Skip to content

Instantly share code, notes, and snippets.

@peace098beat
Last active March 14, 2016 08:32
Show Gist options
  • Save peace098beat/dc8be51d5202f092006a to your computer and use it in GitHub Desktop.
Save peace098beat/dc8be51d5202f092006a to your computer and use it in GitHub Desktop.
FDTD.html
<!-- ver 2.0 : 2016/03/14 -->
<!DOCTYPE html>
<html>
<head>
<title></title>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({ tex2jax: { inlineMath: [['$','$'], ["\\(","\\)"]] } });
</script>
<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML">
</script>
<meta http-equiv="X-UA-Compatible" CONTENT="IE=EmulateIE7" />
</head>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({ TeX: { equationNumbers: {autoNumber: "AMS"} } });
</script>
<style type="text/css">
body {
width: 720px;
}
</style>
<body>
<h2>薄い弾性平板の曲げ振動</h2>
<p>参考:<a href="">機械工学のための振動・音響学</a></p>
<p>薄い等方性平板の曲げ振動を表す運動方程式を導く.次の仮定をおく,</p>
<ul>
<li>板厚\(h\)は,平板の他の寸法に比べて十分小さい.</li>
<li>変形前の平面断面は,変形後も平面を保つ</li>
<li>板の中立面は変形しない</li>
<li>外力は板の表面に垂直に作用する</li>
<li>せん断変形と回転慣性の影響は無視する</li>
</ul>
<p>(省略)</p>
<p>
\( D( \frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial x^2} + \frac{\partial^4 w}{\partial y^4} \tag{} ) + \rho h \frac{\partial^2 w}{\partial t^2} = q \)
</p>
<p>ラプラスの微分演算子\(\nabla^2\)(ラプラシアン)を用いて,</p>
<p>
\( D \nabla^4 w + \rho h \frac{\partial^2 w}{\partial t^2} = 0 \tag{} \)
</p>
<h2>差分法による偏微分方程式の解法</h2>
<p>参考:<a href="">パソコンによる数値解析</a></p>
<p>2変数の場合を考える.直交格子の場合,</p>
<p>
\( x = x_0 + i \triangle x \quad (i=1,2,3...) \tag{} \)
</p>
<p>
\( y = y_0 + j \triangle y \quad (j=1,2,3...) \tag{} \)
</p>
<p>であらわせる. ここで, \(\triangle x\), \(\triangle y\)は\(x\), \(y\)方向の刻み幅で格子間隔である. また\(x_0, y_0\)はある基準点の座標である.</p>
<p> 格子点\(P\)の座標\( (x,y) \)における関数\( u(x,y) \)の値を</p>
<p>
\( u(x,y) = u_p = u_{i,j} \tag{} \)
</p>
<p>と記することにする.</p>
<p>前進差分</p>
<h3>前進差分</h3>
<p>
\( (\frac{\partial u}{\partial x})_p = (\frac{\partial u}{ \partial x})_{i,j} = \frac{u_{i+1,j} - u_{i,j} }{ \triangle x } \tag{} \)
</p>
<p>
\( (\frac{\partial u}{\partial y})_p = (\frac{\partial u}{ \partial y})_{i,j} = \frac{u_{i,j+1} - u_{i,j} }{ \triangle y } \tag{} \)
</p>
<p>
\( (\frac{\partial^2 u}{\partial x^2})_p = (\frac{\partial^2 u}{ \partial x^2})_{i,j} = \frac{u_{i+2,j} -2u_{i+1,j} + u_{i,j} }{ \triangle x^2 } \tag{} \)
</p>
<p>
\( (\frac{\partial^2 u}{\partial y^2})_p = (\frac{\partial^2 u}{ \partial y^2})_{i,j} = \frac{u_{i,j+2} -2u_{i,j+1} + u_{i,j} }{ \triangle y^2 } \tag{} \)
</p>
<p>
\( (\frac{\partial^2 u}{\partial x \partial y})_p = (\frac{\partial^2 u}{ \partial x \partial y })_{i,j} = \frac{u_{i+1,j+1}-u_{i,j+1}-u_{i+1,j}+u_{i,j} }{ \triangle x \triangle y } \tag{} \)
</p>
<h3>後退差分</h3>
<p>
\( (\frac{\partial u}{\partial x})_p = (\frac{\partial u}{ \partial x})_{i,j} = \frac{u_{i,j} - u_{i-1,j} }{ \triangle x } \tag{} \)
</p>
<p>
\( (\frac{\partial u}{\partial y})_p = (\frac{\partial u}{ \partial y})_{i,j} = \frac{u_{i,j} - u_{i,j-1} }{ \triangle y } \tag{} \)
</p>
<p>
\( (\frac{\partial^2 u}{\partial x^2})_p = (\frac{\partial^2 u}{ \partial x^2})_{i,j} = \frac{u_{i,j} -2u_{i-1,j} + u_{i-2,j} }{ \triangle x^2 } \tag{} \)
</p>
<p>
\( (\frac{\partial^2 u}{\partial y^2})_p = (\frac{\partial^2 u}{ \partial y^2})_{i,j} = \frac{u_{i,j} -2u_{i,j-1} + u_{i,j-2} }{ \triangle y^2 } \tag{} \)
</p>
<p>
\( (\frac{\partial^2 u}{\partial x \partial y})_p = (\frac{\partial^2 u}{ \partial x \partial y })_{i,j} = \frac{u_{i,j}-u_{i,j-1}-u_{i-1,j}+u_{i-1,j-1} }{ \triangle x \triangle y } \tag{} \)
</p>
<h3>中心差分</h3>
<p>
\( (\frac{\partial u}{\partial x})_p = (\frac{\partial u}{ \partial x})_{i,j} = \frac{u_{i+1,j} - u_{i-1,j} }{ 2\triangle x } \tag{} \)
</p>
<p>
\( (\frac{\partial u}{\partial y})_p = (\frac{\partial u}{ \partial y})_{i,j} = \frac{u_{i,j+1} - u_{i,j-1} }{ 2\triangle y } \tag{} \)
</p>
<p>
\( (\frac{\partial^2 u}{\partial x^2})_p = (\frac{\partial^2 u}{ \partial x^2})_{i,j} = \frac{u_{i+1,j} -2u_{i,j} + u_{i-1,j} }{ \triangle x^2 } \tag{} \)
</p>
<p>
\( (\frac{\partial^2 u}{\partial y^2})_p = (\frac{\partial^2 u}{ \partial y^2})_{i,j} = \frac{u_{i,j+1} -2u_{i,j} + u_{i,j-1} }{ \triangle y^2 } \tag{} \)
</p>
<p>
\( (\frac{\partial^2 u}{\partial x \partial y})_p = (\frac{\partial^2 u}{ \partial x \partial y })_{i,j} = \frac{u_{i+1,j+1}-u_{i+1,j-1}-u_{i-1,j+1}+u_{i-1,j-1} }{ \triangle x \triangle y } \tag{} \)
</p>
<h2>FDTD法による音響解析理論</h2>
<pre>3次元音場中の音波伝搬に関する運動の式,連続の式は下記のように表される.</pre>
<p>
\( \frac{ \partial P(x,y,z,t) }{\partial x} + \rho \frac{ \partial u_x(x,y,z,t) }{\partial t} =0 \tag{} \)
</p>
<p>
\( \frac{ \partial P(x,y,z,t) }{\partial y} + \rho \frac{ \partial u_y(x,y,z,t) }{\partial t} =0 \tag{} \)
</p>
<p>
\( \frac{ \partial P(x,y,z,t) }{\partial z} + \rho \frac{ \partial u_z(x,y,z,t) }{\partial t} =0\tag{} \)
</p>
<p>
\( \frac{ \partial P(x,y,z,t) }{\partial t} + \rho c^2 \{ \frac{ \partial u_x(x,y,z,t) }{\partial x} +\frac{ \partial u_y(x,y,z,t) }{\partial y} +\frac{ \partial u_z(x,y,z,t) }{\partial z}\}=0 \tag{} \)
</p>
<p>空間微分を中心差分スキームで離散化</p>
<p>格子にはスタガーッド格子を用いているので,中心差分による離散化は以下のようになる.</p>
<p>
\( \frac{ p^n_{i+1,j,k} - p^n_{i,j,k} }{\triangle x} + \rho \frac{ u^{n+1}_{x}(i+1,j,k) - u^{n}_{x} (i+1,j,k) }{\triangle t} = 0 \tag{} \)
</p>
<p>
\( \frac{ p^n_{i,j+1,k} - p^n_{i,j,k} }{\triangle y} + \rho \frac{ u^{n+1}_{y} (i,j+1,k) - u^{n}_{y} (i, j+1,k) }{\triangle t} = 0 \tag{} \)
</p>
<p>
\( \frac{ p^n_{i,j,k+1} - p^n_{i,j,k} }{\triangle z} + \rho \frac{ u^{n+1}_{z} (i,j,k+1) - u^{n}_{z} (i,j,k+1) }{\triangle t} = 0 \tag{} \)
</p>
<p>以上から,3次元での運動方程式について</p>
<p>
\( u^{n+1}_{x} (i+1,j,k) = u^{n}_{x}(i+1,j,k) - \frac{\triangle t}{\triangle x \rho}[p^n_{i+1, j, k} - p^n_{i,j,k}] \tag{} \)
</p>
<p>
\( u^{n+1}_{y} (i,j+1,k) = u^{n}_{y}(i,j+1,k) - \frac{\triangle t}{\triangle x \rho}[p^n_{i, j+1, k} - p^n_{i,j,k}] \tag{} \)
</p>
<p>
\( u^{n+1}_{z} (i,j,k+1) = u^{n}_{z}(i,j,k+1) - \frac{\triangle t}{\triangle x \rho}[p^n_{i, j, k+1} - p^n_{i,j,k}] \tag{} \)
</p>
<p>連続の式も同様に</p>
<p>
\( p^{n+1}_{i,j,k} = p^{n}_{i,j,k} - [ \frac{\triangle t \kappa}{\triangle x} [u^{n+1}_x(i+1,j,k) - u^{n+1}_x(i,j,k)] + \frac{\triangle t \kappa}{\triangle y} [u^{n+1}_y(i,j+1,k) - u^{n+1}_y(i,j,k)] + \frac{\triangle t \kappa}{\triangle z} [u^{n+1}_z(i,j+1,k) - u^{n+1}_z(i,j,k)] ] \tag{} \)
</p>
<p>以上により,適当な初期値を持ち更新することで,\(\triangle t\)後の音響量を計算することが可能である.</p>
<h2>FDTD法による振動解析理論</h2>
<p><a href="http://multi-science.atypon.com/doi/abs/10.1260/135101009789877004">Finite-Difference Time-Domain Analysis of Sound Insulation Performance of Wall Systems</a></p>
<p>Acoustical analysis was performed by three-dimensional FDTD analysis using a high-order scheme with eight reference points in order to avoid phase error.</p>
<p>
\( D \nabla^4 w + \xi D \frac{\partial}{\partial t} \nabla^4 w + \mu \frac{\partial^2 w}{\partial t^2} = q \tag{} \)
</p>
<p>
\( D = E h^3 / 12 (1- \gamma ^2) \tag{} \)
</p>
<p>where, \(D\) is the flexural rigidity; \(E\), the Young's moduleus; \(h\), the thickness of the plate; \(\gamma\), the Poisson's ratio; \(\xi\), the coefficient related to the internal damping; \(w\), the transverse displacement; \(\mu\), the mass density per unit area of the plate; and \(q\), the external force transverse to the plate.</p>
<p>高次スキームにて離散化を行うと以下のようになる.</p>
<p>
\( w^{n+1}_{j,k} = \frac{q^n_{j,k} }{\mu} \triangle t^2 + 2 w^n_{j,k} - w^{n-1}_{j,k} \)
</p>
<p>
\( - \frac{D}{\mu}\triangle t^2 ( \frac{ w^{n}_{j-2,k} -4w^{n}_{j-1,k} +6w^{n}_{j,k}-4w^{n}_{j+1,k}+w^{n}_{j+2,k} }{ \triangle y^4 } + \frac{ w^{n}_{j,k-2} -4w^{n}_{j,k-1} +6w^{n}_{j,k}-4w^{n}_{j,k+1}+w^{n}_{j,k+2} }{ \triangle z^4 } +2 \frac{ (w^{n}_{j+1,k+1} -2w^{n}_{j+1,k}+w^{n}_{j+1,k-1}) -2 (w^{n}_{j,k+1} -2 w^{n}_{j,k} + w^{n}_{j,k-1}) +(w^{n}_{j-1,k+1}-2w^{n}_{j-1,k} + w^{n}_{j-1,k-1} )}{\triangle y^2 \triangle z^2} ) \)
</p>
<p>
\( - \xi \frac{D}{\mu}\triangle t [ ( \frac{ w^{n}_{j-2,k} -4w^{n}_{j-1,k} +6w^{n}_{j,k}-4w^{n}_{j+1,k}+w^{n}_{j+2,k} }{ \triangle y^4 } + \frac{ w^{n}_{j,k-2} -4w^{n}_{j,k-1} +6w^{n}_{j,k}-4w^{n}_{j,k+1}+w^{n}_{j,k+2} }{ \triangle z^4 } +2 \frac{ (w^{n}_{j+1,k+1} -2w^{n}_{j+1,k}+w^{n}_{j+1,k-1}) -2 (w^{n}_{j,k+1} -2 w^{n}_{j,k} + w^{n}_{j,k-1}) +(w^{n}_{j-1,k+1}-2w^{n}_{j-1,k} + w^{n}_{j-1,k-1} )}{\triangle y^2 \triangle z^2} ) \)
</p>
<p>
\( - ( \frac{ w^{n-1}_{j-2,k} -4w^{n-1}_{j-1,k} +6w^{n-1}_{j,k}-4w^{n-1}_{j+1,k}+w^{n-1}_{j+2,k} }{ \triangle y^4 } + \frac{ w^{n-1}_{j,k-2} -4w^{n-1}_{j,k-1} +6w^{n-1}_{j,k}-4w^{n-1}_{j,k+1}+w^{n-1}_{j,k+2} }{ \triangle z^4 } +2 \frac{ (w^{n-1}_{j+1,k+1} -2w^{n-1}_{j+1,k}+w^{n-1}_{j+1,k-1}) -2 (w^{n-1}_{j,k+1} -2 w^{n-1}_{j,k} + w^{n-1}_{j,k-1}) +(w^{n-1}_{j-1,k+1}-2w^{n-1}_{j-1,k} + w^{n-1}_{j-1,k-1} )}{\triangle y^2 \triangle z^2} ) ] \)
</p>
<p>In this equation, the external force \(q^n_{j,k}\)was expressed as the difference in the sound pressure on both sides of the plate, \(p^n_{i,j,k}\) and \(p^n_{i-1,j,k}\), as shown in Fig. 1(b)</p>
<p>
\( q^n_{j,k} = (p^n_{i,j,k} - p^n_{i-1,j,k}) \triangle y \triangle z \tag{} \)
</p>
<p>Thereafter, the vibration velocity of the plate obtained using the following equation(4) was assigned as the particle velocity of the sound field in the x direction adjacent to the plate, \(u^{n+1}_{i,j,k}\).</p>
<p>
\( u^{n+1}_{i,j,k} = \frac{w^{n+1}_{j,k} - w^n_{j,k}} {\triangle t} \tag{} \)
</p>
<h2>FDTD法による音響構造連成解析</h2>
<p>参考:<a href="https://www.jstage.jst.go.jp/article/seisankenkyu/61/4/61_4_793/_pdf">FDTD 法による音響振動連成解析を用いた遮音性能のシミュレーション</a></p>
<h3>音響解析</h3>
<pre>3次元音場中の音波伝搬に関する運動の式,連続の式は下記のように表される.</pre>
<p>
\( \frac{ \partial P(x,y,z,t) }{\partial x} + \rho \frac{ \partial u_x(x,y,z,t) }{\partial t} =0 \tag{} \)
</p>
<p>
\( \frac{ \partial P(x,y,z,t) }{\partial y} + \rho \frac{ \partial u_y(x,y,z,t) }{\partial t} =0 \tag{} \)
</p>
<p>
\( \frac{ \partial P(x,y,z,t) }{\partial z} + \rho \frac{ \partial u_z(x,y,z,t) }{\partial t} =0\tag{} \)
</p>
<p>
\( \frac{ \partial P(x,y,z,t) }{\partial t} + \rho c^2 \{ \frac{ \partial u_x(x,y,z,t) }{\partial x} +\frac{ \partial u_y(x,y,z,t) }{\partial y} +\frac{ \partial u_z(x,y,z,t) }{\partial z}\}=0 \tag{} \)
</p>
<h3>曲げ振動解析</h3>
<pre>曲げ振動解析には,Kirchhoff理論に基づいた2次元薄板の曲げ振動方程式に損失項を加えた下記の式を用いる.</pre>
<p>
\( D \nabla^4 w + \xi D \frac{\partial}{\partial t} \nabla^4 w + m \mu \frac{\partial w}{\partial t} + m \frac{\partial^2 w}{\partial t^2} = p \tag{} \)
</p>
<p>
\( D = E h^3 / 12 (1- \gamma ^2) \tag{} \)
</p>
<p>ここで\(w\)は板の変位を表す. また,\(E\)はヤング率, \(h\)は板の厚み, \(\gamma\)はポアソン比を表す. </p>
<p>式()において, 第2項は内部粘性減衰項, 第3項は外部減衰項, \(\xi\)と\(\mu\)はそれぞれ内部粘性減衰および外部減衰に関する係数である.</p>
<p>\(\xi\), \(\mu\)といたの損失係数\(\eta\)の関係は,周波数領域で理論的に下式で表現される.</p>
<p>
\( \eta = 2 \pi f \xi + \frac{\mu}{2 \pi f} \tag{} \)
</p>
<p>上式()は周波数\(f\)の関数となることから, \(\eta\)は周波数特性を有する.</p>
<h3>音響振動連成解析</h3>
<p>曲げ振動場および音場を連成解析するために,板の両側における音圧\(p^2 (i,j,k)\), \( p^2 (i-1,j,k)\)の差分を, 板に対する外力\(q^n_{j,k}\)として与えた(下式). </p>
<p>ここで\(n\)は時間ステップ, \(i,j,k\)は\(x,y,z\)座標を表す. </p>
<p>
\( q^n_{j,k} = ( p^2(i,j,k) - p^2(i-1, j,k)) \triangle x \triangle y \tag{} \)
</p>
<p>
曲げ振動解析の結果求められた板の変位(\(w\))の時間微分からいたの振動速度を求め, 板の両側の音場における粒子速度\(u^{n+1}_x (i,j,k)\), \(u^{n+1}_x (i-1,j,k)\)に代入した
</p>
<p>
\( u^{n+1}_{x} (i,j,k) = \frac{ w^{n+1}_{j,k} - w^{n}_{j,k} }{ \triangle t } \tag{} \)
</p>
<p>
\( u^{n+1}_{x} (i-1,j,k) = \frac{ w^{n+1}_{j,k} - w^{n}_{j,k} }{ \triangle t } \tag{} \)
</p>
<p>
(ヒント) 空気中の音波と固体中の曲げ波では伝搬速度が異なるため,差分方計算における安定条件に差がでる. そのため,曲げ振動の計算において, 空気中音場に比べて時間離散化幅を小さくすることにより安定条件を満足させた.
</p>
</body>
</html>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment