Last active
October 27, 2018 19:42
-
-
Save pgolding/618c65e98b70261c616ada422f09373d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "# Pixel Math\n\nA visual reminder of pixel math." | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "import numpy as np\n\n# Make a 2x2 array of R,G,B pixels (or BGR for CV2)\npixel00 = [255,255,255]\npixel01 = [200,200,200]\npixel10 = [0,0,0]\npixel11 = [100,100,100]\nd = np.array([[pixel00, pixel01],[pixel10,pixel11]])", | |
"execution_count": 21, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "# Confirm the shape\nd.shape", | |
"execution_count": 22, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "(2, 2, 3)" | |
}, | |
"metadata": {}, | |
"execution_count": 22 | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "# view the data\nd", | |
"execution_count": 23, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "array([[[255, 255, 255],\n [200, 200, 200]],\n\n [[ 0, 0, 0],\n [100, 100, 100]]])" | |
}, | |
"metadata": {}, | |
"execution_count": 23 | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": true | |
}, | |
"cell_type": "code", | |
"source": "# Now load a 32x32 RGB image from the cifar10 dataset\nimport cv2\nim = cv2.imread(\"airplane4.png\")", | |
"execution_count": 24, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "im.shape", | |
"execution_count": 25, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "(32, 32, 3)" | |
}, | |
"metadata": {}, | |
"execution_count": 25 | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "" | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "# Looks similar to 2x2\nim[0]", | |
"execution_count": 27, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "array([[177, 124, 57],\n [170, 122, 57],\n [174, 123, 57],\n [179, 123, 59],\n [178, 125, 62],\n [178, 128, 61],\n [179, 129, 62],\n [178, 129, 61],\n [180, 132, 59],\n [183, 132, 61],\n [183, 132, 61],\n [184, 133, 62],\n [184, 133, 62],\n [185, 134, 63],\n [185, 134, 63],\n [185, 134, 63],\n [186, 136, 64],\n [187, 136, 65],\n [188, 135, 65],\n [188, 135, 64],\n [188, 136, 64],\n [189, 138, 63],\n [190, 139, 61],\n [190, 137, 64],\n [190, 137, 64],\n [189, 136, 64],\n [184, 134, 67],\n [182, 134, 67],\n [183, 134, 67],\n [184, 131, 69],\n [189, 131, 65],\n [186, 132, 63]], dtype=uint8)" | |
}, | |
"metadata": {}, | |
"execution_count": 27 | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "# to normalize for feeding into a ML net - e.g. neural network\nd = d / 255.0", | |
"execution_count": 9, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "d", | |
"execution_count": 11, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "array([[[1. , 1. , 1. ],\n [0.78431373, 0.78431373, 0.78431373]],\n\n [[0. , 0. , 0. ],\n [0.39215686, 0.39215686, 0.39215686]]])" | |
}, | |
"metadata": {}, | |
"execution_count": 11 | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "# reshape to feed as single feature vector\nd.reshape(d.shape[0] * d.shape[1] * d.shape[2])", | |
"execution_count": 20, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "array([1. , 1. , 1. , 0.78431373, 0.78431373,\n 0.78431373, 0. , 0. , 0. , 0.39215686,\n 0.39215686, 0.39215686])" | |
}, | |
"metadata": {}, | |
"execution_count": 20 | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": true | |
}, | |
"cell_type": "code", | |
"source": "", | |
"execution_count": null, | |
"outputs": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"name": "conda-env-ocr-py", | |
"display_name": "Python [conda env:ocr]", | |
"language": "python" | |
}, | |
"language_info": { | |
"nbconvert_exporter": "python", | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"name": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.4", | |
"mimetype": "text/x-python", | |
"file_extension": ".py" | |
}, | |
"gist_id": "618c65e98b70261c616ada422f09373d" | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Link to image: