I hereby claim:
- I am pbamotra on github.
- I am benzene (https://keybase.io/benzene) on keybase.
- I have a public key ASCnWFSySbSBalyy4SCcjIzFTkb2gGmffCtnRewv0sLT2wo
To claim this, I am signing this object:
eii = ExternalInputIterator(batch_size=16, | |
data_file=processed_data_file, | |
image_dir=images_directory) | |
iterator = iter(eii) | |
class ExternalSourcePipeline(Pipeline): | |
def __init__(self, data_iterator, batch_size, num_threads, device_id): | |
super(ExternalSourcePipeline, self).__init__(batch_size, | |
num_threads, | |
device_id, |
from nvidia.dali.plugin.pytorch import DALIGenericIterator | |
pipe = ExternalSourcePipeline(data_iterator=iterator, batch_size=16, num_threads=2, device_id=0) | |
pipe.build() | |
# first parameter is list of pipelines to run | |
# second pipeline is output_map that maps consecutive outputs to | |
# corresponding names | |
# last parameter is the number of iterations - number of examples you | |
# want to iterate on |
# Source: https://github.com/opencv/openvino_training_extensions/blob/develop/pytorch_toolkit/nncf/examples/common/utils.py#L86 | |
import tarfile | |
from pathlib import Path | |
def create_code_snapshot(root, dst_path, extensions=(".py", ".json", ".cpp", ".cu")): | |
"""Creates tarball with the source code""" | |
with tarfile.open(str(dst_path), "w:gz") as tar: | |
for path in Path(root).rglob("*"): |
Calendar: https://iclr.cc/virtual/calendar.html#tab-calendar | |
Paper search: https://iclr.cc/virtual/papers.html?filter=keywords | |
Papers: | |
1. Title: | |
Tree-Structured Attention with Hierarchical Accumulation | |
Authority: | |
Richard Socher | |
Url: | |
https://iclr.cc/virtual/poster_HJxK5pEYvr.html |
import datetime | |
import glob | |
from lxml import etree | |
import pandas as pd | |
def get_books(file): | |
doc = etree.HTMLParser() | |
tree = etree.parse(file, parser=doc) |
I hereby claim:
To claim this, I am signing this object:
# Execute this in a Jupyter notebook | |
import os | |
import json | |
import base64 | |
import pandas as pd | |
from pprint import pprint | |
# Import USD 10B+, 1MM vol+, 25+ P/E, Buy/Strong Buy rated | |
buy_rated_tradingview = pd.read_csv('~/Downloads/america_2021-04-11.csv') |
!pip install cython==0.28.5 | |
!pip install mmdet==2.10.0 requests | |
!pip install torch==1.7.0+cu110 torchvision==0.8.1+cu110 -f https://download.pytorch.org/whl/torch_stable.html | |
!pip install mmcv-full==1.2.7+torch1.7.0+cu110 -f https://openmmlab.oss-accelerate.aliyuncs.com/mmcv/dist/index.html | |
!pip install onnx onnxruntime onnxruntime-gpu onnxoptimizer | |
!git clone --branch v2.10.0 https://github.com/open-mmlab/mmdetection.git | |
# Download conf and weights from | |
# https://github.com/iiLaurens/CascadeTabNet/blob/mmdet2x/Demo/Cascade_Tabnet_mmdet_v2_cpu_only_demo.ipynb |
# Assumes you've awk, jq, curl installed | |
calc() { awk "BEGIN{print $*}"; } | |
export PROPERTY_VALUE=1000000 | |
export LOAN_AMOUNT=`calc $PROPERTY_VALUE*0.8` | |
export PROPERTY_ZIP=94107 | |
alias bankrate="curl 'https://mortgage-api.bankrate.com/rates/v4/?loanType=purchase&propertyValue=$PROPERTY_VALUE&propertyType=SingleFamily&propertyUse=PrimaryResidence&cashOutAmount=0&zipCode=$PROPERTY_ZIP&loanAmount=$LOAN_AMOUNT&creditScore=770&debtToIncomeRatio=0&pointsRange=Zero&productFamilies\[\]=conventional&loanTerms\[\]=30yr&loanTerms\[\]=7-1arm&loanTerms\[\]=7-6arm&loanTerms\[\]=10-1arm&loanTerms\[\]=10-6arm&defaultSearch=true&pid=br3&veteranStatus=NoMilitaryService&hadPriorVaLoan=false&hasVaDisabilities=false&firstTimeHomeBuyer=false&displayTargets\[\]=mobileRateTable&displayTargets\[\]=featuredRateTable&deviceTypes\[\]=mobile&e2eTestEnabled=false&clientId=MortgageRateTable&includeSponsored=true&includeEditorial=true' -H 'authority: mortgage-api.bankrate.com' -H 'accept: application/json, text/plain, */*' -H 'accept |
Design docs are a way to propose future work and get detailed technical feedback.
Brief description of what the problem or opportunity is. Give an overview of the domain and pain points. What is the current solution? Give some details about what its shortcomings are.