmDnzhxisc+pUmUrtWt/wOzZ02nYsGHUESVJFVxJeov3\noKlC2rsXHn44PNB8xw5YsqQan376cx54oB0PPngWixbNtJxJkuKWV9BUoQQBvPpqOPW/cWO4/35o\n2TLqVJKkysx70FSpzZkDt9wC69bBQw/BOedEnUiSpJJxi1MJb+1auOaasJD16gVz51rOJEmJzYKm\nhLVjB/z+95CRAfXqhYNmf/lLB81KkhKff5Up4RQVwd/+BiNGwCmnwEcfwQknRJ1KkqTSY0FTQnn/\n/fBAc4AxY+C006LNI0lSWbCgKSEsXw7DhsGMGZCdDZdeClXcoJckVVD+Fae4UlhYSEFBQfH7+flw\n221w8snQpg0sWQKXXWY5kyRVbP41p7hQVFTEoEFDqFmzNjVr1ubSSwfyxz8WkpYWlrSFC+H22+Hw\nw6NOKklS2XNQreLCAw88zB13jGXHjleBmsRiX3P88QWMG9eE1q2jTidJUsl51JMS1htvvMeOHXcA\nRwO1CIINHH30QMuZJKlS8iEBRS4vD774YjDwf22sSpVJNGqUHF0oSZIiZEFTZHbuhD/8ITwv85JL\n2rJp0+ls394AOIzDDpvBgw++G3VESZIi4T1oKndBAGPHwvDh0L493HsvNGkCmzdvZuLEiRQWFnLO\nOedwzDHHRB1VkqRDVpLeYkFTufrgg3DQ7N698MAD0KlT1IkkSSpbJektbnGqXKxcGV4xmzYNRo2C\nyy93lpkkSfvjX5EqNXPmzOGyy67hoov68frrrwOwZUtYzE46CdLTw0Gz/fpZziRJ+j5eQVOpmD9/\nPj/7WRbbtw8D6vLGG9dxxRX/ZMKEkzj3XJg/Hxo0iDqlJEmJwXvQVCquvfZGHn88Gbj9m1e2Urv2\nJ7z3Xjvato0ymSRJ0XJQrSJTUFAI/OclsuUcf/wNljNJkkrALU4dsq++gvz83wBVgY+Br6hVawiD\nB98acTJJkhKTV9B0UHbu3MnmzZsB2LUrnGGWng4//nEy//znIk477Te0b/8ADz00jGuvvSbitJIk\nJSbvQdMBCYKAm24axqOP/hGoSpMmw9m1awRt2lTh3nshNTXqhJIkxSfvQVOZefbZZ3nyybcoKFhH\nQcFWli3rx09+ch+vvGI5kySptFnQVKywsJBp06YxefJk8vPz9/nYq68uZfv2vwF1gRhBkM+nn/6/\nSHJKklTR+ZCAANizZw+dO1/AnDlfUKVKfapXX860aVNo0KAZOTnw6qv/Q9Wqr1FYmArEiMXeo1Gj\nlKhjS5JUIVnQBMBf/vIXZs6MsXPnPMJ/LB6hW7fX2LmzGVlZMGdOQK9e97Ny5X1APapVm8MTT7wZ\ncWpJkiomC5oAWLJkOTt3dub//pEYyKpVc5k+Hdq3B6jFxx9P5a233mLnzp106tSJY445JrrAkiRV\nYHF5D9qkSZNIS0ujadOm3HPPPVHHqRRatGgKvAPsBQLgWVq3Hv5NOQsddthhnHvuufTs2dNyJklS\nGYq7glZYWMgNN9zApEmTWLRoEWPGjGHx4sVRx6rQ1q+HZ55pDzwL/Ab4MfAAmzZtijaYJEmVVNwV\ntBkzZnDiiSfSuHFjqlevzqWXXsq4ceOijlUh7d4N998PzZvD7t27CQvarcA04AV27NgRbUBJkiqp\nuCtoa9asoVGjRsXvp6SksGbNmggTVTxBAP/8J7RoAbm58N578MADe6lVazTwCRBw+OFD6dHjvIiT\nSpJUOcXdQwKxWCzqCBXa4sXwi1/A5s3w5z/D2WeHr6elncWjj2YzbNgV7Nq1nYsvvpgHH8yONqwk\nSZVU3BW0hg0bsmrVquL3V61aRUrKt+dtjRw5svjXmZmZZGZmlkO6xFe9Olx5JQwYAFWr7vux/v37\n0b9/v2iCSZJUQeTm5pKbm3tIv0fcncVZUFBAs2bNeOutt2jQoAEdOnRgzJgxNG/evPhzPItTkiQl\nipL0lri7glatWjUeeeQRunbtSmFhIVdfffU+5UySJKmii7sraAfCK2iSJClRlKS3xN1TnJIkSZWd\nBU2SJCnOWNAkSZLijAVNkiQpzljQJEmS4owFTZIkKc5Y0CRJkuKMBU2SJCnOWNAkSZLijAVNkiQp\nzljQJEmS4owFTZIkKc5Y0CRJkuKMBU2SJCnOWNAkSZLijAVNkiQpzljQJEmS4owFTZIkKc5Y0CRJ\nkuKMBU2SJCnOWNAkSZLijAVNkiQpzljQJEmS4owFTZIkKc5Y0CRJkuKMBU2SJCnOWNAkSZLijAVN\nkiQpzljQJEmS4owFTZIkKc5Y0CRJkuKMBU2SJCnOWNAkSZLijAVNkiQpzljQJEmS4owFTZIkKc5Y\n0CRJkuKMBU2SJCnOWNAkSZLijAVNkiQpzljQJEmS4owFTZIkKc5Y0CRJkuKMBU2SJCnOWNAkSZLi\njAVNkiQpzljQJEmS4kwkBe22226jefPmtG7dmp49e7J58+bij2VnZ9O0aVPS0tKYPHlyFPEkSZIi\nFUlB69KlCwsXLmTu3LmkpqaSnZ0NwKJFi3jhhRdYtGgRkyZNYtCgQRQVFUURsULLzc2NOkJCc/0O\njetXcq7doXH9Do3rV74iKWhZWVlUqRJ+644dO7J69WoAxo0bR9++falevTqNGzfmxBNPZMaMGVFE\nrND8l+zQuH6HxvUrOdfu0Lh+h8b1K1+R34P21FNP0a1bNwC+/PJLUlJSij+WkpLCmjVrooomSZIU\niWpl9RtnZWWxbt26b70+atQounfvDsDdd9/NYYcdxmWXXbbf3ycWi5VVREmSpPgUROTpp58OTj31\n1GDnzp3Fr2VnZwfZ2dnF73ft2jX48MMPv/W1TZo0CQDffPPNN9988823uH9r0qTJQfekWBAEAeVs\n0qRJ3HLLLUydOpVjjjmm+PVFixZx2WWXMWPGDNasWcPZZ5/Np59+6lU0SZJUqZTZFuf3ufHGG9mz\nZw9ZWVkAnHLKKTz66KOkp6fTu3dv0tPTqVatGo8++qjlTJIkVTqRXEGTJEnS/kX+FOfBeOmll2jR\nogVVq1Zl1qxZ+3zMAbcHZtKkSaSlpdG0aVPuueeeqOPEtauuuoqkpCQyMjKKX9u4cSNZWVmkpqbS\npUsX8vPzI0wY31atWsWZZ55JixYtaNmyJQ8//DDgGh6oXbt20bFjR9q0aUN6ejq//vWvAdfvYBQW\nFtK2bdviB9NcuwPXuHFjWrVqRdu2benQoQPg+h2M/Px8evXqRfPmzUlPT+df//rXQa9fQhW0jIwM\nXn75ZTp16rTP6w64PTCFhYXccMMNTJo0iUWLFjFmzBgWL14cday4NWDAACZNmrTPazk5OWRlZbFs\n2TI6d+5MTk5OROniX/Xq1XnwwQdZuHAhH374IX/6059YvHixa3iAatasyTvvvMOcOXOYN28e77zz\nDu+//77rdxAeeugh0tPTi2+Vce0OXCwWIzc3l9mzZxfPI3X9DtzgwYPp1q0bixcvZt68eaSlpR38\n+h3885fRy8zMDGbOnFn8/qhRo4KcnJzi97t27Rp88MEHUUSLa9OnTw+6du1a/P5/PzWrb1uxYkXQ\nsmXL4vebNWsWrFu3LgiCIFi7dm3QrFmzqKIlnAsvvDCYMmWKa1gC27dvD9q3bx8sWLDA9TtAq1at\nCjp37hy8/fbbwfnnnx8Egf/+HozGjRsH69ev3+c11+/A5OfnByeccMK3Xj/Y9UuoK2j744DbA7Nm\nzRoaNWpU/L7rdPDy8vJISkoCICkpiby8vIgTJYaVK1cye/ZsOnbs6BoehKKiItq0aUNSUlLxdrHr\nd2CGDBnC6NGji0+tAf/9PRixWIyzzz6b9u3b8/jjjwOu34FasWIFxx57LAMGDKBdu3YMHDiQ7du3\nH/T6RfIU5/c5kAG3B8KnP7/NNSldsVjMNT0A27Zt4+KLL+ahhx6iTp06+3zMNfx+VapUYc6cOWze\nvJmuXbvyzjvv7PNx1++7vfrqq9SvX5+2bdvu93gi1+77TZs2jeOOO46vv/6arKws0tLS9vm467d/\nBQUFzJo1i0ceeYSTTz6Zm2666VvbmQeyfnFX0KZMmXLQX9OwYUNWrVpV/P7q1atp2LBhacaqEP57\nnVatWrXPlUf9sKSkJNatW0dycjJr166lfv36UUeKa3v37uXiiy+mX79+9OjRA3ANS6Ju3bqcd955\nzJw50/U7ANOnT2f8+PFMnDiRXbt2sWXLFvr16+faHYTjjjsOgGOPPZaLLrqIGTNmuH4HKCUlhZSU\nFE4++WQAevXqRXZ2NsnJyQe1fgm7xRn8x3SQCy64gLFjx7Jnzx5WrFjBJ598UvzUif5P+/bt+eST\nT1i5ciV79uzhhRde4IILLog6VkK54IILeOaZZwB45plnikuHvi0IAq6++mrS09O56aabil93DQ/M\n+vXri5/y2rlzJ1OmTKFt27au3wEYNWoUq1atYsWKFYwdO5azzjqLZ5991rU7QDt27GDr1q0AbN++\nncmTJ5ORkeH6HaDk5GQaNWrEsmXLAHjzzTdp0aIF3bt3P7j1K4P748rMP//5zyAlJSWoWbNmkJSU\nFJxzzjnFH7v77ruDJk2aBM2aNQsmTZoUYcr4NnHixCA1NTVo0qRJMGrUqKjjxLVLL700OO6444Lq\n1asHKSkpwVNPPRVs2LAh6Ny5c9C0adMgKysr2LRpU9Qx49Z7770XxGKxoHXr1kGbNm2CNm3aBK+/\n/rpreIDmzZsXtG3bNmjdunWQkZER3HvvvUEQBK7fQcrNzQ26d+8eBIFrd6CWL18etG7dOmjdunXQ\nokWL4r8rXL8DN2fOnKB9+/ZBq1atgosuuijIz88/6PVzUK0kSVKcSdgtTkmSpIrKgiZJkhRnLGiS\nJElxxoImSZIUZyxokiRJccaCJkmSFGcsaJIqrCpVqtCvX7/i9wsKCjj22GOLj42bMGEC99xzDwAj\nR47k/vvvjySnJP23uDvqSZJKS+3atVm4cCG7du2iZs2aTJkyhZSUlOIz8Lp3715c1jxXUFI88Qqa\npAqtW7duvPbaawCMGTOGvn37Fh8V99e//pUbb7zxW1/z2Wefce6559K+fXs6derE0qVLAXjppZfI\nyMigTZs2nHHGGeX3f0JSpWNBk1Sh9enTh7Fjx7J7927mz59Px44d9/u5/76Kdu211/LHP/6Rjz/+\nmNGjRzNo0CAA7rrrLiZPnsycOXOYMGFCueSXVDm5xSmpQsvIyGDlypWMGTOG88477wc/f/v27Uyf\nPp1LLrmk+LU9e/YAcNppp9G/f3969+5Nz549yyyzJFnQJFV4F1xwAbfeeitTp07l66+//t7PLSoq\n4qijjmL27Nnf+thjjz3GjBkzeO211zjppJOYOXMmRx99dFnFllSJucUpqcK76qqrGDlyJC1atNjv\n5wRBQBAE1KlThxNOOIG///3vxa/PmzcPCO9N69ChA7/97W859thjWb16dbnkl1T5WNAkVVj/vqes\nYcOG3HDDDcWv/fv1/f36+eef58knn6RNmza0bNmS8ePHAzB06FBatWpFRkYGp512Gq1atSrv/0uS\nKolY8O/HmSRJkhQXvIImSZIUZyxokiRJccaCJkmSFGcsaJIkSXHGgiZJkhRnLGiSJElxxoImSZIU\nZyxokiRJceb/A+Rwaar5UIlcAAAAAElFTkSuQmCC\n", | |
| "text": [ | |
| "<matplotlib.figure.Figure at 0x10c959b10>" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 14 | |
| } | |
| ], | |
| "metadata": {} | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment