Skip to content

Instantly share code, notes, and snippets.

View pavel242242's full-sized avatar
πŸ’»
Keboolovna

Pavel ChocholouΕ‘ pavel242242

πŸ’»
Keboolovna
View GitHub Profile
select 1;
exec("".join(map(chr,[int("".join(str({'🀍': 0, 'πŸ–€': 3, 'πŸ¦„': 6, 'πŸ˜ƒ': 1, 'πŸ€·πŸΌβ€β™‚οΈ': 2, '42': 4, 'πŸ˜‰': 7, '😊': 8, 'πŸ˜›': 9, '🀣': 5}[i]) for i in x.split())) for x in
"πŸ˜ƒ πŸ˜ƒ πŸ€·πŸΌβ€β™‚οΈ πŸ˜ƒ πŸ˜ƒ 42 πŸ˜ƒ 🀍 🀣 πŸ˜ƒ πŸ˜ƒ 🀍 πŸ˜ƒ πŸ˜ƒ πŸ¦„ 42 🀍 πŸ–€ πŸ˜› πŸ˜ƒ 🀍 42 πŸ˜ƒ 🀍 πŸ˜ƒ πŸ˜ƒ 🀍 😊 πŸ˜ƒ 🀍 \
😊 πŸ˜ƒ πŸ˜ƒ πŸ˜ƒ πŸ–€ πŸ€·πŸΌβ€β™‚οΈ πŸ˜ƒ πŸ˜ƒ πŸ˜› πŸ˜ƒ πŸ˜ƒ πŸ˜ƒ πŸ˜ƒ πŸ˜ƒ 42 πŸ˜ƒ 🀍 😊 πŸ˜ƒ 🀍 🀍 πŸ–€ πŸ˜› 42 πŸ˜ƒ πŸ˜ƒ 🀍 πŸ˜ƒ 🀍 🀍\
πŸ˜ƒ 🀍 πŸ˜ƒ πŸ˜ƒ 🀍 πŸ€·πŸΌβ€β™‚οΈ πŸ–€ πŸ€·πŸΌβ€β™‚οΈ πŸ˜› πŸ˜‰ πŸ˜ƒ 🀍 🀍 πŸ˜ƒ 🀍 🀍 42 🀍 πŸ˜ƒ πŸ˜ƒ 🀍 42 πŸ˜› 42 42 πŸ˜ƒ πŸ˜ƒ 🀍 🀣\
🀍 42 πŸ˜ƒ 🀣 😊 πŸ˜ƒ 🀍 πŸ–€ πŸ€·πŸΌβ€β™‚οΈ πŸ–€ πŸ€·πŸΌβ€β™‚οΈ πŸ–€ πŸ€·πŸΌβ€β™‚οΈ πŸ–€ πŸ€·πŸΌβ€β™‚οΈ πŸ˜ƒ πŸ˜ƒ 42 πŸ˜ƒ 🀍 πŸ˜ƒ πŸ˜ƒ πŸ˜ƒ πŸ¦„ πŸ˜ƒ πŸ˜ƒ πŸ˜‰ πŸ˜ƒ πŸ˜ƒ\
42 πŸ˜ƒ πŸ˜ƒ 🀍 πŸ–€ πŸ€·πŸΌβ€β™‚οΈ πŸ˜ƒ πŸ˜ƒ 🀍 42 πŸ˜› πŸ–€ πŸ€·πŸΌβ€β™‚οΈ 42 πŸ–€ πŸ–€ πŸ€·πŸΌβ€β™‚οΈ πŸ˜ƒ πŸ˜ƒ 🀍 🀣 🀍 πŸ˜ƒ 🀍 πŸ˜ƒ πŸ˜ƒ πŸ€·πŸΌβ€β™‚οΈ πŸ˜ƒ πŸ˜ƒ\
42 πŸ˜ƒ 🀍 🀣 πŸ˜ƒ πŸ˜ƒ 🀍 πŸ˜ƒ πŸ˜ƒ πŸ¦„ 42 🀍 πŸ–€ πŸ˜› 🀣 πŸ€·πŸΌβ€β™‚οΈ πŸ–€ πŸ€·πŸΌβ€β™‚οΈ 42 πŸ–€ πŸ–€ πŸ€·πŸΌβ€β™‚οΈ 🀣 πŸ€·πŸΌβ€β™‚οΈ πŸ–€ πŸ€·πŸΌβ€β™‚οΈ πŸ¦„ πŸ˜ƒ \
πŸ–€ πŸ€·πŸΌβ€β™‚οΈ πŸ˜ƒ πŸ€·πŸΌβ€β™‚οΈ πŸ–€ πŸ˜ƒ πŸ€·πŸΌβ€β™‚οΈ 🀣 πŸ–€ πŸ˜› 42 πŸ¦„ πŸ˜ƒ 🀍 πŸ€·πŸΌβ€β™‚οΈ πŸ˜ƒ πŸ˜ƒ πŸ˜ƒ πŸ˜ƒ πŸ˜ƒ 42 πŸ˜ƒ 🀍 πŸ˜› πŸ˜› πŸ˜‰ πŸ˜ƒ πŸ˜ƒ πŸ¦„ 42\
🀍 πŸ˜› πŸ˜‰ πŸ˜ƒ 🀍 🀍 πŸ˜ƒ 🀍 🀍 42 🀍 🀣 πŸ€·πŸΌβ€β™‚οΈ 42 42 🀣 πŸ€·πŸΌβ€β™‚οΈ 42 πŸ˜ƒ 42 πŸ˜ƒ 42 πŸ˜ƒ πŸ˜ƒ 🀍"
.split(" ")])))
## get api token
curl --location --request POST 'http://IP:9047/apiv2/login' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--data-raw '{
"userName": "chocho",
"password": "pwd"
}'
## get clusters
from langchain.agents import create_csv_agent, create_sql_agent
from langchain.agents.agent_toolkits import SQLDatabaseToolkit
from langchain.sql_database import SQLDatabase
from langchain.llms.openai import OpenAI
from langchain.agents import AgentExecutor
from dotenv import load_dotenv
from sqlalchemy import create_engine
import duckdb
import os
You create precise, detailed and accurate prompts containing a guidance what to do and what not. Most of the time you use a few-shot example to make your prompts even better, this is specially valuable for achieving correctly formatted result.
You are given one prompt at a time and improve it while keeping all of its meaning. Prefer JSON as output format. Describe the importance to suppress all explanations or anything else but the JSON output.
Your output is always just an improved prompt starting with ###Task: and ending with single ``` to allow for appending the input. Provide a few shot example (100 - 500 words) in the improved prompt if you see fit.
Here examples of prompts & responses.
prompt:Extract dates from the text.
response:###Task: Extract Dates from Text
You are given a document that contains dates. Extract all the dates from the document and return them as a JSON array.
### LOAD via datalake (plus cca 5 sec analyze overhead per table)
| SCHEMA TABLE TABLE IS RAW NUM. OF ESTIMATED SUMMARY OF |
| NAME NAME CREATED FILE SIZE COLUMNS ROW COUNT ISSUES |
| ------ ----- -------- --------- ------- --------- ---------- |
| `keboola` `LINEITEM` NO 6.87 GiB 16 45.05 M |
| TOTAL ESTIMATED ESTIMATED TOTAL DICTIONARY VARLEN ESTIMATED |
| SCHEMA OFFLOADABLE HEATWAVE NODE MYSQL NODE STRING ENCODED ENCODED LOAD |
| NAME TABLES FOOTPRINT FOOTPRINT COLUMNS COLUMNS COLUMNS TIME |
| ------ ----------- --------- --------- ------- ----------