Created
November 27, 2015 07:56
-
-
Save peace098beat/67dcb8a31d7b08d76010 to your computer and use it in GitHub Desktop.
[Pandas] はじめてのPandas
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# Pandasを使ってみる" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import pandas as pd\n", | |
| "import numpy as np" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## 日時の使い方\n", | |
| "http://sinhrks.hatenablog.com/entry/2014/11/09/183603" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "dt = pd.to_datetime('2014-11-09 10:10')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "Timestamp('2014-11-09 10:10:00')" | |
| ] | |
| }, | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "dt" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "pandas.tslib.Timestamp" | |
| ] | |
| }, | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "type(dt)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import datetime" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "True" | |
| ] | |
| }, | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "isinstance(dt, datetime.datetime)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Python pandas データ選択処理をちょっと詳しく <前編>\n", | |
| "http://sinhrks.hatenablog.com/entry/2014/11/12/233216" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "I1 1\n", | |
| "I2 2\n", | |
| "I3 3\n", | |
| "dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "s = pd.Series([1,2,3], index=['I1', 'I2', 'I3'])\n", | |
| "s" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "1" | |
| ] | |
| }, | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "s[0]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "1" | |
| ] | |
| }, | |
| "execution_count": 9, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "s['I1']" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>C1</th>\n", | |
| " <th>C2</th>\n", | |
| " <th>C3</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>I1</th>\n", | |
| " <td>11</td>\n", | |
| " <td>12</td>\n", | |
| " <td>13</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>I2</th>\n", | |
| " <td>21</td>\n", | |
| " <td>22</td>\n", | |
| " <td>23</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>I3</th>\n", | |
| " <td>31</td>\n", | |
| " <td>32</td>\n", | |
| " <td>33</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " C1 C2 C3\n", | |
| "I1 11 12 13\n", | |
| "I2 21 22 23\n", | |
| "I3 31 32 33" | |
| ] | |
| }, | |
| "execution_count": 10, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df = pd.DataFrame({'C1':[11,21,31], 'C2':[12,22,32],'C3':[13,23,33]}, index=['I1','I2','I3'])\n", | |
| "df" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "I1 11\n", | |
| "I2 21\n", | |
| "I3 31\n", | |
| "Name: C1, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df['C1']" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>C2</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>I1</th>\n", | |
| " <td>12</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>I2</th>\n", | |
| " <td>22</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>I3</th>\n", | |
| " <td>32</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " C2\n", | |
| "I1 12\n", | |
| "I2 22\n", | |
| "I3 32" | |
| ] | |
| }, | |
| "execution_count": 12, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df[[1]]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>C1</th>\n", | |
| " <th>C2</th>\n", | |
| " <th>C3</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>I2</th>\n", | |
| " <td>21</td>\n", | |
| " <td>22</td>\n", | |
| " <td>23</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " C1 C2 C3\n", | |
| "I2 21 22 23" | |
| ] | |
| }, | |
| "execution_count": 13, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df[1:2]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 14, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>C1</th>\n", | |
| " <th>C2</th>\n", | |
| " <th>C3</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>I1</th>\n", | |
| " <td>11</td>\n", | |
| " <td>12</td>\n", | |
| " <td>13</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>I3</th>\n", | |
| " <td>31</td>\n", | |
| " <td>32</td>\n", | |
| " <td>33</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " C1 C2 C3\n", | |
| "I1 11 12 13\n", | |
| "I3 31 32 33" | |
| ] | |
| }, | |
| "execution_count": 14, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df[[True,False,True]]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 15, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>C1</th>\n", | |
| " <th>C2</th>\n", | |
| " <th>C3</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>I1</th>\n", | |
| " <td>False</td>\n", | |
| " <td>False</td>\n", | |
| " <td>False</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>I2</th>\n", | |
| " <td>False</td>\n", | |
| " <td>True</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>I3</th>\n", | |
| " <td>True</td>\n", | |
| " <td>True</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " C1 C2 C3\n", | |
| "I1 False False False\n", | |
| "I2 False True True\n", | |
| "I3 True True True" | |
| ] | |
| }, | |
| "execution_count": 15, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df>21" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 16, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>C1</th>\n", | |
| " <th>C2</th>\n", | |
| " <th>C3</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>I1</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>I2</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>22</td>\n", | |
| " <td>23</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>I3</th>\n", | |
| " <td>31</td>\n", | |
| " <td>32</td>\n", | |
| " <td>33</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " C1 C2 C3\n", | |
| "I1 NaN NaN NaN\n", | |
| "I2 NaN 22 23\n", | |
| "I3 31 32 33" | |
| ] | |
| }, | |
| "execution_count": 16, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df[df>21]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 17, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "I1 11\n", | |
| "I2 21\n", | |
| "I3 31\n", | |
| "Name: C1, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 17, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df['C1'] # 返り値はSeries" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 18, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>C1</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>I1</th>\n", | |
| " <td>11</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>I2</th>\n", | |
| " <td>21</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>I3</th>\n", | |
| " <td>31</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " C1\n", | |
| "I1 11\n", | |
| "I2 21\n", | |
| "I3 31" | |
| ] | |
| }, | |
| "execution_count": 18, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df[['C1']] # 返り値はDataFrame" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### index, columnsを元にした選択(ix,loc,iloc)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 19, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "22" | |
| ] | |
| }, | |
| "execution_count": 19, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.ix['I2', 'C2']" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 20, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "22" | |
| ] | |
| }, | |
| "execution_count": 20, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.ix[1,1]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 21, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "C1 21\n", | |
| "C2 22\n", | |
| "C3 23\n", | |
| "Name: I2, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 21, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.ix[1,:]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 22, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "I1 12\n", | |
| "I2 22\n", | |
| "I3 32\n", | |
| "Name: C2, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 22, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.ix[:,1]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 23, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>C1</th>\n", | |
| " <th>C2</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>I1</th>\n", | |
| " <td>11</td>\n", | |
| " <td>12</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>I3</th>\n", | |
| " <td>31</td>\n", | |
| " <td>32</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " C1 C2\n", | |
| "I1 11 12\n", | |
| "I3 31 32" | |
| ] | |
| }, | |
| "execution_count": 23, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.ix[['I1','I3'],['C1','C2']]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 24, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "I2 21\n", | |
| "Name: C1, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 24, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.ix[1:2, \"C1\"]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Python pandas データ選択処理をちょっと詳しく <中編>\n", | |
| "http://sinhrks.hatenablog.com/entry/2014/11/15/230705" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 25, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>N1</th>\n", | |
| " <th>N2</th>\n", | |
| " <th>N3</th>\n", | |
| " <th>F1</th>\n", | |
| " <th>F2</th>\n", | |
| " <th>S1</th>\n", | |
| " <th>S2</th>\n", | |
| " <th>D1</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2014-11-30</th>\n", | |
| " <td>1</td>\n", | |
| " <td>10</td>\n", | |
| " <td>6</td>\n", | |
| " <td>1.1</td>\n", | |
| " <td>1.1</td>\n", | |
| " <td>A</td>\n", | |
| " <td>A</td>\n", | |
| " <td>2014-11-01</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2014-12-31</th>\n", | |
| " <td>2</td>\n", | |
| " <td>20</td>\n", | |
| " <td>5</td>\n", | |
| " <td>2.2</td>\n", | |
| " <td>2.2</td>\n", | |
| " <td>b</td>\n", | |
| " <td>X</td>\n", | |
| " <td>2014-11-02</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-01-31</th>\n", | |
| " <td>3</td>\n", | |
| " <td>30</td>\n", | |
| " <td>4</td>\n", | |
| " <td>3.3</td>\n", | |
| " <td>3.3</td>\n", | |
| " <td>C</td>\n", | |
| " <td>X</td>\n", | |
| " <td>2014-11-03</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-02-28</th>\n", | |
| " <td>4</td>\n", | |
| " <td>40</td>\n", | |
| " <td>3</td>\n", | |
| " <td>4.4</td>\n", | |
| " <td>4.4</td>\n", | |
| " <td>D</td>\n", | |
| " <td>X</td>\n", | |
| " <td>2014-11-04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-03-31</th>\n", | |
| " <td>5</td>\n", | |
| " <td>50</td>\n", | |
| " <td>2</td>\n", | |
| " <td>5.5</td>\n", | |
| " <td>5.5</td>\n", | |
| " <td>E</td>\n", | |
| " <td>E</td>\n", | |
| " <td>2014-11-05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-04-30</th>\n", | |
| " <td>6</td>\n", | |
| " <td>60</td>\n", | |
| " <td>1</td>\n", | |
| " <td>6.6</td>\n", | |
| " <td>6.6</td>\n", | |
| " <td>F</td>\n", | |
| " <td>F</td>\n", | |
| " <td>2014-11-06</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " N1 N2 N3 F1 F2 S1 S2 D1\n", | |
| "2014-11-30 1 10 6 1.1 1.1 A A 2014-11-01\n", | |
| "2014-12-31 2 20 5 2.2 2.2 b X 2014-11-02\n", | |
| "2015-01-31 3 30 4 3.3 3.3 C X 2014-11-03\n", | |
| "2015-02-28 4 40 3 4.4 4.4 D X 2014-11-04\n", | |
| "2015-03-31 5 50 2 5.5 5.5 E E 2014-11-05\n", | |
| "2015-04-30 6 60 1 6.6 6.6 F F 2014-11-06" | |
| ] | |
| }, | |
| "execution_count": 25, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df = pd.DataFrame({\n", | |
| " 'N1':[1,2,3,4,5,6],\n", | |
| " 'N2':[10,20,30,40,50,60],\n", | |
| " 'N3':[6,5,4,3,2,1],\n", | |
| " 'F1': [1.1, 2.2, 3.3, 4.4, 5.5, 6.6],\n", | |
| " 'F2': [1.1, 2.2, 3.3, 4.4, 5.5, 6.6],\n", | |
| " 'S1': ['A', 'b', 'C', 'D', 'E', 'F'],\n", | |
| " 'S2': ['A', 'X', 'X', 'X', 'E', 'F'],\n", | |
| " 'D1':pd.date_range('2014-11-01', freq='D', periods=6)},\n", | |
| " index=pd.date_range('2014-11-01', freq='M', periods=6),\n", | |
| " columns=['N1', 'N2', 'N3', 'F1', 'F2', 'S1', 'S2', 'D1']\n", | |
| " )\n", | |
| "df" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 26, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DatetimeIndex(['2014-11-30', '2014-12-31', '2015-01-31', '2015-02-28',\n", | |
| " '2015-03-31', '2015-04-30'],\n", | |
| " dtype='datetime64[ns]', freq='M')" | |
| ] | |
| }, | |
| "execution_count": 26, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.index" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 27, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "Index([u'N1', u'N2', u'N3', u'F1', u'F2', u'S1', u'S2', u'D1'], dtype='object')" | |
| ] | |
| }, | |
| "execution_count": 27, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.columns" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 28, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2014-11-30 10\n", | |
| "2014-12-31 20\n", | |
| "2015-01-31 30\n", | |
| "2015-02-28 40\n", | |
| "2015-03-31 50\n", | |
| "2015-04-30 60\n", | |
| "Freq: M, Name: N2, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 28, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.ix[:, 1]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 29, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([ True, True, True, False, False, False, False, False], dtype=bool)" | |
| ] | |
| }, | |
| "execution_count": 29, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.columns.map(lambda x:x.startswith('N'))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 30, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>N1</th>\n", | |
| " <th>N2</th>\n", | |
| " <th>N3</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2014-11-30</th>\n", | |
| " <td>1</td>\n", | |
| " <td>10</td>\n", | |
| " <td>6</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2014-12-31</th>\n", | |
| " <td>2</td>\n", | |
| " <td>20</td>\n", | |
| " <td>5</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-01-31</th>\n", | |
| " <td>3</td>\n", | |
| " <td>30</td>\n", | |
| " <td>4</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-02-28</th>\n", | |
| " <td>4</td>\n", | |
| " <td>40</td>\n", | |
| " <td>3</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-03-31</th>\n", | |
| " <td>5</td>\n", | |
| " <td>50</td>\n", | |
| " <td>2</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-04-30</th>\n", | |
| " <td>6</td>\n", | |
| " <td>60</td>\n", | |
| " <td>1</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " N1 N2 N3\n", | |
| "2014-11-30 1 10 6\n", | |
| "2014-12-31 2 20 5\n", | |
| "2015-01-31 3 30 4\n", | |
| "2015-02-28 4 40 3\n", | |
| "2015-03-31 5 50 2\n", | |
| "2015-04-30 6 60 1" | |
| ] | |
| }, | |
| "execution_count": 30, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.ix[:, df.columns.map(lambda x:x.startswith('N'))]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 31, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>N1</th>\n", | |
| " <th>N2</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2014-11-30</th>\n", | |
| " <td>1</td>\n", | |
| " <td>10</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2014-12-31</th>\n", | |
| " <td>2</td>\n", | |
| " <td>20</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-01-31</th>\n", | |
| " <td>3</td>\n", | |
| " <td>30</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-02-28</th>\n", | |
| " <td>4</td>\n", | |
| " <td>40</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-03-31</th>\n", | |
| " <td>5</td>\n", | |
| " <td>50</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-04-30</th>\n", | |
| " <td>6</td>\n", | |
| " <td>60</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " N1 N2\n", | |
| "2014-11-30 1 10\n", | |
| "2014-12-31 2 20\n", | |
| "2015-01-31 3 30\n", | |
| "2015-02-28 4 40\n", | |
| "2015-03-31 5 50\n", | |
| "2015-04-30 6 60" | |
| ] | |
| }, | |
| "execution_count": 31, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.ix[:, df.columns.isin(['N1','N2','N4'])]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 32, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stderr", | |
| "output_type": "stream", | |
| "text": [ | |
| "C:\\Users\\fifi\\Anaconda\\lib\\site-packages\\ipykernel\\__main__.py:1: FutureWarning: order is deprecated, use sort_values(...)\n", | |
| " if __name__ == '__main__':\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "Index([u'D1', u'F1', u'F2', u'N1', u'N2', u'N3', u'S1', u'S2'], dtype='object')" | |
| ] | |
| }, | |
| "execution_count": 32, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.columns.order()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 33, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stderr", | |
| "output_type": "stream", | |
| "text": [ | |
| "C:\\Users\\fifi\\Anaconda\\lib\\site-packages\\ipykernel\\__main__.py:1: FutureWarning: order is deprecated, use sort_values(...)\n", | |
| " if __name__ == '__main__':\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "Index([u'D1', u'F1', u'F2'], dtype='object')" | |
| ] | |
| }, | |
| "execution_count": 33, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.columns.order()[:3]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "raw", | |
| "metadata": {}, | |
| "source": [ | |
| "df[df.columns.order()[:5]]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 34, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "N1 int64\n", | |
| "N2 int64\n", | |
| "N3 int64\n", | |
| "F1 float64\n", | |
| "F2 float64\n", | |
| "S1 object\n", | |
| "S2 object\n", | |
| "D1 datetime64[ns]\n", | |
| "dtype: object" | |
| ] | |
| }, | |
| "execution_count": 34, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.dtypes" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 35, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "N1 False\n", | |
| "N2 False\n", | |
| "N3 False\n", | |
| "F1 True\n", | |
| "F2 True\n", | |
| "S1 False\n", | |
| "S2 False\n", | |
| "D1 False\n", | |
| "dtype: bool" | |
| ] | |
| }, | |
| "execution_count": 35, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.dtypes == np.float64" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 36, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>F1</th>\n", | |
| " <th>F2</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2014-11-30</th>\n", | |
| " <td>1.1</td>\n", | |
| " <td>1.1</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2014-12-31</th>\n", | |
| " <td>2.2</td>\n", | |
| " <td>2.2</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-01-31</th>\n", | |
| " <td>3.3</td>\n", | |
| " <td>3.3</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-02-28</th>\n", | |
| " <td>4.4</td>\n", | |
| " <td>4.4</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-03-31</th>\n", | |
| " <td>5.5</td>\n", | |
| " <td>5.5</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-04-30</th>\n", | |
| " <td>6.6</td>\n", | |
| " <td>6.6</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " F1 F2\n", | |
| "2014-11-30 1.1 1.1\n", | |
| "2014-12-31 2.2 2.2\n", | |
| "2015-01-31 3.3 3.3\n", | |
| "2015-02-28 4.4 4.4\n", | |
| "2015-03-31 5.5 5.5\n", | |
| "2015-04-30 6.6 6.6" | |
| ] | |
| }, | |
| "execution_count": 36, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.ix[:,df.dtypes == np.float64]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 37, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "N1 21.0\n", | |
| "N2 210.0\n", | |
| "N3 21.0\n", | |
| "F1 23.1\n", | |
| "F2 23.1\n", | |
| "dtype: float64" | |
| ] | |
| }, | |
| "execution_count": 37, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.sum()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 38, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "N1 3.50\n", | |
| "N2 35.00\n", | |
| "N3 3.50\n", | |
| "F1 3.85\n", | |
| "F2 3.85\n", | |
| "dtype: float64" | |
| ] | |
| }, | |
| "execution_count": 38, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.mean()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 39, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "N1 1.870829\n", | |
| "N2 18.708287\n", | |
| "N3 1.870829\n", | |
| "F1 2.057912\n", | |
| "F2 2.057912\n", | |
| "dtype: float64" | |
| ] | |
| }, | |
| "execution_count": 39, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.std()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 40, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "N1 3.500\n", | |
| "N2 350.000\n", | |
| "N3 3.500\n", | |
| "F1 4.235\n", | |
| "F2 4.235\n", | |
| "dtype: float64" | |
| ] | |
| }, | |
| "execution_count": 40, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.var()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 41, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "indexer = df.sum()>50" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 42, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "N1 False\n", | |
| "N2 True\n", | |
| "N3 False\n", | |
| "F1 False\n", | |
| "F2 False\n", | |
| "dtype: bool" | |
| ] | |
| }, | |
| "execution_count": 42, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "indexer" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 43, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>N2</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2014-11-30</th>\n", | |
| " <td>10</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2014-12-31</th>\n", | |
| " <td>20</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-01-31</th>\n", | |
| " <td>30</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-02-28</th>\n", | |
| " <td>40</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-03-31</th>\n", | |
| " <td>50</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-04-30</th>\n", | |
| " <td>60</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " N2\n", | |
| "2014-11-30 10\n", | |
| "2014-12-31 20\n", | |
| "2015-01-31 30\n", | |
| "2015-02-28 40\n", | |
| "2015-03-31 50\n", | |
| "2015-04-30 60" | |
| ] | |
| }, | |
| "execution_count": 43, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.ix[:,indexer.index[indexer]]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 44, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>N1</th>\n", | |
| " <th>N2</th>\n", | |
| " <th>N3</th>\n", | |
| " <th>F1</th>\n", | |
| " <th>F2</th>\n", | |
| " <th>S1</th>\n", | |
| " <th>S2</th>\n", | |
| " <th>D1</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2014-11-30</th>\n", | |
| " <td>1</td>\n", | |
| " <td>10</td>\n", | |
| " <td>6</td>\n", | |
| " <td>1.1</td>\n", | |
| " <td>1.1</td>\n", | |
| " <td>A</td>\n", | |
| " <td>A</td>\n", | |
| " <td>2014-11-01</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2014-12-31</th>\n", | |
| " <td>2</td>\n", | |
| " <td>20</td>\n", | |
| " <td>5</td>\n", | |
| " <td>2.2</td>\n", | |
| " <td>2.2</td>\n", | |
| " <td>b</td>\n", | |
| " <td>X</td>\n", | |
| " <td>2014-11-02</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-01-31</th>\n", | |
| " <td>3</td>\n", | |
| " <td>30</td>\n", | |
| " <td>4</td>\n", | |
| " <td>3.3</td>\n", | |
| " <td>3.3</td>\n", | |
| " <td>C</td>\n", | |
| " <td>X</td>\n", | |
| " <td>2014-11-03</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-02-28</th>\n", | |
| " <td>4</td>\n", | |
| " <td>40</td>\n", | |
| " <td>3</td>\n", | |
| " <td>4.4</td>\n", | |
| " <td>4.4</td>\n", | |
| " <td>D</td>\n", | |
| " <td>X</td>\n", | |
| " <td>2014-11-04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-03-31</th>\n", | |
| " <td>5</td>\n", | |
| " <td>50</td>\n", | |
| " <td>2</td>\n", | |
| " <td>5.5</td>\n", | |
| " <td>5.5</td>\n", | |
| " <td>E</td>\n", | |
| " <td>E</td>\n", | |
| " <td>2014-11-05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-04-30</th>\n", | |
| " <td>6</td>\n", | |
| " <td>60</td>\n", | |
| " <td>1</td>\n", | |
| " <td>6.6</td>\n", | |
| " <td>6.6</td>\n", | |
| " <td>F</td>\n", | |
| " <td>F</td>\n", | |
| " <td>2014-11-06</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " N1 N2 N3 F1 F2 S1 S2 D1\n", | |
| "2014-11-30 1 10 6 1.1 1.1 A A 2014-11-01\n", | |
| "2014-12-31 2 20 5 2.2 2.2 b X 2014-11-02\n", | |
| "2015-01-31 3 30 4 3.3 3.3 C X 2014-11-03\n", | |
| "2015-02-28 4 40 3 4.4 4.4 D X 2014-11-04\n", | |
| "2015-03-31 5 50 2 5.5 5.5 E E 2014-11-05\n", | |
| "2015-04-30 6 60 1 6.6 6.6 F F 2014-11-06" | |
| ] | |
| }, | |
| "execution_count": 44, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 45, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2014-11-30 10\n", | |
| "2014-12-31 40\n", | |
| "2015-01-31 90\n", | |
| "2015-02-28 160\n", | |
| "2015-03-31 250\n", | |
| "2015-04-30 360\n", | |
| "Freq: M, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 45, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.apply(lambda x: x['N1'] * x['N2'], axis=1)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 46, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2014-11-30 False\n", | |
| "2014-12-31 False\n", | |
| "2015-01-31 False\n", | |
| "2015-02-28 True\n", | |
| "2015-03-31 True\n", | |
| "2015-04-30 True\n", | |
| "Freq: M, dtype: bool" | |
| ] | |
| }, | |
| "execution_count": 46, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.apply(lambda x: x['N1'] * x['N2'], axis=1) > 100" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 47, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>N1</th>\n", | |
| " <th>N2</th>\n", | |
| " <th>N3</th>\n", | |
| " <th>F1</th>\n", | |
| " <th>F2</th>\n", | |
| " <th>S1</th>\n", | |
| " <th>S2</th>\n", | |
| " <th>D1</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2015-02-28</th>\n", | |
| " <td>4</td>\n", | |
| " <td>40</td>\n", | |
| " <td>3</td>\n", | |
| " <td>4.4</td>\n", | |
| " <td>4.4</td>\n", | |
| " <td>D</td>\n", | |
| " <td>X</td>\n", | |
| " <td>2014-11-04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-03-31</th>\n", | |
| " <td>5</td>\n", | |
| " <td>50</td>\n", | |
| " <td>2</td>\n", | |
| " <td>5.5</td>\n", | |
| " <td>5.5</td>\n", | |
| " <td>E</td>\n", | |
| " <td>E</td>\n", | |
| " <td>2014-11-05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-04-30</th>\n", | |
| " <td>6</td>\n", | |
| " <td>60</td>\n", | |
| " <td>1</td>\n", | |
| " <td>6.6</td>\n", | |
| " <td>6.6</td>\n", | |
| " <td>F</td>\n", | |
| " <td>F</td>\n", | |
| " <td>2014-11-06</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " N1 N2 N3 F1 F2 S1 S2 D1\n", | |
| "2015-02-28 4 40 3 4.4 4.4 D X 2014-11-04\n", | |
| "2015-03-31 5 50 2 5.5 5.5 E E 2014-11-05\n", | |
| "2015-04-30 6 60 1 6.6 6.6 F F 2014-11-06" | |
| ] | |
| }, | |
| "execution_count": 47, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df[df.apply(lambda x: x['N1'] * x['N2'], axis=1) > 100]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 48, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>N2</th>\n", | |
| " <th>N3</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2014-11-30</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2014-12-31</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-01-31</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-02-28</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-03-31</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2015-04-30</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " N2 N3\n", | |
| "2014-11-30 NaN NaN\n", | |
| "2014-12-31 NaN NaN\n", | |
| "2015-01-31 NaN NaN\n", | |
| "2015-02-28 NaN NaN\n", | |
| "2015-03-31 NaN NaN\n", | |
| "2015-04-30 NaN NaN" | |
| ] | |
| }, | |
| "execution_count": 48, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df[[1]] * df[[2]]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 49, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2014-11-30 10\n", | |
| "2014-12-31 40\n", | |
| "2015-01-31 90\n", | |
| "2015-02-28 160\n", | |
| "2015-03-31 250\n", | |
| "2015-04-30 360\n", | |
| "Freq: M, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 49, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a = df['N1'] * df['N2']\n", | |
| "a" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 50, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "pandas.core.series.Series" | |
| ] | |
| }, | |
| "execution_count": 50, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "type(df['N1'])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 51, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "pandas.core.frame.DataFrame" | |
| ] | |
| }, | |
| "execution_count": 51, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "type(df[[1]])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 52, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stderr", | |
| "output_type": "stream", | |
| "text": [ | |
| "C:\\Users\\fifi\\Anaconda\\lib\\site-packages\\ipykernel\\__main__.py:1: FutureWarning: The pandas.rpy module is deprecated and will be removed in a future version. We refer to external packages like rpy2. \n", | |
| "See here for a guide on how to port your code to rpy2: http://pandas.pydata.org/pandas-docs/stable/r_interface.html\n", | |
| " if __name__ == '__main__':\n" | |
| ] | |
| }, | |
| { | |
| "ename": "ImportError", | |
| "evalue": "No module named rpy2.robjects.packages", | |
| "output_type": "error", | |
| "traceback": [ | |
| "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", | |
| "\u001b[1;31mImportError\u001b[0m Traceback (most recent call last)", | |
| "\u001b[1;32m<ipython-input-52-63ebebefea80>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32mimport\u001b[0m \u001b[0mpandas\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrpy\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcommon\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mcom\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", | |
| "\u001b[1;32mC:\\Users\\fifi\\Anaconda\\lib\\site-packages\\pandas\\rpy\\common.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mpandas\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mutil\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtesting\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0m_test\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 14\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 15\u001b[1;33m \u001b[1;32mfrom\u001b[0m \u001b[0mrpy2\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrobjects\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpackages\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mimportr\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 16\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mrpy2\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrobjects\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mr\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 17\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mrpy2\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrobjects\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mrobj\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", | |
| "\u001b[1;31mImportError\u001b[0m: No module named rpy2.robjects.packages" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "import pandas.rpy.common as com" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# 簡単なデータ操作を Python pandas で行う\n", | |
| "http://sinhrks.hatenablog.com/entry/2014/10/11/232951" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "重要!!! pd.options.display.max_rows=5" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 60, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "# 表示する行数を設定\n", | |
| "pd.options.display.max_rows=5" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "from sklearn import datasets\n", | |
| "iris = datasets.load_iris()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "irisデータの取得" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "csv から読み込み\n", | |
| "http://aima.cs.berkeley.edu/data/iris.csv" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "names = ['Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width', 'Species']\n", | |
| "iris = pd.read_csv('iris.csv', header=None, names=names)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "iris" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "type(iris)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### 列操作" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "iris.columns" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "列名変更" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "iris.rename(columns={'Species': 'newcol'})" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "変数名を用いて列選択" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "iris['Species']" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "iris" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "文字列リストを用いて複数列選択" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "clist = ['Petal.Length', 'Petal.Width']\n", | |
| "iris[ clist ]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "真偽値を用いて列選択" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "cols = [False,False,True, True, False]\n", | |
| "iris.loc[:, cols]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "iris.loc[:, iris.dtypes == float]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### 列操作" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "値が特定の条件を満たす行を抽出" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "iris[iris['Species'] == 'virginica']" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "iris.loc[[1,2,3]]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import random\n", | |
| "iris.loc[random.sample(iris.index, 5)]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "iris['Petal.Mult'] = iris['Petal.Width'] * iris['Petal.Length']\n", | |
| "iris" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "iris['Petal.Mean'] = iris['Petal.Width'] + iris['Petal.Length']\n", | |
| "iris" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import matplotlib.pyplot as plt" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "from pandas.tools.plotting import scatter_matrix" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "%matplotlib inline" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "#文字列データの取得のためのFrameDataの取得\n", | |
| "rfilename='pd_data.tsv'\n", | |
| "dialect='tab'\n", | |
| "df0=data_check(rfilename,dialect) \n", | |
| "StartDateTime=pd.Timestamp(df0.ix[2,1]+' '+df0.ix[2,2])\n", | |
| "print(StartDateTime)\n", | |
| "\n", | |
| "#本格的なデータ処理をするためのFrameDataの取得 \n", | |
| "rfilename='pd_data.tsv'\n", | |
| "skiprow=5 #ヘッダを除く、スキップ行数\n", | |
| "head=0 #スキップしたあとの行番号を指定すること 無視する場合はNone\n", | |
| "delimiter='\\t' #区切り文字 : delimiter=',' or delimiter='\\t'\n", | |
| "df=data_input(rfilename,skiprow,head,delimiter) #データインプット関数\n", | |
| "print(df)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "source": [ | |
| "# 信号処理" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "df = pd.DataFrame({\n", | |
| " 'N1':[1,2,3,4,5,6],\n", | |
| " 'N2':[10,20,30,40,50,60],\n", | |
| " 'N3':[6,5,4,3,2,1],\n", | |
| " 'F1': [1.1, 2.2, 3.3, 4.4, 5.5, 6.6],\n", | |
| " 'F2': [1.1, 2.2, 3.3, 4.4, 5.5, 6.6],\n", | |
| " 'S1': ['A', 'b', 'C', 'D', 'E', 'F'],\n", | |
| " 'S2': ['A', 'X', 'X', 'X', 'E', 'F'],\n", | |
| " 'D1':pd.date_range('2014-11-01', freq='D', periods=6)},\n", | |
| " index=pd.date_range('2014-11-01', freq='M', periods=6),\n", | |
| " columns=['N1', 'N2', 'N3', 'F1', 'F2', 'S1', 'S2', 'D1']\n", | |
| " )\n", | |
| "df" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 65, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "Nx = 100\n", | |
| "trange = np.linspace(0,1,Nx)\n", | |
| "S1 = np.sin(np.pi / 10 * trange)\n", | |
| "S2 = S1 ** 2\n", | |
| "S3 = S1 ** (1./2.)\n", | |
| "S4 = S1 + S2\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 68, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>S1</th>\n", | |
| " <th>S2</th>\n", | |
| " <th>S3</th>\n", | |
| " <th>S4</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>0.000000</td>\n", | |
| " <td>0.000000</td>\n", | |
| " <td>0.000000</td>\n", | |
| " <td>0.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>0.003173</td>\n", | |
| " <td>0.000010</td>\n", | |
| " <td>0.056332</td>\n", | |
| " <td>0.003183</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>...</th>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>98</th>\n", | |
| " <td>0.305997</td>\n", | |
| " <td>0.093634</td>\n", | |
| " <td>0.553170</td>\n", | |
| " <td>0.399632</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>99</th>\n", | |
| " <td>0.309017</td>\n", | |
| " <td>0.095492</td>\n", | |
| " <td>0.555893</td>\n", | |
| " <td>0.404508</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>100 rows × 4 columns</p>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " S1 S2 S3 S4\n", | |
| "0 0.000000 0.000000 0.000000 0.000000\n", | |
| "1 0.003173 0.000010 0.056332 0.003183\n", | |
| ".. ... ... ... ...\n", | |
| "98 0.305997 0.093634 0.553170 0.399632\n", | |
| "99 0.309017 0.095492 0.555893 0.404508\n", | |
| "\n", | |
| "[100 rows x 4 columns]" | |
| ] | |
| }, | |
| "execution_count": 68, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df = pd.DataFrame({\n", | |
| " 'S1':S1,\n", | |
| " 'S2':S2,\n", | |
| " 'S3':S3,\n", | |
| " 'S4': S4,\n", | |
| " 'time': trange},\n", | |
| " index=range(trange.shape[0]),\n", | |
| " columns=['S1', 'S2', 'S3', 'S4']\n", | |
| " )\n", | |
| "df" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 74, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "0 0.000000\n", | |
| "1 0.003173\n", | |
| " ... \n", | |
| "98 0.305997\n", | |
| "99 0.309017\n", | |
| "Name: S1, dtype: float64" | |
| ] | |
| }, | |
| "execution_count": 74, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "s = df['S1']\n", | |
| "s" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 75, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>S1</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>0.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>0.003173</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>...</th>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>98</th>\n", | |
| " <td>0.305997</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>99</th>\n", | |
| " <td>0.309017</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>100 rows × 1 columns</p>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " S1\n", | |
| "0 0.000000\n", | |
| "1 0.003173\n", | |
| ".. ...\n", | |
| "98 0.305997\n", | |
| "99 0.309017\n", | |
| "\n", | |
| "[100 rows x 1 columns]" | |
| ] | |
| }, | |
| "execution_count": 75, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "d = df[['S1']]\n", | |
| "d" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 77, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", | |
| " 0.00000000e+00],\n", | |
| " [ 3.17332059e-03, 1.00699635e-05, 5.63322340e-02,\n", | |
| " 3.18339055e-03],\n", | |
| " [ 6.34660922e-03, 4.02794486e-05, 7.96656088e-02,\n", | |
| " 6.38688867e-03],\n", | |
| " [ 9.51983394e-03, 9.06272382e-05, 9.75696364e-02,\n", | |
| " 9.61046118e-03],\n", | |
| " [ 1.26929628e-02, 1.61111305e-04, 1.12663050e-01,\n", | |
| " 1.28540741e-02],\n", | |
| " [ 1.58659638e-02, 2.51728808e-04, 1.25960168e-01,\n", | |
| " 1.61176926e-02],\n", | |
| " [ 1.90388051e-02, 3.62476100e-04, 1.37981177e-01,\n", | |
| " 1.94012812e-02],\n", | |
| " [ 2.22114547e-02, 4.93348718e-04, 1.49035079e-01,\n", | |
| " 2.27048034e-02],\n", | |
| " [ 2.53838805e-02, 6.44341391e-04, 1.59323195e-01,\n", | |
| " 2.60282219e-02],\n", | |
| " [ 2.85560508e-02, 8.15448037e-04, 1.68985357e-01,\n", | |
| " 2.93714988e-02],\n", | |
| " [ 3.17279335e-02, 1.00666176e-03, 1.78123366e-01,\n", | |
| " 3.27345953e-02],\n", | |
| " [ 3.48994967e-02, 1.21797487e-03, 1.86814070e-01,\n", | |
| " 3.61174716e-02],\n", | |
| " [ 3.80707085e-02, 1.44937884e-03, 1.95117166e-01,\n", | |
| " 3.95200873e-02],\n", | |
| " [ 4.12415369e-02, 1.70086436e-03, 2.03080124e-01,\n", | |
| " 4.29424012e-02],\n", | |
| " [ 4.44119500e-02, 1.97242130e-03, 2.10741429e-01,\n", | |
| " 4.63843713e-02],\n", | |
| " [ 4.75819158e-02, 2.26403871e-03, 2.18132794e-01,\n", | |
| " 4.98459545e-02],\n", | |
| " [ 5.07514025e-02, 2.57570486e-03, 2.25280719e-01,\n", | |
| " 5.33271074e-02],\n", | |
| " [ 5.39203782e-02, 2.90740718e-03, 2.32207619e-01,\n", | |
| " 5.68277854e-02],\n", | |
| " [ 5.70888109e-02, 3.25913233e-03, 2.38932649e-01,\n", | |
| " 6.03479432e-02],\n", | |
| " [ 6.02566687e-02, 3.63086612e-03, 2.45472338e-01,\n", | |
| " 6.38875348e-02],\n", | |
| " [ 6.34239197e-02, 4.02259358e-03, 2.51841060e-01,\n", | |
| " 6.74465132e-02],\n", | |
| " [ 6.65905320e-02, 4.43429895e-03, 2.58051413e-01,\n", | |
| " 7.10248309e-02],\n", | |
| " [ 6.97564737e-02, 4.86596563e-03, 2.64114509e-01,\n", | |
| " 7.46224394e-02],\n", | |
| " [ 7.29217131e-02, 5.31757624e-03, 2.70040206e-01,\n", | |
| " 7.82392893e-02],\n", | |
| " [ 7.60862181e-02, 5.78911258e-03, 2.75837304e-01,\n", | |
| " 8.18753306e-02],\n", | |
| " [ 7.92499569e-02, 6.28055566e-03, 2.81513689e-01,\n", | |
| " 8.55305125e-02],\n", | |
| " [ 8.24128976e-02, 6.79188569e-03, 2.87076466e-01,\n", | |
| " 8.92047833e-02],\n", | |
| " [ 8.55750085e-02, 7.32308208e-03, 2.92532064e-01,\n", | |
| " 9.28980906e-02],\n", | |
| " [ 8.87362576e-02, 7.87412341e-03, 2.97886317e-01,\n", | |
| " 9.66103810e-02],\n", | |
| " [ 9.18966132e-02, 8.44498751e-03, 3.03144542e-01,\n", | |
| " 1.00341601e-01],\n", | |
| " [ 9.50560433e-02, 9.03565137e-03, 3.08311601e-01,\n", | |
| " 1.04091695e-01],\n", | |
| " [ 9.82145162e-02, 9.64609120e-03, 3.13391953e-01,\n", | |
| " 1.07860607e-01],\n", | |
| " [ 1.01372000e-01, 1.02762824e-02, 3.18389699e-01,\n", | |
| " 1.11648283e-01],\n", | |
| " [ 1.04528463e-01, 1.09261996e-02, 3.23308619e-01,\n", | |
| " 1.15454663e-01],\n", | |
| " [ 1.07683874e-01, 1.15958167e-02, 3.28152211e-01,\n", | |
| " 1.19279690e-01],\n", | |
| " [ 1.10838200e-01, 1.22851066e-02, 3.32923715e-01,\n", | |
| " 1.23123306e-01],\n", | |
| " [ 1.13991410e-01, 1.29940415e-02, 3.37626139e-01,\n", | |
| " 1.26985451e-01],\n", | |
| " [ 1.17143472e-01, 1.37225930e-02, 3.42262285e-01,\n", | |
| " 1.30866065e-01],\n", | |
| " [ 1.20294354e-01, 1.44707317e-02, 3.46834765e-01,\n", | |
| " 1.34765086e-01],\n", | |
| " [ 1.23444026e-01, 1.52384274e-02, 3.51346020e-01,\n", | |
| " 1.38682453e-01],\n", | |
| " [ 1.26592454e-01, 1.60256493e-02, 3.55798333e-01,\n", | |
| " 1.42618103e-01],\n", | |
| " [ 1.29739607e-01, 1.68323656e-02, 3.60193846e-01,\n", | |
| " 1.46571972e-01],\n", | |
| " [ 1.32885454e-01, 1.76585438e-02, 3.64534571e-01,\n", | |
| " 1.50543997e-01],\n", | |
| " [ 1.36029962e-01, 1.85041506e-02, 3.68822399e-01,\n", | |
| " 1.54534113e-01],\n", | |
| " [ 1.39173101e-01, 1.93691520e-02, 3.73059112e-01,\n", | |
| " 1.58542253e-01],\n", | |
| " [ 1.42314838e-01, 2.02535132e-02, 3.77246389e-01,\n", | |
| " 1.62568351e-01],\n", | |
| " [ 1.45455142e-01, 2.11571985e-02, 3.81385818e-01,\n", | |
| " 1.66612341e-01],\n", | |
| " [ 1.48593982e-01, 2.20801715e-02, 3.85478899e-01,\n", | |
| " 1.70674153e-01],\n", | |
| " [ 1.51731325e-01, 2.30223950e-02, 3.89527053e-01,\n", | |
| " 1.74753720e-01],\n", | |
| " [ 1.54867140e-01, 2.39838311e-02, 3.93531626e-01,\n", | |
| " 1.78850971e-01],\n", | |
| " [ 1.58001396e-01, 2.49644411e-02, 3.97493894e-01,\n", | |
| " 1.82965837e-01],\n", | |
| " [ 1.61134061e-01, 2.59641855e-02, 4.01415073e-01,\n", | |
| " 1.87098246e-01],\n", | |
| " [ 1.64265103e-01, 2.69830239e-02, 4.05296315e-01,\n", | |
| " 1.91248127e-01],\n", | |
| " [ 1.67394490e-01, 2.80209154e-02, 4.09138718e-01,\n", | |
| " 1.95415406e-01],\n", | |
| " [ 1.70522193e-01, 2.90778182e-02, 4.12943329e-01,\n", | |
| " 1.99600011e-01],\n", | |
| " [ 1.73648178e-01, 3.01536896e-02, 4.16711144e-01,\n", | |
| " 2.03801867e-01],\n", | |
| " [ 1.76772414e-01, 3.12484864e-02, 4.20443116e-01,\n", | |
| " 2.08020900e-01],\n", | |
| " [ 1.79894870e-01, 3.23621644e-02, 4.24140154e-01,\n", | |
| " 2.12257035e-01],\n", | |
| " [ 1.83015515e-01, 3.34946788e-02, 4.27803127e-01,\n", | |
| " 2.16510194e-01],\n", | |
| " [ 1.86134317e-01, 3.46459839e-02, 4.31432865e-01,\n", | |
| " 2.20780301e-01],\n", | |
| " [ 1.89251244e-01, 3.58160335e-02, 4.35030165e-01,\n", | |
| " 2.25067278e-01],\n", | |
| " [ 1.92366266e-01, 3.70047803e-02, 4.38595789e-01,\n", | |
| " 2.29371046e-01],\n", | |
| " [ 1.95479351e-01, 3.82121765e-02, 4.42130468e-01,\n", | |
| " 2.33691527e-01],\n", | |
| " [ 1.98590467e-01, 3.94381734e-02, 4.45634903e-01,\n", | |
| " 2.38028640e-01],\n", | |
| " [ 2.01699583e-01, 4.06827217e-02, 4.49109767e-01,\n", | |
| " 2.42382305e-01],\n", | |
| " [ 2.04806668e-01, 4.19457713e-02, 4.52555707e-01,\n", | |
| " 2.46752439e-01],\n", | |
| " [ 2.07911691e-01, 4.32272712e-02, 4.55973344e-01,\n", | |
| " 2.51138962e-01],\n", | |
| " [ 2.11014620e-01, 4.45271698e-02, 4.59363277e-01,\n", | |
| " 2.55541790e-01],\n", | |
| " [ 2.14115424e-01, 4.58454148e-02, 4.62726079e-01,\n", | |
| " 2.59960839e-01],\n", | |
| " [ 2.17214072e-01, 4.71819531e-02, 4.66062305e-01,\n", | |
| " 2.64396025e-01],\n", | |
| " [ 2.20310533e-01, 4.85367309e-02, 4.69372488e-01,\n", | |
| " 2.68847264e-01],\n", | |
| " [ 2.23404775e-01, 4.99096935e-02, 4.72657143e-01,\n", | |
| " 2.73314468e-01],\n", | |
| " [ 2.26496767e-01, 5.13007857e-02, 4.75916765e-01,\n", | |
| " 2.77797553e-01],\n", | |
| " [ 2.29586479e-01, 5.27099514e-02, 4.79151833e-01,\n", | |
| " 2.82296430e-01],\n", | |
| " [ 2.32673879e-01, 5.41371339e-02, 4.82362808e-01,\n", | |
| " 2.86811013e-01],\n", | |
| " [ 2.35758936e-01, 5.55822757e-02, 4.85550137e-01,\n", | |
| " 2.91341211e-01],\n", | |
| " [ 2.38841618e-01, 5.70453185e-02, 4.88714250e-01,\n", | |
| " 2.95886937e-01],\n", | |
| " [ 2.41921896e-01, 5.85262036e-02, 4.91855564e-01,\n", | |
| " 3.00448099e-01],\n", | |
| " [ 2.44999737e-01, 6.00248711e-02, 4.94974481e-01,\n", | |
| " 3.05024608e-01],\n", | |
| " [ 2.48075111e-01, 6.15412608e-02, 4.98071392e-01,\n", | |
| " 3.09616372e-01],\n", | |
| " [ 2.51147987e-01, 6.30753115e-02, 5.01146672e-01,\n", | |
| " 3.14223299e-01],\n", | |
| " [ 2.54218334e-01, 6.46269614e-02, 5.04200688e-01,\n", | |
| " 3.18845296e-01],\n", | |
| " [ 2.57286121e-01, 6.61961482e-02, 5.07233793e-01,\n", | |
| " 3.23482269e-01],\n", | |
| " [ 2.60351317e-01, 6.77828085e-02, 5.10246330e-01,\n", | |
| " 3.28134126e-01],\n", | |
| " [ 2.63413892e-01, 6.93868784e-02, 5.13238630e-01,\n", | |
| " 3.32800770e-01],\n", | |
| " [ 2.66473814e-01, 7.10082934e-02, 5.16211017e-01,\n", | |
| " 3.37482107e-01],\n", | |
| " [ 2.69531052e-01, 7.26469881e-02, 5.19163801e-01,\n", | |
| " 3.42178040e-01],\n", | |
| " [ 2.72585576e-01, 7.43028965e-02, 5.22097286e-01,\n", | |
| " 3.46888473e-01],\n", | |
| " [ 2.75637356e-01, 7.59759519e-02, 5.25011767e-01,\n", | |
| " 3.51613308e-01],\n", | |
| " [ 2.78686360e-01, 7.76660870e-02, 5.27907529e-01,\n", | |
| " 3.56352446e-01],\n", | |
| " [ 2.81732557e-01, 7.93732336e-02, 5.30784850e-01,\n", | |
| " 3.61105790e-01],\n", | |
| " [ 2.84775917e-01, 8.10973230e-02, 5.33643998e-01,\n", | |
| " 3.65873240e-01],\n", | |
| " [ 2.87816410e-01, 8.28382857e-02, 5.36485237e-01,\n", | |
| " 3.70654695e-01],\n", | |
| " [ 2.90854004e-01, 8.45960516e-02, 5.39308821e-01,\n", | |
| " 3.75450056e-01],\n", | |
| " [ 2.93888669e-01, 8.63705500e-02, 5.42114996e-01,\n", | |
| " 3.80259219e-01],\n", | |
| " [ 2.96920375e-01, 8.81617093e-02, 5.44904006e-01,\n", | |
| " 3.85082085e-01],\n", | |
| " [ 2.99949091e-01, 8.99694574e-02, 5.47676082e-01,\n", | |
| " 3.89918549e-01],\n", | |
| " [ 3.02974787e-01, 9.17937214e-02, 5.50431455e-01,\n", | |
| " 3.94768508e-01],\n", | |
| " [ 3.05997431e-01, 9.36344279e-02, 5.53170346e-01,\n", | |
| " 3.99631859e-01],\n", | |
| " [ 3.09016994e-01, 9.54915028e-02, 5.55892970e-01,\n", | |
| " 4.04508497e-01]])" | |
| ] | |
| }, | |
| "execution_count": 77, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "ary = np.array(df.values)\n", | |
| "ary\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "df.values" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# pandasの基礎" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 79, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "ename": "AttributeError", | |
| "evalue": "'list' object has no attribute 'shape'", | |
| "output_type": "error", | |
| "traceback": [ | |
| "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", | |
| "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", | |
| "\u001b[1;32m<ipython-input-79-1a88fe294431>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mlist\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mflatten\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", | |
| "\u001b[1;31mAttributeError\u001b[0m: 'list' object has no attribute 'shape'" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "list(df.values.flatten())" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 82, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "ename": "TypeError", | |
| "evalue": "'numpy.ndarray' object is not callable", | |
| "output_type": "error", | |
| "traceback": [ | |
| "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", | |
| "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", | |
| "\u001b[1;32m<ipython-input-82-a5a86ec19353>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0marray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", | |
| "\u001b[1;31mTypeError\u001b[0m: 'numpy.ndarray' object is not callable" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "np.array(df.values()).shape" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 83, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", | |
| " 0.00000000e+00],\n", | |
| " [ 3.17332059e-03, 1.00699635e-05, 5.63322340e-02,\n", | |
| " 3.18339055e-03],\n", | |
| " [ 6.34660922e-03, 4.02794486e-05, 7.96656088e-02,\n", | |
| " 6.38688867e-03],\n", | |
| " [ 9.51983394e-03, 9.06272382e-05, 9.75696364e-02,\n", | |
| " 9.61046118e-03],\n", | |
| " [ 1.26929628e-02, 1.61111305e-04, 1.12663050e-01,\n", | |
| " 1.28540741e-02],\n", | |
| " [ 1.58659638e-02, 2.51728808e-04, 1.25960168e-01,\n", | |
| " 1.61176926e-02],\n", | |
| " [ 1.90388051e-02, 3.62476100e-04, 1.37981177e-01,\n", | |
| " 1.94012812e-02],\n", | |
| " [ 2.22114547e-02, 4.93348718e-04, 1.49035079e-01,\n", | |
| " 2.27048034e-02],\n", | |
| " [ 2.53838805e-02, 6.44341391e-04, 1.59323195e-01,\n", | |
| " 2.60282219e-02],\n", | |
| " [ 2.85560508e-02, 8.15448037e-04, 1.68985357e-01,\n", | |
| " 2.93714988e-02],\n", | |
| " [ 3.17279335e-02, 1.00666176e-03, 1.78123366e-01,\n", | |
| " 3.27345953e-02],\n", | |
| " [ 3.48994967e-02, 1.21797487e-03, 1.86814070e-01,\n", | |
| " 3.61174716e-02],\n", | |
| " [ 3.80707085e-02, 1.44937884e-03, 1.95117166e-01,\n", | |
| " 3.95200873e-02],\n", | |
| " [ 4.12415369e-02, 1.70086436e-03, 2.03080124e-01,\n", | |
| " 4.29424012e-02],\n", | |
| " [ 4.44119500e-02, 1.97242130e-03, 2.10741429e-01,\n", | |
| " 4.63843713e-02],\n", | |
| " [ 4.75819158e-02, 2.26403871e-03, 2.18132794e-01,\n", | |
| " 4.98459545e-02],\n", | |
| " [ 5.07514025e-02, 2.57570486e-03, 2.25280719e-01,\n", | |
| " 5.33271074e-02],\n", | |
| " [ 5.39203782e-02, 2.90740718e-03, 2.32207619e-01,\n", | |
| " 5.68277854e-02],\n", | |
| " [ 5.70888109e-02, 3.25913233e-03, 2.38932649e-01,\n", | |
| " 6.03479432e-02],\n", | |
| " [ 6.02566687e-02, 3.63086612e-03, 2.45472338e-01,\n", | |
| " 6.38875348e-02],\n", | |
| " [ 6.34239197e-02, 4.02259358e-03, 2.51841060e-01,\n", | |
| " 6.74465132e-02],\n", | |
| " [ 6.65905320e-02, 4.43429895e-03, 2.58051413e-01,\n", | |
| " 7.10248309e-02],\n", | |
| " [ 6.97564737e-02, 4.86596563e-03, 2.64114509e-01,\n", | |
| " 7.46224394e-02],\n", | |
| " [ 7.29217131e-02, 5.31757624e-03, 2.70040206e-01,\n", | |
| " 7.82392893e-02],\n", | |
| " [ 7.60862181e-02, 5.78911258e-03, 2.75837304e-01,\n", | |
| " 8.18753306e-02],\n", | |
| " [ 7.92499569e-02, 6.28055566e-03, 2.81513689e-01,\n", | |
| " 8.55305125e-02],\n", | |
| " [ 8.24128976e-02, 6.79188569e-03, 2.87076466e-01,\n", | |
| " 8.92047833e-02],\n", | |
| " [ 8.55750085e-02, 7.32308208e-03, 2.92532064e-01,\n", | |
| " 9.28980906e-02],\n", | |
| " [ 8.87362576e-02, 7.87412341e-03, 2.97886317e-01,\n", | |
| " 9.66103810e-02],\n", | |
| " [ 9.18966132e-02, 8.44498751e-03, 3.03144542e-01,\n", | |
| " 1.00341601e-01],\n", | |
| " [ 9.50560433e-02, 9.03565137e-03, 3.08311601e-01,\n", | |
| " 1.04091695e-01],\n", | |
| " [ 9.82145162e-02, 9.64609120e-03, 3.13391953e-01,\n", | |
| " 1.07860607e-01],\n", | |
| " [ 1.01372000e-01, 1.02762824e-02, 3.18389699e-01,\n", | |
| " 1.11648283e-01],\n", | |
| " [ 1.04528463e-01, 1.09261996e-02, 3.23308619e-01,\n", | |
| " 1.15454663e-01],\n", | |
| " [ 1.07683874e-01, 1.15958167e-02, 3.28152211e-01,\n", | |
| " 1.19279690e-01],\n", | |
| " [ 1.10838200e-01, 1.22851066e-02, 3.32923715e-01,\n", | |
| " 1.23123306e-01],\n", | |
| " [ 1.13991410e-01, 1.29940415e-02, 3.37626139e-01,\n", | |
| " 1.26985451e-01],\n", | |
| " [ 1.17143472e-01, 1.37225930e-02, 3.42262285e-01,\n", | |
| " 1.30866065e-01],\n", | |
| " [ 1.20294354e-01, 1.44707317e-02, 3.46834765e-01,\n", | |
| " 1.34765086e-01],\n", | |
| " [ 1.23444026e-01, 1.52384274e-02, 3.51346020e-01,\n", | |
| " 1.38682453e-01],\n", | |
| " [ 1.26592454e-01, 1.60256493e-02, 3.55798333e-01,\n", | |
| " 1.42618103e-01],\n", | |
| " [ 1.29739607e-01, 1.68323656e-02, 3.60193846e-01,\n", | |
| " 1.46571972e-01],\n", | |
| " [ 1.32885454e-01, 1.76585438e-02, 3.64534571e-01,\n", | |
| " 1.50543997e-01],\n", | |
| " [ 1.36029962e-01, 1.85041506e-02, 3.68822399e-01,\n", | |
| " 1.54534113e-01],\n", | |
| " [ 1.39173101e-01, 1.93691520e-02, 3.73059112e-01,\n", | |
| " 1.58542253e-01],\n", | |
| " [ 1.42314838e-01, 2.02535132e-02, 3.77246389e-01,\n", | |
| " 1.62568351e-01],\n", | |
| " [ 1.45455142e-01, 2.11571985e-02, 3.81385818e-01,\n", | |
| " 1.66612341e-01],\n", | |
| " [ 1.48593982e-01, 2.20801715e-02, 3.85478899e-01,\n", | |
| " 1.70674153e-01],\n", | |
| " [ 1.51731325e-01, 2.30223950e-02, 3.89527053e-01,\n", | |
| " 1.74753720e-01],\n", | |
| " [ 1.54867140e-01, 2.39838311e-02, 3.93531626e-01,\n", | |
| " 1.78850971e-01],\n", | |
| " [ 1.58001396e-01, 2.49644411e-02, 3.97493894e-01,\n", | |
| " 1.82965837e-01],\n", | |
| " [ 1.61134061e-01, 2.59641855e-02, 4.01415073e-01,\n", | |
| " 1.87098246e-01],\n", | |
| " [ 1.64265103e-01, 2.69830239e-02, 4.05296315e-01,\n", | |
| " 1.91248127e-01],\n", | |
| " [ 1.67394490e-01, 2.80209154e-02, 4.09138718e-01,\n", | |
| " 1.95415406e-01],\n", | |
| " [ 1.70522193e-01, 2.90778182e-02, 4.12943329e-01,\n", | |
| " 1.99600011e-01],\n", | |
| " [ 1.73648178e-01, 3.01536896e-02, 4.16711144e-01,\n", | |
| " 2.03801867e-01],\n", | |
| " [ 1.76772414e-01, 3.12484864e-02, 4.20443116e-01,\n", | |
| " 2.08020900e-01],\n", | |
| " [ 1.79894870e-01, 3.23621644e-02, 4.24140154e-01,\n", | |
| " 2.12257035e-01],\n", | |
| " [ 1.83015515e-01, 3.34946788e-02, 4.27803127e-01,\n", | |
| " 2.16510194e-01],\n", | |
| " [ 1.86134317e-01, 3.46459839e-02, 4.31432865e-01,\n", | |
| " 2.20780301e-01],\n", | |
| " [ 1.89251244e-01, 3.58160335e-02, 4.35030165e-01,\n", | |
| " 2.25067278e-01],\n", | |
| " [ 1.92366266e-01, 3.70047803e-02, 4.38595789e-01,\n", | |
| " 2.29371046e-01],\n", | |
| " [ 1.95479351e-01, 3.82121765e-02, 4.42130468e-01,\n", | |
| " 2.33691527e-01],\n", | |
| " [ 1.98590467e-01, 3.94381734e-02, 4.45634903e-01,\n", | |
| " 2.38028640e-01],\n", | |
| " [ 2.01699583e-01, 4.06827217e-02, 4.49109767e-01,\n", | |
| " 2.42382305e-01],\n", | |
| " [ 2.04806668e-01, 4.19457713e-02, 4.52555707e-01,\n", | |
| " 2.46752439e-01],\n", | |
| " [ 2.07911691e-01, 4.32272712e-02, 4.55973344e-01,\n", | |
| " 2.51138962e-01],\n", | |
| " [ 2.11014620e-01, 4.45271698e-02, 4.59363277e-01,\n", | |
| " 2.55541790e-01],\n", | |
| " [ 2.14115424e-01, 4.58454148e-02, 4.62726079e-01,\n", | |
| " 2.59960839e-01],\n", | |
| " [ 2.17214072e-01, 4.71819531e-02, 4.66062305e-01,\n", | |
| " 2.64396025e-01],\n", | |
| " [ 2.20310533e-01, 4.85367309e-02, 4.69372488e-01,\n", | |
| " 2.68847264e-01],\n", | |
| " [ 2.23404775e-01, 4.99096935e-02, 4.72657143e-01,\n", | |
| " 2.73314468e-01],\n", | |
| " [ 2.26496767e-01, 5.13007857e-02, 4.75916765e-01,\n", | |
| " 2.77797553e-01],\n", | |
| " [ 2.29586479e-01, 5.27099514e-02, 4.79151833e-01,\n", | |
| " 2.82296430e-01],\n", | |
| " [ 2.32673879e-01, 5.41371339e-02, 4.82362808e-01,\n", | |
| " 2.86811013e-01],\n", | |
| " [ 2.35758936e-01, 5.55822757e-02, 4.85550137e-01,\n", | |
| " 2.91341211e-01],\n", | |
| " [ 2.38841618e-01, 5.70453185e-02, 4.88714250e-01,\n", | |
| " 2.95886937e-01],\n", | |
| " [ 2.41921896e-01, 5.85262036e-02, 4.91855564e-01,\n", | |
| " 3.00448099e-01],\n", | |
| " [ 2.44999737e-01, 6.00248711e-02, 4.94974481e-01,\n", | |
| " 3.05024608e-01],\n", | |
| " [ 2.48075111e-01, 6.15412608e-02, 4.98071392e-01,\n", | |
| " 3.09616372e-01],\n", | |
| " [ 2.51147987e-01, 6.30753115e-02, 5.01146672e-01,\n", | |
| " 3.14223299e-01],\n", | |
| " [ 2.54218334e-01, 6.46269614e-02, 5.04200688e-01,\n", | |
| " 3.18845296e-01],\n", | |
| " [ 2.57286121e-01, 6.61961482e-02, 5.07233793e-01,\n", | |
| " 3.23482269e-01],\n", | |
| " [ 2.60351317e-01, 6.77828085e-02, 5.10246330e-01,\n", | |
| " 3.28134126e-01],\n", | |
| " [ 2.63413892e-01, 6.93868784e-02, 5.13238630e-01,\n", | |
| " 3.32800770e-01],\n", | |
| " [ 2.66473814e-01, 7.10082934e-02, 5.16211017e-01,\n", | |
| " 3.37482107e-01],\n", | |
| " [ 2.69531052e-01, 7.26469881e-02, 5.19163801e-01,\n", | |
| " 3.42178040e-01],\n", | |
| " [ 2.72585576e-01, 7.43028965e-02, 5.22097286e-01,\n", | |
| " 3.46888473e-01],\n", | |
| " [ 2.75637356e-01, 7.59759519e-02, 5.25011767e-01,\n", | |
| " 3.51613308e-01],\n", | |
| " [ 2.78686360e-01, 7.76660870e-02, 5.27907529e-01,\n", | |
| " 3.56352446e-01],\n", | |
| " [ 2.81732557e-01, 7.93732336e-02, 5.30784850e-01,\n", | |
| " 3.61105790e-01],\n", | |
| " [ 2.84775917e-01, 8.10973230e-02, 5.33643998e-01,\n", | |
| " 3.65873240e-01],\n", | |
| " [ 2.87816410e-01, 8.28382857e-02, 5.36485237e-01,\n", | |
| " 3.70654695e-01],\n", | |
| " [ 2.90854004e-01, 8.45960516e-02, 5.39308821e-01,\n", | |
| " 3.75450056e-01],\n", | |
| " [ 2.93888669e-01, 8.63705500e-02, 5.42114996e-01,\n", | |
| " 3.80259219e-01],\n", | |
| " [ 2.96920375e-01, 8.81617093e-02, 5.44904006e-01,\n", | |
| " 3.85082085e-01],\n", | |
| " [ 2.99949091e-01, 8.99694574e-02, 5.47676082e-01,\n", | |
| " 3.89918549e-01],\n", | |
| " [ 3.02974787e-01, 9.17937214e-02, 5.50431455e-01,\n", | |
| " 3.94768508e-01],\n", | |
| " [ 3.05997431e-01, 9.36344279e-02, 5.53170346e-01,\n", | |
| " 3.99631859e-01],\n", | |
| " [ 3.09016994e-01, 9.54915028e-02, 5.55892970e-01,\n", | |
| " 4.04508497e-01]])" | |
| ] | |
| }, | |
| "execution_count": 83, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.values" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 88, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(4L, 100L)" | |
| ] | |
| }, | |
| "execution_count": 88, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.values.T.shape" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 2", | |
| "language": "python", | |
| "name": "python2" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 2 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython2", | |
| "version": "2.7.10" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 0 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment