Created
March 15, 2016 08:55
-
-
Save peace098beat/2f1286d5881045f5a84c to your computer and use it in GitHub Desktop.
PMLのポーティング(20160315)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #! coding:utf-8 | |
| """ | |
| fdtd_3d.py | |
| 日本音響学会 サイエンスシリーズ14 | |
| 「FDTD法で視る音の世界」 付録DVD | |
| fdtd_3d_c_sjis.cのpython翻訳 | |
| 所管 | |
| x->i | |
| y->j | |
| z->k | |
| """ | |
| import os | |
| import numpy as np | |
| # 変数の宣言 | |
| xmax = 5.000e0 # x軸解析領域 [m] | |
| ymax = 5.000e0 # y軸解析領域 [m] | |
| zmax = 5.000e0 # z軸解析領域 [m] | |
| tmax = 2.000e-2 # 解析時間 [s] | |
| dh = 5.000e-1 # 空間離散化幅 [m] | |
| dt = 8.400e-5 # 時間離散化幅 [s] | |
| c0 = 3.435e2 # 空気の音速 [m/s] | |
| row0 = 1.205e0 # 空気の密度 [kg/m^3] | |
| xdr = 2.000e0 # x軸音源位置 [m] | |
| ydr = 3.000e0 # y軸音源位置 [m] | |
| zdr = 2.500e0 # z軸音源位置 [m] | |
| xon = 2.500e0 # 直方体x座標最小値 [m] | |
| xox = 3.500e0 # 直方体x座標最大値 [m] | |
| yon = 1.500e0 # 直方体y座標最小値 [m] | |
| yox = 3.000e0 # 直方体y座標最大値 [m] | |
| zon = 1.500e0 # 直方体z座標最小値 [m] | |
| zox = 3.500e0 # 直方体z座標最大値 [m] | |
| alpn = 0.200e0 # 直方体表面吸音率 [-] | |
| m = 1.000e0 # ガウシアンパルス最大値 [m^3/s] | |
| a = 2.000e6 # ガウシアンパルス係数 [-] | |
| t0 = 3.000e-3 # ガウシアンパルス中心時間 [s] | |
| pl = 16 # PML層数 [-] | |
| pm = 4 # PML減衰係数テーパー乗数 [-] | |
| emax = 1.200e0 # PML減衰係数最大値 | |
| fn = "out_3d" # 出力ファイルネーム | |
| df = 5 # 出力ファイルスキップ数 | |
| # Buffer | |
| ex = np.zeros(pl + 1) | |
| pmla = np.zeros(pl + 1) | |
| pmlb = np.zeros(pl + 1) | |
| pmlc = np.zeros(pl + 1) | |
| # 諸定数の算出 | |
| # 解析範囲 | |
| ix = int(xmax / dh) + pl * 2 | |
| jx = int(ymax / dh) + pl * 2 | |
| kx = int(zmax / dh) + pl * 2 | |
| tx = int(tmax / dt) | |
| # 直方体位置 | |
| ion = int(xon / dh) + pl | |
| iox = int(xox / dh) + pl | |
| jon = int(yon / dh) + pl | |
| jox = int(yox / dh) + pl | |
| kon = int(zon / dh) + pl | |
| kox = int(zox / dh) + pl | |
| # 加振点位置 | |
| idr = int(xdr / dh) + pl | |
| jdr = int(ydr / dh) + pl | |
| kdr = int(zdr / dh) + pl | |
| # 加振時間 | |
| tdr = int((2.0 * t0) / dt) | |
| # 体積弾性率 | |
| kp0 = row0 * c0 * c0 | |
| # 特性インピーダンス | |
| z0 = row0 * c0 | |
| # 表面インピーダンス | |
| if alpn != 0.0: | |
| zn = row0 * c0 * (1.0 + np.sqrt(1.0 - alpn)) / (1.0 - np.sqrt(1.0 - alpn)) | |
| # Courant数 | |
| clf = c0 * dt / dh | |
| # 粒子速度用更新係数 | |
| vc = clf / z0 | |
| # 音圧用更新係数 | |
| pc = clf * z0 | |
| # PML用更新係数 | |
| for i in range(pl): | |
| i += 1 | |
| ex[i] = emax * np.power(float(pl - i + 1) / float(pl), float(pm)) | |
| for i in range(pl): | |
| i += 1 | |
| pmla[i] = (1.0 - ex[i]) / (1.0 + ex[i]) | |
| pmlb[i] = clf / z0 / (1.0 + ex[i]) | |
| pmlc[i] = clf * z0 / (1.0 + ex[i]) | |
| # メモリ格納 | |
| p = np.zeros((ix + 1, jx + 1, kx + 1)) | |
| px = np.zeros((ix + 1, jx + 1, kx + 1)) | |
| py = np.zeros((ix + 1, jx + 1, kx + 1)) | |
| pz = np.zeros((ix + 1, jx + 1, kx + 1)) | |
| vx = np.zeros((ix + 1, jx + 1, kx + 1)) | |
| vy = np.zeros((ix + 1, jx + 1, kx + 1)) | |
| vz = np.zeros((ix + 1, jx + 1, kx + 1)) | |
| q = np.zeros(tdr + 1) | |
| print "p.shape", p.shape | |
| print "px.shape", px.shape | |
| # 音源波形の生成 | |
| for t in range(tdr): | |
| # t={1,2,...,tdr} | |
| t += 1 | |
| q[t] = m * np.exp(-a * pow(float(t * dt - t0), 2.0)) | |
| # 時間ループ | |
| tcount = 1 | |
| fcount = 0 | |
| txstep = float(tx) / 100. | |
| print("Time Loop Start" + os.linesep) | |
| for t in range(tx): | |
| # t = {1,2,...,tx} | |
| t += 1 | |
| print t, tx | |
| # ---------------------------- | |
| # 粒子速度(vx)の更新 | |
| # ---------------------------- | |
| # 左側のPML | |
| for i in range(pl): | |
| i += 1 | |
| for j in range(jx): | |
| j += 1 | |
| for k in range(kx): | |
| k += 1 | |
| vx[i, j, k] = pmla[i] * vx[i, j, k] - pmlb[i] * (p[i + 1, j, k] - p[i, j, k]) | |
| pass | |
| # 音響領域 | |
| for i in range(pl + 1, ix - pl - 1 + 1): | |
| # print i, ix-pl-1+1 | |
| for j in range(1, jx + 1): | |
| # print j, jx+1 | |
| for k in range(1, kx + 1): | |
| vx[i, j, k] = vx[i, j, k] - vc * (p[i + 1, j, k] - p[i, j, k]) | |
| # 左側PML | |
| for i in range(ix - pl, ix - 1 + 1): | |
| # for(i=ix-pl; i<=ix-1;i++) | |
| for j in range(1, jx + 1): | |
| for k in range(1, kx + 1): | |
| vx[i, j, k] = pmla[ix - i] * vx[i, j, k] - pmlb[ix - i] * (p[i + 1, j, k] - p[i, j, k]) | |
| # -- (上) PMLの範囲(配列番号)がわかれば3行 | |
| for i in range(1, ix + 1): | |
| for j in range(1, pl + 1): | |
| for k in range(1, kx + 1): | |
| vy[i, j, k] = pmla[j] * vy[i, j, k] - pmlb[j] * (p[i, j + 1, k] - p[i, j, k]) | |
| for i in range(ix + 1): | |
| for j in range(pl + 1, jx - pl - 1 + 1): | |
| for k in range(1, kx + 1): | |
| vy[i, j, k] = vy[i, j, k] - vc * (p[i, j + 1, k] - p[i, j, k]) | |
| for i in range(1, ix + 1): | |
| for j in range(jx - pl, jx - 1 + 1): | |
| for k in range(1, kx + 1): | |
| vy[i, j, k] = pmla[jx - j] * vy[i, j, k] - pmlb[jx - j] * (p[i, j + 1, k] - p[i, j, k]) | |
| # 粒子速度(vz)の更新 | |
| for i in range(1, ix + 1): | |
| for j in range(1, jx + 1): | |
| for k in range(1, pl + 1): | |
| vz[i, j, k] = pmla[k] * vz[i, j, k] - pmlb[k] * (p[i, j, k + 1] - p[i, j, k]) | |
| for i in range(1, ix + 1): | |
| for j in range(1, jx + 1): | |
| for k in range(pl + 1, kx - pl - 1 + 1): | |
| vz[i, j, k] = vz[i, j, k] - vc * (p[i, j, k + 1] - p[i, j, k]) | |
| for i in range(1, ix + 1): | |
| for j in range(1, jx + 1): | |
| for k in range(kx - pl, kx - 1 + 1): | |
| vz[i, j, k] = pmla[kx - k] * vz[i, j, k] - pmlb[kx - k] * (p[i, j, k + 1] - p[i, j, k]) | |
| # 境界条件(vx)の計算 | |
| for j in range(1, jx + 1): | |
| for k in range(1, kx + 1): | |
| vx[0, j, k] = 0.0 | |
| vx[ix, j, k] = 0.0 | |
| for j in range(jon, jox + 1): | |
| for k in range(kon, kox + 1): | |
| if alpn != 0.0: | |
| vx[ion - 1, j, k] = p[ion - 1, j, k] / zn | |
| vx[ion, j, k] = -p[iox + 1, j, k] / zn | |
| else: | |
| vx[ion - 1, j, k] = 0.0 | |
| vx[iox, j, k] = 0.0 | |
| # 境界条件(vy)の計算 | |
| for k in range(1, kx + 1): | |
| for i in range(1, ix + 1): | |
| vy[i, 0, k] = 0.0 | |
| vy[i, jx, k] = 0.0 | |
| for k in range(kon, kox + 1): | |
| for i in range(ion, iox + 1): | |
| if alpn != 0.0: | |
| vy[i, jon - 1, k] = p[i, jon - 1, k] / zn | |
| vy[i, jox, k] = p[i, jox + 1, k] / zn | |
| else: | |
| vy[i, jon - 1, k] = 0.0 | |
| vy[i, jox, k] = 0.0 | |
| # 境界条件(vz)の計算 | |
| for i in range(1, ix + 1): | |
| for j in range(1, jx + 1): | |
| vz[i, j, 0] = 0.0 | |
| vz[i, j, kx] = 0.0 | |
| for i in range(ion, iox + 1): | |
| for j in range(jon, jox + 1): | |
| if alpn != 0.0: | |
| vz[i, j, kon - 1] = p[i, j, kon - 1] / zn | |
| vz[i, j, kox] = -p[i, j, kox + 1] / zn | |
| else: | |
| vz[i, j, kon - 1] = 0.0 | |
| vz[i, j, kox] = 0.0 | |
| # 音圧(px)の更新 | |
| for i in range(1, pl + 1): | |
| for j in range(1, jx + 1): | |
| for k in range(1, kx + 1): | |
| px[i, j, k] = pmla[i] * px[i, j, k] - pmlc[i] * (vx[i, j, k] - vx[i - 1, j, k]) | |
| for i in range(pl + 1, ix - pl + 1): | |
| for j in range(1, jx + 1): | |
| for k in range(1, kx + 1): | |
| px[i, j, k] = px[i, j, k] - pc * (vx[i, j, k] - vx[i - 1, j, k]) | |
| if (i == idr) and (j == jdr) and (k == kdr) and (t <= tdr): | |
| px[i, j, k] = px[i, j, k] + dt * kp0 * q[t] / 3.0 / (dh * dh * dh) | |
| for i in range(ix - pl + 1, ix + 1): | |
| for j in range(1, jx + 1): | |
| for k in range(1, kx + 1): | |
| px[i, j, k] = pmla[ix - i + 1] * px[i, j, k] - pmlc[ix - i + 1] * (vx[i, j, k] - vx[i - 1, j, k]) | |
| # 音圧(py)の更新 | |
| for i in range(1, ix + 1): | |
| for j in range(1, pl + 1): | |
| for k in range(1, kx + 1): | |
| py[i, j, k] = pmla[j] * py[i, j, k] - pmlc[j] * (vy[i, j, k] - vy[i, j - 1, k]) | |
| for i in range(1, ix + 1): | |
| for j in range(pl * 1, jx - pl + 1): | |
| for k in range(1, kx + 1): | |
| py[i, j, k] = p[i, j, k] - pc * (vy[i, j, k] - vy[i, j - 1, k]) | |
| if (i == idr) and (j == jdr) and (k == kdr) and (t <= tdr): | |
| py[i, j, k] = py[i, j, k] + dt * kp0 * q[t] / 3.0 / (dh * dh * dh) | |
| for i in range(1, ix + 1): | |
| for j in range(jx - pl + 1, jx + 1): | |
| for k in range(1, kx + 1): | |
| py[i, j, k] = pmla[jx - j + 1] * py[i, j, k] - pmlc[jx - j + 1] * (vy[i, j, k] - vy[i, j - 1, k]) | |
| # 音圧(pz)の更新 | |
| for i in range(1, ix + 1): | |
| for j in range(1, jx + 1): | |
| for k in range(1, pl + 1): | |
| pz[i, j, k] = pmla[k] * pz[i, j, k] - pmlc[k] * (vz[i, j, k] - vz[i, j, k - 1]) | |
| for i in range(1, ix + 1): | |
| for j in range(1, jx + 1): | |
| for k in range(pl + 1, kx - pl + 1): | |
| pz[i, j, k] = pz[i, j, k] - pc * (vz[i, j, k] - vz[i, j, k - 1]) | |
| for i in range(1, ix + 1): | |
| for j in range(1, jx + 1): | |
| for k in range(kx - pl + 1, kx + 1): | |
| pz[i, j, k] = pmla[kx - k + 1] * pz[i, j, k] - pmlc[kx - k + 1] * (vz[i, j, k] - vz[i, j, k - 1]) | |
| # 音圧の合成 | |
| p = px + py + pz | |
| os.linesep="\n" | |
| # 結果の出力 | |
| fcount += 1 | |
| filename = "%s_%05d.vtk" % (fn, fcount) | |
| dirname = fn | |
| if not os.path.exists(dirname): | |
| os.mkdir(dirname) | |
| filename = os.path.join(dirname,filename) | |
| with open(filename, 'w') as f: | |
| f.write("# vtk DataFile Version 2.0" + os.linesep) | |
| f.write(filename + os.linesep) | |
| f.write("ASCII" + os.linesep) | |
| f.write("DATASET STRUCTURED_POINTS" + os.linesep) | |
| f.write("DIMENSIONS %5d%5d%5d%s" % (ix - 2 * pl, jx - 2 * pl, kx - 2 * pl, os.linesep)) | |
| f.write("ORIGIN %7.3f%7.3f%7.3f%s" % (0.0, 0.0, 0.0, os.linesep)) | |
| f.write("SPACING %7.3f%7.3f%7.3f%s" % (dh, dh, dh, os.linesep)) | |
| f.write("%s%10d%s" % ("POINT_DATA ", (ix - 2 * pl) * (jx - 2 * pl) * (kx - 2 * pl), os.linesep)) | |
| f.write("SCALARS SoundPressure float" + os.linesep) | |
| f.write("%s%s" % ("LOOKUP_TABLE default", os.linesep)) | |
| for k in range(pl + 1, kx - pl + 1): | |
| for j in range(pl + 1, jx - pl + 1): | |
| for i in range(pl + 1, ix - pl + 1): | |
| if (i >= ion and i <= iox and j >= jon and j <= jox and k >= kon and k <= kox): | |
| f.write("%20.10e%s" % (-100., os.linesep)) | |
| else: | |
| f.write("%20.10e%s" % (p[i, j, k], os.linesep)) | |
| f.write("%s%s" % ("VECTORS ParticleVelocity float", os.linesep)) | |
| for k in range(pl + 1, kx - pl + 1): | |
| for j in range(pl + 1, jx - pl + 1): | |
| for i in range(pl + 1, ix - pl + 1): | |
| if (i >= ion and i <= iox and j >= jon and j <= jox and k >= kon and k <= kox): | |
| f.write("%20.10e%20.10e%20.10e%s" % (0., 0., 0., os.linesep)) | |
| else: | |
| tmpx = (vx[i - 1, j, k] + vx[i, j, k]) / 2.0 | |
| tmpy = (vy[i, j - 1, k] + vy[i, j, k]) / 2.0 | |
| tmpz = (vz[i, j, k - 1] + vz[i, j, k]) / 2.0 | |
| f.write("%20.10e%20.10e%20.10e%s" % (tmpx, tmpy, tmpz, os.linesep)) | |
| if (t >= int(float(tcount) * txstep)): | |
| print("%s%7.2f%s%s" % ("Completed", float(t) / float(tx) * 100., "%", os.linesep)) | |
| tcount += 1 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!coding:utf-8 | |
| """ | |
| fdtd_3d_v1.py | |
| FDTD | |
| 境界条件:インピーダンス境界 | |
| 次元:3D | |
| """ | |
| import os | |
| from time import sleep | |
| from scipy import * | |
| from mpl_toolkits.mplot3d import axes3d | |
| from matplotlib import cm | |
| import matplotlib.pyplot as plt | |
| # ************************************** # | |
| # * Paramater | |
| # ************************************** # | |
| X = 50 | |
| Y = 50 | |
| Z = 50 | |
| dx = 0.1 | |
| dy = 0.1 | |
| dz = 0.1 | |
| dt = 0.0001 | |
| Ro = 1.21 | |
| C = 343 | |
| K = Ro * C * C | |
| # ************************************** # | |
| # * Source | |
| # ************************************** # | |
| ang = arange(-pi, pi, 2 * pi / 50) | |
| sig = cos(ang) | |
| sig += 1 | |
| # 音響インピーダンス | |
| Z0 = Ro * C | |
| # ************************************** # | |
| # * Buffer | |
| # ************************************** # | |
| P1 = zeros((X, Y, Z), "float64") | |
| P2 = zeros((X, Y, Z), "float64") | |
| Ux1 = zeros((X + 1, Y, Z), "float64") | |
| Ux2 = zeros((X + 1, Y, Z), "float64") | |
| Uy1 = zeros((X, Y + 1, Z), "float64") | |
| Uy2 = zeros((X, Y + 1, Z), "float64") | |
| Uz1 = zeros((X, Y, Z + 1), "float64") | |
| Uz2 = zeros((X, Y, Z + 1), "float64") | |
| Rec = [] | |
| # ************************************** # | |
| # * Field Plot | |
| # ************************************** # | |
| plot_z = Z / 2 | |
| x = arange(0, dx * X, dx) | |
| y = arange(0, dy * Y, dy) | |
| xx, yy = meshgrid(y, x) | |
| fig = plt.figure() | |
| ax = axes3d.Axes3D(fig) | |
| surf = ax.plot_surface(xx, yy, P2[:, :, plot_z], rstride=1, cstride=1, cmap=cm.jet) | |
| oldsurf1 = surf | |
| surf = ax.plot_surface(xx, yy, P2[:, :, plot_z / 2] + 1, rstride=1, cstride=1, cmap=cm.jet) | |
| oldsurf2 = surf | |
| fig.show() | |
| # ************************************** # | |
| # * Iteration | |
| # ************************************** # | |
| for t in range(220): | |
| print t | |
| if t < len(sig): | |
| P1[X / 2, Y / 2, Z / 2] += sig[t] | |
| # ** 運動方程式 ** # | |
| # Inner Elements | |
| Ux2[1:X, :, :] = Ux1[1:X, :, :] - dt / Ro / dx * (P1[1:X, :, :] - P1[:X - 1, :, :]) | |
| Uy2[:, 1:Y, :] = Uy1[:, 1:Y, :] - dt / Ro / dy * (P1[:, 1:Y, :] - P1[:, :Y - 1, :]) | |
| Uz2[:, :, 1:Z] = Uz1[:, :, 1:Z] - dt / Ro / dz * (P1[:, :, 1:Z] - P1[:, :, :Z - 1]) | |
| # 振動解析により,構造振動ノードの変位から速度計算 | |
| # write code ... | |
| # BC | |
| Ux2[0, :, :] = P1[0, :, :] / -Z0 | |
| Ux2[-1, :, :] = P1[-1, :, :] / Z0 | |
| Uy2[:, 0, :] = P1[:, 0, :] / -Z0 | |
| Uy2[:, -1, :] = P1[:, -1, :] / Z0 | |
| Uz2[:, :, 0] = P1[:, :, 0] / -Z0 | |
| Uz2[:, :, -1] = P1[:, :, -1] / Z0 | |
| # ** 連続の式 ** # | |
| P2[:X, :Y, :Z] = P1[:X, :Y, :Z] \ | |
| - K * dt / dx * (Ux2[1:X + 1, :, :] - Ux2[:X, :, :]) \ | |
| - K * dt / dy * (Uy2[:, 1:Y + 1, :] - Uy2[:, :Y, :]) \ | |
| - K * dt / dz * (Uz2[:, :, 1:Z + 1] - Uz2[:, :, :Z]) | |
| # グラフプロット | |
| surf1 = ax.plot_surface(xx, yy, P2[:, :, plot_z], rstride=1, cstride=1, cmap=cm.jet) | |
| surf2 = ax.plot_surface(xx, yy, P2[:, :, plot_z / 2] + 1, rstride=1, cstride=1, cmap=cm.jet) | |
| ax.set_zlim3d(-1, 1) | |
| ax.collections.remove(oldsurf1) | |
| ax.collections.remove(oldsurf2) | |
| oldsurf1 = surf1 | |
| oldsurf2 = surf2 | |
| plt.pause(.01) | |
| # 変数の置き換え | |
| P1, P2 = P2, P1 | |
| Ux1, Ux2 = Ux2, Ux1 | |
| Uy1, Uy2 = Uy2, Uy1 | |
| Uz1, Uz2 = Uz2, Uz1 | |
| Rec.append(P2[X / 4, Y / 4, Z / 4]) | |
| # output | |
| # 結果の出力 | |
| os.linesep="\n" | |
| fcount = t | |
| fn = "out" | |
| filename = "out_%05d.vtk" % (fcount) | |
| dirname = os.path.basename(__file__) | |
| dirname, ext = os.path.splitext(dirname) | |
| dirname = "out_"+dirname | |
| if not os.path.exists(dirname): | |
| os.mkdir(dirname) | |
| filename = os.path.join(dirname,filename) | |
| # アウトプット | |
| with open(filename, 'w') as f: | |
| f.write("# vtk DataFile Version 2.0" + os.linesep) | |
| f.write(filename + os.linesep) | |
| f.write("ASCII" + os.linesep) | |
| f.write("DATASET STRUCTURED_POINTS" + os.linesep) | |
| f.write("DIMENSIONS %5d%5d%5d%s" % (X, Y, Z, os.linesep)) | |
| f.write("ORIGIN %7.3f%7.3f%7.3f%s" % (0.0, 0.0, 0.0, os.linesep)) | |
| f.write("SPACING %7.3f%7.3f%7.3f%s" % (dx, dy, dz, os.linesep)) | |
| f.write("%s%10d%s" % ("POINT_DATA ", X*Y*Z, os.linesep)) | |
| f.write("SCALARS SoundPressure float" + os.linesep) | |
| f.write("%s%s" % ("LOOKUP_TABLE default", os.linesep)) | |
| for k in range(Z): | |
| for j in range(Y): | |
| for i in range(X): | |
| f.write("%20.10e%s" % (P2[i, j, k], os.linesep)) | |
| f.write("%s%s" % ("VECTORS ParticleVelocity float", os.linesep)) | |
| for k in range(Z): | |
| for j in range(Y): | |
| for i in range(X): | |
| tmpx = (Ux2[i - 1, j, k] + Ux2[i, j, k]) / 2.0 | |
| tmpy = (Uy2[i, j - 1, k] + Uy2[i, j, k]) / 2.0 | |
| tmpz = (Uz2[i, j, k - 1] + Uz2[i, j, k]) / 2.0 | |
| f.write("%20.10e%20.10e%20.10e%s" % (tmpx, tmpy, tmpz, os.linesep)) | |
| fig = plt.figure() | |
| plt.plot(Rec / max(Rec)) | |
| plt.plot(sig / max(sig)) | |
| plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment