Skip to content

Instantly share code, notes, and snippets.

@philipphager
Created April 8, 2024 07:17
Show Gist options
  • Save philipphager/f0f0cfa824755263a523d91995fbcf07 to your computer and use it in GitHub Desktop.
Save philipphager/f0f0cfa824755263a523d91995fbcf07 to your computer and use it in GitHub Desktop.
altair example.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"authorship_tag": "ABX9TyPZF1zgJhaKXKuYy57z4vQb",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/philipphager/f0f0cfa824755263a523d91995fbcf07/altair-example.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "VOhDpnr2hJ55"
},
"outputs": [],
"source": [
"!pip install --quiet altair, pandas"
]
},
{
"cell_type": "code",
"source": [
"import altair as alt\n",
"import pandas as pd"
],
"metadata": {
"id": "sVjToIrKhM5p"
},
"execution_count": 3,
"outputs": []
},
{
"cell_type": "code",
"source": [
"df = pd.DataFrame({\n",
" \"data\": [\"Dataset 1\", \"Dataset 1\", \"Dataset 1\", \"Dataset 1\", \"Dataset 1\", \"Dataset 1\", \"Dataset 1\", \"Dataset 1\", \"Dataset 1\", \"Dataset 2\", \"Dataset 2\", \"Dataset 2\", \"Dataset 2\", \"Dataset 2\", \"Dataset 2\", \"Dataset 2\", \"Dataset 2\", \"Dataset 2\"],\n",
" \"model\": [\"Model A\", \"Model A\", \"Model A\", \"Model B\", \"Model B\", \"Model B\", \"Model C\", \"Model C\", \"Model C\", \"Model A\", \"Model A\", \"Model A\", \"Model B\", \"Model B\", \"Model B\", \"Model C\", \"Model C\", \"Model C\"],\n",
" \"metric\": [0.8, 0.75, 0.85, 0.3, 0.29, 0.31, 0.7, 0.5, 0.3, 0.83, 0.65, 0.80, 0.9, 0.81, 0.94, 0.3, 0.25, 0.25]\n",
"})\n",
"\n",
"df.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "-s8oMd1-hWpY",
"outputId": "c0637b24-dff2-4368-9b99-dc5f6ee32a5a"
},
"execution_count": 15,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" data model metric\n",
"0 Dataset 1 Model A 0.80\n",
"1 Dataset 1 Model A 0.75\n",
"2 Dataset 1 Model A 0.85\n",
"3 Dataset 1 Model B 0.30\n",
"4 Dataset 1 Model B 0.29"
],
"text/html": [
"\n",
" <div id=\"df-762946aa-bcbc-4fbc-a76e-bd1c668ff02d\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>data</th>\n",
" <th>model</th>\n",
" <th>metric</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Dataset 1</td>\n",
" <td>Model A</td>\n",
" <td>0.80</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Dataset 1</td>\n",
" <td>Model A</td>\n",
" <td>0.75</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Dataset 1</td>\n",
" <td>Model A</td>\n",
" <td>0.85</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Dataset 1</td>\n",
" <td>Model B</td>\n",
" <td>0.30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Dataset 1</td>\n",
" <td>Model B</td>\n",
" <td>0.29</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-762946aa-bcbc-4fbc-a76e-bd1c668ff02d')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-762946aa-bcbc-4fbc-a76e-bd1c668ff02d button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-762946aa-bcbc-4fbc-a76e-bd1c668ff02d');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-c2148fb6-87b7-4352-8b50-42d1d0228006\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-c2148fb6-87b7-4352-8b50-42d1d0228006')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-c2148fb6-87b7-4352-8b50-42d1d0228006 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "df",
"summary": "{\n \"name\": \"df\",\n \"rows\": 18,\n \"fields\": [\n {\n \"column\": \"data\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"Dataset 2\",\n \"Dataset 1\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"model\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"Model A\",\n \"Model B\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"metric\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2636006337580527,\n \"min\": 0.25,\n \"max\": 0.94,\n \"num_unique_values\": 14,\n \"samples\": [\n 0.65,\n 0.81\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 15
}
]
},
{
"cell_type": "markdown",
"source": [
"## Altair\n",
"- Bar chart: https://altair-viz.github.io/gallery/simple_bar_chart.html\n",
"- Grouped bar chart: https://altair-viz.github.io/gallery/grouped_bar_chart.html\n",
"- Error bars: https://altair-viz.github.io/gallery/errorbars_with_ci.html"
],
"metadata": {
"id": "vkzKLwvVjrns"
}
},
{
"cell_type": "code",
"source": [
"# Create a basic bar chart:\n",
"bars = alt.Chart(df, width=300, height=400).mark_bar().encode(\n",
" x=\"model\",\n",
" y=\"mean(metric)\",\n",
" color=\"model\",\n",
")\n",
"\n",
"# Add a chart layer with bootstrapped 95% confidence interval:\n",
"confidence_intervals = alt.Chart(df, width=600, height=400).mark_errorbar(extent=\"ci\").encode(\n",
" x=\"model\",\n",
" y=\"metric\",\n",
" strokeWidth=alt.value(3),\n",
")\n",
"\n",
"# Layer bar chart and CIs on top of each other, lastly, split per dataset:\n",
"chart = (bars + confidence_intervals).facet(column=\"data\")\n",
"chart"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 544
},
"id": "6bb0tHlkiG-D",
"outputId": "01d49582-a56f-4d06-a639-eac638493978"
},
"execution_count": 23,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
"<div id=\"altair-viz-4d295ae748a8429b90ce5b3a391da7d5\"></div>\n",
"<script type=\"text/javascript\">\n",
" var VEGA_DEBUG = (typeof VEGA_DEBUG == \"undefined\") ? {} : VEGA_DEBUG;\n",
" (function(spec, embedOpt){\n",
" let outputDiv = document.currentScript.previousElementSibling;\n",
" if (outputDiv.id !== \"altair-viz-4d295ae748a8429b90ce5b3a391da7d5\") {\n",
" outputDiv = document.getElementById(\"altair-viz-4d295ae748a8429b90ce5b3a391da7d5\");\n",
" }\n",
" const paths = {\n",
" \"vega\": \"https://cdn.jsdelivr.net/npm//vega@5?noext\",\n",
" \"vega-lib\": \"https://cdn.jsdelivr.net/npm//vega-lib?noext\",\n",
" \"vega-lite\": \"https://cdn.jsdelivr.net/npm//[email protected]?noext\",\n",
" \"vega-embed\": \"https://cdn.jsdelivr.net/npm//vega-embed@6?noext\",\n",
" };\n",
"\n",
" function maybeLoadScript(lib, version) {\n",
" var key = `${lib.replace(\"-\", \"\")}_version`;\n",
" return (VEGA_DEBUG[key] == version) ?\n",
" Promise.resolve(paths[lib]) :\n",
" new Promise(function(resolve, reject) {\n",
" var s = document.createElement('script');\n",
" document.getElementsByTagName(\"head\")[0].appendChild(s);\n",
" s.async = true;\n",
" s.onload = () => {\n",
" VEGA_DEBUG[key] = version;\n",
" return resolve(paths[lib]);\n",
" };\n",
" s.onerror = () => reject(`Error loading script: ${paths[lib]}`);\n",
" s.src = paths[lib];\n",
" });\n",
" }\n",
"\n",
" function showError(err) {\n",
" outputDiv.innerHTML = `<div class=\"error\" style=\"color:red;\">${err}</div>`;\n",
" throw err;\n",
" }\n",
"\n",
" function displayChart(vegaEmbed) {\n",
" vegaEmbed(outputDiv, spec, embedOpt)\n",
" .catch(err => showError(`Javascript Error: ${err.message}<br>This usually means there's a typo in your chart specification. See the javascript console for the full traceback.`));\n",
" }\n",
"\n",
" if(typeof define === \"function\" && define.amd) {\n",
" requirejs.config({paths});\n",
" require([\"vega-embed\"], displayChart, err => showError(`Error loading script: ${err.message}`));\n",
" } else {\n",
" maybeLoadScript(\"vega\", \"5\")\n",
" .then(() => maybeLoadScript(\"vega-lite\", \"4.17.0\"))\n",
" .then(() => maybeLoadScript(\"vega-embed\", \"6\"))\n",
" .catch(showError)\n",
" .then(() => displayChart(vegaEmbed));\n",
" }\n",
" })({\"config\": {\"view\": {\"continuousWidth\": 400, \"continuousHeight\": 300}}, \"data\": {\"name\": \"data-86413f592491c83625c6191206ee3061\"}, \"facet\": {\"column\": {\"field\": \"data\", \"type\": \"nominal\"}}, \"spec\": {\"layer\": [{\"mark\": \"bar\", \"encoding\": {\"color\": {\"field\": \"model\", \"type\": \"nominal\"}, \"x\": {\"field\": \"model\", \"type\": \"nominal\"}, \"y\": {\"aggregate\": \"mean\", \"field\": \"metric\", \"type\": \"quantitative\"}}, \"height\": 400, \"width\": 300}, {\"mark\": {\"type\": \"errorbar\", \"extent\": \"ci\"}, \"encoding\": {\"strokeWidth\": {\"value\": 3}, \"x\": {\"field\": \"model\", \"type\": \"nominal\"}, \"y\": {\"field\": \"metric\", \"type\": \"quantitative\"}}, \"height\": 400, \"width\": 600}]}, \"$schema\": \"https://vega.github.io/schema/vega-lite/v4.17.0.json\", \"datasets\": {\"data-86413f592491c83625c6191206ee3061\": [{\"data\": \"Dataset 1\", \"model\": \"Model A\", \"metric\": 0.8}, {\"data\": \"Dataset 1\", \"model\": \"Model A\", \"metric\": 0.75}, {\"data\": \"Dataset 1\", \"model\": \"Model A\", \"metric\": 0.85}, {\"data\": \"Dataset 1\", \"model\": \"Model B\", \"metric\": 0.3}, {\"data\": \"Dataset 1\", \"model\": \"Model B\", \"metric\": 0.29}, {\"data\": \"Dataset 1\", \"model\": \"Model B\", \"metric\": 0.31}, {\"data\": \"Dataset 1\", \"model\": \"Model C\", \"metric\": 0.7}, {\"data\": \"Dataset 1\", \"model\": \"Model C\", \"metric\": 0.5}, {\"data\": \"Dataset 1\", \"model\": \"Model C\", \"metric\": 0.3}, {\"data\": \"Dataset 2\", \"model\": \"Model A\", \"metric\": 0.83}, {\"data\": \"Dataset 2\", \"model\": \"Model A\", \"metric\": 0.65}, {\"data\": \"Dataset 2\", \"model\": \"Model A\", \"metric\": 0.8}, {\"data\": \"Dataset 2\", \"model\": \"Model B\", \"metric\": 0.9}, {\"data\": \"Dataset 2\", \"model\": \"Model B\", \"metric\": 0.81}, {\"data\": \"Dataset 2\", \"model\": \"Model B\", \"metric\": 0.94}, {\"data\": \"Dataset 2\", \"model\": \"Model C\", \"metric\": 0.3}, {\"data\": \"Dataset 2\", \"model\": \"Model C\", \"metric\": 0.25}, {\"data\": \"Dataset 2\", \"model\": \"Model C\", \"metric\": 0.25}]}}, {\"mode\": \"vega-lite\"});\n",
"</script>"
],
"text/plain": [
"alt.FacetChart(...)"
]
},
"metadata": {},
"execution_count": 23
}
]
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment